51
|
Li C, Weng S, He J. WSSV-host interaction: Host response and immune evasion. FISH & SHELLFISH IMMUNOLOGY 2019; 84:558-571. [PMID: 30352263 DOI: 10.1016/j.fsi.2018.10.043] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
As invertebrates, shrimps rely on multiple innate defense reactions, including humoral immunity and cellular immunity to recognize and eliminate various invaders, such as viruses. White spot syndrome virus (WSSV) causes the most prevalent and devastating viral disease in penaeid shrimps, which are the most widely cultured species in the coastal waters worldwide. In the last couple of decades, studies about WSSV implicate a dual role of the immune system in protecting shrimps against the infection; these studies also explore on the pathogenesis of WSSV infection. Herein, we review our current knowledge of the innate immune responses of shrimps to WSSV, as well as the molecular mechanisms used by this virus to evade host immune responses or actively subvert them for its own benefit. Deciphering the interactions between WSSV and the shrimp host is paramount to understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during viral infection and to the development of a safe and effective WSSV defensive strategy.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
52
|
Ho T, Panyim S, Udomkit A. Suppression of argonautes compromises viral infection in Penaeus monodon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:130-137. [PMID: 30227218 DOI: 10.1016/j.dci.2018.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Argonaute (Ago) proteins, the catalytic component of an RNA-induced silencing complex (RISC) in RNA interference pathway, function in diverse processes, especially in antiviral defense and transposon regulation. So far, cDNAs encoding four members of Argonaute were found in Penaeus monodon (PmAgo1-4). Two PmAgo proteins, PmAgo1 and PmAgo3 shared high percentage of amino acid identity to Ago1 and Ago2, respectively in other Penaeid shrimps. Therefore, the possible roles of PmAgo1 and PmAgo3 upon viral infection in shrimp were characterized in this study. The level of PmAgo1 mRNA expression in shrimp hemolymph was stimulated upon YHV challenge, but not with dsRNA administration. Interestingly, silencing of either PmAgo1 or PmAgo3 using sequence-specific dsRNAs impaired the efficiency of PmRab7-dsRNA to knockdown shrimp endogenous PmRab7 expression. Inhibition of yellow head virus (YHV) replication and delayed mortality rate were also observed in both PmAgo1-and PmAgo3-knockdown shrimp. In addition, silencing of PmAgo3 transcript, but not PmAgo1, revealed partial inhibition of white spot syndrome virus (WSSV) infection and delayed mortality rate. Therefore, our study provides insights into PmAgo1and PmAgo3 functions that are involved in a dsRNA-mediated gene silencing pathway and play roles in YHV and WSSV replication in the shrimp.
Collapse
Affiliation(s)
- Teerapong Ho
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nahkon Pathom, 73170, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nahkon Pathom, 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Apinunt Udomkit
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nahkon Pathom, 73170, Thailand.
| |
Collapse
|
53
|
Warrilow D, Huang B, Newton ND, Harrison JJ, Johnson KN, Chow WK, Hall RA, Hobson-Peters J. The taxonomy of an Australian nodavirus isolated from mosquitoes. PLoS One 2018; 13:e0210029. [PMID: 30596795 PMCID: PMC6312370 DOI: 10.1371/journal.pone.0210029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/14/2018] [Indexed: 11/18/2022] Open
Abstract
We describe a virus isolated from Culex annulirostris mosquitoes in Australia. Phylogenetic analysis of its RNA-dependent RNA polymerase sequence and that of other related viruses revealed 6 clades, two of which corresponded wholly or partly with existing genera in the family Nodaviridae. There was greater genetic diversity within the family than previously recognized prompting us to suggest that additional genera should be considered within the family.
Collapse
Affiliation(s)
- David Warrilow
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, Archerfield, Queensland
- * E-mail: (DW); (JHP)
| | - Bixing Huang
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, Archerfield, Queensland
| | - Natalee D. Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Karyn N. Johnson
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Weng Kong Chow
- Australian Defence Force Malaria and Infectious Disease Institute, Queensland, Australia
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- * E-mail: (DW); (JHP)
| |
Collapse
|
54
|
Donald CL, Varjak M, Aguiar ERGR, Marques JT, Sreenu VB, Schnettler E, Kohl A. Antiviral RNA Interference Activity in Cells of the Predatory Mosquito, Toxorhynchites amboinensis. Viruses 2018; 10:v10120694. [PMID: 30563205 PMCID: PMC6316411 DOI: 10.3390/v10120694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022] Open
Abstract
Arthropod vectors control the replication of arboviruses through their innate antiviral immune responses. In particular, the RNA interference (RNAi) pathways are of notable significance for the control of viral infections. Although much has been done to understand the role of RNAi in vector populations, little is known about its importance in non-vector mosquito species. In this study, we investigated the presence of an RNAi response in Toxorhynchites amboinensis, which is a non-blood feeding species proposed as a biological control agent against pest mosquitoes. Using a derived cell line (TRA-171), we demonstrate that these mosquitoes possess a functional RNAi response that is active against a mosquito-borne alphavirus, Semliki Forest virus. As observed in vector mosquito species, small RNAs are produced that target viral sequences. The size and characteristics of these small RNAs indicate that both the siRNA and piRNA pathways are induced in response to infection. Taken together, this data suggests that Tx. amboinensis are able to control viral infections in a similar way to natural arbovirus vector mosquito species. Understanding their ability to manage arboviral infections will be advantageous when assessing these and similar species as biological control agents.
Collapse
Affiliation(s)
- Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK.
| | - Margus Varjak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK.
| | - Eric Roberto Guimarães Rocha Aguiar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha-Belo Horizonte-MG, CEP 31270-901, Brazil.
| | - João T Marques
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha-Belo Horizonte-MG, CEP 31270-901, Brazil.
| | - Vattipally B Sreenu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK.
| | - Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK.
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK.
| |
Collapse
|
55
|
Nayak A, Kim DY, Trnka MJ, Kerr CH, Lidsky PV, Stanley DJ, Rivera BM, Li KH, Burlingame AL, Jan E, Frydman J, Gross JD, Andino R. A Viral Protein Restricts Drosophila RNAi Immunity by Regulating Argonaute Activity and Stability. Cell Host Microbe 2018; 24:542-557.e9. [PMID: 30308158 PMCID: PMC6450077 DOI: 10.1016/j.chom.2018.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/13/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022]
Abstract
The dicistrovirus, Cricket paralysis virus (CrPV) encodes an RNA interference (RNAi) suppressor, 1A, which modulates viral virulence. Using the Drosophila model, we combined structural, biochemical, and virological approaches to elucidate the strategies by which CrPV-1A restricts RNAi immunity. The atomic resolution structure of CrPV-1A uncovered a flexible loop that interacts with Argonaute 2 (Ago-2), thereby inhibiting Ago-2 endonuclease-dependent immunity. Mutations disrupting Ago-2 binding attenuates viral pathogenesis in wild-type but not Ago-2-deficient flies. CrPV-1A also contains a BC-box motif that enables the virus to hijack a host Cul2-Rbx1-EloBC ubiquitin ligase complex, which promotes Ago-2 degradation and virus replication. Our study uncovers a viral-based dual regulatory program that restricts antiviral immunity by direct interaction with and modulation of host proteins. While the direct inhibition of Ago-2 activity provides an efficient mechanism to establish infection, the recruitment of a ubiquitin ligase complex enables CrPV-1A to amplify Ago-2 inactivation to restrict further antiviral RNAi immunity.
Collapse
Affiliation(s)
- Arabinda Nayak
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA; Department of Biology and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Dong Young Kim
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Craig H Kerr
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Peter V Lidsky
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| | - David J Stanley
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Brianna Monique Rivera
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
56
|
Leggewie M, Schnettler E. RNAi-mediated antiviral immunity in insects and their possible application. Curr Opin Virol 2018; 32:108-114. [DOI: 10.1016/j.coviro.2018.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 01/09/2023]
|
57
|
Ding SW, Han Q, Wang J, Li WX. Antiviral RNA interference in mammals. Curr Opin Immunol 2018; 54:109-114. [PMID: 30015086 PMCID: PMC6196099 DOI: 10.1016/j.coi.2018.06.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/25/2022]
Abstract
Infection of plants and insects with RNA and DNA viruses triggers Dicer-dependent production of virus-derived small interfering RNAs (vsiRNAs), which subsequently guide specific virus clearance by RNA interference (RNAi). Consistent with a major antiviral function of RNAi, productive virus infection in these eukaryotic hosts depends on the expression of virus-encoded suppressors of RNAi (VSRs). The eukaryotic RNAi pathway is highly conserved, particularly between insects and mammals. This review will discuss key recent findings that indicate a natural antiviral function of the RNAi pathway in mammalian cells. We will summarize the properties of the characterized mammalian vsiRNAs and VSRs and highlight important questions remaining to be addressed on the function and mechanism of mammalian antiviral RNAi.
Collapse
Affiliation(s)
- Shou-Wei Ding
- Department of Microbiology and Plant Pathology, University of California, Riverside, USA.
| | - Qingxia Han
- Department of Microbiology and Plant Pathology, University of California, Riverside, USA
| | - Jinyan Wang
- Department of Microbiology and Plant Pathology, University of California, Riverside, USA
| | - Wan-Xiang Li
- Department of Microbiology and Plant Pathology, University of California, Riverside, USA
| |
Collapse
|
58
|
Qiao W, Zarzyńska‐Nowak A, Nerva L, Kuo Y, Falk BW. Accumulation of 24 nucleotide transgene-derived siRNAs is associated with crinivirus immunity in transgenic plants. MOLECULAR PLANT PATHOLOGY 2018; 19:2236-2247. [PMID: 29704454 PMCID: PMC6638120 DOI: 10.1111/mpp.12695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
RNA silencing is a conserved antiviral defence mechanism that has been used to develop robust resistance against plant virus infections. Previous efforts have been made to develop RNA silencing-mediated resistance to criniviruses, yet none have given immunity. In this study, transgenic Nicotiana benthamiana plants harbouring a hairpin construct of the Lettuce infectious yellows virus (LIYV) RNA-dependent RNA polymerase (RdRp) sequence exhibited immunity to systemic LIYV infection. Deep sequencing analysis was performed to characterize virus-derived small interfering RNAs (vsiRNAs) generated on systemic LIYV infection in non-transgenic N. benthamiana plants as well as transgene-derived siRNAs (t-siRNAs) derived from the immune-transgenic plants before and after LIYV inoculation. Interestingly, a similar sequence distribution pattern was obtained with t-siRNAs and vsiRNAs mapped to the transgene region in both immune and susceptible plants, except for a significant increase in t-siRNAs of 24 nucleotides in length, which was consistent with small RNA northern blot results that showed the abundance of t-siRNAs of 21, 22 and 24 nucleotides in length. The accumulated 24-nucleotide sequences have not yet been reported in transgenic plants partially resistant to criniviruses, and thus may indicate their correlation with crinivirus immunity. To further test this hypothesis, we developed transgenic melon (Cucumis melo) plants immune to systemic infection of another crinivirus, Cucurbit yellow stunting disorder virus (CYSDV). As predicted, the accumulation of 24-nucleotide t-siRNAs was detected in transgenic melon plants by northern blot. Together with our findings and previous studies on crinivirus resistance, we propose that the accumulation of 24-nucleotide t-siRNAs is associated with crinivirus immunity in transgenic plants.
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA, 95616
| | - Aleksandra Zarzyńska‐Nowak
- Department of Virology and BacteriologyInstitute of Plant Protection‐National Research InstitutePoznańPoland, 60‐318
| | - Luca Nerva
- Council for Agricultural Research and Economics – Research Centre for Viticulture and EnologyConegliano (TV)Italy, 00198
- Institute for Sustainable Plant ProtectionTorinoItaly, 10135
| | - Yen‐Wen Kuo
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA, 95616
| | - Bryce W. Falk
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA, 95616
| |
Collapse
|
59
|
Bastin D, Aitken AS, Pelin A, Pikor LA, Crupi MJF, Huh MS, Bourgeois-Daigneault MC, Bell JC, Ilkow CS. Enhanced susceptibility of cancer cells to oncolytic rhabdo-virotherapy by expression of Nodamura virus protein B2 as a suppressor of RNA interference. J Immunother Cancer 2018; 6:62. [PMID: 29921327 PMCID: PMC6008949 DOI: 10.1186/s40425-018-0366-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Antiviral responses are barriers that must be overcome for efficacy of oncolytic virotherapy. In mammalian cells, antiviral responses involve the interferon pathway, a protein-signaling cascade that alerts the immune system and limits virus propagation. Tumour-specific defects in interferon signaling enhance viral infection and responses to oncolytic virotherapy, but many human cancers are still refractory to oncolytic viruses. Given that invertebrates, fungi and plants rely on RNA interference pathways for antiviral protection, we investigated the potential involvement of this alternative antiviral mechanism in cancer cells. Here, we detected viral genome-derived small RNAs, indicative of RNAi-mediated antiviral responses, in human cancer cells. As viruses may encode suppressors of the RNA interference pathways, we engineered an oncolytic vesicular stomatitis virus variant to encode the Nodamura virus protein B2, a known inhibitor of RNAi-mediated immune responses. B2-expressing oncolytic virus showed enhanced viral replication and cytotoxicity, impaired viral genome cleavage and altered microRNA processing in cancer cells. Our data establish the improved therapeutic potential of our novel virus which targets the RNAi-mediated antiviral defense of cancer cells.
Collapse
Affiliation(s)
- Donald Bastin
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Amelia S Aitken
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Adrian Pelin
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Larissa A Pikor
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Mathieu J F Crupi
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Michael S Huh
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Marie-Claude Bourgeois-Daigneault
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - John C Bell
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Carolina S Ilkow
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada .,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| |
Collapse
|
60
|
Sinha NK, Iwasa J, Shen PS, Bass BL. Dicer uses distinct modules for recognizing dsRNA termini. Science 2018; 359:329-334. [PMID: 29269422 PMCID: PMC6154394 DOI: 10.1126/science.aaq0921] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/11/2017] [Indexed: 12/19/2022]
Abstract
Invertebrates rely on Dicer to cleave viral double-stranded RNA (dsRNA), and Drosophila Dicer-2 distinguishes dsRNA substrates by their termini. Blunt termini promote processive cleavage, while 3' overhanging termini are cleaved distributively. To understand this discrimination, we used cryo-electron microscopy to solve structures of Drosophila Dicer-2 alone and in complex with blunt dsRNA. Whereas the Platform-PAZ domains have been considered the only Dicer domains that bind dsRNA termini, unexpectedly, we found that the helicase domain is required for binding blunt, but not 3' overhanging, termini. We further showed that blunt dsRNA is locally unwound and threaded through the helicase domain in an adenosine triphosphate-dependent manner. Our studies reveal a previously unrecognized mechanism for optimizing antiviral defense and set the stage for the discovery of helicase-dependent functions in other Dicers.
Collapse
Affiliation(s)
- Niladri K. Sinha
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Peter S. Shen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Brenda L. Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
61
|
Mongelli V, Saleh MC. Bugs Are Not to Be Silenced: Small RNA Pathways and Antiviral Responses in Insects. Annu Rev Virol 2017; 3:573-589. [PMID: 27741406 DOI: 10.1146/annurev-virology-110615-042447] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Like every other organism on Earth, insects are infected with viruses, and they rely on RNA interference (RNAi) mechanisms to circumvent viral infections. A remarkable characteristic of RNAi is that it is both broadly acting, because it is triggered by double-stranded RNA molecules derived from virtually any virus, and extremely specific, because it targets only the particular viral sequence that initiated the process. Reviews covering the different facets of the RNAi antiviral immune response in insects have been published elsewhere. In this review, we build a framework to guide future investigation. We focus on the remaining questions and avenues of research that need to be addressed to move the field forward, including issues such as the activity of viral suppressors of RNAi, comparative genomics, the development of detailed maps of the subcellular localization of viral replication complexes with the RNAi machinery, and the regulation of the antiviral RNAi response.
Collapse
Affiliation(s)
- Vanesa Mongelli
- Viruses and RNA Interference Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris Cedex 15, France;
| | - Maria-Carla Saleh
- Viruses and RNA Interference Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris Cedex 15, France;
| |
Collapse
|
62
|
Watanabe M, Iwakawa HO, Tadakuma H, Tomari Y. Biochemical and single-molecule analyses of the RNA silencing suppressing activity of CrPV-1A. Nucleic Acids Res 2017; 45:10837-10844. [PMID: 28977639 PMCID: PMC5737572 DOI: 10.1093/nar/gkx748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/17/2017] [Indexed: 11/12/2022] Open
Abstract
Viruses often encode viral silencing suppressors (VSSs) to counteract the hosts' RNA silencing activity. The cricket paralysis virus 1A protein (CrPV-1A) is a unique VSS that binds to a specific Argonaute protein (Ago)-the core of the RNA-induced silencing complex (RISC)-in insects to suppress its target cleavage reaction. However, the precise molecular mechanism of CrPV-1A action remains unclear. Here we utilized biochemical and single-molecule imaging approaches to analyze the effect of CrPV-1A during target recognition and cleavage by Drosophila Ago2-RISC. Our results suggest that CrPV-1A obstructs the initial target searching by Ago2-RISC via base pairing in the seed region. The combination of biochemistry and single-molecule imaging may help to pave the way for mechanistic understanding of VSSs with diverse functions.
Collapse
Affiliation(s)
- Mariko Watanabe
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiro-Oki Iwakawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hisashi Tadakuma
- Institute for Protein Research, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
63
|
Varjak M, Donald CL, Mottram TJ, Sreenu VB, Merits A, Maringer K, Schnettler E, Kohl A. Characterization of the Zika virus induced small RNA response in Aedes aegypti cells. PLoS Negl Trop Dis 2017; 11:e0006010. [PMID: 29040304 PMCID: PMC5667879 DOI: 10.1371/journal.pntd.0006010] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/02/2017] [Accepted: 10/04/2017] [Indexed: 01/16/2023] Open
Abstract
RNA interference (RNAi) controls arbovirus infections in mosquitoes. Two different RNAi pathways are involved in antiviral responses: the PIWI-interacting RNA (piRNA) and exogenous short interfering RNA (exo-siRNA) pathways, which are characterized by the production of virus-derived small RNAs of 25–29 and 21 nucleotides, respectively. The exo-siRNA pathway is considered to be the key mosquito antiviral response mechanism. In Aedes aegypti-derived cells, Zika virus (ZIKV)-specific siRNAs were produced and loaded into the exo-siRNA pathway effector protein Argonaute 2 (Ago2); although the knockdown of Ago2 did not enhance virus replication. Enhanced ZIKV replication was observed in a Dcr2-knockout cell line suggesting that the exo-siRNA pathway is implicated in the antiviral response. Although ZIKV-specific piRNA-sized small RNAs were detected, these lacked the characteristic piRNA ping-pong signature motif and were bound to Ago3 but not Piwi5 or Piwi6. Silencing of PIWI proteins indicated that the knockdown of Ago3, Piwi5 or Piwi6 did not enhance ZIKV replication and only Piwi4 displayed antiviral activity. We also report that the expression of ZIKV capsid (C) protein amplified the replication of a reporter alphavirus; although, unlike yellow fever virus C protein, it does not inhibit the exo-siRNA pathway. Our findings elucidate ZIKV-mosquito RNAi interactions that are important for understanding its spread. The recent outbreak of Zika virus (ZIKV) in the Americas has resulted in a severe threat to public health. ZIKV is transmitted by Aedes aegypti mosquitoes, thus it is important to understand virus-vector interactions. Analysis of ZIKV infection in mosquito cells indicated that two RNA interference pathways are involved during infection: the exogenous short-interfering (si)RNA (exo-siRNA) and PIWI-interacting (pi)RNA pathways. If Dcr2, an enzyme responsible for cleaving dsRNA into siRNAs, is knocked out, ZIKV replication is increased compared to control cells. However, the knockdown of Ago2 expression had no significant enhancing effect on ZIKV replication. In the case of the PIWI pathway, only the Piwi4 protein was found to have significant antiviral activity. Furthermore, unlike the capsid (C) protein of yellow fever virus, ZIKV capsid protein does not suppress the siRNA pathway. These results suggest that ZIKV has mechanisms to evade mosquito innate immunity and it is therefore important to understand these virus-vector interactions and the implications they have on transmission.
Collapse
Affiliation(s)
- Margus Varjak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- * E-mail: (MV); (AK)
| | - Claire L. Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Timothy J. Mottram
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Vattipally B. Sreenu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Andres Merits
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia
| | - Kevin Maringer
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Esther Schnettler
- Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Strasse, Hamburg, Germany
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- * E-mail: (MV); (AK)
| |
Collapse
|
64
|
Abstract
RNA interference (RNAi) functions as a potent antiviral immunity in plants and invertebrates; however, whether RNAi plays antiviral roles in mammals remains unclear. Here, using human enterovirus 71 (HEV71) as a model, we showed HEV71 3A protein as an authentic viral suppressor of RNAi during viral infection. When the 3A-mediated RNAi suppression was impaired, the mutant HEV71 readily triggered the production of abundant HEV71-derived small RNAs with canonical siRNA properties in cells and mice. These virus-derived siRNAs were produced from viral dsRNA replicative intermediates in a Dicer-dependent manner and loaded into AGO, and they were fully active in degrading cognate viral RNAs. Recombinant HEV71 deficient in 3A-mediated RNAi suppression was significantly restricted in human somatic cells and mice, whereas Dicer deficiency rescued HEV71 infection independently of type I interferon response. Thus, RNAi can function as an antiviral immunity, which is induced and suppressed by a human virus, in mammals.
Collapse
|
65
|
Han Q, Ding SW. New evidence on the antiviral role of RNA interference in mammals. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qingxia Han
- Department of Plant Pathology and Microbiology, University of California, USA
| | - Shou-Wei Ding
- Department of Plant Pathology and Microbiology, University of California, USA
| |
Collapse
|
66
|
Kolliopoulou A, Taning CNT, Smagghe G, Swevers L. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges. Front Physiol 2017; 8:399. [PMID: 28659820 PMCID: PMC5469917 DOI: 10.3389/fphys.2017.00399] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022] Open
Abstract
RNAi is applied as a new and safe method for pest control in agriculture but efficiency and specificity of delivery of dsRNA trigger remains a critical issue. Various agents have been proposed to augment dsRNA delivery, such as engineered micro-organisms and synthetic nanoparticles, but the use of viruses has received relatively little attention. Here we present a critical view of the potential of the use of recombinant viruses for efficient and specific delivery of dsRNA. First of all, it requires the availability of plasmid-based reverse genetics systems for virus production, of which an overview is presented. For RNA viruses, their application seems to be straightforward since dsRNA is produced as an intermediate molecule during viral replication, but DNA viruses also have potential through the production of RNA hairpins after transcription. However, application of recombinant virus for dsRNA delivery may not be straightforward in many cases, since viruses can encode RNAi suppressors, and virus-induced silencing effects can be determined by the properties of the encoded RNAi suppressor. An alternative is virus-like particles that retain the efficiency and specificity determinants of natural virions but have encapsidated non-replicating RNA. Finally, the use of viruses raises important safety issues which need to be addressed before application can proceed.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| | - Clauvis N. T. Taning
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| |
Collapse
|
67
|
Varjak M, Maringer K, Watson M, Sreenu VB, Fredericks AC, Pondeville E, Donald CL, Sterk J, Kean J, Vazeille M, Failloux AB, Kohl A, Schnettler E. Aedes aegypti Piwi4 Is a Noncanonical PIWI Protein Involved in Antiviral Responses. mSphere 2017; 2:e00144-17. [PMID: 28497119 PMCID: PMC5415634 DOI: 10.1128/msphere.00144-17] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 11/20/2022] Open
Abstract
The small interfering RNA (siRNA) pathway is a major antiviral response in mosquitoes; however, another RNA interference pathway, the PIWI-interacting RNA (piRNA) pathway, has been suggested to be antiviral in mosquitoes. Piwi4 has been reported to be a key mediator of this response in mosquitoes, but it is not involved in the production of virus-specific piRNAs. Here, we show that Piwi4 associates with members of the antiviral exogenous siRNA pathway (Ago2 and Dcr2), as well as with proteins of the piRNA pathway (Ago3, Piwi5, and Piwi6) in an Aedes aegypti-derived cell line, Aag2. Analysis of small RNAs captured by Piwi4 revealed that it is predominantly associated with virus-specific siRNAs in Semliki Forest virus-infected cells and, to a lesser extent, with viral piRNAs. By using a Dcr2 knockout cell line, we showed directly that Ago2 lost its antiviral activity, as it was no longer bound to siRNAs, but Piwi4 retained its antiviral activity in the absence of the siRNA pathway. These results demonstrate a complex interaction between the siRNA and piRNA pathways in A. aegypti and identify Piwi4 as a noncanonical PIWI protein that interacts with members of the siRNA and piRNA pathways, and its antiviral activities may be independent of either pathway. IMPORTANCE Mosquitoes transmit several pathogenic viruses, for example, the chikungunya and Zika viruses. In mosquito cells, virus replication intermediates in the form of double-stranded RNA are cleaved by Dcr2 into 21-nucleotide-long siRNAs, which in turn are used by Ago2 to target the virus genome. A different class of virus-derived small RNAs, PIWI-interacting RNAs (piRNAs), have also been found in infected insect cells. These piRNAs are longer and are produced in a Dcr2-independent manner. The only known antiviral protein in the PIWI family is Piwi4, which is not involved in piRNA production. It is associated with key proteins of the siRNA and piRNA pathways, although its antiviral function is independent of their actions.
Collapse
Affiliation(s)
- Margus Varjak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Kevin Maringer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mick Watson
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | | | - Anthony C. Fredericks
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Claire L. Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Jelle Sterk
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Joy Kean
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Marie Vazeille
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| |
Collapse
|
68
|
SAGA complex mediates the transcriptional up-regulation of antiviral RNA silencing. Proc Natl Acad Sci U S A 2017; 114:E3499-E3506. [PMID: 28400515 DOI: 10.1073/pnas.1701196114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pathogen recognition and transcriptional activation of defense-related genes are crucial steps in cellular defense responses. RNA silencing (RNAi) functions as an antiviral defense in eukaryotic organisms. Several RNAi-related genes are known to be transcriptionally up-regulated upon virus infection in some host organisms, but little is known about their induction mechanism. A phytopathogenic ascomycete, Cryphonectria parasitica (chestnut blight fungus), provides a particularly advantageous system to study RNAi activation, because its infection by certain RNA viruses induces the transcription of dicer-like 2 (dcl2) and argonaute-like 2 (agl2), two major RNAi players. To identify cellular factors governing activation of antiviral RNAi in C. parasitica, we developed a screening protocol entailing multiple transformations of the fungus with cDNA of a hypovirus mutant lacking the RNAi suppressor (CHV1-Δp69), a reporter construct with a GFP gene driven by the dcl2 promoter, and a random mutagenic construct. Screening for GFP-negative colonies allowed the identification of sgf73, a component of the SAGA (Spt-Ada-Gcn5 acetyltransferase) complex, a well-known transcriptional coactivator. Knockout of other SAGA components showed that the histone acetyltransferase module regulates transcriptional induction of dcl2 and agl2, whereas histone deubiquitinase mediates regulation of agl2 but not dcl2 Interestingly, full-scale induction of agl2 and dcl2 by CHV1-Δp69 required both DCL2 and AGL2, whereas that by another RNA virus, mycoreovirus 1, required only DCL2, uncovering additional roles for DCL2 and AGL2 in viral recognition and/or RNAi activation. Overall, these results provide insight into the mechanism of RNAi activation.
Collapse
|
69
|
Caenorhabditis elegans RIG-I Homolog Mediates Antiviral RNA Interference Downstream of Dicer-Dependent Biogenesis of Viral Small Interfering RNAs. mBio 2017; 8:mBio.00264-17. [PMID: 28325765 PMCID: PMC5362034 DOI: 10.1128/mbio.00264-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dicer enzymes process virus-specific double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) to initiate specific antiviral defense by related RNA interference (RNAi) pathways in plants, insects, nematodes, and mammals. Antiviral RNAi in Caenorhabditis elegans requires Dicer-related helicase 1 (DRH-1), not found in plants and insects but highly homologous to mammalian retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), intracellular viral RNA sensors that trigger innate immunity against RNA virus infection. However, it remains unclear if DRH-1 acts analogously to initiate antiviral RNAi in C. elegans. Here, we performed a forward genetic screen to characterize antiviral RNAi in C. elegans. Using a mapping-by-sequencing strategy, we uncovered four loss-of-function alleles of drh-1, three of which caused mutations in the helicase and C-terminal domains conserved in RLRs. Deep sequencing of small RNAs revealed an abundant population of Dicer-dependent virus-derived small interfering RNAs (vsiRNAs) in drh-1 single and double mutant animals after infection with Orsay virus, a positive-strand RNA virus. These findings provide further genetic evidence for the antiviral function of DRH-1 and illustrate that DRH-1 is not essential for the sensing and Dicer-mediated processing of the viral dsRNA replicative intermediates. Interestingly, vsiRNAs produced by drh-1 mutants were mapped overwhelmingly to the terminal regions of the viral genomic RNAs, in contrast to random distribution of vsiRNA hot spots when DRH-1 is functional. As RIG-I translocates on long dsRNA and DRH-1 exists in a complex with Dicer, we propose that DRH-1 facilitates the biogenesis of vsiRNAs in nematodes by catalyzing translocation of the Dicer complex on the viral long dsRNA precursors. The helicase and C-terminal domains of mammalian RLRs sense intracellular viral RNAs to initiate the interferon-regulated innate immunity against RNA virus infection. Both of the domains from human RIG-I can substitute for the corresponding domains of DRH-1 to mediate antiviral RNAi in C. elegans, suggesting an analogous role for DRH-1 as an intracellular dsRNA sensor to initiate antiviral RNAi. Here, we developed a forward genetic screen for the identification of host factors required for antiviral RNAi in C. elegans. Characterization of four distinct drh-1 mutants obtained from the screen revealed that DRH-1 did not function to initiate antiviral RNAi. We show that DRH-1 acted in a downstream step to enhance Dicer-dependent biogenesis of viral siRNAs in C. elegans. As mammals produce Dicer-dependent viral siRNAs to target RNA viruses, our findings suggest a possible role for mammalian RLRs and interferon signaling in the biogenesis of viral siRNAs.
Collapse
|
70
|
Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells. Nat Microbiol 2016; 2:16250. [PMID: 27918527 DOI: 10.1038/nmicrobiol.2016.250] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022]
Abstract
Influenza A virus (IAV) causes annual epidemics and occasional pandemics, and is one of the best-characterized human RNA viral pathogens1. However, a physiologically relevant role for the RNA interference (RNAi) suppressor activity of the IAV non-structural protein 1 (NS1), reported over a decade ago2, remains unknown3. Plant and insect viruses have evolved diverse virulence proteins to suppress RNAi as their hosts produce virus-derived small interfering RNAs (siRNAs) that direct specific antiviral defence4-7 by an RNAi mechanism dependent on the slicing activity of Argonaute proteins (AGOs)8,9. Recent studies have documented induction and suppression of antiviral RNAi in mouse embryonic stem cells and suckling mice10,11. However, it is still under debate whether infection by IAV or any other RNA virus that infects humans induces and/or suppresses antiviral RNAi in mature mammalian somatic cells12-21. Here, we demonstrate that mature human somatic cells produce abundant virus-derived siRNAs co-immunoprecipitated with AGOs in response to IAV infection. We show that the biogenesis of viral siRNAs from IAV double-stranded RNA (dsRNA) precursors in infected cells is mediated by wild-type human Dicer and potently suppressed by both NS1 of IAV as well as virion protein 35 (VP35) of Ebola and Marburg filoviruses. We further demonstrate that the slicing catalytic activity of AGO2 inhibits IAV and other RNA viruses in mature mammalian cells, in an interferon-independent fashion. Altogether, our work shows that IAV infection induces and suppresses antiviral RNAi in differentiated mammalian somatic cells.
Collapse
|
71
|
Mathur K, Anand A, Dubey SK, Sanan-Mishra N, Bhatnagar RK, Sunil S. Analysis of chikungunya virus proteins reveals that non-structural proteins nsP2 and nsP3 exhibit RNA interference (RNAi) suppressor activity. Sci Rep 2016; 6:38065. [PMID: 27901124 PMCID: PMC5128919 DOI: 10.1038/srep38065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022] Open
Abstract
RNAi pathway is an antiviral defence mechanism employed by insects that result in degradation of viral RNA thereby curbing infection. Several viruses including flaviviruses encode viral suppressors of RNAi (VSRs) to counteract the antiviral RNAi pathway. Till date, no VSR has been reported in alphaviruses. The present study was undertaken to evaluate chikungunya virus (CHIKV) proteins for RNAi suppressor activity. We systematically analyzed all nine CHIKV proteins for RNAi suppressor activity using Sf21 RNAi sensor cell line based assay. Two non-structural proteins, namely, nsP2 and nsP3 were found to exhibit RNAi suppressor activity. We further validated the findings in natural hosts, namely in Aedes and in mammalian cell lines and further through EMSA and Agrobacterium infiltration in GFP silenced transgenic tobacco plants. Domains responsible for maximum RNAi suppressor activity were also identified within these proteins. RNA binding motifs in these domains were identified and their participation in RNAi suppression evaluated using site directed mutagenesis. Sequence alignment of these motifs across all species of known alphaviruses revealed conservation of these motifs emphasizing on a similar role of action in other species of alphaviruses as well. Further validation of RNAi suppressor activity of these proteins awaits establishment of specific virus infection models.
Collapse
Affiliation(s)
- Kalika Mathur
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Abhishek Anand
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sunil Kumar Dubey
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Raj K Bhatnagar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sujatha Sunil
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
72
|
Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA. Proc Natl Acad Sci U S A 2016; 113:13863-13868. [PMID: 27849599 DOI: 10.1073/pnas.1600544113] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne flaviviruses, including yellow fever virus (YFV), Zika virus (ZIKV), and West Nile virus (WNV), profoundly affect human health. The successful transmission of these viruses to a human host depends on the pathogen's ability to overcome a potentially sterilizing immune response in the vector mosquito. Similar to other invertebrate animals and plants, the mosquito's RNA silencing pathway comprises its primary antiviral defense. Although a diverse range of plant and insect viruses has been found to encode suppressors of RNA silencing, the mechanisms by which flaviviruses antagonize antiviral small RNA pathways in disease vectors are unknown. Here we describe a viral suppressor of RNA silencing (VSR) encoded by the prototype flavivirus, YFV. We show that the YFV capsid (YFC) protein inhibits RNA silencing in the mosquito Aedes aegypti by interfering with Dicer. This VSR activity appears to be broadly conserved in the C proteins of other medically important flaviviruses, including that of ZIKV. These results suggest that a molecular "arms race" between vector and pathogen underlies the continued existence of flaviviruses in nature.
Collapse
|
73
|
Li J, Zheng H, Zhang C, Han K, Wang S, Peng J, Lu Y, Zhao J, Xu P, Wu X, Li G, Chen J, Yan F. Different Virus-Derived siRNAs Profiles between Leaves and Fruits in Cucumber Green Mottle Mosaic Virus-Infected Lagenaria siceraria Plants. Front Microbiol 2016; 7:1797. [PMID: 27881977 PMCID: PMC5101232 DOI: 10.3389/fmicb.2016.01797] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/25/2016] [Indexed: 01/24/2023] Open
Abstract
RNA silencing is an evolutionarily conserved antiviral mechanism, through which virus-derived small interfering RNAs (vsiRNAs) playing roles in host antiviral defense are produced in virus-infected plant. Deep sequencing technology has revolutionized the study on the interaction between virus and plant host through the analysis of vsiRNAs profile. However, comparison of vsiRNA profiles in different tissues from a same host plant has been rarely reported. In this study, the profiles of vsiRNAs from leaves and fruits of Lagenaria siceraria plants infected with Cucumber green mottle mosaic virus (CGMMV) were comprehensively characterized and compared. Many more vsiRNAs were present in infected leaves than in fruits. vsiRNAs from both leaves and fruits were mostly 21- and 22-nt in size as previously described in other virus-infected plants. Interestingly, vsiRNAs were predominantly produced from the viral positive strand RNAs in infected leaves, whereas in infected fruits they were derived equally from the positive and negative strands. Many leaf-specific positive vsiRNAs with lengths of 21-nt (2058) or 22-nt (3996) were identified but only six (21-nt) and one (22-nt) positive vsiRNAs were found to be specific to fruits. vsiRNAs hotspots were only present in the 5'-terminal and 3'-terminal of viral positive strand in fruits, while multiple hotspots were identified in leaves. Differences in GC content and 5'-terminal nucleotide of vsiRNAs were also observed in the two organs. To our knowledge, this provides the first high-resolution comparison of vsiRNA profiles between different tissues of the same host plant.
Collapse
Affiliation(s)
- Junmin Li
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Hongying Zheng
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Chenhua Zhang
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Kelei Han
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Shu Wang
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jiejun Peng
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Yuwen Lu
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jinping Zhao
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Pei Xu
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xiaohua Wu
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Guojing Li
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jianping Chen
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Fei Yan
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| |
Collapse
|
74
|
Lv DQ, Liu SW, Zhao JH, Zhou BJ, Wang SP, Guo HS, Fang YY. Replication of a pathogenic non-coding RNA increases DNA methylation in plants associated with a bromodomain-containing viroid-binding protein. Sci Rep 2016; 6:35751. [PMID: 27767195 PMCID: PMC5073342 DOI: 10.1038/srep35751] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/30/2016] [Indexed: 12/23/2022] Open
Abstract
Viroids are plant-pathogenic molecules made up of single-stranded circular non-coding RNAs. How replicating viroids interfere with host silencing remains largely unknown. In this study, we investigated the effects of a nuclear-replicating Potato spindle tuber viroid (PSTVd) on interference with plant RNA silencing. Using transient induction of silencing in GFP transgenic Nicotiana benthamiana plants (line 16c), we found that PSTVd replication accelerated GFP silencing and increased Virp1 mRNA, which encodes bromodomain-containing viroid-binding protein 1 and is required for PSTVd replication. DNA methylation was increased in the GFP transgene promoter of PSTVd-replicating plants, indicating involvement of transcriptional gene silencing. Consistently, accelerated GFP silencing and increased DNA methylation in the of GFP transgene promoter were detected in plants transiently expressing Virp1. Virp1 mRNA was also increased upon PSTVd infection in natural host potato plants. Reduced transcript levels of certain endogenous genes were also consistent with increases in DNA methylation in related gene promoters in PSTVd-infected potato plants. Together, our data demonstrate that PSTVd replication interferes with the nuclear silencing pathway in that host plant, and this is at least partially attributable to Virp1. This study provides new insights into the plant-viroid interaction on viroid pathogenicity by subverting the plant cell silencing machinery.
Collapse
MESH Headings
- DNA Methylation
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Green Fluorescent Proteins/genetics
- Plant Diseases/genetics
- Plant Diseases/virology
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Untranslated/biosynthesis
- RNA, Viral/biosynthesis
- RNA-Binding Proteins/metabolism
- Solanum tuberosum/metabolism
- Solanum tuberosum/virology
- Nicotiana/genetics
- Nicotiana/metabolism
- Nicotiana/virology
- Viroids/genetics
- Viroids/pathogenicity
- Viroids/physiology
- Virus Replication/genetics
- Virus Replication/physiology
Collapse
Affiliation(s)
- Dian-Qiu Lv
- Virus-free Seedling Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, China
| | - Shang-Wu Liu
- Virus-free Seedling Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bang-Jun Zhou
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shao-Peng Wang
- Virus-free Seedling Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
75
|
Swevers L, Ioannidis K, Kolovou M, Zografidis A, Labropoulou V, Santos D, Wynant N, Broeck JV, Wang L, Cappelle K, Smagghe G. Persistent RNA virus infection of lepidopteran cell lines: Interactions with the RNAi machinery. JOURNAL OF INSECT PHYSIOLOGY 2016; 93-94:81-93. [PMID: 27595655 DOI: 10.1016/j.jinsphys.2016.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/13/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
RNAi is broadly used as a technique for specific gene silencing in insects but few studies have investigated the factors that can affect its efficiency. Viral infections have the potential to interfere with RNAi through their production of viral suppressors of RNAi (VSRs) and the production of viral small RNAs that can saturate and inactivate the RNAi machinery. In this study, the impact of persistent infection of the RNA viruses Flock house virus (FHV) and Macula-like virus (MLV) on RNAi efficiency was investigated in selected lepidopteran cell lines. Lepidopteran cell lines were found to be readily infected by both viruses without any apparent pathogenic effects, with the exception of Bombyx-derived Bm5 and BmN4 cells, which could not be infected by FHV. Because Sf21 cells were free from both FHV and MLV and Hi5-SF were free from FHV and only contained low levels of MLV, they were tested to evaluate the impact of the presence of the virus. Two types of RNAi reporter assays however did not detect a significant interference with gene silencing in infected Sf21 and Hi5-SF cells when compared to virus-free cells. In Hi5 cells, the presence of FHV could be easily cleared through the expression of an RNA hairpin that targets its VSR gene, confirming that the RNAi mechanism was not inhibited. Sequencing indicated that the B2 RNAi inhibitor gene of FHV and a putative VSR gene from MLV were intact in persistently infected cell lines, indicating that protection against RNAi remains essential for virus survival. It is proposed that infection levels of persistent viruses in the cell lines are too low to have an impact on RNAi efficiency in the lepidopteran cell lines and that encoded VSRs act locally at the sites of viral replication (mitochondrial membranes) without affecting the rest of the cytoplasm.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, Athens, Greece.
| | - Konstantinos Ioannidis
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, Athens, Greece
| | - Marianna Kolovou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, Athens, Greece
| | - Aris Zografidis
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, Athens, Greece
| | - Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, Athens, Greece
| | - Dulce Santos
- Department of Animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Niels Wynant
- Department of Animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Jozef Vanden Broeck
- Department of Animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Luoluo Wang
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kaat Cappelle
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
76
|
Lewis SH, Webster CL, Salmela H, Obbard DJ. Repeated Duplication of Argonaute2 Is Associated with Strong Selection and Testis Specialization in Drosophila. Genetics 2016; 204:757-769. [PMID: 27535930 PMCID: PMC5068860 DOI: 10.1534/genetics.116.192336] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/12/2016] [Indexed: 11/18/2022] Open
Abstract
Argonaute2 (Ago2) is a rapidly evolving nuclease in the Drosophila melanogaster RNA interference (RNAi) pathway that targets viruses and transposable elements in somatic tissues. Here we reconstruct the history of Ago2 duplications across the D. obscura group and use patterns of gene expression to infer new functional specialization. We show that some duplications are old, shared by the entire species group, and that losses may be common, including previously undetected losses in the lineage leading to D. pseudoobscura We find that while the original (syntenic) gene copy has generally retained the ancestral ubiquitous expression pattern, most of the novel Ago2 paralogs have independently specialized to testis-specific expression. Using population genetic analyses, we show that most testis-specific paralogs have significantly lower genetic diversity than the genome-wide average. This suggests recent positive selection in three different species, and model-based analyses provide strong evidence of recent hard selective sweeps in or near four of the six D. pseudoobscura Ago2 paralogs. We speculate that the repeated evolution of testis specificity in obscura group Ago2 genes, combined with their dynamic turnover and strong signatures of adaptive evolution, may be associated with highly derived roles in the suppression of transposable elements or meiotic drive. Our study highlights the lability of RNAi pathways, even within well-studied groups such as Drosophila, and suggests that strong selection may act quickly after duplication in RNAi pathways, potentially giving rise to new and unknown RNAi functions in nonmodel species.
Collapse
Affiliation(s)
- Samuel H Lewis
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, EH9 3FL, United Kingdom
| | - Claire L Webster
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, EH9 3FL, United Kingdom
| | - Heli Salmela
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Finland
| | - Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, EH9 3FL, United Kingdom Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, EH9 3FL, United Kingdom
| |
Collapse
|
77
|
Diversity of immune strategies explained by adaptation to pathogen statistics. Proc Natl Acad Sci U S A 2016; 113:8630-5. [PMID: 27432970 DOI: 10.1073/pnas.1600663113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biological organisms have evolved a wide range of immune mechanisms to defend themselves against pathogens. Beyond molecular details, these mechanisms differ in how protection is acquired, processed, and passed on to subsequent generations-differences that may be essential to long-term survival. Here, we introduce a mathematical framework to compare the long-term adaptation of populations as a function of the pathogen dynamics that they experience and of the immune strategy that they adopt. We find that the two key determinants of an optimal immune strategy are the frequency and the characteristic timescale of the pathogens. Depending on these two parameters, our framework identifies distinct modes of immunity, including adaptive, innate, bet-hedging, and CRISPR-like immunities, which recapitulate the diversity of natural immune systems.
Collapse
|
78
|
Hu J, Xia Y. F1 -ATP synthase α-subunit: a potential target for RNAi-mediated pest management of Locusta migratoria manilensis. PEST MANAGEMENT SCIENCE 2016; 72:1433-1439. [PMID: 26558746 DOI: 10.1002/ps.4185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The migratory locust is one of the most destructive agricultural pests worldwide. ATP synthase (F0 F1 -ATPase) uses proton or sodium motive force to produce 90% of the cellular ATP, and the α-subunit of F1 -ATP synthase (ATP5A) is vital for F1 -ATP synthase. Here, we tested whether ATP5A could be a potential target for RNAi-mediated pest management of L. migratoria. RESULTS Lm-ATP5A was cloned and characterised. Lm-ATP5A is expressed in all tissues. Injection of 100 ng of the double-stranded RNA of ATP5A (dsATP5A) knocked down the transcription of the target gene and caused mortality in 1.5-5 days. The Lm-ATP5A protein level, the oligomycin-sensitive ATP synthetic and hydrolytic activities and the ATP content were correspondingly reduced following dsATP5A injection. CONCLUSION These findings demonstrated the essential roles of Lm-ATP5A in L. migratoria and identified it as a potential target for insect pest control. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Hu
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing, China
- Chongqing Engineering Research Centre for Fungal Insecticide, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under the Chongqing Municipal Education Commission, Chongqing, China
| | - Yuxian Xia
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing, China
- Chongqing Engineering Research Centre for Fungal Insecticide, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under the Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|
79
|
Herbert KM, Nag A. A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell. Viruses 2016; 8:E154. [PMID: 27271653 PMCID: PMC4926174 DOI: 10.3390/v8060154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023] Open
Abstract
Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage.
Collapse
Affiliation(s)
- Kristina M Herbert
- Department of Experimental Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California 22860, Mexico.
| | - Anita Nag
- Department of Chemistry, Florida A&M University, Tallahassee, FL 32307, USA.
| |
Collapse
|
80
|
Analysis of the Contribution of Hemocytes and Autophagy to Drosophila Antiviral Immunity. J Virol 2016; 90:5415-5426. [PMID: 27009948 DOI: 10.1128/jvi.00238-16] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/16/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Antiviral immunity in the model organism Drosophila melanogaster involves the broadly active intrinsic mechanism of RNA interference (RNAi) and virus-specific inducible responses. Here, using a panel of six viruses, we investigated the role of hemocytes and autophagy in the control of viral infections. Injection of latex beads to saturate phagocytosis, or genetic depletion of hemocytes, resulted in decreased survival and increased viral titers following infection with Cricket paralysis virus (CrPV), Flock House virus (FHV), and vesicular stomatitis virus (VSV) but had no impact on Drosophila C virus (DCV), Sindbis virus (SINV), and Invertebrate iridescent virus 6 (IIV6) infection. In the cases of CrPV and FHV, apoptosis was induced in infected cells, which were phagocytosed by hemocytes. In contrast, VSV did not trigger any significant apoptosis but we confirmed that the autophagy gene Atg7 was required for full virus resistance, suggesting that hemocytes use autophagy to recognize the virus. However, this recognition does not depend on the Toll-7 receptor. Autophagy had no impact on DCV, CrPV, SINV, or IIV6 infection and was required for replication of the sixth virus, FHV. Even in the case of VSV, the increases in titers were modest in Atg7 mutant flies, suggesting that autophagy does not play a major role in antiviral immunity in Drosophila Altogether, our results indicate that, while autophagy plays a minor role, phagocytosis contributes to virus-specific immune responses in insects. IMPORTANCE Phagocytosis and autophagy are two cellular processes that involve lysosomal degradation and participate in Drosophila immunity. Using a panel of RNA and DNA viruses, we have addressed the contribution of phagocytosis and autophagy in the control of viral infections in this model organism. We show that, while autophagy plays a minor role, phagocytosis contributes to virus-specific immune responses in Drosophila This work brings to the front a novel facet of antiviral host defense in insects, which may have relevance in the control of virus transmission by vector insects or in the resistance of beneficial insects to viral pathogens.
Collapse
|
81
|
Li ML, Weng KF, Shih SR, Brewer G. The evolving world of small RNAs from RNA viruses. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:575-88. [PMID: 27046163 DOI: 10.1002/wrna.1351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 11/10/2022]
Abstract
RNA virus infection in plants and invertebrates can produce virus-derived small RNAs. These RNAs share features with host endogenous small interfering RNAs (siRNAs). They can potentially mediate RNA interference (RNAi) and related RNA silencing pathways, resulting in specific antiviral defense. Although most RNA silencing components such as Dicer, Ago2, and RISC are conserved among eukaryotic hosts, whether RNA virus infection in mammals can generate functional small RNAs that act in antiviral defense remains under discussion. Here, we review recent studies on the molecular and biochemical features of viral siRNAs and other virus-derived small RNAs from infected plants, arthropods, nematodes, and vertebrates and discuss the genetic pathways for their biogenesis and their roles in antiviral activity. WIREs RNA 2016, 7:575-588. doi: 10.1002/wrna.1351 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Mei-Ling Li
- Department of Biochemistry & Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Kuo-Feng Weng
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Clinical Virology Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Gary Brewer
- Department of Biochemistry & Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
82
|
De Cock A, Michiels T. Cellular microRNAs Repress Vesicular Stomatitis Virus but Not Theiler's Virus Replication. Viruses 2016; 8:75. [PMID: 26978386 PMCID: PMC4810265 DOI: 10.3390/v8030075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 12/27/2022] Open
Abstract
Picornavirus’ genomic RNA is a positive-stranded RNA sequence that also serves as a template for translation and replication. Cellular microRNAs were reported to interfere to different extents with the replication of specific picornaviruses, mostly acting as inhibitors. However, owing to the high error rate of their RNA-dependent RNA-polymerases, picornavirus quasi-species are expected to evolve rapidly in order to lose any detrimental microRNA target sequence. We examined the genome of Theiler’s murine encephalomyelitis virus (TMEV) for the presence of under-represented microRNA target sequences that could have been selected against during virus evolution. However, little evidence for such sequences was found in the genome of TMEV and introduction of the most under-represented microRNA target (miR-770-3p) in TMEV did not significantly affect viral replication in cells expressing this microRNA. To test the global impact of cellular microRNAs on viral replication, we designed a strategy based on short-term Dicer inactivation in mouse embryonic fibroblasts. Short-term Dicer inactivation led to a >10-fold decrease in microRNA abundance and strongly increased replication of Vesicular stomatitis virus (VSV), which was used as a microRNA-sensitive control virus. In contrast, Dicer inactivation did not increase TMEV replication. In conclusion, cellular microRNAs appear to exert little influence on Theiler’s virus fitness.
Collapse
Affiliation(s)
- Aurélie De Cock
- Université Catholique de Louvain, de Duve Institute, VIRO B1.74.07, 74 Avenue Hippocrate, B-1200 Brussels, Belgium.
| | - Thomas Michiels
- Université Catholique de Louvain, de Duve Institute, VIRO B1.74.07, 74 Avenue Hippocrate, B-1200 Brussels, Belgium.
| |
Collapse
|
83
|
Small interfering RNA pathway modulates persistent infection of a plant virus in its insect vector. Sci Rep 2016; 6:20699. [PMID: 26864546 PMCID: PMC4750021 DOI: 10.1038/srep20699] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/11/2016] [Indexed: 11/08/2022] Open
Abstract
Plant reoviruses, rhabdoviruses, tospoviruses, and tenuiviruses are transmitted by insect vectors in a persistent-propagative manner. How such persistent infection of plant viruses in insect vectors is established and maintained remains poorly understood. In this study, we used rice gall dwarf virus (RGDV), a plant reovirus, and its main vector leafhopper Recilia dorsalis as a virus-insect system to determine how the small interference (siRNA) pathway modulates persistent infection of a plant virus in its insect vector. We showed that a conserved siRNA antiviral response was triggered by the persistent replication of RGDV in cultured leafhopper cells and in intact insects, by appearance of virus-specific siRNAs, primarily 21-nt long, and the increased expression of siRNA pathway core components Dicer-2 and Argonaute-2. Silencing of Dicer-2 using RNA interference strongly suppressed production of virus-specific siRNAs, promoted viral accumulation, and caused cytopathological changes in vitro and in vivo. When the viral accumulation level rose above a certain threshold of viral genome copy (1.32 × 10(14) copies/μg insect RNA), the infection of the leafhopper by RGDV was lethal rather than persistent. Taken together, our results revealed a new finding that the siRNA pathway in insect vector can modulate persistent infection of plant viruses.
Collapse
|
84
|
Cao C, Magwire MM, Bayer F, Jiggins FM. A Polymorphism in the Processing Body Component Ge-1 Controls Resistance to a Naturally Occurring Rhabdovirus in Drosophila. PLoS Pathog 2016; 12:e1005387. [PMID: 26799957 PMCID: PMC4723093 DOI: 10.1371/journal.ppat.1005387] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/17/2015] [Indexed: 12/30/2022] Open
Abstract
Hosts encounter an ever-changing array of pathogens, so there is continual selection for novel ways to resist infection. A powerful way to understand how hosts evolve resistance is to identify the genes that cause variation in susceptibility to infection. Using high-resolution genetic mapping we have identified a naturally occurring polymorphism in a gene called Ge-1 that makes Drosophila melanogaster highly resistant to its natural pathogen Drosophila melanogaster sigma virus (DMelSV). By modifying the sequence of the gene in transgenic flies, we identified a 26 amino acid deletion in the serine-rich linker region of Ge-1 that is causing the resistance. Knocking down the expression of the susceptible allele leads to a decrease in viral titre in infected flies, indicating that Ge-1 is an existing restriction factor whose antiviral effects have been increased by the deletion. Ge-1 plays a central role in RNA degradation and the formation of processing bodies (P bodies). A key effector in antiviral immunity, the RNAi induced silencing complex (RISC), localises to P bodies, but we found that Ge-1-based resistance is not dependent on the small interfering RNA (siRNA) pathway. However, we found that Decapping protein 1 (DCP1) protects flies against sigma virus. This protein interacts with Ge-1 and commits mRNA for degradation by removing the 5’ cap, suggesting that resistance may rely on this RNA degradation pathway. The serine-rich linker domain of Ge-1 has experienced strong selection during the evolution of Drosophila, suggesting that this gene may be under long-term selection by viruses. These findings demonstrate that studying naturally occurring polymorphisms that increase resistance to infections enables us to identify novel forms of antiviral defence, and support a pattern of major effect polymorphisms controlling resistance to viruses in Drosophila. Hosts and their pathogens are engaged in a never-ending arms race, and hosts must continually evolve new defences to protect themselves from infection. In the fruit fly Drosophila melanogaster we show that virus resistance can evolve through a single mutation. In flies that are highly resistant to a naturally occurring virus called sigma virus we identified a deletion in the protein-coding region of a gene called Ge-1. We experimentally confirmed that this was the cause of resistance by deleting this region in transgenic flies. Furthermore, we show that even the susceptible allele of Ge-1 helps protect flies against the virus, suggesting that this mutation has made an existing antiviral defence more effective. Ge-1 plays a central role in RNA degradation in regions of the cytoplasm called P bodies, and our results suggest that this pathway has been recruited during evolution to protect D. melanogaster against sigma virus. The protein domain that contains the deletion has experienced strong selection during its evolution, suggesting that it may be involved in an ongoing arms race with viruses.
Collapse
Affiliation(s)
- Chuan Cao
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Michael M. Magwire
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Florian Bayer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
85
|
Role of Mitochondrial Membrane Spherules in Flock House Virus Replication. J Virol 2016; 90:3676-83. [PMID: 26792749 DOI: 10.1128/jvi.03080-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/14/2016] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Viruses that generate double-stranded RNA (dsRNA) during replication must overcome host defense systems designed to detect this infection intermediate. All positive-sense RNA viruses studied to date modify host membranes to help facilitate the sequestration of dsRNA from host defenses and concentrate replication factors to enhance RNA production. Flock House virus (FHV) is an attractive model for the study of these processes since it is well characterized and infects Drosophila cells, which are known to have a highly effective RNA silencing system. During infection, FHV modifies the outer membrane of host mitochondria to form numerous membrane invaginations, called spherules, that are ∼50 nm in diameter and known to be the site of viral RNA replication. While previous studies have outlined basic structural features of these invaginations, very little is known about the mechanism underlying their formation. Here we describe the optimization of an experimental system for the analysis of FHV host membrane modifications using crude mitochondrial preparations from infected Drosophila cells. These preparations can be programmed to synthesize both single- and double-stranded FHV RNA. The system was used to demonstrate that dsRNA is protected from nuclease digestion by virus-induced membrane invaginations and that spherules play an important role in stimulating RNA replication. Finally, we show that spherules generated during FHV infection appear to be dynamic as evidenced by their ability to form or disperse based on the presence or absence of RNA synthesis. IMPORTANCE It is well established that positive-sense RNA viruses induce significant membrane rearrangements in infected cells. However, the molecular mechanisms underlying these rearrangements, particularly membrane invagination and spherule formation, remain essentially unknown. How the formation of spherules enhances viral RNA synthesis is also not understood, although it is assumed to be partly a result of evading host defense pathways. To help interrogate some of these issues, we optimized a cell-free replication system consisting of mitochondria isolated from Flock House virus-infected Drosophila cells for use in biochemical and structural studies. Our data suggest that spherules generated during Flock House virus replication are dynamic, protect double-stranded RNA, and enhance RNA replication in general. Cryo-electron microscopy suggests that the samples are amenable to detailed structural analyses of spherules engaged in RNA synthesis. This system thus provides a foundation for understanding the molecular mechanisms underlying spherule formation, maintenance, and function during positive-sense viral RNA replication.
Collapse
|
86
|
Lan H, Chen H, Liu Y, Jiang C, Mao Q, Jia D, Chen Q, Wei T. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus. J Virol 2016; 90:917-29. [PMID: 26537672 PMCID: PMC4702677 DOI: 10.1128/jvi.01835-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/26/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. IMPORTANCE Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an incompetent vector, the small brown planthopper (SBPH). Here, we show that silencing of the core component Dicer-2 of the small interfering RNA (siRNA) pathway increases viral titers in the midgut epithelium past the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) for viral dissemination into the midgut muscles and then into the salivary glands, allowing the SBPH to become a competent vector of SRBSDV. This result is the first evidence that the siRNA antiviral pathway has a direct role in the control of viral dissemination from the midgut epithelium and that it affects the competence of the virus's vector.
Collapse
Affiliation(s)
- Hanhong Lan
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Yuyan Liu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Chaoyang Jiang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
87
|
Olson KE, Blair CD. Arbovirus-mosquito interactions: RNAi pathway. Curr Opin Virol 2015; 15:119-26. [PMID: 26629932 DOI: 10.1016/j.coviro.2015.10.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/01/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
Abstract
Arthropod-borne (arbo) viruses infect hematophagous arthropods (vectors) to maintain virus transmission between vertebrate hosts. The mosquito vector actively controls arbovirus infection to minimize its fitness costs. The RNA interference (RNAi) pathway is the major antiviral response vectors use to restrict arbovirus infections. We know this because depleting RNAi gene products profoundly impacts arbovirus replication, the antiviral RNAi pathway genes undergo positive, diversifying selection and arboviruses have evolved strategies to evade the vector's RNAi responses. The vector's RNAi defense and arbovirus countermeasures lead to an arms race that prevents potential virus-induced fitness costs yet maintains arbovirus infections needed for transmission. This review will discuss the latest findings in RNAi-arbovirus interactions in the model insect (Drosophila melanogaster) and in specific mosquito vectors.
Collapse
Affiliation(s)
- Ken E Olson
- Arthropod-borne and Infectious Diseases Laboratory, Mail Delivery 1692, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Carol D Blair
- Arthropod-borne and Infectious Diseases Laboratory, Mail Delivery 1692, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
88
|
Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection. J Virol 2015; 89:11473-86. [PMID: 26339065 DOI: 10.1128/jvi.01695-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/28/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by a segmented double-stranded RNA (dsRNA) genome. Further, we show that Dicer-2 predominantly targets viral dsRNA and produces 20-nucleotide (nt) vsRNAs, whereas an additional pathway is responsive to viral mRNA derived from segment 10. Importantly, vsRNA distributions, which define specific hot and cold spot profiles for each viral segment, to a considerable degree overlap between Dicer-2-related (19 to 21 nt) and Dicer-2-unrelated vsRNAs, suggesting a common origin for these profiles. We found a degenerate motif significantly enriched at the cut sites of vsRNAs of various lengths which link an unknown RNase to the origins of vsRNAs biogenesis and distribution. Accordingly, the indicated RNase activity may be an important early factor for the host's antiviral defense in Lepidoptera. IMPORTANCE This work contributes to the elucidation of the lepidopteran antiviral response against infection of segmented double-stranded RNA (dsRNA) virus (CPV; Reoviridae) and highlights the importance of viral small-RNA (vsRNA) analysis for getting insights into host-pathogen interactions. Three vsRNA pathways are implicated in antiviral defense. For dsRNA, two pathways are proposed, either based on Dicer-2 cleavage to generate 20-nucleotide vsRNAs or based on the activity of an uncharacterized endo-RNase that cleaves the viral RNA substrate at a degenerate motif. The analysis also indicates the existence of a degradation pathway that targets the positive strand of segment 10.
Collapse
|
89
|
Chiba S, Suzuki N. Highly activated RNA silencing via strong induction of dicer by one virus can interfere with the replication of an unrelated virus. Proc Natl Acad Sci U S A 2015; 112:E4911-8. [PMID: 26283371 PMCID: PMC4568273 DOI: 10.1073/pnas.1509151112] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses often coinfect single host organisms in nature. Depending on the combination of viruses in such coinfections, the interplay between them may be synergistic, apparently neutral with no effect on each other, or antagonistic. RNA silencing is responsible for many cases of interference or cross-protection between viruses, but such antagonistic interactions are usually restricted to closely related strains of the same viral species. In this study, we present an unprecedented example of RNA silencing-mediated one-way interference between unrelated viruses in a filamentous model fungus, Cryphonectria parasitica. The replication of Rosellinia necatrix victorivirus 1 (RnVV1; Totiviridae) was strongly impaired by coinfection with the prototypic member of the genus Mycoreovirus (MyRV1) or a mutant of the prototype hypovirus (Cryphonectria hypovirus 1, CHV1) lacking the RNA silencing suppressor (CHV1-Δp69). This interference was associated with marked transcriptional induction of key genes in antiviral RNA silencing, dicer-like 2 (dcl2) and argonaute-like 2 (agl2), following MyRV1 or CHV1-Δp69 infection. Interestingly, the inhibition of RnVV1 replication was reproduced when the levels of dcl2 and agl2 transcripts were elevated by transgenic expression of a hairpin construct of an endogenous C. parasitica gene. Disruption of dcl2 completely abolished the interference, whereas that of agl2 did not always lead to its abolishment, suggesting more crucial roles of dcl2 in antiviral defense. Taken altogether, these results demonstrated the susceptible nature of RnVV1 to the antiviral silencing in C. parasitica activated by distinct viruses or transgene-derived double-stranded RNAs and provide insight into the potential for broad-spectrum virus control mediated by RNA silencing.
Collapse
Affiliation(s)
- Sotaro Chiba
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
90
|
Aguiar ERGR, Olmo RP, Paro S, Ferreira FV, de Faria IJDS, Todjro YMH, Lobo FP, Kroon EG, Meignin C, Gatherer D, Imler JL, Marques JT. Sequence-independent characterization of viruses based on the pattern of viral small RNAs produced by the host. Nucleic Acids Res 2015; 43:6191-206. [PMID: 26040701 PMCID: PMC4513865 DOI: 10.1093/nar/gkv587] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022] Open
Abstract
Virus surveillance in vector insects is potentially of great benefit to public health. Large-scale sequencing of small and long RNAs has previously been used to detect viruses, but without any formal comparison of different strategies. Furthermore, the identification of viral sequences largely depends on similarity searches against reference databases. Here, we developed a sequence-independent strategy based on virus-derived small RNAs produced by the host response, such as the RNA interference pathway. In insects, we compared sequences of small and long RNAs, demonstrating that viral sequences are enriched in the small RNA fraction. We also noted that the small RNA size profile is a unique signature for each virus and can be used to identify novel viral sequences without known relatives in reference databases. Using this strategy, we characterized six novel viruses in the viromes of laboratory fruit flies and wild populations of two insect vectors: mosquitoes and sandflies. We also show that the small RNA profile could be used to infer viral tropism for ovaries among other aspects of virus biology. Additionally, our results suggest that virus detection utilizing small RNAs can also be applied to vertebrates, although not as efficiently as to plants and insects.
Collapse
Affiliation(s)
- Eric Roberto Guimarães Rocha Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30270-901, Brazil CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France
| | - Roenick Proveti Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30270-901, Brazil CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France
| | - Simona Paro
- CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France
| | - Flavia Viana Ferreira
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30270-901, Brazil
| | - Isaque João da Silva de Faria
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30270-901, Brazil
| | - Yaovi Mathias Honore Todjro
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30270-901, Brazil
| | - Francisco Pereira Lobo
- Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária, Campinas, São Paulo, CEP 13083-886, Brazil
| | - Erna Geessien Kroon
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30270-901, Brazil
| | - Carine Meignin
- CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France Faculté des Sciences de la Vie, Université de Strasbourg, 67083 Strasbourg Cedex, France
| | - Derek Gatherer
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, Lancashire, LA1 4YQ, UK
| | - Jean-Luc Imler
- CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France Faculté des Sciences de la Vie, Université de Strasbourg, 67083 Strasbourg Cedex, France Institut d'Etudes Avancées de l'Université de Strasbourg (USIAS), 67084 Strasbourg Cedex, France
| | - João Trindade Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30270-901, Brazil
| |
Collapse
|
91
|
The Baculovirus Antiapoptotic p35 Protein Functions as an Inhibitor of the Host RNA Interference Antiviral Response. J Virol 2015; 89:8182-92. [PMID: 26018163 DOI: 10.1128/jvi.00802-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/18/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED RNA interference (RNAi) is considered an ancient antiviral defense in diverse organisms, including insects. Virus infections generate double-strand RNAs (dsRNAs) that trigger the RNAi machinery to process dsRNAs into virus-derived short interfering RNAs (vsiRNAs), which target virus genomes, mRNAs, or replication intermediates. Viruses, in turn, have evolved viral suppressors of RNAi (VSRs) to counter host antiviral RNAi. Following recent discoveries that insects mount an RNAi response against DNA viruses, in this study, we found that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection similarly induces an RNAi response in Spodoptera frugiperda cells by generating a large number of vsiRNAs postinfection. Interestingly, we found that AcMNPV expresses a potent VSR to counter RNAi. The viral p35 gene, which is well known as an inhibitor of apoptosis, was found to be responsible for the suppression of RNAi in diverse insect and mammalian cells. The VSR activity of p35 was further confirmed by a p35-null AcMNPV that did not suppress the response. In addition, our results showed that the VSR activity is not due to inhibition of dsRNA cleavage by Dicer-2 but acts downstream in the RNAi pathway. Furthermore, we found that the VSR activity is not linked to the antiapoptotic activity of the protein. Overall, our results provide evidence for the existence of VSR activity in a double-stranded DNA virus and identify the responsible gene, which is involved in the inhibition of RNAi as well as apoptosis. IMPORTANCE Our findings demonstrate the occurrence of an insect RNAi response against a baculovirus (AcMNPV) that is highly utilized in microbial control, biological and biomedical research, and protein expression. Moreover, our investigations led to the identification of a viral suppressor of RNAi activity and the gene responsible for the activity. Notably, this gene is also a potent inhibitor of apoptosis. The outcomes signify the dual role of a virus-encoded protein in nullifying two key antiviral responses, apoptosis and RNAi.
Collapse
|
92
|
Fan X, Dong S, Li Y, Ding SW, Wang M. RIG-I-dependent antiviral immunity is effective against an RNA virus encoding a potent suppressor of RNAi. Biochem Biophys Res Commun 2015; 460:1035-40. [PMID: 25843799 PMCID: PMC4426002 DOI: 10.1016/j.bbrc.2015.03.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 12/23/2022]
Abstract
Nodamura virus (NoV) lethally infects suckling mice and contains a segmented positive-strand RNA genome that encodes a potent suppressor of RNA interference (RNAi). Recent studies have demonstrated immune detection and subsequent processing of NoV dsRNA replicative intermediates by the mouse RNAi machinery. However, diverse RNA viruses, including Encephalomyocarditis virus that also triggers Dicer-dependent biogenesis of viral siRNAs in mouse cells, are targeted in mammals by RIG-I-like receptors that initiate an IFN-dependent antiviral response. Using mouse embryonic fibroblasts (MEFs) for NoV infection, here we show that MEFs derived from mice knockout for RIG-I, but not those knockout for MDA5, LGP2, TLR3 or TLR7, exhibited an enhanced susceptibility to NoV. Further studies indicate that NoV infection induced an IFN-dependent antiviral response mediated by RIG-I. Our findings suggest that RIG-I directs a typical IFN-dependent antiviral response against an RNA virus capable of suppressing the RNAi response.
Collapse
Affiliation(s)
- Xiaoxu Fan
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Department of Plant Pathology and Microbiology, and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Shuwei Dong
- Department of Plant Pathology and Microbiology, and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA; State Key Laboratory for Agrobiotechnology and Ministry of Agriculture, Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yang Li
- Department of Plant Pathology and Microbiology, and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Shou-wei Ding
- Department of Plant Pathology and Microbiology, and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| | - Ming Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Veterinary Bioproduction and Veterinary Medicine of the Ministry of Agriculture, Zhongmu Institute of China Animal Husbandry Industry Co., Ltd, No. 156 Beiqing Road, Haidian District, Beijing 100095, China.
| |
Collapse
|
93
|
Liang P, Navarro B, Zhang Z, Wang H, Lu M, Xiao H, Wu Q, Zhou X, Di Serio F, Li S. Identification and characterization of a novel geminivirus with a monopartite genome infecting apple trees. J Gen Virol 2015; 96:2411-2420. [PMID: 25934791 DOI: 10.1099/vir.0.000173] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel circular DNA virus sequence has been identified through next-generation sequencing and in silico assembly of small RNAs of 21-24 nt from an apple tree grown in China. The virus genome was cloned using two independent approaches and sequenced. With a size of 2932 nt, it showed the same genomic structure and conserved origin of replication reported for members of the family Geminiviridae. However, the low nucleotide and amino acid sequence identity with known geminiviruses indicated that it was a novel virus, for which the provisional name apple geminivirus (AGV) is proposed. Rolling circle amplification followed by RFLP analyses indicated that AGV was a virus with a monopartite DNA genome. This result was in line with bioassays showing that the cloned viral genome was infectious in several herbaceous plants (Nicotiana bethamiana, Nicotiana glutinosa and Solanum lycopersicum), thus confirming it was complete and biologically active, although no symptoms were observed in these experimental hosts. AGV genome structure and phylogenetic analyses did not support the inclusion of this novel species in any of the established genera in the family Geminiviridae. A survey of 165 apple trees grown in four Chinese provinces showed a prevalence of 7.2% for AGV, confirming its presence in several cultivars and geographical areas in China, although no obvious relationship between virus infection and specific symptoms was found.
Collapse
Affiliation(s)
- Pengbo Liang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China.,College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, UOS Bari, Consiglio Nazionale delle Ricerche (IPSP-CNR), Via Amendola, 70126 Bari, Italy
| | - Zhixiang Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Hongqing Wang
- College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Meiguang Lu
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Hong Xiao
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Qingfa Wu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, PR China
| | - Xueping Zhou
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, UOS Bari, Consiglio Nazionale delle Ricerche (IPSP-CNR), Via Amendola, 70126 Bari, Italy
| | - Shifang Li
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| |
Collapse
|
94
|
Shen WX, Au PCK, Shi BJ, Smith NA, Dennis ES, Guo HS, Zhou CY, Wang MB. Satellite RNAs interfere with the function of viral RNA silencing suppressors. FRONTIERS IN PLANT SCIENCE 2015; 6:281. [PMID: 25964791 PMCID: PMC4408847 DOI: 10.3389/fpls.2015.00281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/08/2015] [Indexed: 05/05/2023]
Abstract
Viral satellite RNAs (satRNAs) are small subviral RNAs and depend on the helper virus for replication and spread. satRNAs can attenuate helper virus-induced symptoms, the mechanism of which remains unclear. Here, we show that two virus-encoded suppressors of RNA silencing (VSRs), Cucumber mosaic virus (CMV) 2b and Tombusvirus P19, suppress hairpin RNA (hpRNA)-induced silencing of a β-glucuronidase (GUS) gene in Nicotiana benthamiana. This suppression can be overcome by CMV Y-satellite RNA (Y-Sat) via the Y-Sat-derived small interfering RNAs (siRNAs), which bind to the VSRs and displace the bound hpGUS-derived siRNAs. We also show that microRNA target gene expression in N. tabacum was elevated by CMV infection, presumably due to function of the 2b VSR, but this upregulation of microRNA target genes was reversed in the presence of Y-Sat. These results suggest that satRNA infection minimizes the effect of VSRs on host siRNA and microRNA-directed silencing. Our results suggest that the high abundance of satRNA-derived siRNAs contributes to symptom attenuation by binding helper virus-encoded VSRs, minimizing the capacity of the VSRs to bind host siRNA and miRNA and interfere with their function.
Collapse
Affiliation(s)
- Wan-Xia Shen
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
- Commonwealth Scientific and Industrial Research Organisation Plant IndustryCanberra, ACT, Australia
| | - Phil Chi Khang Au
- Commonwealth Scientific and Industrial Research Organisation Plant IndustryCanberra, ACT, Australia
| | - Bu-Jun Shi
- Department of Plant Science, Waite Institute, Adelaide UniversityGlen Osmond, SA, Australia
| | - Neil A. Smith
- Commonwealth Scientific and Industrial Research Organisation Plant IndustryCanberra, ACT, Australia
| | - Elizabeth S. Dennis
- Commonwealth Scientific and Industrial Research Organisation Plant IndustryCanberra, ACT, Australia
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Chang-Yong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
| | - Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation Plant IndustryCanberra, ACT, Australia
| |
Collapse
|
95
|
Sinha NK, Trettin KD, Aruscavage PJ, Bass BL. Drosophila dicer-2 cleavage is mediated by helicase- and dsRNA termini-dependent states that are modulated by Loquacious-PD. Mol Cell 2015; 58:406-17. [PMID: 25891075 DOI: 10.1016/j.molcel.2015.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/04/2015] [Accepted: 03/09/2015] [Indexed: 12/22/2022]
Abstract
In previous studies we observed that the helicase domain of Drosophila Dicer-2 (dmDcr-2) governs substrate recognition and cleavage efficiency, and that dsRNA termini are key to this discrimination. We now provide a mechanistic basis for these observations. We show that discrimination of termini occurs during initial binding. Without ATP, dmDcr-2 binds 3' overhanging, but not blunt, termini. By contrast, with ATP, dmDcr-2 binds both types of termini, with highest-affinity binding observed with blunt dsRNA. In the presence of ATP, binding, cleavage, and ATP hydrolysis are optimal with BLT termini compared to 3'ovr termini. Limited proteolysis experiments suggest the optimal reactivity of BLT dsRNA is mediated by a conformational change that is dependent on ATP and the helicase domain. We find that dmDcr-2's partner protein, Loquacious-PD, alters termini dependence, enabling dmDcr-2 to cleave substrates normally refractory to cleavage, such as dsRNA with blocked, structured, or frayed ends.
Collapse
Affiliation(s)
- Niladri K Sinha
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle D Trettin
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - P Joseph Aruscavage
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
96
|
Gammon DB, Mello CC. RNA interference-mediated antiviral defense in insects. CURRENT OPINION IN INSECT SCIENCE 2015; 8:111-120. [PMID: 26034705 PMCID: PMC4448697 DOI: 10.1016/j.cois.2015.01.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Small interfering RNA (siRNA)-mediated RNA interference (RNAi) pathways are critical for the detection and inhibition of RNA virus replication in insects. Recent work has also implicated RNAi pathways in the establishment of persistent virus infections and in the control of DNA virus replication. Accumulating evidence suggests that diverse double-stranded RNAs produced by RNA and DNA viruses can trigger RNAi responses yet many viruses have evolved mechanisms to inhibit RNAi defenses. Therefore, an evolutionary arms race exists between host RNAi pathways and invading viral pathogens. Here we review recent advances in our knowledge of how insect RNAi pathways are elicited upon infection, the strategies used by viruses to counter these defenses, and discuss recent evidence implicating Piwi-interacting RNAs in antiviral defense.
Collapse
Affiliation(s)
- Don B Gammon
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA ; Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
97
|
Abstract
Endogenously produced small interfering RNAs (endo-siRNAs, 18-30 nucleotides) play a key role in gene regulatory pathways, guiding Argonaute effector proteins as a part of a functional ribonucleoprotein complex called the RISC (RNA induced silencing complex) to complementarily target nucleic acid. Enabled by the advent of high throughput sequencing, there has been an explosion in the identification of endo-siRNAs in all three kingdoms of life since the discovery of the first microRNA in 1993. Concurrently, our knowledge of the variety of cellular processes in which small RNA pathways related to RNA interference (RNAi) play key regulatory roles has also expanded dramatically. Building on the strong foundation of RNAi established over the past fifteen years, this review uses a historical context to highlight exciting recent developments in endo-siRNA pathways. Specifically, my focus will be on recent insights regarding the Argonaute effectors, their endo-siRNA guides and the functional outputs of these pathways in several model systems that have been longstanding champions of small RNA research. I will also touch on newly discovered roles for bacterial Argonautes, which have been integral in deciphering Argonaute structure and demonstrate key functions of these conserved pathways in genome defense.
Collapse
Affiliation(s)
- Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, 4366 Medical Sciences Building, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
98
|
The role of RNA interference (RNAi) in arbovirus-vector interactions. Viruses 2015; 7:820-43. [PMID: 25690800 PMCID: PMC4353918 DOI: 10.3390/v7020820] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/10/2014] [Accepted: 02/04/2015] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) was shown over 18 years ago to be a mechanism by which arbovirus replication and transmission could be controlled in arthropod vectors. During the intervening period, research on RNAi has defined many of the components and mechanisms of this antiviral pathway in arthropods, yet a number of unexplored questions remain. RNAi refers to RNA-mediated regulation of gene expression. Originally, the term described silencing of endogenous genes by introduction of exogenous double-stranded (ds)RNA with the same sequence as the gene to be silenced. Further research has shown that RNAi comprises three gene regulation pathways that are mediated by small RNAs: the small interfering (si)RNA, micro (mi)RNA, and Piwi-interacting (pi)RNA pathways. The exogenous (exo-)siRNA pathway is now recognized as a major antiviral innate immune response of arthropods. More recent studies suggest that the piRNA and miRNA pathways might also have important roles in arbovirus-vector interactions. This review will focus on current knowledge of the role of the exo-siRNA pathway as an arthropod vector antiviral response and on emerging research into vector piRNA and miRNA pathway modulation of arbovirus-vector interactions. Although it is assumed that arboviruses must evade the vector’s antiviral RNAi response in order to maintain their natural transmission cycles, the strategies by which this is accomplished are not well defined. RNAi is also an important tool for arthropod gene knock-down in functional genomics studies and in development of arbovirus-resistant mosquito populations. Possible arbovirus strategies for evasion of RNAi and applications of RNAi in functional genomics analysis and arbovirus transmission control will also be reviewed.
Collapse
|
99
|
Mann KS, Johnson KN, Dietzgen RG. Cytorhabdovirus phosphoprotein shows RNA silencing suppressor activity in plants, but not in insect cells. Virology 2015; 476:413-418. [PMID: 25591176 DOI: 10.1016/j.virol.2014.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/16/2014] [Accepted: 12/14/2014] [Indexed: 01/01/2023]
Abstract
RNA silencing in plants and insects provides an antiviral defense and as a countermeasure most viruses encode RNA silencing suppressors (RSS). For the family Rhabdoviridae, no detailed functional RSS studies have been reported in plant hosts and insect vectors. In agroinfiltrated Nicotiana benthamiana leaves we show for the first time for a cytorhabdovirus, lettuce necrotic yellows virus (LNYV), that one of the nucleocapsid core proteins, phosphoprotein (P) has relatively weak local RSS activity and delays systemic silencing of a GFP reporter. Analysis of GFP small RNAs indicated that the P protein did not prevent siRNA accumulation. To explore RSS activity in insects, we used a Flock House virus replicon system in Drosophila S2 cells. In contrast to the plant host, LNYV P protein did not exhibit RSS activity in the insect cells. Taken together our results suggest that P protein may target plant-specific components of RNA silencing post siRNA biogenesis.
Collapse
Affiliation(s)
- Krin S Mann
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Qld 4072, Australia.
| |
Collapse
|
100
|
Wu Q, Ding SW, Zhang Y, Zhu S. Identification of viruses and viroids by next-generation sequencing and homology-dependent and homology-independent algorithms. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:425-44. [PMID: 26047558 DOI: 10.1146/annurev-phyto-080614-120030] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A fast, accurate, and full indexing of viruses and viroids in a sample for the inspection and quarantine services and disease management is desirable but was unrealistic until recently. This article reviews the rapid and exciting recent progress in the use of next-generation sequencing (NGS) technologies for the identification of viruses and viroids in plants. A total of four viroids/viroid-like RNAs and 49 new plant RNA and DNA viruses from 18 known or unassigned virus families have been identified from plants since 2009. A comparison of enrichment strategies reveals that full indexing of RNA and DNA viruses as well as viroids in a plant sample at single-nucleotide resolution is made possible by one NGS run of total small RNAs, followed by data mining with homology-dependent and homology-independent computational algorithms. Major challenges in the application of NGS technologies to pathogen discovery are discussed.
Collapse
Affiliation(s)
- Qingfa Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 China;
| | | | | | | |
Collapse
|