51
|
Two-Dimensional Nanomaterial-based catalytic Medicine: Theories, advanced catalyst and system design. Adv Drug Deliv Rev 2022; 184:114241. [PMID: 35367308 DOI: 10.1016/j.addr.2022.114241] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023]
Abstract
Two-dimensional nanomaterial-based catalytic medicines that associate the superiorities of novel catalytic mechanisms with nanotechnology have emerged as absorbing therapeutic strategies for cancer therapy. Catalytic medicines featuring high efficiency and selectivity have been widely used as effective anticancer strategies without applying traditional nonselective and highly toxic chemodrugs. Moreover, two-dimensional nanomaterials are characterized by distinctive physicochemical properties, such as a sizeable bandgap, good conductivity, fast electron transfer and photoelectrochemical activity. The introduction of two-dimensional nanomaterials into catalytic medicine provides a more effective, controllable, and precise antitumor strategy. In this review, different types of two-dimensional nanomaterial-based catalytic nanomedicines are generalized, and their catalytic theories, advanced catalytic pathways and catalytic nanosystem design are also discussed in detail. Notably, future challenges and obstacles in the design and further clinical transformation of two-dimensional nanomaterial-based catalytic nanomedicine are prospected.
Collapse
|
52
|
Kianfar M, Balcerak A, Chmielarczyk M, Tarnowski L, Grzybowska EA. Cell Death by Entosis: Triggers, Molecular Mechanisms and Clinical Significance. Int J Mol Sci 2022; 23:ijms23094985. [PMID: 35563375 PMCID: PMC9102690 DOI: 10.3390/ijms23094985] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Entosis—a homotypic insertion of one cell into another, resulting in a death of the invading cell—has been described in many reports, but crucial aspects of its molecular mechanisms and clinical significance still remain controversial. While actomyosin contractility of the invading cell is very well established as a driving force in the initial phase, and autophagy induced in the outer cell is determined as the main mechanism of degradation of the inner cell, many details remain unresolved. The multitude of triggering factors and crisscrossing molecular pathways described in entosis regulation make interpretations difficult. The question of the physiological role of entosis also remains unanswered. In this review, we summarize the knowledge of molecular mechanisms and clinical data concerning entosis accumulated so far, highlighting both coherent explanations and controversies.
Collapse
|
53
|
Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: Still emerging. Cell Metab 2022; 34:355-377. [PMID: 35123658 PMCID: PMC8891094 DOI: 10.1016/j.cmet.2022.01.007] [Citation(s) in RCA: 723] [Impact Index Per Article: 241.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Metabolism of cancer cells is geared toward biomass production and proliferation. Since the metabolic resources within the local tissue are finite, this can lead to nutrient depletion and accumulation of metabolic waste. To maintain growth in these conditions, cancer cells employ a variety of metabolic adaptations, the nature of which is collectively determined by the physiology of their cell of origin, the identity of transforming lesions, and the tissue in which cancer cells reside. Furthermore, select metabolites not only serve as substrates for energy and biomass generation, but can also regulate gene and protein expression and influence the behavior of non-transformed cells in the tumor vicinity. As they grow and metastasize, tumors can also affect and be affected by the nutrient distribution within the body. In this hallmark update, recent advances are incorporated into a conceptual framework that may help guide further research efforts in exploring cancer cell metabolism.
Collapse
Affiliation(s)
- Natalya N Pavlova
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
54
|
Onishchenko NA, Gonikova ZZ, Nikolskaya AO, Kirsanova LA, Sevastianov VI. Programmed cell death and liver diseases. RUSSIAN JOURNAL OF TRANSPLANTOLOGY AND ARTIFICIAL ORGANS 2022; 24:72-88. [DOI: 10.15825/1995-1191-2022-1-72-88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cell death represents the most critical pathologic entity in liver disease, which dictates pathologic consequences such as inflammation, fibrosis, and cell transformation. We analyzed the conclusions of studies on the involvement of different types of programmed cell death (PCD) in the pathogenesis of liver diseases. Three main forms of PCD (autophagy, apoptosis, necrosis) and five additional, still insufficiently studied PCD – necroptosis, ferroptosis, pyroptosis, partanatosis and entosis – observed in the liver in various acute and chronic diseases are considered. The involvement of several PCD at once in the development of any one pathology and one type of PCD in different pathologies was established. This indicates the existence of cross-regulation of metabolism in the liver cells with different levels of damage in the formation of the main dominant type of PCD. Available results indicate the possibility of attenuation (correction) of functional and morphological manifestations of PCD in the organ by controlled blocking of effector-mediated PCD pathways, as well as targeted induction of autophagy, anti-apoptotic and anti-necrotic mechanisms in liver cells.
Collapse
Affiliation(s)
- N. A. Onishchenko
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - Z. Z. Gonikova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - A. O. Nikolskaya
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - L. A. Kirsanova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - V. I. Sevastianov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| |
Collapse
|
55
|
Gayan S, Teli A, Nair A, Tomar G, Dey T. Macro- and micro-nutrient-based multiplex stress conditions modulate in vitro tumorigenesis and aggressive behavior of breast cancer spheroids. IN VITRO MODELS 2022; 1:85-101. [PMID: 39872971 PMCID: PMC11756478 DOI: 10.1007/s44164-021-00006-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 01/30/2025]
Abstract
Purpose The aggressive nature of a tumor is presumably its inherent one, but different environmental cues can manipulate it in many ways. In this context, the influence of metabolic stresses on tumor behavior needs to be analyzed to understand their far-reaching implications on tumor aggression and dormancy. This work investigates different facets of the tumor, such as tumorigenic capacity, tumor phenotype, and migration, under multiple metabolic stress conditions. Methods Non-invasive and invasive multicellular spheroids (MTS) were created and subjected to multiple stress conditions, namely glucose, amino acid, and oxygen deprivation. Altered behavior of the MTS has been evaluated in the context of in vitro tumorigenesis, spheroid formation capacity, phenotype, mRNA profile, migration, and recruitment of mesenchymal stem cells. Results The metabolic stress conditions were observed to negatively impact the in vitro tumorigenesis and spheroid formation process of invasive and non-invasive breast cancer cells. While the stress seemingly influences the growth and phenotype of spheroids, it does not alter the organization of sub-cellular entities significantly. Metabolic stress conditions impact the transcriptomic landscape of hypoxic, angiogenic, ECM deformation, glycolysis shift, and protein starvation-related gene clusters. MTSs do not adhere or migrate under stress, but they exhibit different modalities of migration when rescued. Invasive spheroids, after the rescue, exhibit increased aggressiveness. Furthermore, stressed spheroid was observed to control the migration and recruitment of mesenchymal stem cells. Conclusion Multiplex metabolic stresses could control the tumorigenesis while influencing the physiology of invasive and non-invasive breast cancer spheroids along with their migration pattern and tumor-stromal crosstalk. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-021-00006-5.
Collapse
Affiliation(s)
- Sukanya Gayan
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Abhishek Teli
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Anish Nair
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Geetanjali Tomar
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Tuli Dey
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
56
|
Morana O, Wood W, Gregory CD. The Apoptosis Paradox in Cancer. Int J Mol Sci 2022; 23:ijms23031328. [PMID: 35163253 PMCID: PMC8836235 DOI: 10.3390/ijms23031328] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer growth represents a dysregulated imbalance between cell gain and cell loss, where the rate of proliferating mutant tumour cells exceeds the rate of those that die. Apoptosis, the most renowned form of programmed cell death, operates as a key physiological mechanism that limits cell population expansion, either to maintain tissue homeostasis or to remove potentially harmful cells, such as those that have sustained DNA damage. Paradoxically, high-grade cancers are generally associated with high constitutive levels of apoptosis. In cancer, cell-autonomous apoptosis constitutes a common tumour suppressor mechanism, a property which is exploited in cancer therapy. By contrast, limited apoptosis in the tumour-cell population also has the potential to promote cell survival and resistance to therapy by conditioning the tumour microenvironment (TME)-including phagocytes and viable tumour cells-and engendering pro-oncogenic effects. Notably, the constitutive apoptosis-mediated activation of cells of the innate immune system can help orchestrate a pro-oncogenic TME and may also effect evasion of cancer treatment. Here, we present an overview of the implications of cell death programmes in tumour biology, with particular focus on apoptosis as a process with "double-edged" consequences: on the one hand, being tumour suppressive through deletion of malignant or pre-malignant cells, while, on the other, being tumour progressive through stimulation of reparatory and regenerative responses in the TME.
Collapse
|
57
|
Wei J, Zhao Y, Liang H, Du W, Wang L. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharm Sin B 2022; 12:1-17. [PMID: 35127369 PMCID: PMC8799881 DOI: 10.1016/j.apsb.2021.08.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic mellitus (DM) is a common degenerative chronic metabolic disease often accompanied by severe cardiovascular complications (DCCs) as major causes of death in diabetic patients with diabetic cardiomyopathy (DCM) as the most common DCC. The metabolic disturbance in DCM generates the conditions/substrates and inducers/triggers and activates the signaling molecules and death executioners leading to cardiomyocyte death which accelerates the development of DCM and the degeneration of DCM to heart failure. Various forms of programmed active cell death including apoptosis, pyroptosis, autophagic cell death, autosis, necroptosis, ferroptosis and entosis have been identified and characterized in many types of cardiac disease. Evidence has also been obtained for the presence of multiple forms of cell death in DCM. Most importantly, published animal experiments have demonstrated that suppression of cardiomyocyte death of any forms yields tremendous protective effects on DCM. Herein, we provide the most updated data on the subject of cell death in DCM, critical analysis of published results focusing on the pathophysiological roles of cell death, and pertinent perspectives of future studies.
Collapse
Affiliation(s)
- Jinjing Wei
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yongting Zhao
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Weijie Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Lihong Wang
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
58
|
Xu L, Zhang C, Yin H, Gong S, Wu N, Ren Z, Zhang Y. RNA modifications act as regulators of cell death. RNA Biol 2021; 18:2183-2193. [PMID: 34313542 PMCID: PMC8632120 DOI: 10.1080/15476286.2021.1925460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, more than one hundred types of RNA modifications have been found, and many of these modifications are reversible and dynamically regulated. RNA modifications can regulate RNA stability and translation and are thus involved in multiple biological activities. Recently, RNA modifications have been shown to have important roles in the regulation of cell death. Cell death is a critical process that maintains tissue homoeostasis and is regulated by multiple pathways in response to specific stimuli. In this review, we summarize the current understanding of the roles of RNA modifications in cell death mediation and discuss the prospects of such research.Abbreviations: m6A, N6-Methyladenosine; m6Am, N6,2'-O-Dimethyladenosine; m1A, N1-Methyladenosine; m5C, 5-Methylcytosine; hm5C, 5-Hydroxymethylcytosine; Ψ, pseudouridine; A-to-I, adenosine-to- inosine; hnRNPs, heterogeneous nuclear ribonucleoproteins; MOMP, mitochondrial outer membrane permeabilization; DD, death domain; DISC, death-inducing signalling complex; DED, death effector domain; FADD, FAS-associated protein with the death domain; TRADD, TNF receptor-associated protein with death domain; CMA, chaperone- mediated autophagy; PE, phosphatidylethanolamine; AD, alzheimer's disease; AML, acute myeloid leukaemia; miR, microRNA; 6-OHDA, 6-hydroxydopamine hydrochloride; R-2HG, R-2-hydroxyglutarate; IRES, internal ribosome entry site; BMSCs, bone-derived mesenchymal stem cells; NPCs, nucleus pulposus cells; HsCG, human chorionic gonadotropin; snoRNAs, small nucleolar RNAs; ER, endoplasmic reticulum; lncRNAs, long noncoding RNAs; TNM, tumour-node-metastasis.
Collapse
Affiliation(s)
- Lei Xu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chong Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hang Yin
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuai Gong
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Nai Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zeqiang Ren
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yi Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
59
|
DiNapoli KT, Robinson DN, Iglesias PA. A mesoscale mechanical model of cellular interactions. Biophys J 2021; 120:4905-4917. [PMID: 34687718 PMCID: PMC8633826 DOI: 10.1016/j.bpj.2021.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 10/18/2021] [Indexed: 01/16/2023] Open
Abstract
Computational models of cell mechanics allow the precise interrogation of cell shape change. These morphological changes are required for cells to survive in diverse tissue environments. Here, we present a mesoscale mechanical model of cell-substrate interactions using the level set method based on experimentally measured parameters. By implementing a viscoelastic mechanical equivalent circuit, we accurately model whole-cell deformations that are important for a variety of cellular processes. To effectively model shape changes as a cell interacts with a substrate, we have included receptor-mediated adhesion, which is governed by catch-slip bond behavior. The effect of adhesion was explored by subjecting cells to a variety of different substrates including flat, curved, and deformable surfaces. Finally, we increased the accuracy of our simulations by including a deformable nucleus in our cells. This model sets the foundation for further exploration into computational analyses of multicellular interactions.
Collapse
Affiliation(s)
- Kathleen T DiNapoli
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pablo A Iglesias
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Electrical & Computer Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland.
| |
Collapse
|
60
|
Crkvenjakov R, Heng HH. Further illusions: On key evolutionary mechanisms that could never fit with Modern Synthesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 169-170:3-11. [PMID: 34767862 DOI: 10.1016/j.pbiomolbio.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
In the light of illusions of the Modern Synthesis (MS) listed by Noble (2021a), its key concept, that gradual accumulation of gene mutations within microevolution leads to macroevolution, requires reexamination. In this article, additional illusions of the MS are identified as being caused by the absence of system information and correct history. First, the MS lacks distinction among the two basic types of information: genome-defined system and gene-defined parts-information, as its treatment was based mostly on gene information. In contrast, it is argued here that system information is maintained by species-specific karyotype code, and macroevolution is based on the whole genome information package rather than on specific genes. Linking the origin of species with system information shows that the creation and accumulation of the latter in evolution is the fundamental question omitted from the MS. Second, modern evidence eliminates the MS's preferred theory that present evolutionary events can be linearly extrapolated to the past to reconstruct Life's history, wrongly assuming that most of the fossil record supports the gradual change while ignoring the true karyotype/genome patterns. Furthermore, stasis, as the most prominent pattern of the deep history of Life, remains a puzzle to the MS, but can be explained by the mechanism of karyotype-preservation-via-sex. Consequently, the concept of system-information is smoothly integrated into the two-phased evolutionary model that paleontology requires (Eldredge and Gould, 1972). Finally, research on genome-level causation of evolution, which does not fit the MS, is summarized. The availability of alternative concepts further illustrates that it is time to depart from the MS.
Collapse
Affiliation(s)
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
61
|
Overholtzer M. Cell death leaves a new TRAIL. J Cell Biol 2021; 220:e202109018. [PMID: 34643655 PMCID: PMC8563292 DOI: 10.1083/jcb.202109018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell death involves numerous mechanisms that can be cross-regulated through a complex signaling network. In this issue, Bozkurt et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202010030) identify a new connection in the network: signaling from TRAIL, a canonical inducer of apoptosis, can also induce a form of cell death called entosis, which has implications for cancer progression.
Collapse
|
62
|
Bozkurt E, Düssmann H, Salvucci M, Cavanagh BL, Van Schaeybroeck S, Longley DB, Martin SJ, Prehn JHM. TRAIL signaling promotes entosis in colorectal cancer. J Cell Biol 2021; 220:212649. [PMID: 34546352 PMCID: PMC8563286 DOI: 10.1083/jcb.202010030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022] Open
Abstract
Entosis is a form of nonphagocytic cell-in-cell (CIC) interaction where a living cell enters into another. Tumors show evidence of entosis; however, factors controlling entosis remain to be elucidated. Here, we find that besides inducing apoptosis, TRAIL signaling is a potent activator of entosis in colon cancer cells. Initiation of both apoptosis and entosis requires TRAIL receptors DR4 and DR5; however, induction of apoptosis and entosis diverges at caspase-8 as its structural presence is sufficient for induction of entosis but not apoptosis. Although apoptosis and entosis are morphologically and biochemically distinct, knockout of Bax and Bak, or inhibition of caspases, also inhibits entotic cell death and promotes survival and release of inner cells. Analysis of colorectal cancer tumors reveals a significant association between TRAIL signaling and CIC structures. Finally, the presence of CIC structures in the invasive front regions of colorectal tumors shows a strong correlation with adverse patient prognosis.
Collapse
Affiliation(s)
- Emir Bozkurt
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Balcova, Izmir, Turkey
| | - Heiko Düssmann
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
63
|
Borensztejn K, Tyrna P, Gaweł AM, Dziuba I, Wojcik C, Bialy LP, Mlynarczuk-Bialy I. Classification of Cell-in-Cell Structures: Different Phenomena with Similar Appearance. Cells 2021; 10:cells10102569. [PMID: 34685548 PMCID: PMC8534218 DOI: 10.3390/cells10102569] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
A phenomenon known for over 100 years named “cell-in-cell” (CIC) is now undergoing its renaissance, mostly due to modern cell visualization techniques. It is no longer an esoteric process studied by a few cell biologists, as there is increasing evidence that CICs may have prognostic and diagnostic value for cancer patients. There are many unresolved questions stemming from the difficulties in studying CICs and the limitations of current molecular techniques. CIC formation involves a dynamic interaction between an outer or engulfing cell and an inner or engulfed cell, which can be of the same (homotypic) or different kind (heterotypic). Either one of those cells appears to be able to initiate this process, which involves signaling through cell–cell adhesion, followed by cytoskeleton activation, leading to the deformation of the cellular membrane and movements of both cells that subsequently result in CICs. This review focuses on the distinction of five known forms of CIC (cell cannibalism, phagoptosis, enclysis, entosis, and emperipolesis), their unique features, characteristics, and underlying molecular mechanisms.
Collapse
Affiliation(s)
- Karol Borensztejn
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.B.); (P.T.); (A.M.G.)
| | - Paweł Tyrna
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.B.); (P.T.); (A.M.G.)
| | - Agata M. Gaweł
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.B.); (P.T.); (A.M.G.)
| | - Ireneusz Dziuba
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
- Faculty of Medicine, University of Technology, Rolna 43, 40-555 Katowice, Poland
| | - Cezary Wojcik
- US Cardiovascular, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA;
| | - Lukasz P. Bialy
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Izabela Mlynarczuk-Bialy
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-6295282
| |
Collapse
|
64
|
Kim SE, Zhang J, Jiang E, Overholtzer M. Amino acids and mechanistic target of rapamycin regulate the fate of live engulfed cells. FASEB J 2021; 35:e21909. [PMID: 34547144 PMCID: PMC9291127 DOI: 10.1096/fj.202100870r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 01/24/2023]
Abstract
Metabolic stress contributes to the regulation of cell death in normal and diseased tissues. While different forms of cell death are known to be regulated by metabolic stress, how the cell engulfment and killing mechanism entosis is regulated is not well understood. Here we find that the death of entotic cells is regulated by the presence of amino acids and activity of the mechanistic target of rapamycin (mTOR). Amino acid withdrawal or mTOR inhibition induces apoptosis of engulfed cells and blocks entotic cell death that is associated with the lipidation of the autophagy protein microtubule‐associated protein light chain 3 (LC3) to entotic vacuoles. Two other live cell engulfment programs, homotypic cell cannibalism (HoCC) and anti‐CD47 antibody‐mediated phagocytosis, known as phagoptosis, also undergo a similar vacuole maturation sequence involving LC3 lipidation and lysosome fusion, but only HoCC involves mTOR‐dependent regulation of vacuole maturation and engulfed cell death similar to entosis. We further find that the regulation of cell death by mTOR is independent of autophagy activation and instead involves the 4E‐BP1/2 proteins that are known regulators of mRNA translation. Depletion of 4E‐BP1/2 proteins can restore the mTOR‐regulated changes of entotic death and apoptosis rates of engulfed cells. These results identify amino acid signaling and the mTOR‐4E‐BP1/2 pathway as an upstream regulation mechanism for the fate of live engulfed cells formed by entosis and HoCC.
Collapse
Affiliation(s)
- Sung Eun Kim
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York, USA.,BCMB Allied Program, Weill Cornell Medical College, New York, New York, USA
| | - Justin Zhang
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York, USA
| | - Enoch Jiang
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York, USA
| | - Michael Overholtzer
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York, USA.,BCMB Allied Program, Weill Cornell Medical College, New York, New York, USA.,Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
65
|
Papalazarou V, Maddocks ODK. Supply and demand: Cellular nutrient uptake and exchange in cancer. Mol Cell 2021; 81:3731-3748. [PMID: 34547236 DOI: 10.1016/j.molcel.2021.08.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/27/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022]
Abstract
Nutrient supply and demand delineate cell behavior in health and disease. Mammalian cells have developed multiple strategies to secure the necessary nutrients that fuel their metabolic needs. This is more evident upon disruption of homeostasis in conditions such as cancer, when cells display high proliferation rates in energetically challenging conditions where nutritional sources may be scarce. Here, we summarize the main routes of nutrient acquisition that fuel mammalian cells and their implications in tumorigenesis. We argue that the molecular mechanisms of nutrient acquisition not only tip the balance between nutrient supply and demand but also determine cell behavior upon nutrient limitation and energetic stress and contribute to nutrient partitioning and metabolic coordination between different cell types in inflamed or tumorigenic environments.
Collapse
Affiliation(s)
- Vasileios Papalazarou
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Oliver D K Maddocks
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK.
| |
Collapse
|
66
|
Karimi MR, Karimi AH, Abolmaali S, Sadeghi M, Schmitz U. Prospects and challenges of cancer systems medicine: from genes to disease networks. Brief Bioinform 2021; 23:6361045. [PMID: 34471925 PMCID: PMC8769701 DOI: 10.1093/bib/bbab343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
It is becoming evident that holistic perspectives toward cancer are crucial in deciphering the overwhelming complexity of tumors. Single-layer analysis of genome-wide data has greatly contributed to our understanding of cellular systems and their perturbations. However, fundamental gaps in our knowledge persist and hamper the design of effective interventions. It is becoming more apparent than ever, that cancer should not only be viewed as a disease of the genome but as a disease of the cellular system. Integrative multilayer approaches are emerging as vigorous assets in our endeavors to achieve systemic views on cancer biology. Herein, we provide a comprehensive review of the approaches, methods and technologies that can serve to achieve systemic perspectives of cancer. We start with genome-wide single-layer approaches of omics analyses of cellular systems and move on to multilayer integrative approaches in which in-depth descriptions of proteogenomics and network-based data analysis are provided. Proteogenomics is a remarkable example of how the integration of multiple levels of information can reduce our blind spots and increase the accuracy and reliability of our interpretations and network-based data analysis is a major approach for data interpretation and a robust scaffold for data integration and modeling. Overall, this review aims to increase cross-field awareness of the approaches and challenges regarding the omics-based study of cancer and to facilitate the necessary shift toward holistic approaches.
Collapse
Affiliation(s)
| | | | | | - Mehdi Sadeghi
- Department of Cell & Molecular Biology, Semnan University, Semnan, Iran
| | - Ulf Schmitz
- Department of Molecular & Cell Biology, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
67
|
Chen R, Ram A, Albeck JG, Overholtzer M. Entosis is induced by ultraviolet radiation. iScience 2021; 24:102902. [PMID: 34401679 PMCID: PMC8353511 DOI: 10.1016/j.isci.2021.102902] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 01/26/2023] Open
Abstract
Entosis is a cell death mechanism that is executed through neighbor cell ingestion and killing that occurs in cancer tissues and during development. Here, we identify JNK and p38 stress-activated kinase signaling as an inducer of entosis in cells exposed to ultraviolet (UV) radiation. Cells with high levels of stress signaling are ingested and killed by those with low levels, a result of heterogeneity arising within cell populations over time. In stressed cells, entosis occurs as part of mixed-cell death response with parallel induction of apoptosis and necrosis, and we find that inhibition of one form of cell death leads to increased rates of another. Together, these findings identify stress-activated kinase signaling as a new inducer of entosis and demonstrate cross talk between different forms of cell death that can occur in parallel in response to UV radiation.
Collapse
Affiliation(s)
- Ruoyao Chen
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- BCMB Allied Program, Weill Cornell Medical College, New York, NY 10065, USA
| | - Abhineet Ram
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - John G. Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- BCMB Allied Program, Weill Cornell Medical College, New York, NY 10065, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
68
|
Niu Z, He M, Sun Q. Molecular mechanisms underlying cell-in-cell formation: core machineries and beyond. J Mol Cell Biol 2021; 13:329-334. [PMID: 33693765 PMCID: PMC8373266 DOI: 10.1093/jmcb/mjab015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/28/2022] Open
Affiliation(s)
- Zubiao Niu
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing 100071, China
| | - Meifang He
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing 100071, China
- Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 2020RU009, Beijing 100071, China
| |
Collapse
|
69
|
Santagostino SF, Assenmacher CA, Tarrant JC, Adedeji AO, Radaelli E. Mechanisms of Regulated Cell Death: Current Perspectives. Vet Pathol 2021; 58:596-623. [PMID: 34039100 DOI: 10.1177/03009858211005537] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Balancing cell survival and cell death is fundamental to development and homeostasis. Cell death is regulated by multiple interconnected signaling pathways and molecular mechanisms. Regulated cell death (RCD) is implicated in fundamental processes such as organogenesis and tissue remodeling, removal of unnecessary structures or cells, and regulation of cell numbers. RCD can also be triggered by exogenous perturbations of the intracellular or extracellular microenvironment when the adaptive processes that respond to stress fail. During the past few years, many novel forms of non-apoptotic RCD have been identified, and the characterization of RCD mechanisms at a molecular level has deepened our understanding of diseases encountered in human and veterinary medicine. Given the complexity of these processes, it has become clear that the identification of RCD cannot be based simply on morphologic characteristics and that descriptive and diagnostic terms presently used by pathologists-such as individual cell apoptosis or necrosis-appear inadequate and possibly misleading. In this review, the current understanding of the molecular machinery of each type of non-apoptotic RCD mechanisms is outlined. Due to the continuous discovery of new mechanisms or nuances of previously described processes, the limitations of the terms apoptosis and necrosis to indicate microscopic findings are also reported. In addition, the need for a standard panel of biomarkers and functional tests to adequately characterize the underlying RCD and its role as a mechanism of disease is considered.
Collapse
Affiliation(s)
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| | - James C Tarrant
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| | | | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
70
|
Was H, Borkowska A, Olszewska A, Klemba A, Marciniak M, Synowiec A, Kieda C. Polyploidy formation in cancer cells: How a Trojan horse is born. Semin Cancer Biol 2021; 81:24-36. [PMID: 33727077 DOI: 10.1016/j.semcancer.2021.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/29/2021] [Accepted: 03/03/2021] [Indexed: 01/04/2023]
Abstract
Ploidy increase has been shown to occur in different type of tumors and participate in tumor initiation and resistance to the treatment. Polyploid giant cancer cells (PGCCs) are cells with multiple nuclei or a single giant nucleus containing multiple complete sets of chromosomes. The mechanism leading to formation of PGCCs may depend on: endoreplication, mitotic slippage, cytokinesis failure, cell fusion or cell cannibalism. Polyploidy formation might be triggered in response to various genotoxic stresses including: chemotherapeutics, radiation, hypoxia, oxidative stress or environmental factors like: air pollution, UV light or hyperthermia. A fundamental feature of polyploid cancer cells is the generation of progeny during the reversal of the polyploid state (depolyploidization) that may show high aggressiveness resulting in the formation of resistant disease and tumor recurrence. Therefore, we propose that modern anti-cancer therapies should be designed taking under consideration polyploidization/ depolyploidization processes, which confer the polyploidization a hidden potential similar to a Trojan horse delayed aggressiveness. Various mechanisms and stress factors leading to polyploidy formation in cancer cells are discussed in this review.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland.
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland; Postgraduate School of Molecular Medicine, Zwirki i Wigury 61 Street, Warsaw, Poland
| | - Aleksandra Olszewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland; Postgraduate School of Molecular Medicine, Zwirki i Wigury 61 Street, Warsaw, Poland
| | - Aleksandra Klemba
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c Street, Warsaw, Poland
| | - Marta Marciniak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland
| | - Agnieszka Synowiec
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland
| |
Collapse
|
71
|
Esteban-Martínez L, Torres M. Metabolic regulation of cell competition. Dev Biol 2021; 475:30-36. [PMID: 33652024 DOI: 10.1016/j.ydbio.2021.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 02/04/2023]
Abstract
Cell Competition is a selective process by which viable cells are eliminated from developing or adult tissues by interactions with their neighbors. In many cases, the eliminated cells (losers) display reduced fitness, yet they would be able to sustain tissue growth or maintenance in a homotypic environment, and are only eliminated when confronted with surrounding wild type cells (winners). In addition, cells with oncogenic mutations that do not show reduced fitness can also be eliminated from tissues when surrounded by wild type cells. Depending on the context, transformed cells can also become supercompetitors and eliminate surrounding wild type cells, thereby promoting tumor formation. Several factors have been shown to play essential roles in Cell Competition, including genes relevant in developmental growth, tumor formation and epithelial apico-basal polarity. Recent discoveries, however, suggest that energy metabolism plays a central role in very different models of cell competition. Here we review the involvement of mitochondrial dynamics and metabolism, autophagy and nutritional status in cell competition and discuss the possible implications of this emerging field.
Collapse
Affiliation(s)
- Lorena Esteban-Martínez
- Cardiovascular Development Program. Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Miguel Torres
- Cardiovascular Development Program. Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, Madrid, 28029, Spain.
| |
Collapse
|
72
|
Ornell KJ, Mistretta KS, Ralston CQ, Coburn JM. Development of a stacked, porous silk scaffold neuroblastoma model for investigating spatial differences in cell and drug responsiveness. Biomater Sci 2021; 9:1272-1290. [PMID: 33336667 DOI: 10.1039/d0bm01153c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of in vitro, preclinical cancer models that contain cell-driven microenvironments remains a challenge. Engineering of millimeter-scale, in vitro tumor models with spatially distinct regions that can be independently assessed to study tumor microenvironments has been limited. Here, we report the use of porous silk scaffolds to generate a high cell density neuroblastoma (NB) model that can spatially recapitulate changes resulting from cell and diffusion driven changes. Using COMSOL modeling, a scaffold holder design that facilitates stacking of thin, 200 μm silk scaffolds into a thick, bulk millimeter-scale tumor model (2, 4, 6, and 8 stacked scaffolds) and supports cell-driven oxygen gradients was developed. Cell-driven oxygen gradients were confirmed through pimonidazole staining. Post-culture, the stacked scaffolds were separated for analysis on a layer-by-layer basis. The analysis of each scaffold layer demonstrated decreasing DNA and increasing expression of hypoxia related genes (VEGF, CAIX, and GLUT1) from the exterior scaffolds to the interior scaffolds. Furthermore, the expression of hypoxia related genes at the interior of the stacks was comparable to that of a single scaffold cultured under 1% O2 and at the exterior of the stacks was comparable to that of a single scaffold cultured under 21% O2. The four-stack scaffold model underwent further evaluation to determine if a hypoxia activated drug, tirapazamine, induced reduced cell viability within the internal stacks (region of reduced oxygen) as compared with the external stacks. Decreased DNA content was observed in the internal stacks as compared to the external stacks when treated with tirapazamine, which suggests the internal scaffold stacks had higher levels of hypoxia than the external scaffolds. This stacked silk scaffold system presents a method for creating a single culture model capable of generating controllable cell-driven microenvironments through different stacks that can be individually assessed and used for drug screening.
Collapse
Affiliation(s)
- Kimberly J Ornell
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| | - Katelyn S Mistretta
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| | - Coulter Q Ralston
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
73
|
Ren W, Zhao W, Cao L, Huang J. Involvement of the Actin Machinery in Programmed Cell Death. Front Cell Dev Biol 2021; 8:634849. [PMID: 33634110 PMCID: PMC7900405 DOI: 10.3389/fcell.2020.634849] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death (PCD) depicts a genetically encoded and an orderly mode of cellular mortality. When triggered by internal or external stimuli, cells initiate PCDs through evolutionary conserved regulatory mechanisms. Actin, as a multifunctional cytoskeleton protein that forms microfilament, its integrity and dynamics are essential for a variety of cellular processes (e.g., morphogenesis, membrane blebbing and intracellular transport). Decades of work have broadened our knowledge about different types of PCDs and their distinguished signaling pathways. However, an ever-increasing pool of evidences indicate that the delicate relationship between PCDs and the actin cytoskeleton is beginning to be elucidated. The purpose of this article is to review the current understanding of the relationships between different PCDs and the actin machinery (actin, actin-binding proteins and proteins involved in different actin signaling pathways), in the hope that this attempt can shed light on ensuing studies and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Weida Ren
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wanyu Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lingbo Cao
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Junqi Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
74
|
Hofmann A, Putz F, Büttner-Herold M, Hecht M, Fietkau R, Distel LV. Increase in non-professional phagocytosis during the progression of cell cycle. PLoS One 2021; 16:e0246402. [PMID: 33544774 PMCID: PMC7864402 DOI: 10.1371/journal.pone.0246402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Homotypic or heterotypic internalization of another, either living or necrotic cell is currently in the center of research interest. The active invasion of a living cell called entosis and cannibalism of cells by rapidly proliferating cancers are prominent examples. Additionally, normal healthy tissue cells are capable of non-professional phagocytosis. This project studied the relationship between non-professional phagocytosis, individual proliferation and cell cycle progression. Three mesenchymal and two epithelial normal tissue cell lines were studied for homotypic non-professional phagocytosis. Homotypic dead cells were co-incubated with adherent growing living cell layers. Living cells were synchronized by mitotic shake-off as well as Aphidicolin-treatment and phagocytotic activity was analyzed by immunostaining. Cell cycle phases were evaluated by flow cytometry. Mesenchymal and epithelial normal tissue cells were capable of internalizing dead cells. Epithelial cells had much higher non-professional phagocytotic rates than mesenchymal cells. Cells throughout the entire cell cycle were able to phagocytose. The phagocytotic rate significantly increased with progressing cell cycle phases. Mitotic cells regularly phagocytosed dead cells, this was verified by Nocodazole and Colcemid treatment. Taken together, our findings indicate the ability of human tissue cells to phagocytose necrotic neighboring cells in confluent cell layers. The origin of the cell line influences the rate of cell-in-cell structure formation. The higher cell-in-cell structure rates during cell cycle progression might be influenced by cytoskeletal reorganization during this period or indicate an evolutionary anchorage of the process. Recycling of nutrients during cell growth might also be an explanation.
Collapse
Affiliation(s)
- Alexander Hofmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Luitpold V. Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
75
|
Liang J, Niu Z, Zhang B, Yu X, Zheng Y, Wang C, Ren H, Wang M, Ruan B, Qin H, Zhang X, Gu S, Sai X, Tai Y, Gao L, Ma L, Chen Z, Huang H, Wang X, Sun Q. p53-dependent elimination of aneuploid mitotic offspring by entosis. Cell Death Differ 2021; 28:799-813. [PMID: 33110215 PMCID: PMC7862607 DOI: 10.1038/s41418-020-00645-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
Entosis was proposed to promote aneuploidy and genome instability by cell-in-cell mediated engulfment in tumor cells. We reported here, in epithelial cells, that entosis coupled with mitotic arrest functions to counteract genome instability by targeting aneuploid mitotic progenies for engulfment and elimination. We found that the formation of cell-in-cell structures associated with prolonged mitosis, which was sufficient to induce entosis. This process was controlled by the tumor suppressor p53 (wild-type) that upregulates Rnd3 expression in response to DNA damages associated with prolonged metaphase. Rnd3-compartmentalized RhoA activities accumulated during prolonged metaphase to drive cell-in-cell formation. Remarkably, this prolonged mitosis-induced entosis selectively targets non-diploid progenies for internalization, blockade of which increased aneuploidy. Thus, our work uncovered a heretofore unrecognized mechanism of mitotic surveillance for entosis, which eliminates newly born abnormal daughter cells in a p53-dependent way, implicating in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Jianqing Liang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Zubiao Niu
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
| | - Bo Zhang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China
| | - Xiaochen Yu
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
| | - You Zheng
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
| | - Chenxi Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
| | - He Ren
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China
| | - Manna Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
- Institute of Molecular Immunology, Southern Medical University, Guangzhou, 510515, China
| | - Banzhan Ruan
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
| | - Hongquan Qin
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
- Institute of Molecular Immunology, Southern Medical University, Guangzhou, 510515, China
| | - Xin Zhang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
- Department of Pediatric Hematology and Oncology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Songzhi Gu
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
| | - Xiaoyong Sai
- National Clinic Center of Geriatric & the State Key Laboratory of Kidney, the Chinese PLA General Hospital, Beijing, 100853, China
| | - Yanhong Tai
- The 307 Hospital, 8 Dongda Street, Beijing, 100071, China
| | - Lihua Gao
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
| | - Li Ma
- Institute of Molecular Immunology, Southern Medical University, Guangzhou, 510515, China
| | - Zhaolie Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China.
| | - Xiaoning Wang
- National Clinic Center of Geriatric & the State Key Laboratory of Kidney, the Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China.
| |
Collapse
|
76
|
Heng J, Heng HH. Genome chaos: Creating new genomic information essential for cancer macroevolution. Semin Cancer Biol 2020; 81:160-175. [PMID: 33189848 DOI: 10.1016/j.semcancer.2020.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Cancer research has traditionally focused on the characterization of individual molecular mechanisms that can contribute to cancer. Due to the multiple levels of genomic and non-genomic heterogeneity, however, overwhelming molecular mechanisms have been identified, most with low clinical predictability. It is thus necessary to search for new concepts to unify these diverse mechanisms and develop better strategies to understand and treat cancer. In recent years, two-phased cancer evolution (comprised of the genome reorganization-mediated punctuated phase and gene mutation-mediated stepwise phase), initially described by tracing karyotype evolution, was confirmed by the Cancer Genome Project. In particular, genome chaos, the process of rapid and massive genome reorganization, has been commonly detected in various cancers-especially during key phase transitions, including cellular transformation, metastasis, and drug resistance-suggesting the importance of genome-level changes in cancer evolution. In this Perspective, genome chaos is used as a discussion point to illustrate new genome-mediated somatic evolutionary frameworks. By rephrasing cancer as a new system emergent from normal tissue, we present the multiple levels (or scales) of genomic and non-genomic information. Of these levels, evolutionary studies at the chromosomal level are determined to be of ultimate importance, since altered genomes change the karyotype coding and karyotype change is the key event for punctuated cellular macroevolution. Using this lens, we differentiate and analyze developmental processes and cancer evolution, as well as compare the informational relationship between genome chaos and its various subtypes in the context of macroevolution under crisis. Furthermore, the process of deterministic genome chaos is discussed to interpret apparently random events (including stressors, chromosomal variation subtypes, surviving cells with new karyotypes, and emergent stable cellular populations) as nonrandom patterns, which supports the new cancer evolutionary model that unifies genome and gene contributions during different phases of cancer evolution. Finally, the new perspective of using cancer as a model for organismal evolution is briefly addressed, emphasizing the Genome Theory as a new and necessary conceptual framework for future research and its practical implications, not only in cancer but evolutionary biology as a whole.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 86 Brattle Street Cambridge, MA, 02138, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
77
|
Gottwald D, Putz F, Hohmann N, Büttner-Herold M, Hecht M, Fietkau R, Distel L. Role of tumor cell senescence in non-professional phagocytosis and cell-in-cell structure formation. BMC Mol Cell Biol 2020; 21:79. [PMID: 33160318 PMCID: PMC7648987 DOI: 10.1186/s12860-020-00326-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Background Non-professional phagocytosis is usually triggered by stimuli such as necrotic cell death. In tumor therapy, the tumors often disappear slowly and only long time after the end of therapy. Here, tumor therapy inactivates the cells by inducing senescence. Therefore, study focused whether senescence is a stimulus for non-professional phagocytosis or whether senescent cells themselves phagocytize non-professionally. Results Senescence was induced in cell lines by camptothecin and a phagocytosis assay was performed. In tissue of a cohort of 192 rectal cancer patients senescence and non-professional phagocytosis was studied by anti-histone H3K9me3 and anti-E-cadherin staining. Senescent fibroblasts and pancreas carcinoma cells phagocytize necrotic cells but are not phagocytized. In the tissue of rectal carcinoma, senescent cells can phagocytize and can be phagocytized. A high number of senescent cells and, at the same time, high numbers of non-professional phagocytizing cells in the rectal carcinoma tissue lead to an extremely unfavorable prognosis regarding overall survival. Conclusion Senescent cells can be non-professionally phagocytized and at the same time they can non-professionally phagocytize in vivo. In vitro experiments indicate that it is unlikely that senescence is a strong trigger for non-professional phagocytosis. Combined high rates of non-professional phagocytosis and high rates of senescence are an extremely poor prognostic factor for overall survival.
Collapse
Affiliation(s)
- Dorian Gottwald
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Nora Hohmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen, Nürnberg, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Luitpold Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany.
| |
Collapse
|
78
|
Aizawa S, Brar G, Tsukamoto H. Cell Death and Liver Disease. Gut Liver 2020; 14:20-29. [PMID: 30917630 PMCID: PMC6974333 DOI: 10.5009/gnl18486] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Cell death is now reclassified into several types based on the mechanisms and morphologic phenotype. Understanding of such classifications offers insights into the pathogenesis of liver disease, as well as diagnostic or therapeutic implications. Apoptosis is recognized relatively easily due to its unique morphology, but lytic cell death may occur in the form of accidental necrosis, mitochondria permeability transition-driven necrosis, necroptosis, pyroptosis, ferroptosis, and parthanatos. The cell may be engulfed by neighboring cells due to a loss of integrin signaling or cancer cell competition by entosis, a type of cell death. The classification also includes mechanistically termed cell death such as autophagy-dependent cell death and lysosome-dependent cell death. These different types of cell death may occur uniquely in certain liver diseases but may coexist in the evolution of the disease. They occur in parenchymal and non-parenchymal liver cells, as well as inflammatory cells, causing distinct pathologic consequences. This review briefly covers the recently revised classifications of cell death and discusses their relevance to liver diseases of different etiologies.
Collapse
Affiliation(s)
- Satoka Aizawa
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, USA
| | - Gurmehr Brar
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, USA.,Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
79
|
Li S, Xiong GJ, Huang N, Sheng ZH. The cross-talk of energy sensing and mitochondrial anchoring sustains synaptic efficacy by maintaining presynaptic metabolism. Nat Metab 2020; 2:1077-1095. [PMID: 33020662 PMCID: PMC7572785 DOI: 10.1038/s42255-020-00289-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/02/2020] [Indexed: 01/12/2023]
Abstract
Mitochondria supply ATP essential for synaptic transmission. Neurons face exceptional challenges in maintaining energy homoeostasis at synapses. Regulation of mitochondrial trafficking and anchoring is critical for neurons to meet increased energy consumption during sustained synaptic activity. However, mechanisms recruiting and retaining presynaptic mitochondria in sensing synaptic ATP levels remain elusive. Here we reveal an energy signalling axis that controls presynaptic mitochondrial maintenance. Activity-induced presynaptic energy deficits can be rescued by recruiting mitochondria through the AMP-activated protein kinase (AMPK)-p21-activated kinase (PAK) energy signalling pathway. Synaptic activity induces AMPK activation within axonal compartments and AMPK-PAK signalling triggers phosphorylation of myosin VI, which drives mitochondrial recruitment and syntaphilin-mediated anchoring on presynaptic filamentous actin. This pathway maintains presynaptic energy supply and calcium clearance during intensive synaptic activity. Disrupting this signalling cross-talk triggers local energy deficits and intracellular calcium build-up, leading to impaired synaptic efficacy during trains of stimulation and reduced recovery from synaptic depression after prolonged synaptic activity. Our study reveals a mechanistic cross-talk between energy sensing and mitochondria anchoring to maintain presynaptic metabolism, thus fine-tuning short-term synaptic plasticity and prolonged synaptic efficacy.
Collapse
Affiliation(s)
- Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
80
|
Almangush A, Mäkitie AA, Hagström J, Haglund C, Kowalski LP, Nieminen P, Coletta RD, Salo T, Leivo I. Cell-in-cell phenomenon associates with aggressive characteristics and cancer-related mortality in early oral tongue cancer. BMC Cancer 2020; 20:843. [PMID: 32883229 PMCID: PMC7469910 DOI: 10.1186/s12885-020-07342-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 12/27/2022] Open
Abstract
Background Cell-in-cell structures (caused by cell cannibalistic activity) have been related to prognosis of many cancers. This is the first multi-institutional study to assess the prognostic impact of cell-in-cell structures in a large cohort of early oral tongue squamous cell carcinomas (OTSCC). Methods A total of 308 cases from five Finnish University Hospitals and from the A.C. Camargo Cancer Center, São Paulo, Brazil, were included in this study. Cell-in-cell structures were evaluated on surgical postoperative sections that stained with hematoxylin and eosin staining. Results We found that cell-in-cell structures associated with cancer-related mortality in univariable analysis with a hazard ratio (HR) of 2.99 (95%CI 1.52–5.88; P = 0.001). This association was confirmed in multivariable analysis (HR 2.22, 95%CI 1.12–4.44; P = 0.024). In addition, statistically significant associations were observed between the cell-in-cell structures and other adverse histopathologic characteristics including deep invasion (P < 0.001), high index of tumor budding (P = 0.007), worst pattern of invasion (P < 0.001), perineural invasion (P = 0.01), and stroma-rich pattern (P = 0.001). Conclusions Our findings demonstrate a significant relationship between cell-in-cell formation and aggressive characteristics of early OTSCC. Cell-in-cell structures have a distinct impact as a novel prognostic indicator in early OTSCC and they can be easily assessed during routine pathology practice.
Collapse
Affiliation(s)
- Alhadi Almangush
- Department of Pathology, University of Helsinki, Haartmaninkatu 3 (P.O. Box 21), FIN-00014, Helsinki, Finland. .,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland. .,Institute of Biomedicine, Pathology, University of Turku, Turku, Finland. .,Faculty of Dentistry, University of Misurata, Misurata, Libya.
| | - Antti A Mäkitie
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jaana Hagström
- Department of Pathology, University of Helsinki, Haartmaninkatu 3 (P.O. Box 21), FIN-00014, Helsinki, Finland.,Department of Oral Pathology and Radiology, University of Turku, Turku, Finland.,Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland.,Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo, Brazil.,Department of Head and Neck Surgery, University of Sao Paulo Medical School, São Paulo, SP, Brazil
| | - Pentti Nieminen
- Medical Informatics and Data Analysis Research Group, University of Oulu, Oulu, Finland
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Tuula Salo
- Department of Pathology, University of Helsinki, Haartmaninkatu 3 (P.O. Box 21), FIN-00014, Helsinki, Finland.,Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Turku, Finland
| |
Collapse
|
81
|
Hayashi A, Yavas A, McIntyre CA, Ho YJ, Erakky A, Wong W, Varghese AM, Melchor JP, Overholtzer M, O'Reilly EM, Klimstra DS, Basturk O, Iacobuzio-Donahue CA. Genetic and clinical correlates of entosis in pancreatic ductal adenocarcinoma. Mod Pathol 2020; 33:1822-1831. [PMID: 32350415 PMCID: PMC7452867 DOI: 10.1038/s41379-020-0549-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 12/26/2022]
Abstract
Entosis is a type of regulated cell death that promotes cancer cell competition. Though several studies have revealed the molecular mechanisms that govern entosis, the clinical and genetic correlates of entosis in human tumors is less well understood. Here we reviewed entotic cell-in-cell (CIC) patterns in a large single institution sequencing cohort (MSK IMPACT clinical sequencing cohort) of more than 1600 human pancreatic ductal adenocarcinoma (PDAC) samples to identify the genetic and clinical correlates of this cellular feature. After case selection, 516 conventional PDACs and 21 ASCs entered this study and ~45,000 HPFs (median 80 HPFs per sample) were reviewed; 549 entotic-CICs were detected through our cohort. We observed that entotic-CIC occurred more frequently in liver metastasis compared with primary in PDAC. Moreover, poorly differentiated adenocarcinoma or adenosquamous carcinoma had more entotic-CIC than well or moderately differentiated adenocarcinoma. With respect to genetic features TP53 mutations, KRAS amplification, and MYC amplification were significantly associated with entosis in PDAC tissues. From a clinical standpoint entotic CICs were independently associated with a poor prognosis by multivariate Cox regression analysis when considering all cases or primary PDACs specifically. These results provide a contextual basis for understanding entosis in PDAC, a highly aggressive cancer for which molecular insights are needed to improve survival.
Collapse
Affiliation(s)
- Akimasa Hayashi
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aslihan Yavas
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caitlin A McIntyre
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amanda Erakky
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Winston Wong
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna M Varghese
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry P Melchor
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Overholtzer
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eileen M O'Reilly
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David S Klimstra
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olca Basturk
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Christine A Iacobuzio-Donahue
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
82
|
Wang M, Niu Z, Qin H, Ruan B, Zheng Y, Ning X, Gu S, Gao L, Chen Z, Wang X, Huang H, Ma L, Sun Q. Mechanical Ring Interfaces between Adherens Junction and Contractile Actomyosin to Coordinate Entotic Cell-in-Cell Formation. Cell Rep 2020; 32:108071. [PMID: 32846129 DOI: 10.1016/j.celrep.2020.108071] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/21/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Entosis is a cell-in-cell (CIC)-mediated death program. Contractile actomyosin (CA) and the adherens junction (AJ) are two core elements essential for entotic CIC formation, but the molecular structures interfacing them remain poorly understood. Here, we report the characterization of a ring-like structure interfacing between the peripheries of invading and engulfing cells. The ring-like structure is a multi-molecular complex consisting of adhesive and cytoskeletal proteins, in which the mechanical sensor vinculin is highly enriched. The vinculin-enriched structure senses mechanical force imposed on cells, as indicated by fluorescence resonance energy transfer (FRET) analysis, and is thus termed the mechanical ring (MR). The MR actively interacts with CA and the AJ to help establish and maintain polarized actomyosin that drives cell internalization. Vinculin depletion leads to compromised MR formation, CA depolarization, and subsequent CIC failure. In summary, we suggest that the vinculin-enriched MR, in addition to CA and AJ, is another core element essential for entosis.
Collapse
Affiliation(s)
- Manna Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China; Institute of Molecular Immunology, Southern Medical University, Guangzhou 510515, China
| | - Zubiao Niu
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Hongquan Qin
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China; Institute of Molecular Immunology, Southern Medical University, Guangzhou 510515, China
| | - Banzhan Ruan
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - You Zheng
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Xiangkai Ning
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Songzhi Gu
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Lihua Gao
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Zhaolie Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Xiaoning Wang
- National Clinic Center of Geriatric, the Chinese PLA General Hospital, Beijing 100853, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| | - Li Ma
- Institute of Molecular Immunology, Southern Medical University, Guangzhou 510515, China.
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China.
| |
Collapse
|
83
|
Centrosome dysfunction: a link between senescence and tumor immunity. Signal Transduct Target Ther 2020; 5:107. [PMID: 32606370 PMCID: PMC7327052 DOI: 10.1038/s41392-020-00214-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Centrosome aberrations are hallmarks of human cancers and contribute to the senescence process. Structural and numerical centrosome abnormalities trigger mitotic errors, cellular senescence, cell death, genomic instability and/or aneuploidy, resulting in human disorders such as aging and cancer and affecting immunity. Interestingly, centrosome dysfunction promotes the secretion of multiple inflammatory factors that act as pivotal drivers of senescence and tumor immune escape. In this review, we summarize the forms of centrosome dysfunction and further discuss recent advances indicating that centrosome defects contribute to acceleration of senescence progression and promotion of tumor cell immune evasion in different ways.
Collapse
|
84
|
Loss of 4.1N in epithelial ovarian cancer results in EMT and matrix-detached cell death resistance. Protein Cell 2020; 12:107-127. [PMID: 32448967 PMCID: PMC7862473 DOI: 10.1007/s13238-020-00723-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/23/2020] [Indexed: 01/01/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the leading causes of death from gynecologic cancers and peritoneal dissemination is the major cause of death in patients with EOC. Although the loss of 4.1N is associated with increased risk of malignancy, its association with EOC remains unclear. To explore the underlying mechanism of the loss of 4.1N in constitutive activation of epithelial-mesenchymal transition (EMT) and matrix-detached cell death resistance, we investigated samples from 268 formalin-fixed EOC tissues and performed various in vitro and in vivo assays. We report that the loss of 4.1N correlated with progress in clinical stage, as well as poor survival in EOC patients. The loss of 4.1N induces EMT in adherent EOC cells and its expression inhibits anoikis resistance and EMT by directly binding and accelerating the degradation of 14-3-3 in suspension EOC cells. Furthermore, the loss of 4.1N could increase the rate of entosis, which aggravates cell death resistance in suspension EOC cells. Moreover, xenograft tumors in nude mice also show that the loss of 4.1N can aggravate peritoneal dissemination of EOC cells. Single-agent and combination therapy with a ROCK inhibitor and a 14-3-3 antagonist can reduce tumor spread to varying degrees. Our results not only define the vital role of 4.1N loss in inducing EMT, anoikis resistance, and entosis-induced cell death resistance in EOC, but also suggest that individual or combined application of 4.1N, 14-3-3 antagonists, and entosis inhibitors may be a promising therapeutic approach for the treatment of EOC.
Collapse
|
85
|
Davies SP, Terry LV, Wilkinson AL, Stamataki Z. Cell-in-Cell Structures in the Liver: A Tale of Four E's. Front Immunol 2020; 11:650. [PMID: 32528462 PMCID: PMC7247839 DOI: 10.3389/fimmu.2020.00650] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
The liver is our largest internal organ and it plays major roles in drug detoxification and immunity, where the ingestion of extracellular material through phagocytosis is a critical pathway. Phagocytosis is the deliberate endocytosis of large particles, microbes, dead cells or cell debris and can lead to cell-in-cell structures. Various types of cell endocytosis have been recently described for hepatic epithelia (hepatocytes), which are non-professional phagocytes. Given that up to 80% of the liver comprises hepatocytes, the biological impact of cell-in-cell structures in the liver can have profound effects in liver regeneration, inflammation and cancer. This review brings together the latest reports on four types of endocytosis in the liver -efferocytosis, entosis, emperipolesis and enclysis, with a focus on hepatocyte biology.
Collapse
Affiliation(s)
- Scott P Davies
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Lauren V Terry
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alex L Wilkinson
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Liver Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
86
|
Keller CW, Kotur MB, Mundt S, Dokalis N, Ligeon LA, Shah AM, Prinz M, Becher B, Münz C, Lünemann JD. CYBB/NOX2 in conventional DCs controls T cell encephalitogenicity during neuroinflammation. Autophagy 2020; 17:1244-1258. [PMID: 32401602 DOI: 10.1080/15548627.2020.1756678] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Whereas central nervous system (CNS) homeostasis is highly dependent on tissue surveillance by immune cells, dysregulated entry of leukocytes during autoimmune neuroinflammation causes severe immunopathology and neurological deficits. To invade the CNS parenchyma, encephalitogenic T helper (TH) cells must encounter their cognate antigen(s) presented by local major histocompatibility complex (MHC) class II-expressing antigen-presenting cells (APCs). The precise mechanisms by which CNS-associated APCs facilitate autoimmune T cell reactivation remain largely unknown. We previously showed that mice with conditional deletion of the gene encoding the essential autophagy protein ATG5 in dendritic cells (DCs) are resistant to EAE development. Here, we report that the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2, also known as CYBB/NOX2, in conventional DCs (cDCs) regulates endocytosed MOG (myelin oligodendrocyte protein) antigen processing and supports MOG-antigen presentation to CD4+ T cells through LC3-associated phagocytosis (LAP). Genetic ablation of Cybb in cDCs is sufficient to restrain encephalitogenic TH cell recruitment into the CNS and to ameliorate clinical disease development upon the adoptive transfer of MOG-specific CD4+ T cells. These data indicate that CYBB-regulated MOG-antigen processing and LAP in cDCs licenses encephalitogenic TH cells to initiate and sustain autoimmune neuroinflammation.Abbreviations: Ag: antigen; APC: antigen-presenting cell; AT: adoptive transfer; ATG/Atg: autophagy-related; BAMs: border-associated macrophages; BMDC: bone marrow-derived DC; CD: cluster of differentiation; CNS: central nervous system; CSF2/GM-CSF: colony stimulating factor 2 (granulocyte-macrophage); CYBB/NOX2/gp91phox: cytochrome b-245, beta polypeptide; DC: dendritic cell; EAE: experimental autoimmune encephalomyelitis; fl: floxed; FOXP3: forkhead box P3; GFP: green fluorescent protein; H2-Ab: histocompatibility 2, class II antigen A, beta 1; IFN: interferon; IL: interleukin; ITGAX/CD11c: integrin subunit alpha X; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFI: median fluorescence intensity; MG: microglia; MHCII: major histocompatibility complex class II; MOG: myelin oligodendrocyte glycoprotein; MS: multiple sclerosis; NADPH: nicotinamide adenine dinucleotide phosphate; ODC: oligodendroglial cell; OVA: ovalbumin; pDC: plasmacytoid DC; Ptd-L-Ser: phosphatidylserine; PTPRC: protein tyrosine phosphatase, receptor type, C; ROS: reactive oxygen species; SLE: systemic lupus erythematosus; TH cells: T helper cells; TLR: toll-like receptor; ZBTB46: zinc finger and BTB domain containing 46.
Collapse
Affiliation(s)
- Christian W Keller
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.,Laboratory of Neuroinflammation, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Monika B Kotur
- Laboratory of Neuroinflammation, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sarah Mundt
- Laboratory of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Nikolaos Dokalis
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Laure-Anne Ligeon
- Laboratory of Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg; Signalling Research Centres BIOSS and CIBSS, Center for Basics in NeuroModulation (Neuromodulbasics), University of Freiburg, Freiburg, Germany
| | - Burkhard Becher
- Laboratory of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christian Münz
- Laboratory of Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.,Laboratory of Neuroinflammation, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
87
|
Abstract
The tumour microenvironment plays a critical role in determining tumour fate. Within that environment, and indeed throughout epithelial tissues, cells experience competition with their neighbours, with those less fit being eliminated by fitter adjacent cells. Herein we discuss evidence suggesting that mutations in cancer cells may be selected for their ability to exploit cell competition to kill neighbouring host cells, thereby facilitating tumour expansion. In some instances, cell competition may help host tissues to defend against cancer, by removing neoplastic and aneuploid cells. Cancer risk factors, such as high-sugar or high-fat diet and inflammation, impact cell competition-based host defences, suggesting that their effect on tumour risk may in part be accounted for by their influence on cell competition. We propose that interventions aimed at modifying the strength and direction of cell competition could induce cancer cell killing and form the basis for novel anticancer therapies.
Collapse
Affiliation(s)
- Medhavi Vishwakarma
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Eugenia Piddini
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
88
|
Green DR. The Coming Decade of Cell Death Research: Five Riddles. Cell 2020; 177:1094-1107. [PMID: 31100266 DOI: 10.1016/j.cell.2019.04.024] [Citation(s) in RCA: 396] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/10/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022]
Abstract
Active cell death, in its many forms, is a fundamental biological process. Studies over the past several decades have explored the functions and consequences of cellular demise and elucidated several of the key cell death pathways. Here, I pose five questions, or riddles, that might provide a guide to the next decade of cell death research. Focusing mainly on four types of active cell death (apoptosis, necroptosis, pyroptosis, and ferroptosis) mainly in mammals, this Perspective explores the possible research directions that might answer these riddles, or at least prompt new ones.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
89
|
|
90
|
Hayashi A, Fan J, Chen R, Ho YJ, Makohon-Moore AP, Lecomte N, Zhong Y, Hong J, Huang J, Sakamoto H, Attiyeh MA, Kohutek ZA, Zhang L, Boumiza A, Kappagantula R, Baez P, Bai J, Lisi M, Chadalavada K, Melchor JP, Wong W, Nanjangud GJ, Basturk O, O'Reilly EM, Klimstra DS, Hruban RH, Wood LD, Overholtzer M, Iacobuzio-Donahue CA. A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. NATURE CANCER 2020; 1:59-74. [PMID: 35118421 PMCID: PMC8809486 DOI: 10.1038/s43018-019-0010-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer expression profiles largely reflect a classical or basal-like phenotype. The extent to which these profiles vary within a patient is unknown. We integrated evolutionary analysis and expression profiling in multiregion-sampled metastatic pancreatic cancers, finding that squamous features are the histologic correlate of an RNA-seq-defined basal-like subtype. In patients with coexisting basal and squamous and classical and glandular morphology, phylogenetic studies revealed that squamous morphology represented a subclonal population in an otherwise classical and glandular tumor. Cancers with squamous features were significantly more likely to have clonal mutations in chromatin modifiers, intercellular heterogeneity for MYC amplification and entosis. These data provide a unifying paradigm for integrating basal-type expression profiles, squamous histology and somatic mutations in chromatin modifier genes in the context of clonal evolution of pancreatic cancer.
Collapse
Affiliation(s)
- Akimasa Hayashi
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Fan
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ruoyao Chen
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alvin P Makohon-Moore
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicolas Lecomte
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Zhong
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jungeui Hong
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinlong Huang
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hitomi Sakamoto
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc A Attiyeh
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary A Kohutek
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lance Zhang
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aida Boumiza
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajya Kappagantula
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Priscilla Baez
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessica Bai
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marta Lisi
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kalyani Chadalavada
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry P Melchor
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Winston Wong
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gouri J Nanjangud
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olca Basturk
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eileen M O'Reilly
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David S Klimstra
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ralph H Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Overholtzer
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine A Iacobuzio-Donahue
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
91
|
Lee Y, Overholtzer M. After-Death Functions of Cell Death. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:687-694. [PMID: 31866783 PMCID: PMC6913823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell death can occur through numerous regulated mechanisms, from apoptosis to necrosis, entosis, and others. Each has a distinct mode of regulation and effect on tissue homeostasis. While the elimination of individual cells is typically considered the relevant physiologic endpoint of cell death, in some cases the remnants left behind by death can also function to support tissue homeostasis. Here we discuss specific functions of the end products of cell death, and how "after-death" functions may contribute to the roles of programmed cell death in physiology.
Collapse
Affiliation(s)
- Yongchan Lee
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY
| | - Michael Overholtzer
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY,Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY,BCMB Allied Program, Weill Cornell Medical College, New York, NY,To whom all correspondence should be addressed: Michael Overholtzer, 411 East 67th Street, Rm. RRL-629, New York, NY 10065; Tel: 212-639-6536, Fax: 212-794-4342,
| |
Collapse
|
92
|
Nirmala JG, Lopus M. Cell death mechanisms in eukaryotes. Cell Biol Toxicol 2019; 36:145-164. [PMID: 31820165 DOI: 10.1007/s10565-019-09496-2] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Like the organism they constitute, the cells also die in different ways. The death can be predetermined, programmed, and cleanly executed, as in the case of apoptosis, or it can be traumatic, inflammatory, and sudden as many types of necrosis exemplify. Nevertheless, there are a number of cell deaths-some of them bearing a resemblance to apoptosis and/or necrosis, and many, distinct from each-that serve a multitude of roles in either supporting or disrupting the homoeostasis. Apoptosis is coordinated by death ligands, caspases, b-cell lymphoma-2 (Bcl-2) family proteins, and their downstream effectors. Events that can lead to apoptosis include mitotic catastrophe and anoikis. Necrosis, although it has been considered an abrupt and uncoordinated cell death, has many molecular events associated with it. There are cell death mechanisms that share some standard features with necrosis. These include methuosis, necroptosis, NETosis, pyronecrosis, and pyroptosis. Autophagy, generally a catabolic pathway that operates to ensure cell survival, can also kill the cell through mechanisms such as autosis. Other cell-death mechanisms include entosis, ferroptosis, lysosome-dependent cell death, and parthanatos.
Collapse
Affiliation(s)
- J Grace Nirmala
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India.
| |
Collapse
|
93
|
Wang X, Li Y, Li J, Li L, Zhu H, Chen H, Kong R, Wang G, Wang Y, Hu J, Sun B. Cell-in-Cell Phenomenon and Its Relationship With Tumor Microenvironment and Tumor Progression: A Review. Front Cell Dev Biol 2019; 7:311. [PMID: 31850347 PMCID: PMC6901391 DOI: 10.3389/fcell.2019.00311] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
The term cell-in-cell, morphologically, refers to the presence of one cell within another. This phenomenon can occur in tumors but also among non-tumor cells. The cell-in-cell phenomenon was first observed 100 years ago, and it has since been found in a variety of tumor types. Recently, increasing attention has been paid to this phenomenon and the underlying mechanism has gradually been elucidated. There are three main related process: cannibalism, emperipolesis, and entosis. These processes are affected by many factors, including the tumor microenvironment, mitosis, and genetic factors. There is considerable evidence to suggest that the cell-in-cell phenomenon is associated with the prognosis of cancers, and it promotes tumor progression in most situations. Notably, in pancreatic cancer, the cell-in-cell phenomenon is associated with reduced metastasis, which is the opposite of what happens in other tumor types. Thus, it can also inhibit tumor progression. Studies show that cell-in-cell structure formation is affected by the tumor microenvironment, and that it may lead to changes in cellular characteristics. In this review, we summarize the different cell-in-cell processes and discuss their role in tumor progression and how they are regulated by different mechanisms.
Collapse
Affiliation(s)
- Xinlong Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yilong Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiating Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
94
|
Tonnessen-Murray CA, Frey WD, Rao SG, Shahbandi A, Ungerleider NA, Olayiwola JO, Murray LB, Vinson BT, Chrisey DB, Lord CJ, Jackson JG. Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival. J Cell Biol 2019; 218:3827-3844. [PMID: 31530580 PMCID: PMC6829672 DOI: 10.1083/jcb.201904051] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/28/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023] Open
Abstract
In chemotherapy-treated breast cancer, wild-type p53 preferentially induces senescence over apoptosis, resulting in a persisting cell population constituting residual disease that drives relapse and poor patient survival via the senescence-associated secretory phenotype. Understanding the properties of tumor cells that allow survival after chemotherapy treatment is paramount. Using time-lapse and confocal microscopy to observe interactions of cells in treated tumors, we show here that chemotherapy-induced senescent cells frequently engulf both neighboring senescent or nonsenescent tumor cells at a remarkable frequency. Engulfed cells are processed through the lysosome and broken down, and cells that have engulfed others obtain a survival advantage. Gene expression analysis showed a marked up-regulation of conserved macrophage-like program of engulfment in chemotherapy-induced senescent cell lines and tumors. Our data suggest compelling explanations for how senescent cells persist in dormancy, how they manage the metabolically expensive process of cytokine production that drives relapse in those tumors that respond the worst, and a function for their expanded lysosomal compartment.
Collapse
Affiliation(s)
| | - Wesley D Frey
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA
| | - Sonia G Rao
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA
| | - Ashkan Shahbandi
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA
| | - Nathan A Ungerleider
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA
| | - Joy O Olayiwola
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA
| | - Lucas B Murray
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA
| | | | | | | | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA
| |
Collapse
|
95
|
Ye CJ, Stilgenbauer L, Moy A, Liu G, Heng HH. What Is Karyotype Coding and Why Is Genomic Topology Important for Cancer and Evolution? Front Genet 2019; 10:1082. [PMID: 31737054 PMCID: PMC6838208 DOI: 10.3389/fgene.2019.01082] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
While the importance of chromosomal/nuclear variations vs. gene mutations in diseases is becoming more appreciated, less is known about its genomic basis. Traditionally, chromosomes are considered the carriers of genes, and genes define bio-inheritance. In recent years, the gene-centric concept has been challenged by the surprising data of various sequencing projects. The genome system theory has been introduced to offer an alternative framework. One of the key concepts of the genome system theory is karyotype or chromosomal coding: chromosome sets function as gene organizers, and the genomic topologies provide a context for regulating gene expression and function. In other words, the interaction of individual genes, defined by genomic topology, is part of the full informational system. The genes define the “parts inheritance,” while the karyotype and genomic topology (the physical relationship of genes within a three-dimensional nucleus) plus the gene content defines “system inheritance.” In this mini-review, the concept of karyotype or chromosomal coding will be briefly discussed, including: 1) the rationale for searching for new genomic inheritance, 2) chromosomal or karyotype coding (hypothesis, model, and its predictions), and 3) the significance and evidence of chromosomal coding (maintaining and changing the system inheritance-defined bio-systems). This mini-review aims to provide a new conceptual framework for appreciating the genome organization-based information package and its ultimate importance for future genomic and evolutionary studies.
Collapse
Affiliation(s)
- Christine J Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lukas Stilgenbauer
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Amanda Moy
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Guo Liu
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
96
|
Kothari P, Johnson C, Sandone C, Iglesias PA, Robinson DN. How the mechanobiome drives cell behavior, viewed through the lens of control theory. J Cell Sci 2019; 132:jcs234476. [PMID: 31477578 PMCID: PMC6771144 DOI: 10.1242/jcs.234476] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cells have evolved sophisticated systems that integrate internal and external inputs to coordinate cell shape changes during processes, such as development, cell identity determination, and cell and tissue homeostasis. Cellular shape-change events are driven by the mechanobiome, the network of macromolecules that allows cells to generate, sense and respond to externally imposed and internally generated forces. Together, these components build the cellular contractility network, which is governed by a control system. Proteins, such as non-muscle myosin II, function as both sensors and actuators, which then link to scaffolding proteins, transcription factors and metabolic proteins to create feedback loops that generate the foundational mechanical properties of the cell and modulate cellular behaviors. In this Review, we highlight proteins that establish and maintain the setpoint, or baseline, for the control system and explore the feedback loops that integrate different cellular processes with cell mechanics. Uncovering the genetic, biophysical and biochemical interactions between these molecular components allows us to apply concepts from control theory to provide a systems-level understanding of cellular processes. Importantly, the actomyosin network has emerged as more than simply a 'downstream' effector of linear signaling pathways. Instead, it is also a significant driver of cellular processes traditionally considered to be 'upstream'.
Collapse
Affiliation(s)
- Priyanka Kothari
- Departments of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cecilia Johnson
- Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, M 21205, USA
| | - Corinne Sandone
- Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, M 21205, USA
| | - Pablo A Iglesias
- Departments of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Douglas N Robinson
- Departments of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
97
|
Riegman M, Bradbury MS, Overholtzer M. Population Dynamics in Cell Death: Mechanisms of Propagation. Trends Cancer 2019; 5:558-568. [PMID: 31474361 PMCID: PMC7310667 DOI: 10.1016/j.trecan.2019.07.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
Cell death can occur through numerous regulated mechanisms that are categorized by their molecular machineries and differing effects on physiology. Apoptosis and necrosis, for example, have opposite effects on tissue inflammation due to their different modes of execution. Another feature that can distinguish different forms of cell death is that they have distinct intrinsic effects on the cell populations in which they occur. For example, a regulated mechanism of necrosis called ferroptosis has the unusual ability to spread between cells in a wave-like manner, thereby eliminating entire cell populations. Here we discuss the ways in which cell death can propagate between cells in normal physiology and disease, as well as the potential exploitation of cell death propagation for cancer therapy.
Collapse
Affiliation(s)
- Michelle Riegman
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michelle S Bradbury
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Michael Overholtzer
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
98
|
Lystad AH, Simonsen A. Mechanisms and Pathophysiological Roles of the ATG8 Conjugation Machinery. Cells 2019; 8:E973. [PMID: 31450711 PMCID: PMC6769624 DOI: 10.3390/cells8090973] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Since their initial discovery around two decades ago, the yeast autophagy-related (Atg)8 protein and its mammalian homologues of the light chain 3 (LC3) and γ-aminobutyric acid receptor associated proteins (GABARAP) families have been key for the tremendous expansion of our knowledge about autophagy, a process in which cytoplasmic material become targeted for lysosomal degradation. These proteins are ubiquitin-like proteins that become directly conjugated to a lipid in the autophagy membrane upon induction of autophagy, thus providing a marker of the pathway, allowing studies of autophagosome biogenesis and maturation. Moreover, the ATG8 proteins function to recruit components of the core autophagy machinery as well as cargo for selective degradation. Importantly, comprehensive structural and biochemical in vitro studies of the machinery required for ATG8 protein lipidation, as well as their genetic manipulation in various model organisms, have provided novel insight into the molecular mechanisms and pathophysiological roles of the mATG8 proteins. Recently, it has become evident that the ATG8 proteins and their conjugation machinery are also involved in intracellular pathways and processes not related to autophagy. This review focuses on the molecular functions of ATG8 proteins and their conjugation machinery in autophagy and other pathways, as well as their links to disease.
Collapse
Affiliation(s)
- Alf Håkon Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 1112 Blindern, 0317 Oslo, Norway.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 1112 Blindern, 0317 Oslo, Norway.
| |
Collapse
|
99
|
Zhu P, Tseng NH, Xie T, Li N, Fitts-Sprague I, Peyton SR, Sun Y. Biomechanical Microenvironment Regulates Fusogenicity of Breast Cancer Cells. ACS Biomater Sci Eng 2019; 5:3817-3827. [PMID: 33438422 PMCID: PMC9800072 DOI: 10.1021/acsbiomaterials.8b00861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fusion of cancer cells is thought to contribute to tumor development and drug resistance. The low frequency of cell fusion events and the instability of fused cells have hindered our ability to understand the molecular mechanisms that govern cell fusion. We have demonstrated that several breast cancer cell lines can fuse into multinucleated giant cells in vitro, and the initiation and longevity of fused cells can be regulated solely by biophysical factors. Dynamically tuning the adhesive area of the patterned substrates, reducing cytoskeletal tensions pharmacologically, altering matrix stiffness, and modulating pattern curvature all supported the spontaneous fusion and stability of these multinucleated giant cells. These observations highlight that the biomechanical microenvironment of cancer cells, including the matrix rigidity and interfacial curvature, can directly modulate their fusogenicity, an unexplored mechanism through which biophysical cues regulate tumor progression.
Collapse
Affiliation(s)
- Peiran Zhu
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Ning-Hsuan Tseng
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Tianfa Xie
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Ningwei Li
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Isaac Fitts-Sprague
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Shelly R. Peyton
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA.,Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.,Institue for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA.,Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.,Institue for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA.,Corresponding Author: Correspondence should be addressed to Y. Sun ()
| |
Collapse
|
100
|
Tanimura N, Fujita Y. Epithelial defense against cancer (EDAC). Semin Cancer Biol 2019; 63:44-48. [PMID: 31302236 DOI: 10.1016/j.semcancer.2019.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
Several lines of evidence indicate that cell competition can occur in mammals. In particular, at the initial stage of carcinogenesis, normal epithelial cells are able to recognize the neighboring transformed cells and actively eliminate them from epithelial tissues. This implies that normal epithelia have anti-tumor activity that does not involve immune cells, which is termed epithelial defense against cancer (EDAC). In this review article, we summarize recent advances on the underlying molecular machinery of EDAC. In addition, we also describe the molecular mechanisms by which transformed cells escape from EDAC to promote carcinogenesis.
Collapse
Affiliation(s)
- Nobuyuki Tanimura
- Division of Molecular Oncology, Institute for Genetic Medicine, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0815, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0815, Japan.
| |
Collapse
|