51
|
Affiliation(s)
- Sandra Palus
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Springer
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
52
|
Dolly A, Dumas J, Servais S. Cancer cachexia and skeletal muscle atrophy in clinical studies: what do we really know? J Cachexia Sarcopenia Muscle 2020; 11:1413-1428. [PMID: 33053604 PMCID: PMC7749617 DOI: 10.1002/jcsm.12633] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/24/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Research investigators have shown a growing interest in investigating alterations underlying skeletal muscle wasting in patients with cancer. However, skeletal muscle dysfunctions associated with cancer cachexia have mainly been studied in preclinical models. In the present review, we summarize the results of clinical studies in which skeletal muscle biopsies were collected from cachectic vs. non-cachectic cancer patients. Most of these studies suggest the presence of significant physiological alterations in skeletal muscle from cachectic cancer patients. We suggest a hypothesis, which connects structural and metabolic parameters that may, at least in part, be responsible for the skeletal muscle atrophy characteristic of cancer cachexia. Finally, we discuss the importance of a better standardization of the diagnostic criteria for cancer cachexia, as well as the requirement for additional clinical studies to improve the robustness of these conclusions.
Collapse
Affiliation(s)
- Adeline Dolly
- INSERM UMR 1069, Nutrition Croissance et CancerUniversité de ToursToursFrance
| | - Jean‐François Dumas
- INSERM UMR 1069, Nutrition Croissance et CancerUniversité de ToursToursFrance
| | - Stéphane Servais
- INSERM UMR 1069, Nutrition Croissance et CancerUniversité de ToursToursFrance
| |
Collapse
|
53
|
Lim S, Brown JL, Washington TA, Greene NP. Development and progression of cancer cachexia: Perspectives from bench to bedside. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:177-185. [PMID: 34447946 PMCID: PMC8386816 DOI: 10.1016/j.smhs.2020.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cachexia (CC) is a devastating syndrome characterized by weight loss, reduced fat mass and muscle mass that affects approximately 80% of cancer patients and is responsible for 22%-30% of cancer-associated deaths. Understanding underlying mechanisms for the development of CC are crucial to advance therapies to treat CC and improve cancer outcomes. CC is a multi-organ syndrome that results in extensive skeletal muscle and adipose tissue wasting; however, CC can impair other organs such as the liver, heart, brain, and bone as well. A considerable amount of CC research focuses on changes that occur within the muscle, but cancer-related impairments in other organ systems are understudied. Furthermore, metabolic changes in organ systems other than muscle may contribute to CC. Therefore, the purpose of this review is to address degenerative mechanisms which occur during CC from a whole-body perspective. Outlining the information known about metabolic changes that occur in response to cancer is necessary to develop and enhance therapies to treat CC. As much of the current evidences in CC are from pre-clinical models we should note the majority of the data reviewed here are from preclinical models.
Collapse
Affiliation(s)
- Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, 155 Stadium Dr, Fayetteville, AR, USA
| | - Jacob L. Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, USA
| | - Tyrone A. Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, 155 Stadium Dr, Fayetteville, AR, USA
| | - Nicholas P. Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, 155 Stadium Dr, Fayetteville, AR, USA
| |
Collapse
|
54
|
Kiriukova M, de la Iglesia Garcia D, Panic N, Bozhychko M, Avci B, Maisonneuve P, de-Madaria E, Capurso G, Sandru V. Pancreatic Cancer Malnutrition and Pancreatic Exocrine Insufficiency in the Course of Chemotherapy in Unresectable Pancreatic Cancer. Front Med (Lausanne) 2020; 7:495. [PMID: 33015088 PMCID: PMC7509408 DOI: 10.3389/fmed.2020.00495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 07/20/2020] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Background: Malnutrition and cachexia are common in patients with advanced pancreatic ductal adenocarcinoma (PDAC) and have a significant influence on the tolerance and response to treatments. If timely identified, malnourished PDAC patients could be treated to increase their capacity to complete the planned treatments and, therefore, possibly, improve their efficacy. Aims: The aim of this study is to assess the impact of nutritional status, pancreatic exocrine insufficiency (PEI), and other clinical factors on patient outcomes in patients with advanced PDAC. Methods: PAncreatic Cancer MAlnutrition and Pancreatic Exocrine INsufficiency in the Course of Chemotherapy in Unresectable Pancreatic Cancer (PAC-MAIN) is an international multicenter prospective observational cohort study. The nutritional status will be determined by means of Mini-Nutritional Assessment score and laboratory blood tests. PEI will be defined by reduced fecal elastase levels. MAIN OUTCOME adherence to planned chemotherapy in the first 12 weeks following the diagnosis, according to patients' baseline nutritional status and quantified and reported as "percent of standard chemotherapy dose delivered." SECONDARY OUTCOMES rate of chemotherapy-related toxicity, progression-free survival, survival at 6 months, overall survival, quality of life, and the number of hospitalizations. ANALYSIS chemotherapy dosing over the first 12 weeks of therapy (i.e., percent of chemotherapy received in the first 12 weeks, as defined above) will be compared between well-nourished and malnourished patients. SAMPLE SIZE based on an expected percentage of chemotherapy delivered of 70% in well-nourished patients, with a type I error of 0.05 and a type II error of 0.20, a sample size of 93 patients per group will be required in case of a percentage difference of chemotherapy delivered of 20% between well-nourished and malnourished patients, 163 patients per group in case of a difference of 15% between the groups, and 356 patients per group in case of a 10% difference. Centers from Russia, Romania, Turkey, Spain, Serbia, and Italy will participate in the study upon Local Ethics Committee approval. Discussion: PAC-MAIN will provide insights into the role of malnutrition and PEI in the outcomes of PDAC. The study protocol was registered at clinicaltrials.gov as NCT04112836.
Collapse
Affiliation(s)
- Mariia Kiriukova
- Department of Upper Gastrointestinal, Pancreatic, and Biliary Diseases, Moscow Clinical Scientific Center, Moscow, Russia
| | - Daniel de la Iglesia Garcia
- Department of Gastroenterology, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Nikola Panic
- Digestive Endoscopy Department, University Clinic “Dr. Dragisa Misovic-Dedinje”, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Maryana Bozhychko
- Gastroenterology Department, Alicante University General Hospital, ISABIAL, Alicante, Spain
| | - Bartu Avci
- Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Patrick Maisonneuve
- Unit of Clinical Epidemiology, Division of Epidemiology and Biostatistics, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Enrique de-Madaria
- Gastroenterology Department, Alicante University General Hospital, ISABIAL, Alicante, Spain
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vasile Sandru
- Gastroenterology and Interventional Endoscopy Department, Clinical Emergency Hospital Bucharest, Bucharest, Romania
| |
Collapse
|
55
|
Kodet O, Kučera J, Strnadová K, Dvořánková B, Štork J, Lacina L, Smetana K. Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review). Int J Oncol 2020; 57:619-630. [PMID: 32705148 PMCID: PMC7384852 DOI: 10.3892/ijo.2020.5090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
The incidence of cutaneous malignant melanoma has been steadily increasing worldwide for several decades. This phenomenon seems to follow the trend observed in many types of malignancies caused by multiple significant factors, including ageing. Despite the progress in cutaneous malignant melanoma therapeutic options, the curability of advanced disease after metastasis represents a serious challenge for further research. In this review, we summarise data on the microenvironment of cutaneous malignant melanoma with emphasis on intercellular signalling during the disease progression. Malignant melanocytes with features of neural crest stem cells interact with non‑malignant populations within this microenvironment. We focus on representative bioactive factors regulating this intercellular crosstalk. We describe the possible key factors and signalling cascades responsible for the high complexity of the melanoma microenvironment and its premetastatic niches. Furthermore, we present the concept of melanoma early becoming a systemic disease. This systemic effect is presented as a background for the new horizons in the therapy of cutaneous melanoma.
Collapse
Affiliation(s)
- Ondřej Kodet
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Jan Kučera
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
| | - Karolína Strnadová
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Barbora Dvořánková
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Jiří Štork
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
56
|
Human Papillomavirus 16-Transgenic Mice as a Model to Study Cancer-Associated Cachexia. Int J Mol Sci 2020; 21:ijms21145020. [PMID: 32708666 PMCID: PMC7404304 DOI: 10.3390/ijms21145020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022] Open
Abstract
Cancer cachexia is a multifactorial syndrome characterized by general inflammation, weight loss and muscle wasting, partly mediated by ubiquitin ligases such as atrogin-1, encoded by Fbxo32. Cancers induced by high-risk human papillomavirus (HPV) include anogenital cancers and some head-and-neck cancers and are often associated with cachexia. The aim of this study was to assess the presence of cancer cachexia in HPV16-transgenic mice with or without exposure to the chemical carcinogen 7,12-dimethylbenz(a)anthracene (DMBA). Male mice expressing the HPV16 early region under the control of the cytokeratin 14 gene promoter (K14-HPV16; HPV+) and matched wild-type mice (HPV-) received DMBA (or vehicle) topically over 17 weeks of the experiment. Food intake and body weight were assessed weekly. The gastrocnemius weights and Fbxo32 expression levels were quantified at sacrifice time. HPV-16-associated lesions in different anatomic regions were classified histologically. Although unexposed HPV+ mice showed higher food intake than wild-type matched group (p < 0.01), they presented lower body weights (p < 0.05). This body weight trend was more pronounced when comparing DMBA-exposed groups (p < 0.01). The same pattern was observed in the gastrocnemius weights (between the unexposed groups: p < 0.05; between the exposed groups: p < 0.001). Importantly, DMBA reduced body and gastrocnemius weights (p < 0.01) when comparing the HPV+ groups. Moreover, the Fbxo32 gene was overexpressed in DMBA-exposed HPV+ compared to control mice (p < 0.05). These results show that K14-HPV16 mice closely reproduce the anatomic and molecular changes associated with cancer cachexia and may be a good model for preclinical studies concerning the pathogenesis of this syndrome.
Collapse
|
57
|
Hayashi M, Kuga A, Suzuki M, Panda H, Kitamura H, Motohashi H, Yamamoto M. Microenvironmental Activation of Nrf2 Restricts the Progression of Nrf2-Activated Malignant Tumors. Cancer Res 2020; 80:3331-3344. [PMID: 32636316 DOI: 10.1158/0008-5472.can-19-2888] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/07/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022]
Abstract
The transcription factor Nrf2 activates transcription of cytoprotective genes during oxidative and electrophilic insults. Nrf2 activity is regulated by Keap1 in a stress-dependent manner in normal cells, and somatic loss-of-function mutations of Keap1 are known to induce constitutive Nrf2 activation, especially in lung adenocarcinomas, conferring survival and proliferative benefits to tumors. Therefore, several therapeutic strategies that aim to inhibit Nrf2 in tumors have been developed for the treatment of Nrf2-activated cancers. Here we addressed whether targeting Nrf2 activation in the microenvironment can suppress the progression of Nrf2-activated tumors. We combined two types of Keap1-flox mice expressing variable levels of Keap1 with a Kras-driven adenocarcinoma model to generate Keap1-deficient lung tumors surrounded by normal or Keap1-knockdown host cells. In this model system, activation of Nrf2 in the microenvironment prolonged the survival of Nrf2-activated tumor-bearing mice. The Nrf2-activated microenvironment suppressed tumor burden; in particular, preinvasive lesion formation was significantly suppressed. Notably, loss of Nrf2 in bone marrow-derived cells in Nrf2-activated host cells appeared to counteract the suppression of Nrf2-activated cancer progression. Thus, these results demonstrate that microenvironmental Nrf2 activation suppresses the progression of malignant Nrf2-activated tumors and that Nrf2 activation in immune cells at least partially contributes to these suppressive effects. SIGNIFICANCE: This study clarifies the importance of Nrf2 activation in the tumor microenvironment and in the host for the suppression of malignant Nrf2-activated cancers and proposes new cancer therapies utilizing inducers of Nrf2.
Collapse
Affiliation(s)
- Makiko Hayashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ayumi Kuga
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mikiko Suzuki
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Harit Panda
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kitamura
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
58
|
Martins CG, Appel MH, Coutinho DSS, Soares IP, Fischer S, de Oliveira BC, Fachi MM, Pontarolo R, Bonatto SJR, Fernandes LC, Iagher F, de Souza LM. Consumption of latex from Euphorbia tirucalli L. promotes a reduction of tumor growth and cachexia, and immunomodulation in Walker 256 tumor-bearing rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112722. [PMID: 32114165 DOI: 10.1016/j.jep.2020.112722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia tirucalli L. is an African plant that grows well in Brazil. Individuals diagnosed with cancer frequently consume latex from E. tirucalli, dissolved in drinking water. In vitro studies confirm the antitumor potential of E. tirucalli latex, but in vivo evaluations are scarce. AIM OF THE STUDY To evaluate the effect of intake of an aqueous solution of E. tirucalli latex on tumor growth, cachexia, and immune response in Walker 256 tumor-bearing rats. MATERIALS AND METHODS Latex from E. tirucalli was collected and analyzed by LC-MS. Sixty male Wistar rats (age, 90 days) were randomly divided into four groups: C, control group (without tumor); W, Walker 256 tumor-bearing group; SW1, W animals but treated with 25 μL latex/mL water; and SW2, W animals but treated with 50 μL latex/mL water. Animals received 1 mL of latex solution once a day by gavage. After 15 d, animals were euthanized, tumor mass was determined, and glucose and triacylglycerol serum levels were measured by using commercial kits. Change in the body weight during tumor development was calculated, and proliferation capacity of tumor cells was assessed by the Alamar Blue assay. Phagocytosis and superoxide anion production by peritoneal macrophages and circulating neutrophils were analyzed by enzymatic and colorimetric assays. Data are analyzed by one-way ANOVA followed by Tukey's post-hoc test, with the significance level set at 5%. RESULTS The analysis of the latex revealed the presence of triterpenes. The ingestion of the latex aqueous solution promoted 40% and 60% reduction of the tumor mass in SW1 and SW2 groups, respectively (p < 0.05). The proliferative capacity of tumor cells from SW2 group was 76% lower than that of cells from W group (p < 0.0001). Animals treated with latex gained, on average, 20 g (SW1) and 8 g (SW2) weight. Glucose and triacylglycerol serum levels in SW1 and SW2 animals were similar to those in C group rats. Peritoneal macrophages and blood neutrophils from SW1 and SW2 animals produced 30-40% less superoxide anions than those from W group animals (p < 0.05), but neutrophils from SW2 group showed an increased phagocytic capacity (20%, vs. W group). CONCLUSIONS E. tirucalli latex, administered orally for 15 d, efficiently reduced tumor growth and cachexia in Walker 256 tumor-bearing rats. Decreased tumor cell proliferative capacity was one of the mechanisms involved in this effect. Further, the data suggest immunomodulatory properties of E. tirucalli latex. The results agree with folk data on the antitumor effect of latex ingestion, indicating that it may be useful as an adjunct in the treatment of cancer patients. For this, further in vivo studies in animal and human models need to be conducted.
Collapse
Affiliation(s)
- Carolina G Martins
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Marcia H Appel
- Department of Structural Biology, Molecular and Genetics, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Débora S S Coutinho
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Igor P Soares
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Stefani Fischer
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Bruna C de Oliveira
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Mariana M Fachi
- Department of Pharmacy, Federal University of Paraná, Curitiba, PR, Brazil
| | - Roberto Pontarolo
- Department of Pharmacy, Federal University of Paraná, Curitiba, PR, Brazil
| | - Sandro J R Bonatto
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | - Fabíola Iagher
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Lauro M de Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
59
|
Peixoto da Silva S, Santos JMO, Costa E Silva MP, Gil da Costa RM, Medeiros R. Cancer cachexia and its pathophysiology: links with sarcopenia, anorexia and asthenia. J Cachexia Sarcopenia Muscle 2020; 11:619-635. [PMID: 32142217 PMCID: PMC7296264 DOI: 10.1002/jcsm.12528] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of skeletal muscle mass, along with adipose tissue wasting, systemic inflammation and other metabolic abnormalities leading to functional impairment. Cancer cachexia has long been recognized as a direct cause of complications in cancer patients, reducing quality of life and worsening disease outcomes. Some related conditions, like sarcopenia (age-related muscle wasting), anorexia (appetite loss) and asthenia (reduced muscular strength and fatigue), share some key features with cancer cachexia, such as weakness and systemic inflammation. Understanding the interplay and the differences between these conditions is critical to advance basic and translational research in this field, improving the accuracy of diagnosis and contributing to finally achieve effective therapies for affected patients.
Collapse
Affiliation(s)
- Sara Peixoto da Silva
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Maria Paula Costa E Silva
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.,Palliative Care Service, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Postgraduate Programme in Adult Health (PPGSAD) and Tumour Biobank, Federal University of Maranhão (UFMA), São Luís, Brazil
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, Porto, Portugal.,Research Department, Portuguese League Against Cancer - Regional Nucleus of the North (Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte), Porto, Portugal
| |
Collapse
|
60
|
Jain R, Coss C, Whooley P, Phelps M, Owen DH. The Role of Malnutrition and Muscle Wasting in Advanced Lung Cancer. Curr Oncol Rep 2020; 22:54. [PMID: 32409907 PMCID: PMC8717049 DOI: 10.1007/s11912-020-00916-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Malnutrition, cancer cachexia, and sarcopenia often co-occur in patients with advanced cancer and are associated with poorer response to chemotherapy and reduced survival. Here, we evaluate the current literature regarding the role of nutrition and these associated conditions in patients with advanced lung cancer. RECENT FINDINGS While rates of malnutrition are high, nutritional intervention studies have generally been limited by small sample sizes. Novel strategies such as home-based meal delivery may have promise. While no therapy is approved for cancer cachexia, ghrelin agonists and other targeted therapies have yielded promising data in clinical trials. Recent data also suggest that obesity may improve immunotherapy responsiveness. Malnutrition and associated muscle wasting are clearly negative prognostic markers in advanced lung cancer. Patients with malnutrition should be urgently referred for dietary counseling and guidelines for nutritional support should be followed. Optimal treatment of these syndromes will likely include nutrition and anti-cachexia interventions used in combination.
Collapse
Affiliation(s)
- Rishi Jain
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Chris Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Peter Whooley
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Mitch Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Dwight H Owen
- Division of Medical Oncology, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
61
|
Viana LR, Lopes-Aguiar L, Rossi Rosolen R, Willians dos Santos R, Cintra Gomes-Marcondes MC. 1H-NMR Based Serum Metabolomics Identifies Different Profile between Sarcopenia and Cancer Cachexia in Ageing Walker 256 Tumour-Bearing Rats. Metabolites 2020; 10:metabo10040161. [PMID: 32326296 PMCID: PMC7240940 DOI: 10.3390/metabo10040161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia among the older population has been growing over the last few years. In addition, the incidence of cancers increases with age and, consequently, the development of cachexia related cancer. Therefore, the elucidation of the metabolic derangements of sarcopenia and cachexia are important to improve the survival and life quality of cancer patients. We performed the 1H-NMR based serum metabolomics in adult (A) and ageing (S) Walker 256 tumour-bearing rats in different stages of tumour evolution, namely intermediated (Wi) and advanced (Wa). Among 52 serum metabolites that were identified, 21 were significantly increased in S and 14 and 19 decreased in the Wi and Wa groups, respectively. The most impacted pathways by this metabolic alteration were related by amino acid biosynthesis and metabolism, with an upregulation in S group and downregulation in Wi and Wa groups. Taken together, our results suggest that the increase in metabolic profile in ageing rats is associated with the higher muscle protein degradation that releases several metabolites, especially amino acids into the serum. On the other hand, we hypothesise that the majority of metabolites released by muscle catabolism are used by tumours to sustain rapid cell proliferation and tumorigenesis.
Collapse
|
62
|
The Emerging Role of MicroRNAs and Other Non-Coding RNAs in Cancer Cachexia. Cancers (Basel) 2020; 12:cancers12041004. [PMID: 32325796 PMCID: PMC7226600 DOI: 10.3390/cancers12041004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer cachexia or wasting is a paraneoplastic syndrome characterized by systemic inflammation and an involuntary loss of body mass that cannot be reversed by normal nutritional support. This syndrome affects 50%–80% of cancer patients, depending on the tumor type and patient characteristics, and it is responsible for up to 20% of cancer deaths. MicroRNAs are a class of non-coding RNAs (ncRNAs) with 19 to 24 nucleotides in length of which the function is to regulate gene expression. In the last years, microRNAs and other ncRNAs have been demonstrated to have a crucial role in the pathogenesis of several diseases and clinical potential. Recently, ncRNAs have begun to be associated with cancer cachexia by modulating essential functions like the turnover of skeletal muscle and adipose tissue. Additionally, circulating microRNAs have been suggested as potential biomarkers for patients at risk of developing cancer cachexia. In this review article, we present recent data concerning the role of microRNAs and other ncRNAs in cancer cachexia pathogenesis and their possible clinical relevance.
Collapse
|
63
|
Siddiqui JA, Pothuraju R, Jain M, Batra SK, Nasser MW. Advances in cancer cachexia: Intersection between affected organs, mediators, and pharmacological interventions. Biochim Biophys Acta Rev Cancer 2020; 1873:188359. [PMID: 32222610 DOI: 10.1016/j.bbcan.2020.188359] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Advanced cancer patients exhibit cachexia, a condition characterized by a significant reduction in the body weight predominantly from loss of skeletal muscle and adipose tissue. Cachexia is one of the major causes of morbidity and mortality in cancer patients. Decreased food intake and multi-organ energy imbalance in cancer patients worsen the cachexia syndrome. Cachectic cancer patients have a low tolerance for chemo- and radiation therapies and also have a reduced quality of life. The presence of tumors and the current treatment options for cancer further exacerbate the cachexia condition, which remains an unmet medical need. The onset of cachexia involves crosstalk between different organs leading to muscle wasting. Recent advancements in understanding the molecular mechanisms of skeletal muscle atrophy/hypertrophy and adipose tissue wasting/browning provide a platform for the development of new targeted therapies. Therefore, a better understanding of this multifactorial disorder will help to improve the quality of life of cachectic patients. In this review, we summarize the metabolic mediators of cachexia, their molecular functions, affected organs especially with respect to muscle atrophy and adipose browning and then discuss advanced therapeutic approaches to cancer cachexia.
Collapse
Affiliation(s)
- Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
64
|
Han J, Lu C, Meng Q, Halim A, Yean TJ, Wu G. Plasma concentration of interleukin-6 was upregulated in cancer cachexia patients and was positively correlated with plasma free fatty acid in female patients. Nutr Metab (Lond) 2019; 16:80. [PMID: 31788012 PMCID: PMC6858650 DOI: 10.1186/s12986-019-0409-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/06/2019] [Indexed: 01/05/2023] Open
Abstract
Background Cancer cachexia is a clinical manifestation in various advanced cancers that characterized by muscle atrophy and fat loss as its main features; it is frequently associated with systemic inflammatory response. However, the differences in inflammatory response and lipid metabolism of different genders remain unclear. This study explores the difference between cachexic and non-cachexic patients in different genders and cancer types and focus on the plasma inflammation factors levels and lipid metabolism parameters in different genders. Methods We first analyzed the general characteristics in 311 cancer patients between cachexic and non-cachexic patients, with an emphasis on expression levels related to inflammatory factors and lipid metabolism parameters. We then further analyzed these characteristics in different genders and cancer types. Lastly, the correlations between plasma interleukin-6 (IL-6) and lipid metabolism parameters in cachexia patients of different genders were analyzed. Results Among 311 patients, there were 74 cancer cachexia patients (50 males and 24 females) and 237non-cachexia patients (150 males and 87 females). Body mass index (BMI), TNM stage, plasma concentration of hemoglobin, platelet, lymphocyte count, total protein, albumin, prealbumin, total cholesterol, apolipoprotein E (ApoE), free fatty acid (FFA) and IL-6 were significantly different between cachexic and non-cachexic patients (all p < 0.05). In addition, these characteristics were different in different cancer types. When compared to male non-cachexic patients, male cachexic patients showed a significant increase in plasma levels of IL-6 and platelet, later TNM stage, with marked decrease in their plasma total protein, albumin, prealbumin, ApoE as well as their lymphocyte counts and hemoglobin levels (all p < 0.05). In comparison with female non-cachexic patients, female cachexic patients' IL-6 levels and FFA were significantly elevated with noticeable decrease in their BMI, total cholesterol, ApoE and prealbumin, as well as later TNM stage (all p < 0.05). Correlation analysis revealed that IL-6 levels in female cachexic patients had a significant positive correlation with FFA expression, but this correlation not reflected in male patients. Conclusion This study demonstrates the different metabolic characteristics of male and female cancer cachexia patients. Future study about cancer cachexia should pay attention to different genders and cancer types.
Collapse
Affiliation(s)
- Jun Han
- 1Department of General Surgery, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Chaocheng Lu
- 1Department of General Surgery, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Qingyang Meng
- 1Department of General Surgery, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Alice Halim
- 2Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032 China
| | - Thong Jia Yean
- 2Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032 China
| | - Guohao Wu
- 1Department of General Surgery, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| |
Collapse
|
65
|
Ohmori H, Kawahara I, Mori T, Nukaga S, Luo Y, Kishi S, Fujiwara-Tani R, Mori S, Goto K, Sasaki T, Kuniyasu H. Evaluation of Parameters for Cancer-Induced Sarcopenia in Patients Autopsied after Death from Colorectal Cancer. Pathobiology 2019; 86:306-314. [PMID: 31707381 DOI: 10.1159/000503037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/28/2019] [Indexed: 11/19/2022] Open
Abstract
Cachexia frequently occurs in cancer patients and is correlated with reduced therapeutic responsiveness and poor prognosis. Although skeletal muscle atrophy is an important factor related to cachexia, biomarkers for its early diagnosis are not yet definitive. In this study, weight loss, body mass index, skeletal muscle index (SMI), serum carcinoembryonic antigen, serum tumor necrosis factor (TNF)-α, serum interleukin (IL)-6, serum high mobility group box (HMGB)-1, and SDS-soluble myosin light chain 1 (SDS-MYL1) of the psoas muscle were examined in 8 autopsied cases of death from colorectal cancer (CRC) as biomarkers of cachexia. SDS-MYL1 was positively correlated to SMI and TNF-α was negatively correlated, but the other factors did not show any correlations with SMI. Multivariate analysis showed that of the 3 cytokines, TNF-α and HMGB1 were correlated with SMI. Furthermore, when the biochemical skeletal muscle maturation marker, SDS-MYL1, was compared with serum cytokines, TNF-α and HMGB1 were negatively correlated but IL-6 was not. In multivariate analysis, only TNF-α was associated with SDS-MYL1. A positive correlation was found between TNF-α and HMGB1. These findings suggest that since TNF-α was inversely correlated with SMI and SDS-MYL1, TNF-α is a serum marker of skeletal muscle atrophy in CRC. Moreover, SDS-MYL1 might be established as a biomarker linked to clinical sarcopenia in experiments in vitro and in vivo.
Collapse
Affiliation(s)
- Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan.,Division of Rehabilitation, Hanna Central Hospital, Ikoma, Japan
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan.,Division of Rehabilitation, Hanna Central Hospital, Ikoma, Japan
| | - Shota Nukaga
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan.,Division of Rehabilitation, Hanna Central Hospital, Ikoma, Japan
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan.,Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan,
| |
Collapse
|
66
|
Liu H, Li L, Zou J, Zhou T, Wang B, Sun H, Yu S. Coix seed oil ameliorates cancer cachexia by counteracting muscle loss and fat lipolysis. Altern Ther Health Med 2019; 19:267. [PMID: 31615487 PMCID: PMC6792186 DOI: 10.1186/s12906-019-2684-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 09/12/2019] [Indexed: 01/06/2023]
Abstract
Background Cancer cachexia is a cancer-induced multifactorial debilitating syndrome directly accounting for 20% of cancer deaths without effective therapeutic approaches. It is extremely urgent to explore effective anti-cachexia drugs to ameliorate muscle and fat loss in cachexia patients. Methods Lewis lung carcinoma bearing C57BL/6 mice were applied as the animal model to examine the therapeutic effect of Coix seed oil (CSO) on cancer cachexia. The food intake and body weight change were monitored every 3 days throughout the experiment. The IL-6 and TNF-α levels in serum were detected by ELISA assay. Several key proteins involved in muscle wasting and fat lipolysis were tested by Western blot to identify the potential mechanism of CSO. Results Administration of CSO through gavage significantly prevented body weight loss and ameliorated systemic inflammation without affecting food intake and tumor size. The weight and histological morphology of gastrocnemius muscle and epididymal adipose tissue in CSO-treated mice were also improved. In mechanism, we found that CSO decreased the expression of MuRF1 and the ratio of phospho-p65 (Ser536) to p65 in muscle tissue. Meanwhile, cancer-induced activation of HSL and AMPK was also inhibited by CSO administration. Conclusion Coix seed oil exerts an anti-cachexia pharmaceutical effect by counteracting muscle and adipose tissue loss most likely through regulating NF-κB-MuRF1 and AMPK-HSL pathway.
Collapse
|
67
|
Musclin, A Myokine Induced by Aerobic Exercise, Retards Muscle Atrophy During Cancer Cachexia in Mice. Cancers (Basel) 2019; 11:cancers11101541. [PMID: 31614775 PMCID: PMC6826436 DOI: 10.3390/cancers11101541] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Physical activity improves the prognosis of cancer patients, partly by contrasting the associated muscle wasting (cachexia), through still unknown mechanisms. We asked whether aerobic exercise causes secretion by skeletal muscles of proteins (myokines) that may contrast cachexia. Media conditioned by peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α)-expressing myotubes, reproducing some metabolic adaptations of aerobic exercise, as increased mitochondrial biogenesis and oxidative phosphorylation, restrained constitutively active Forkhead box-containing subfamily O3 (caFoxO3)-induced proteolysis. Microarray analysis identified amphiregulin (AREG), natriuretic peptide precursor B (NppB), musclin and fibroblast growth factor 18 (FGF18) as myokines highly induced by PGC1α. Notably, only musclin tended to be low in muscle of mice with a rare human renal carcinoma; it was reduced in plasma and in muscles of C26-bearing mice and in atrophying myotubes, where PGC1α expression is impaired. Therefore, we electroporated the Tibialis Anterior (TA) of C26-bearing mice with musclin or (its receptor) natriuretic peptide receptor 3 (Npr3)-encoding plasmids and found a preserved fiber area, as a result of restrained proteolysis. Musclin knockout (KO) mice lose more muscle tissue during growth of two distinct cachexia-causing tumors. Running protected C26-bearing mice from cachexia, not changing tumor growth, and rescued the C26-induced downregulation of musclin in muscles and plasma. Musclin expression did not change in overloaded plantaris of mice, recapitulating partially muscle adaptations to anaerobic exercise. Musclin might, therefore, be beneficial to cancer patients who cannot exercise and are at risk of cachexia and may help to explain how aerobic exercise alleviates cancer-induced muscle wasting.
Collapse
|
68
|
Nicholson BD, Aveyard P, Hamilton W, Hobbs FDR. When should unexpected weight loss warrant further investigation to exclude cancer? BMJ 2019; 366:l5271. [PMID: 31548272 DOI: 10.1136/bmj.l5271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Brian D Nicholson
- Nuffield Department of Primary Care Health Sciences, University of Oxford OX2 6GG, UK
| | - Paul Aveyard
- Nuffield Department of Primary Care Health Sciences, University of Oxford OX2 6GG, UK
| | | | - F D Richard Hobbs
- Nuffield Department of Primary Care Health Sciences, University of Oxford OX2 6GG, UK
| |
Collapse
|
69
|
Babic A, Rosenthal MH, Bamlet WR, Takahashi N, Sugimoto M, Danai LV, Morales-Oyarvide V, Khalaf N, Dunne RF, Brais LK, Welch MW, Zellers CL, Dennis C, Rifai N, Prado CM, Caan B, Sundaresan TK, Meyerhardt JA, Kulke MH, Clish CB, Ng K, Vander Heiden MG, Petersen GM, Wolpin BM. Postdiagnosis Loss of Skeletal Muscle, but Not Adipose Tissue, Is Associated with Shorter Survival of Patients with Advanced Pancreatic Cancer. Cancer Epidemiol Biomarkers Prev 2019; 28:2062-2069. [PMID: 31533940 DOI: 10.1158/1055-9965.epi-19-0370] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pancreatic cancer is associated with development of cachexia, a wasting syndrome thought to limit survival. Few studies have longitudinally quantified peripheral tissues or identified biomarkers predictive of future tissue wasting. METHODS Adipose and muscle tissue were measured by computed tomography (CT) at diagnosis and 50 to 120 days later in 164 patients with advanced pancreatic cancer. Tissue changes and survival were evaluated by Cox proportional hazards regression. Baseline levels of circulating markers were examined in relation to future tissue wasting. RESULTS Compared with patients in the bottom quartile of muscle change per 30 days (average gain of 0.8 ± 2.0 cm2), those in the top quartile (average loss of 12.9 ± 4.9 cm2) had a hazard ratio (HR) for death of 2.01 [95% confidence interval (CI), 1.12-3.62]. Patients in the top quartile of muscle attenuation change (average decrease of 4.9 ± 2.4 Hounsfield units) had an HR of 2.19 (95% CI, 1.18-4.04) compared with those in the bottom quartile (average increase of 2.4 ± 1.6 Hounsfield units). Changes in adipose tissue were not associated with survival. Higher plasma branched chain amino acids (BCAA; P = 0.004) and lower monocyte chemoattractant protein-1 (MCP-1; P = 0.005) at diagnosis were associated with greater future muscle loss. CONCLUSIONS In patients with advanced pancreatic cancer, muscle loss and decrease in muscle density in 2 to 4 months after diagnosis were associated with reduced survival. BCAAs and MCP-1 levels at diagnosis were associated with subsequent muscle loss. IMPACT BCAAs and MCP-1 levels at diagnosis could identify a high-risk group for future tissue wasting.
Collapse
Affiliation(s)
- Ana Babic
- Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Michael H Rosenthal
- Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | | - Laura V Danai
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts
| | | | - Natalia Khalaf
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts
| | - Richard F Dunne
- Division of Hematology/Oncology, University of Rochester Medical Center, Rochester, New York
| | | | | | | | - Courtney Dennis
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts
| | - Nader Rifai
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Carla M Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Bette Caan
- Kaiser Permanente Division of Research, Oakland, California
| | | | | | - Matthew H Kulke
- Dana-Farber Cancer Institute, Boston, Massachusetts.,Boston University and Boston Medical Center, Section of Hematology/Oncology, Boston, Massachusetts
| | - Clary B Clish
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts
| | - Kimmie Ng
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Matthew G Vander Heiden
- Dana-Farber Cancer Institute, Boston, Massachusetts.,Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | | |
Collapse
|
70
|
Ose J, Gigic B, Lin T, Liesenfeld DB, Böhm J, Nattenmüller J, Scherer D, Zielske L, Schrotz-King P, Habermann N, Ochs-Balcom HM, Peoples AR, Hardikar S, Li CI, Shibata D, Figueiredo J, Toriola AT, Siegel EM, Schmit S, Schneider M, Ulrich A, Kauczor HU, Ulrich CM. Multiplatform Urinary Metabolomics Profiling to Discriminate Cachectic from Non-Cachectic Colorectal Cancer Patients: Pilot Results from the ColoCare Study. Metabolites 2019; 9:E178. [PMID: 31500101 PMCID: PMC6780796 DOI: 10.3390/metabo9090178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/26/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
Cachexia is a multifactorial syndrome that is characterized by loss of skeletal muscle mass in cancer patients. The biological pathways involved remain poorly characterized. Here, we compare urinary metabolic profiles in newly diagnosed colorectal cancer patients (stage I-IV) from the ColoCare Study in Heidelberg, Germany. Patients were classified as cachectic (n = 16), pre-cachectic (n = 13), or non-cachectic (n = 23) based on standard criteria on weight loss over time at two time points. Urine samples were collected pre-surgery, and 6 and 12 months thereafter. Fat and muscle mass area were assessed utilizing computed tomography scans at the time of surgery. N = 152 compounds were detected using untargeted metabolomics with gas chromatography-mass spectrometry and n = 154 features with proton nuclear magnetic resonance spectroscopy. Thirty-four metabolites were overlapping across platforms. We calculated differences across groups and performed discriminant and overrepresentation enrichment analysis. We observed a trend for 32 compounds that were nominally significantly different across groups, although not statistically significant after adjustment for multiple testing. Nineteen compounds could be identified, including acetone, hydroquinone, and glycine. Comparing cachectic to non-cachectic patients, higher levels of metabolites such as acetone (Fold change (FC) = 3.17; p = 0.02) and arginine (FC = 0.33; p = 0.04) were observed. The two top pathways identified were glycerol phosphate shuttle metabolism and glycine and serine metabolism pathways. Larger subsequent studies are needed to replicate and validate these results.
Collapse
Affiliation(s)
- Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA.
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69117 Heidelberg, Germany.
| | - Tengda Lin
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA.
| | - David B Liesenfeld
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany.
| | - Jürgen Böhm
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA.
| | - Johanna Nattenmüller
- Diagnostic and Interventional Radiology, University of Heidelberg, 69117 Heidelberg, Germany.
| | - Dominique Scherer
- Institute of Medical Biometry and Informatics, University of Heidelberg, 69117 Heidelberg, Germany.
| | - Lin Zielske
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69117 Heidelberg, Germany.
| | - Petra Schrotz-King
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69117 Heidelberg, Germany.
| | - Nina Habermann
- European Molecular Biology Laboratory (EMBL), Genome Biology, 69117 Heidelberg, Germany.
| | - Heather M Ochs-Balcom
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA.
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14260, USA.
| | - Anita R Peoples
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA.
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| | - Sheetal Hardikar
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA.
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | - David Shibata
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Jane Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Adetunji T Toriola
- Department of Surgery, Washington University School of Medicine and Siteman Cancer Center, St. Louis, MO 63110, USA.
| | - Erin M Siegel
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Stephanie Schmit
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69117 Heidelberg, Germany.
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69117 Heidelberg, Germany.
| | - Hans-Ulrich Kauczor
- Diagnostic and Interventional Radiology, University of Heidelberg, 69117 Heidelberg, Germany.
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA.
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
71
|
Fang H, Jiang W, Jing Z, Mu X, Xiong Z. miR-937 regulates the proliferation and apoptosis via targeting APAF1 in breast cancer. Onco Targets Ther 2019; 12:5687-5699. [PMID: 31410016 PMCID: PMC6645689 DOI: 10.2147/ott.s207091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/31/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Previous research had shown that an imbalance in cell proliferation and apoptosis is a vital mechanism for tumorigenesis and cancer progression that may directly influence biological behaviors of cancer. microRNAs are associated with the occurrence and development of tumors. This study aimed to explore the influence of miR-937 on breast cancer regulation of APAF1 expression. Methods: Cancer Genome Altas microarray analysis (fold change > 2, p<0.05) was used to verify differentially expressed microRNAs and RT-qPCR was used to detect miR-937 mRNA level in breast cancer. Cell viability and proliferation were measured using CCK8 and colony formation assays, respectively, after the miR-937 mimics/inhibitors and their negative control were transfected into MCF7 cells. The variations in cell cycle and apoptosis were examined using flow cytometry. DAVID database was used to perform GO enrichment analysis. We use dual luciferase report system to detect the effect of miR-937 on the transcriptional activity of APAF1. APAF1 protein level was determined by Western blot assay. Results: miR-937 was up-regulated in breast cancer cell lines and high miR-937 expression is associated with a poorer survival rate in cancer patients. miR-937 overexpression promoted the viability, down-regulated the G1 phase ratios and increased the ability of colony formation in breast cancer cells. miR-937 inhibition inhibited the viability and the ability of colony formation, promoted the apoptosis and up-regulated the G1 phase ratios. Our results showed that miR-937 targeted bind to the APAF1-3'UTR. APAF1 overexpression inhibited the viability and the ability of colony formation, promoted the apoptosis and up-regulated the G1 phase ratios. After cells were co-transfection miR-937 mimics and APAF1, cell apoptosis level was increased. Conclusion: APAF1 up-regulation or APAF1 down-regulation in breast cancer may regulate cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Huiying Fang
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing City, 400000, People's Republic of China
| | - Wei Jiang
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing City, 400000, People's Republic of China
| | - Zhouhong Jing
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing City, 400000, People's Republic of China
| | - Xiaosong Mu
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing City, 400000, People's Republic of China
| | - Zhongxun Xiong
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing City, 400000, People's Republic of China
| |
Collapse
|
72
|
Lin TJ, Tang SC, Liao PY, Dongoran RA, Yang JH, Liu CH. A comparison of L-carnitine and several cardiovascular-related biomarkers between healthy vegetarians and omnivores. Nutrition 2019; 66:29-37. [PMID: 31202134 DOI: 10.1016/j.nut.2019.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE A plant-based diet has been associated with a reduced risk of cardiovascular (CV) diseases. This study aimed to determine the levels and correlations of CV-related biomarkers and the beneficial role of dietary habits. METHODS A total of 63 healthy vegetarians (n = 32) and omnivores (n = 31) were recruited. The baseline characteristics were recorded and measured (including lipid profiles, blood glucose, etc.). Liquid chromatography-mass spectrometry method was developed for the simultaneous determination of seven circulating CV-related biomarkers. RESULTS L-carnitine (L-Car), L-methionine, and ascorbic acid (AA) were significantly higher in vegetarians than in omnivores. In the vegetarians, L-Car had a negative correlation with triacylglycerols (P = 0.042) and blood glucose (P = 0.048) and a positive correlation with high-density lipoprotein cholesterol (P = 0.049). L-Car was also positively correlated with L-lysine (P = 0.009), L-methionine (P = 0.006), and AA (P = 0.035). The vegetarians' AA also had a negative correlation with L-homocysteine (P = 0.028). In the omnivores, L-Car was negatively correlated with total cholesterol (P = 0.008), low-density lipoprotein cholesterol (P = 0.004), and high-density lipoprotein cholesterol (P = 0.038). Omnivores' body mass index was positively correlated with L-homocysteine (P = 0.033), and age was positively correlated with trimethylamine N-oxide (P < 0.001) and blood glucose (P = 0.007), but not in vegetarians. CONCLUSIONS Our results suggest that vegetarians have an elevated level of L-Car, which might be associated with endogenous biosynthesis and diet composition. Circulating L-Car might play an important role in CV protection, especially in vegetarians.
Collapse
Affiliation(s)
- Tsung-Jen Lin
- Department of Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sheau-Chung Tang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan; Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Pei-Yun Liao
- Department of Dermatology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Rachmad Anres Dongoran
- Department of Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan; National Agency of Drug and Food Control Republic of Indonesia, Jambi, Indonesia
| | - Jen-Hung Yang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Dermatology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; Institute of Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chin-Hung Liu
- Department of Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
73
|
Neagu M, Constantin C, Popescu ID, Zipeto D, Tzanakakis G, Nikitovic D, Fenga C, Stratakis CA, Spandidos DA, Tsatsakis AM. Inflammation and Metabolism in Cancer Cell-Mitochondria Key Player. Front Oncol 2019; 9:348. [PMID: 31139559 PMCID: PMC6527883 DOI: 10.3389/fonc.2019.00348] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer metabolism is an essential aspect of tumorigenesis, as cancer cells have increased energy requirements in comparison to normal cells. Thus, an enhanced metabolism is needed in order to accommodate tumor cells' accelerated biological functions, including increased proliferation, vigorous migration during metastasis, and adaptation to different tissues from the primary invasion site. In this context, the assessment of tumor cell metabolic pathways generates crucial data pertaining to the mechanisms through which tumor cells survive and grow in a milieu of host defense mechanisms. Indeed, various studies have demonstrated that the metabolic signature of tumors is heterogeneous. Furthermore, these metabolic changes induce the exacerbated production of several molecules, which result in alterations that aid an inflammatory milieu. The therapeutic armentarium for oncology should thus include metabolic and inflammation regulators. Our expanding knowledge of the metabolic behavior of tumor cells, whether from solid tumors or hematologic malignancies, may provide the basis for the development of tailor-made cancer therapies.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Doctoral School, Biology Faculty, University of Bucharest, Bucharest, Romania.,Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Carolina Constantin
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Iulia Dana Popescu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donato Zipeto
- Department Neuroscience, Biomedicine and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Concettina Fenga
- Biomedical, Odontoiatric, Morphological and Functional Images Department, Occupational Medicine Section, University of Messina, Messina, Italy
| | - Constantine A Stratakis
- Section on Genetics & Endocrinology (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Greece
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Greece
| |
Collapse
|
74
|
Development of a prognostically relevant cachexia index in primary myelofibrosis using serum albumin and cholesterol levels. Blood Adv 2019; 2:1980-1984. [PMID: 30097464 DOI: 10.1182/bloodadvances.2018018051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/13/2018] [Indexed: 11/20/2022] Open
Abstract
Key PointsSerum albumin and cholesterol levels predict survival in primary myelofibrosis, independent of each other and contemporary risk models. The cachexia index, determined by serum albumin and cholesterol levels, might further refine current prognostic models in myelofibrosis.
Collapse
|
75
|
Boland JW, Allgar V, Boland EG, Kaasa S, Hjermstad MJ, Johnson MJ. Predictors and trajectory of performance status in patients with advanced cancer: A secondary data analysis of the international European Palliative Care Cancer Symptom study. Palliat Med 2019; 33:206-212. [PMID: 30404572 PMCID: PMC6350180 DOI: 10.1177/0269216318811011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND: Performance status, a predictor of cancer survival, and ability to maintain independent living deteriorate in advanced disease. Understanding predictors of performance status trajectory could help identify those at risk of functional deterioration, target support for independent living and reduce service costs. The relationship between symptoms, analgesics and performance status is poorly delineated. AIM: The aim of this study is to determine whether demographics, analgesics, disease characteristics, quality-of-life domains and C-reactive protein predict the trajectory of Karnofsky Performance Status (KPS) in patients with advanced cancer. DESIGN: The study design is the secondary data analysis of the international prospective, longitudinal European Palliative Care Cancer Symptom study (ClinicalTrials.gov: NCT01362816). A multivariable regression model was built for KPS area under the curve per day (AUC). SETTING AND PARTICIPANTS: This included adults with advanced, incurable cancer receiving palliative care, without severe cognitive impairment and who were not imminently dying (n = 1739). RESULTS: The mean daily KPS AUC (n = 1052) was 41.1 (standard deviation = 14.1). Opioids (p < 0.001), co-analgesics (p = 0.023), poorer physical functioning (p < 0.001) and appetite loss (p = 0.009) at baseline were explanatory factors for lower KPS AUC. A subgroup analysis of participants with C-reactive protein data (n = 240) showed that only C-reactive protein (p = 0.040) and physical function (p < 0.001) were associated with lower KPS AUC. CONCLUSION: This study is novel in determining explanatory factors for subsequent functional trajectories in an international dataset and identifying systemic inflammation as a candidate therapeutic target to improve functional performance. The effect of interventions targeting physical function, appetite and inflammation, such as those used for cachexia management, on maintaining functional status in patients with advanced cancer needs to be investigated.
Collapse
Affiliation(s)
- Jason W Boland
- 1 Wolfson Palliative Care Research Centre, Hull York Medical School, University of Hull, Hull, UK
| | | | | | - Stein Kaasa
- 4 European Palliative Care Research Centre (PRC), Department of Oncology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marianne J Hjermstad
- 4 European Palliative Care Research Centre (PRC), Department of Oncology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Miriam J Johnson
- 1 Wolfson Palliative Care Research Centre, Hull York Medical School, University of Hull, Hull, UK
| |
Collapse
|
76
|
Lee JH, Jun HS. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front Physiol 2019; 10:42. [PMID: 30761018 PMCID: PMC6363662 DOI: 10.3389/fphys.2019.00042] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Loss of skeletal muscle mass and strength has recently become a hot research topic with the extension of life span and an increasingly sedentary lifestyle in modern society. Maintenance of skeletal muscle mass is considered an essential determinant of muscle strength and function. Myokines are cytokines synthesized and released by myocytes during muscular contractions. They are implicated in autocrine regulation of metabolism in the muscle as well as in the paracrine/endocrine regulation of other tissues and organs including adipose tissue, the liver, and the brain through their receptors. Till date, secretome analysis of human myocyte culture medium has revealed over 600 myokines. In this review article, we summarize our current knowledge of major identified and characterized myokines focusing on their biological activity and function, particularly in muscle mass and function.
Collapse
Affiliation(s)
- Jong Han Lee
- College of Pharmacy, Gachon University, Incheon, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| | - Hee-Sook Jun
- College of Pharmacy, Gachon University, Incheon, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea.,Gachon University Gil Medical Center, Gachon Medical and Convergence Institute, Incheon, South Korea
| |
Collapse
|
77
|
von Haehling S. Muscle wasting and sarcopenia in heart failure: a brief overview of the current literature. ESC Heart Fail 2018; 5:1074-1082. [PMID: 30570227 PMCID: PMC6300806 DOI: 10.1002/ehf2.12388] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany
- Deutsches Zentrum für Herz-und Kreislaufforschung, Standort Göttingen, Göttingen, Germany
| |
Collapse
|
78
|
Kandarian SC, Nosacka RL, Delitto AE, Judge AR, Judge SM, Ganey JD, Moreira JD, Jackman RW. Tumour-derived leukaemia inhibitory factor is a major driver of cancer cachexia and morbidity in C26 tumour-bearing mice. J Cachexia Sarcopenia Muscle 2018; 9:1109-1120. [PMID: 30270531 PMCID: PMC6240747 DOI: 10.1002/jcsm.12346] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cancer cachexia is a metabolic wasting syndrome that is strongly associated with a poor prognosis. The initiating factors causing fat and muscle loss are largely unknown. Previously, we found that leukaemia inhibitory factor (LIF) secreted by C26 colon carcinoma cells was responsible for atrophy in treated myotubes. In the present study, we tested whether C26 tumour-derived LIF is required for cancer cachexia in mice by knockout of Lif in C26 cells. METHODS A C26 Lif null tumour cell line was made using CRISPR-Cas9. Measurements of cachexia were compared in mice inoculated with C26 vs. C26Lif-/- tumour cells, and atrophy was compared in myotubes treated with medium from C26 vs. C26Lif-/- tumour cells. Levels of 25 cytokines/chemokines were compared in serum of mice bearing C26 vs. C26Lif-/- tumours and in the medium from these tumour cell lines. RESULTS At study endpoint, C26 mice showed outward signs of sickness while mice with C26Lif-/- tumours appeared healthy. Mice with C26Lif-/- tumours showed a 55-75% amelioration of body weight loss, muscle loss, fat loss, and splenomegaly compared with mice with C26 tumours (P < 0.05). The heart was not affected by LIF levels because the loss of cardiac mass was the same in C26 and C26Lif-/- tumour-bearing mice. LIF levels in mouse serum was entirely dependent on secretion from the tumour cells. Serum levels of interleukin-6 and G-CSF were increased by 79-fold and 68-fold, respectively, in C26 mice but only by five-fold and two-fold, respectively, in C26Lif-/- mice, suggesting that interleukin-6 and G-CSF increases are dependent on tumour-derived LIF. CONCLUSIONS This study shows the first use of CRISPR-Cas9 knockout of a candidate cachexia factor in tumour cells. The results provide direct evidence for LIF as a major cachexia initiating factor for the C26 tumour in vivo. Tumour-derived LIF was also a regulator of multiple cytokines in C26 tumour cells and in C26 tumour-bearing mice. The identification of tumour-derived factors such as LIF that initiate the cachectic process is immediately applicable to the development of therapeutics to treat cachexia. This is a proof of principle for studies that when carried out in human cells, will make possible an understanding of the factors causing cachexia in a patient-specific manner.
Collapse
Affiliation(s)
| | - Rachel L. Nosacka
- Department of Physical TherapyUniversity of FloridaGainesvilleFL32610USA
| | - Andrea E. Delitto
- Department of Oral Biology, College of DentistryUniversity of Florida Health Science CenterGainesvilleFL32610USA
| | - Andrew R. Judge
- Department of Physical TherapyUniversity of FloridaGainesvilleFL32610USA
| | - Sarah M. Judge
- Department of Physical TherapyUniversity of FloridaGainesvilleFL32610USA
| | - John D. Ganey
- Department of Health SciencesBoston UniversityBostonMA02215USA
| | | | | |
Collapse
|
79
|
Schmidt SF, Rohm M, Herzig S, Berriel Diaz M. Cancer Cachexia: More Than Skeletal Muscle Wasting. Trends Cancer 2018; 4:849-860. [DOI: 10.1016/j.trecan.2018.10.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
|
80
|
Clinical impact of prognostic nutritional index in diffuse large B cell lymphoma. Ann Hematol 2018; 98:401-411. [DOI: 10.1007/s00277-018-3540-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/30/2018] [Indexed: 01/07/2023]
|
81
|
miRNA-130a Significantly Improves Accuracy of SGA Nutritional Assessment Tool in Prediction of Malnutrition and Cachexia in Radiotherapy-Treated Head and Neck Cancer Patients. Cancers (Basel) 2018; 10:cancers10090294. [PMID: 30200243 PMCID: PMC6162742 DOI: 10.3390/cancers10090294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Investigation of novel cachexia-related markers is one of the major challenges in contemporary oncology. Among studied markers, the miRNA seems to be promising due to its possibility to regulate genes responsible for induction of inflammatory response, muscle atrophy and fat tissue wasting. The aim of the study was to investigate the role of blood-circulating miRNA-130a in prediction of cancer cachexia in 70 head and neck cancer patients (HNC) subjected to radiotherapy. Moreover, diagnostic accuracy of SGA (Subjective Global Assessment) scoring and miRNA-130a level was evaluated in various cachexia models. RESULTS miRNA-130a level negatively correlated with plasma TNF-α concentration (r = -0.560; p < 0.001). Patients with low miRNA expression had over 3-fold higher risk of body mass index (BMI) decrease below 18.5 after the termination of therapy; over 6-fold higher risk of losing over 5% of body weight and higher risk of >10% weight reduction odds ratio (OR) = 14.18 compared to other cases. ROC analysis performed for miRNA-130a allowed to distinguish cachectic patients (body weight loss >5%) from moderately or mildly malnourished ones with optimal sensitivity of 79.4% and specificity of 80.8% area under the curve (AUC) = 0.865). miRNA significantly improved nutritional assessment conducted using SGA, achieving the following values: sensitivity 88.6%, specificity 94.3%, positive predictive value (PPV) 93.9%, negative predictive value (NPV).89.2%. CONCLUSION miRNA-130a demonstrates potential clinical utility in prediction of cachexia prior to the therapy in HNC patients. Simultaneous use of both tools-SGA and miRNA-significantly improved the accuracy in the diagnosis of cachexia.
Collapse
|
82
|
Abstract
Adequate skeletal muscle plasticity is an essential element for our well-being, and compromised muscle function can drastically affect quality of life, morbidity, and mortality. Surprisingly, however, skeletal muscle remains one of the most under-medicated organs. Interventions in muscle diseases are scarce, not only in neuromuscular dystrophies, but also in highly prevalent secondary wasting pathologies such as sarcopenia and cachexia. Even in other diseases that exhibit a well-established risk correlation of muscle dysfunction due to a sedentary lifestyle, such as type 2 diabetes or cardiovascular pathologies, current treatments are mostly targeted on non-muscle tissues. In recent years, a renewed focus on skeletal muscle has led to the discovery of various novel drug targets and the design of new pharmacological approaches. This review provides an overview of the current knowledge of the key mechanisms involved in muscle wasting conditions and novel pharmacological avenues that could ameliorate muscle diseases.
Collapse
Affiliation(s)
- Regula Furrer
- Biozentrum, University of Basel, 4056 Basel, Switzerland; ,
| | | |
Collapse
|
83
|
Shum AMY, Poljak A, Bentley NL, Turner N, Tan TC, Polly P. Proteomic profiling of skeletal and cardiac muscle in cancer cachexia: alterations in sarcomeric and mitochondrial protein expression. Oncotarget 2018; 9:22001-22022. [PMID: 29774118 PMCID: PMC5955146 DOI: 10.18632/oncotarget.25146] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/10/2018] [Indexed: 01/06/2023] Open
Abstract
Background Cancer cachexia is observed in more than 50% of advanced cancer patients, and impairs quality of life and prognosis. A variety of pathways are likely to be dysregulated. Hence, a broad-spectrum understanding of the disease process is best achieved by a discovery based approach such as proteomics. Results More than 300 proteins were identified with > 95% confidence in correct sequence identification, of which 5–10% were significantly differentially expressed in cachectic tissues (p-value of 0.05; 27 proteins from gastrocnemius, 34 proteins from soleus and 24 proteins from heart). The two most pronounced functional groups being sarcomeric proteins (mostly upregulated across all three muscle types) and energy/metabolism proteins (mostly downregulated across all muscle types). Electron microscopy revealed disintegration of the sarcomere and morphological aberrations of mitochondria in the cardiac muscle of colon 26 (C26) carcinoma mice. Materials and Methods The colon 26 (C26) carcinoma mouse model of cachexia was used to analyse soleus, gastrocnemius and cardiac muscles using two 8-plex iTRAQ proteomic experiments and tandem mass spectrometry (LCMSMS). Differentially expressed proteomic lists for protein clustering and enrichment of biological processes, molecular pathways, and disease related pathways were analysed using bioinformatics. Cardiac muscle ultrastructure was explored by electron microscopy. Conclusions Morphological and proteomic analyses suggested molecular events associated with disintegrated sarcomeric structure with increased dissolution of Z-disc and M-line proteins. Altered mitochondrial morphology, in combination with the reduced expression of proteins regulating substrate and energy metabolism, suggest that muscle cells are likely to be undergoing a state of energy crisis which ultimately results in cancer-induced cachexia.
Collapse
Affiliation(s)
- Angie M Y Shum
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Department of Pathology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Anne Poljak
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Bioanalytical Mass Spectrometry Facility, UNSW Sydney, New South Wales, Australia.,Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, New South Wales, Australia
| | - Nicholas L Bentley
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Timothy C Tan
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Department of Pathology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Western Clinical School and Westmead Hospital, Westmead, New South Wales, Australia
| | - Patsie Polly
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Department of Pathology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| |
Collapse
|
84
|
O'Sullivan S, Holzinger A, Wichmann D, Saldiva PHN, Sajid MI, Zatloukal K. Virtual autopsy: Machine Learning and AI provide new opportunities for investigating minimal tumor burden and therapy resistance by cancer patients. AUTOPSY AND CASE REPORTS 2018. [PMID: 29515978 PMCID: PMC5828285 DOI: 10.4322/acr.2018.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Shane O'Sullivan
- University of São Paulo, Faculty of Medicine, Department of Pathology. São Paulo, SP, Brazil
| | - Andreas Holzinger
- Medical University of Graz, Institute for Medical Informatics/Statistics, Holzinger Group. Graz, Austria
| | - Dominic Wichmann
- University Hospital Hamburg Eppendorf, Department of Intensive Care. Hamburg, Germany
| | | | - Mohammed Imran Sajid
- Wirral University Teaching Hospital, Department of Upper GI Surgery. United Kingdom
| | - Kurt Zatloukal
- Medical University of Graz, Institute of Pathology. Graz, Austria
| |
Collapse
|