51
|
Argaiz ER, Chavez-Canales M, Ostrosky-Frid M, Rodríguez-Gama A, Vázquez N, Gonzalez-Rodriguez X, Garcia-Valdes J, Hadchouel J, Ellison D, Gamba G. Kidney-specific WNK1 isoform (KS-WNK1) is a potent activator of WNK4 and NCC. Am J Physiol Renal Physiol 2018; 315:F734-F745. [PMID: 29846116 DOI: 10.1152/ajprenal.00145.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Familial hyperkalemic hypertension (FHHt) can be mainly attributed to increased activity of the renal Na+:Cl- cotransporter (NCC), which is caused by altered expression and regulation of the with-no-lysine (K) 1 (WNK1) or WNK4 kinases. The WNK1 gene gives rise to a kidney-specific isoform that lacks the kinase domain (KS-WNK1), the expression of which occurs primarily in the distal convoluted tubule. The role played by KS-WNK1 in the modulation of the WNK/STE20-proline-alanine rich kinase (SPAK)/NCC pathway remains elusive. In the present study, we assessed the effect of human KS-WNK1 on NCC activity and on the WNK4-SPAK pathway. Microinjection of oocytes with human KS-WNK1 cRNA induces remarkable activation and phosphorylation of SPAK and NCC. The effect of KS-WNK1 was abrogated by eliminating a WNK-WNK-interacting domain and by a specific WNK inhibitor, WNK463, indicating that the activation of SPAK/NCC by KS-WNK1 is due to interaction with another WNK kinase. Under control conditions in oocytes, the activating serine 335 of the WNK4 T loop is not phosphorylated. In contrast, this serine becomes phosphorylated when the intracellular chloride concentration ([Cl-]i) is reduced or when KS-WNK1 is coexpressed with WNK4. KS-WNK1-mediated activation of WNK4 is not due to a decrease of the [Cl-]i. Coimmunoprecipitation analysis revealed that KS-WNK1 and WNK4 interact with each other and that WNK4 becomes autophosphorylated at serine 335 when it is associated with KS-WNK1. Together, these observations suggest that WNK4 becomes active in the presence of KS-WNK1, despite a constant [Cl-]i.
Collapse
Affiliation(s)
- Eduardo R Argaiz
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León , Mexico
| | - Maria Chavez-Canales
- INSERM UMRS1155, University Pierre and Marie Curie, Faculty of Medicine , Paris , France.,Translational Medicine Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, México City, Mexico
| | - Mauricio Ostrosky-Frid
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan Mexico City, Mexico.,PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico
| | - Alejandro Rodríguez-Gama
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico
| | - Norma Vázquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan Mexico City, Mexico
| | - Xochiquetzal Gonzalez-Rodriguez
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico
| | - Jesus Garcia-Valdes
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico
| | - Juliette Hadchouel
- INSERM UMRS1155, University Pierre and Marie Curie, Faculty of Medicine , Paris , France
| | - David Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon.,Veterans Affairs Portland Health Care System, Portland, Oregon
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León , Mexico
| |
Collapse
|
52
|
Sato A, Shibuya H. Glycogen synthase kinase 3ß functions as a positive effector in the WNK signaling pathway. PLoS One 2018; 13:e0193204. [PMID: 29494638 PMCID: PMC5832235 DOI: 10.1371/journal.pone.0193204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/02/2018] [Indexed: 12/21/2022] Open
Abstract
The with no lysine (WNK) protein kinase family is conserved among many species. Some mutations in human WNK gene are associated with pseudohypoaldosteronism type II, a form of hypertension, and hereditary sensory and autonomic neuropathy type 2A. In kidney, WNK regulates the activity of STE20/SPS1-related, proline alanine-rich kinase and/or oxidative-stress responsive 1, which in turn regulate ion co-transporters. The misregulation of this pathway is involved in the pathogenesis of pseudohypoaldosteronism type II. In the neural system, WNK is involved in the specification of the cholinergic neuron, but the pathogenesis of hereditary sensory and autonomic neuropathy type 2A is still unknown. To better understand the WNK pathway, we isolated WNK-associated genes using Drosophila. We identified Glycogen synthase kinase 3ß (GSK3ß)/Shaggy (Sgg) as a candidate gene that was shown to interact with the WNK signaling pathway in both Drosophila and mammalian cells. Furthermore, GSK3ß was involved in neural specification downstream of WNK. These results suggest that GSK3ß/Sgg functions as a positive effector in the WNK signaling pathway.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Molecular Cell Biology and Joint Usage/Research Center for Intractable Diseases, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Shibuya
- Department of Molecular Cell Biology and Joint Usage/Research Center for Intractable Diseases, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
53
|
Rafael C, Soukaseum C, Baudrie V, Frère P, Hadchouel J. Consequences of SPAK inactivation on Hyperkalemic Hypertension caused by WNK1 mutations: evidence for differential roles of WNK1 and WNK4. Sci Rep 2018; 8:3249. [PMID: 29459793 PMCID: PMC5818654 DOI: 10.1038/s41598-018-21405-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/10/2018] [Indexed: 12/16/2022] Open
Abstract
Mutations of the gene encoding WNK1 [With No lysine (K) kinase 1] or WNK4 cause Familial Hyperkalemic Hypertension (FHHt). Previous studies have shown that the activation of SPAK (Ste20-related Proline/Alanine-rich Kinase) plays a dominant role in the development of FHHt caused by WNK4 mutations. The implication of SPAK in FHHt caused by WNK1 mutation has never been investigated. To clarify this issue, we crossed WNK1+/FHHt mice with SPAK knock-in mice in which the T-loop Thr243 residue was mutated to alanine to prevent activation by WNK kinases. We show that WNK1+/FHHT:SPAK243A/243A mice display an intermediate phenotype, between that of control and SPAK243A/243A mice, with normal blood pressure but hypochloremic metabolic alkalosis. NCC abundance and phosphorylation levels also decrease below the wild-type level in the double-mutant mice but remain higher than in SPAK243A/243A mice. This is different from what was observed in WNK4-FHHt mice in which SPAK inactivation completely restored the phenotype and NCC expression to wild-type levels. Although these results confirm that FHHt caused by WNK1 mutations is dependent on the activation of SPAK, they suggest that WNK1 and WNK4 play different roles in the distal nephron.
Collapse
Affiliation(s)
- Chloé Rafael
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 970, Paris Cardiovascular Research Center, Paris, France.,Universités Paris-Descartes et Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Sorbonne Université, Paris, France.,INSERM UMR_S1155, Tenon Hospital, Paris, France
| | - Christelle Soukaseum
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 970, Paris Cardiovascular Research Center, Paris, France.,Universités Paris-Descartes et Paris-Diderot, Sorbonne Paris Cité, Paris, France.,INSERM UMR_S1176, CHU de Bicêtre, Le Kremlin-Bicêtre, France
| | - Véronique Baudrie
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 970, Paris Cardiovascular Research Center, Paris, France.,Universités Paris-Descartes et Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Perrine Frère
- Sorbonne Université, Paris, France.,INSERM UMR_S1155, Tenon Hospital, Paris, France
| | - Juliette Hadchouel
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 970, Paris Cardiovascular Research Center, Paris, France. .,Universités Paris-Descartes et Paris-Diderot, Sorbonne Paris Cité, Paris, France. .,Sorbonne Université, Paris, France. .,INSERM UMR_S1155, Tenon Hospital, Paris, France.
| |
Collapse
|
54
|
Terker AS, Castañeda-Bueno M, Ferdaus MZ, Cornelius RJ, Erspamer KJ, Su XT, Miller LN, McCormick JA, Wang WH, Gamba G, Yang CL, Ellison DH. With no lysine kinase 4 modulates sodium potassium 2 chloride cotransporter activity in vivo. Am J Physiol Renal Physiol 2018; 315:F781-F790. [PMID: 29412704 DOI: 10.1152/ajprenal.00485.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
With no lysine kinase 4 (WNK4) is essential to activate the thiazide-sensitive NaCl cotransporter (NCC) along the distal convoluted tubule, an effect central to the phenotype of familial hyperkalemic hypertension. Although effects on potassium and sodium channels along the connecting and collecting tubules have also been documented, WNK4 is typically believed to have little role in modulating sodium chloride reabsorption along the thick ascending limb of the loop of Henle. Yet wnk4-/- mice (knockout mice lacking WNK4) do not demonstrate the hypocalciuria typical of pure distal convoluted tubule dysfunction. Here, we tested the hypothesis that WNK4 also modulates bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2) function along the thick ascending limb. We confirmed that w nk4-/- mice are hypokalemic and waste sodium chloride, but are also normocalciuric. Results from Western blots suggested that the phosphorylated forms of both NCC and NKCC2 were in lower abundance in wnk4-/- mice than in controls. This finding was confirmed by immunofluorescence microscopy. Although the initial response to furosemide was similar in wnk4-/- mice and controls, the response was lower in the knockout mice when reabsorption along the distal convoluted tubule was inhibited. Using HEK293 cells, we showed that WNK4 increases the abundance of phosphorylated NKCC2. More supporting evidence that WNK4 may modulate NKCC2 emerges from a mouse model of WNK4-mediated familial hyperkalemic hypertension in which more phosphorylated NKCC2 is present than in controls. These data indicate that WNK4, in addition to modulating NCC, also modulates NKCC2, contributing to its physiological function in vivo.
Collapse
Affiliation(s)
- Andrew S Terker
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Maria Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Mohammed Z Ferdaus
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Ryan J Cornelius
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Kayla J Erspamer
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Xiao-Tong Su
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Lauren N Miller
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - James A McCormick
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma University de México , Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y de Ciencias de la Salud, Monterrey, México
| | - Chao-Ling Yang
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - David H Ellison
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
55
|
Role of ClC-K and barttin in low potassium-induced sodium chloride cotransporter activation and hypertension in mouse kidney. Biosci Rep 2018; 38:BSR20171243. [PMID: 29326302 PMCID: PMC5789154 DOI: 10.1042/bsr20171243] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
The sodium chloride cotransporter (NCC) has been identified as a key molecule regulating potassium balance. The mechanisms of NCC regulation during low extracellular potassium concentrations have been studied in vitro. These studies have shown that hyperpolarization increased chloride efflux, leading to the activation of chloride-sensitive with-no-lysine kinase (WNK) kinases and their downstream molecules, including STE20/SPS1-related proline/alanine-rich kinase (SPAK) and NCC. However, this mechanism was not studied in vivo. Previously, we developed the barttin hypomorphic mouse (Bsndneo/neo mice), expressing very low levels of barttin and ClC-K channels, because barttin is an essential β-subunit of ClC-K. In contrast with Bsnd−/− mice, Bsndneo/neo mice survived to adulthood. In Bsndneo/neo mice, SPAK and NCC activation after consuming a low-potassium diet was clearly impaired compared with that in wild-type (WT) mice. In ex vivo kidney slice experiment, the increase in pNCC and SPAK in low-potassium medium was also impaired in Bsndneo/neo mice. Furthermore, increased blood pressure was observed in WT mice fed a high-salt and low-potassium diet, which was not evident in Bsndneo/neo mice. Thus, our study provides in vivo evidence that, in response to a low-potassium diet, ClC-K and barttin play important roles in the activation of the WNK4-SPAK-NCC cascade and blood pressure regulation.
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW The paracellular pathway through the tight junction provides an important route for chloride reabsorption in the collecting duct of the kidney. This review describes recent findings of how defects in paracellular chloride permeation pathway may cause kidney diseases and how such a pathway may be regulated to maintain normal chloride homeostasis. RECENT FINDINGS The tight junction in the collecting duct expresses two important claudin genes - claudin-4 and claudin-8. Transgenic knockout of either claudin gene causes hypotension, hypochloremia, and metabolic alkalosis in experimental animals. The claudin-4 mediated chloride permeability can be regulated by a protease endogenously expressed by the collecting duct cell - channel-activating protease 1. Channel-activating protease 1 regulates the intercellular interaction of claudin-4 and its membrane stability. Kelch-like 3, previously identified as a causal gene for Gordon's syndrome, also known as pseudohypoaldosteronism II, directly interacts with claudin-8 and regulates its ubiquitination and degradation. The dominant pseudohypoaldosteronism-II mutation (R528H) in Kelch-like 3 abolishes claudin-8 binding, ubiquitination, and degradation. SUMMARY The paracellular chloride permeation pathway in the kidney is an important but understudied area in nephrology. It plays vital roles in renal salt handling and regulation of extracellular fluid volume and blood pressure. Two claudin proteins, claudin-4 and claudin-8, contribute to the function of this paracellular pathway. Deletion of either claudin protein from the collecting duct causes renal chloride reabsorption defects and low blood pressure. Claudins can be regulated on posttranslational levels by several mechanisms involving protease and ubiquitin ligase. Deregulation of claudins may cause human hypertension as exemplified in the Gordon's syndrome.
Collapse
|
57
|
Ferdaus MZ, McCormick JA. Mechanisms and controversies in mutant Cul3-mediated familial hyperkalemic hypertension. Am J Physiol Renal Physiol 2018; 314:F915-F920. [PMID: 29361671 DOI: 10.1152/ajprenal.00593.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Autosomal dominant mutations in cullin-3 ( Cul3) cause the most severe form of familial hyperkalemic hypertension (FHHt). Cul3 mutations cause skipping of exon 9, which results in an internal deletion of 57 amino acids from the CUL3 protein (CUL3-∆9). The precise mechanism by which this altered form of CUL3 causes FHHt is controversial. CUL3 is a member of the cullin-RING ubiquitin ligase family that mediates ubiquitination and thus degradation of cellular proteins, including with-no-lysine [K] kinases (WNKs). In CUL3-∆9-mediated FHHt, proteasomal degradation of WNKs is abrogated, leading to overactivation of the WNK targets sterile 20/SPS-1 related proline/alanine-rich kinase and oxidative stress-response kinase-1, which directly phosphorylate and activate the thiazide-sensitive Na+-Cl- cotransporter. Several groups have suggested different mechanisms by which CUL3-∆9 causes FHHt. The majority of these are derived from in vitro data, but recently the Kurz group (Schumacher FR, Siew K, Zhang J, Johnson C, Wood N, Cleary SE, Al Maskari RS, Ferryman JT, Hardege I, Figg NL, Enchev R, Knebel A, O'Shaughnessy KM, Kurz T. EMBO Mol Med 7: 1285-1306, 2015) described the first mouse model of CUL3-∆9-mediated FHHt. Analysis of this model suggested that CUL3-∆9 is degraded in vivo, and thus Cul3 mutations cause FHHt by inducing haploinsufficiency. We recently directly tested this model but found that other dominant effects of CUL3-∆9 must contribute to the development of FHHt. In this review, we focus on our current knowledge of CUL3-∆9 action gained from in vitro and in vivo models that may help unravel this complex problem.
Collapse
Affiliation(s)
- Mohammed Z Ferdaus
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon
| |
Collapse
|
58
|
WNK4 is indispensable for the pathogenesis of pseudohypoaldosteronism type II caused by mutant KLHL3. Biochem Biophys Res Commun 2017; 491:727-732. [DOI: 10.1016/j.bbrc.2017.07.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 11/21/2022]
|
59
|
Alshahrani S, Soleimani M. Ablation of the Cl-/HCO3- Exchanger Pendrin Enhances Hydrochlorothiazide-Induced Diuresis. Kidney Blood Press Res 2017; 42:444-455. [PMID: 28750403 PMCID: PMC10947751 DOI: 10.1159/000479296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The Cl-/HCO3- exchanger pendrin and the thiazide-sensitive Na-Cl cotransporter NCC are expressed in the kidney distal nephron and mediate salt absorption. We hypothesized that deletion of pendrin leaves NCC as the major salt absorbing transporter in the distal nephron and therefore enhances salt excretion by hydrochlorothiazide (HCTZ). METHODS Metabolic cage studies were performed in wild type, pendrin KO and NCC KO mice at baseline and following HCTZ treatment. In parallel studies, systemic blood pressure was measured in mice treated with HCTZ with the tail cuff method. RESULTS Urine output, salt excretion and water intake were comparable in all groups under baseline condition. Urine output and water intake increased significantly only in pendrin KO mice in response to HCTZ, but not in WT or NCC KO mice. Sodium and chloride excretion increased in HCTZ-treated pendrin KO mice, but they remained unchanged in WT or NCC KO mice. Pendrin KO mice treated with HCTZ developed volume depletion, as determined by increased expression of renin mRNA and protein. The expression of ENaC and pendrin increased in HCTZ-treated WT mice. HCTZ treatment did not significantly modify blood pressure in any of the experimental group. CONCLUSION The ablation of the Cl-/HCO3- exchanger Pendrin enhances the magnitude of salt wasting by HCTZ.
Collapse
Affiliation(s)
- Saeed Alshahrani
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Manoocher Soleimani
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Medicine, University of Cincinnati and VA Research Services, Cincinnati, Ohio, USA
- Veterans Administration Hospital, Cincinnati, Ohio, USA
| |
Collapse
|
60
|
Alshahrani S, Rapoport RM, Zahedi K, Jiang M, Nieman M, Barone S, Meredith AL, Lorenz JN, Rubinstein J, Soleimani M. The non-diuretic hypotensive effects of thiazides are enhanced during volume depletion states. PLoS One 2017; 12:e0181376. [PMID: 28719636 PMCID: PMC5515454 DOI: 10.1371/journal.pone.0181376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/29/2017] [Indexed: 12/25/2022] Open
Abstract
Thiazide derivatives including Hydrochlorothiazide (HCTZ) represent the most common treatment of mild to moderate hypertension. Thiazides initially enhance diuresis via inhibition of the kidney Na+-Cl- Cotransporter (NCC). However, chronic volume depletion and diuresis are minimal while lowered blood pressure (BP) is maintained on thiazides. Thus, a vasodilator action of thiazides is proposed, likely via Ca2+-activated K+ (BK) channels in vascular smooth muscles. This study ascertains the role of volume depletion induced by salt restriction or salt wasting in NCC KO mice on the non-diuretic hypotensive action of HCTZ. HCTZ (20mg/kg s.c.) lowered BP in 1) NCC KO on a salt restricted diet but not with normal diet; 2) in volume depleted but not in volume resuscitated pendrin/NCC dKO mice; the BP reduction occurs without any enhancement in salt excretion or reduction in cardiac output. HCTZ still lowered BP following treatment of NCC KO on salt restricted diet with paxilline (8 mg/kg, i.p.), a BK channel blocker, and in BK KO and BK/NCC dKO mice on salt restricted diet. In aortic rings from NCC KO mice on normal and low salt diet, HCTZ did not alter and minimally decreased maximal phenylephrine contraction, respectively, while contractile sensitivity remained unchanged. These results demonstrate 1) the non-diuretic hypotensive effects of thiazides are augmented with volume depletion and 2) that the BP reduction is likely the result of HCTZ inhibition of vasoconstriction through a pathway dependent on factors present in vivo, is unrelated to BK channel activation, and involves processes associated with intravascular volume depletion.
Collapse
Affiliation(s)
- Saeed Alshahrani
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Robert M. Rapoport
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Kamyar Zahedi
- Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, OH, United States of America
- Division of Nephrology, Department of Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, United States of America
| | - Min Jiang
- Division of Cardiology, Department of Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Michelle Nieman
- Department of Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Sharon Barone
- Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, OH, United States of America
- Division of Nephrology, Department of Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, United States of America
| | - Andrea L. Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - John N. Lorenz
- Department of Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Jack Rubinstein
- Division of Cardiology, Department of Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Manoocher Soleimani
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, OH, United States of America
- Division of Nephrology, Department of Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
61
|
McCormick JA, Ellison DH. Nephron Remodeling Underlies Hyperkalemia in Familial Hyperkalemic Hypertension. J Am Soc Nephrol 2017; 28:2555-2557. [PMID: 28705920 DOI: 10.1681/asn.2017060660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- James A McCormick
- Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - David H Ellison
- Department of Medicine, Oregon Health and Science University, Portland, Oregon; and .,Renal Section, Veterans Admininstration Portland Health Care System, Portland, Oregon
| |
Collapse
|
62
|
Ishigami-Yuasa M, Watanabe Y, Mori T, Masuno H, Fujii S, Kikuchi E, Uchida S, Kagechika H. Development of WNK signaling inhibitors as a new class of antihypertensive drugs. Bioorg Med Chem 2017; 25:3845-3852. [DOI: 10.1016/j.bmc.2017.05.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
63
|
Yoshizaki Y, Mori T, Ishigami-Yuasa M, Kikuchi E, Takahashi D, Zeniya M, Nomura N, Mori Y, Araki Y, Ando F, Mandai S, Kasagi Y, Arai Y, Sasaki E, Yoshida S, Kagechika H, Rai T, Uchida S, Sohara E. Drug-Repositioning Screening for Keap1-Nrf2 Binding Inhibitors using Fluorescence Correlation Spectroscopy. Sci Rep 2017. [PMID: 28638054 PMCID: PMC5479848 DOI: 10.1038/s41598-017-04233-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Kelch-like ECH-associating protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) signaling pathway is the major regulator of cytoprotective responses to oxidative and electrophilic stress. The Cul3/Keap1 E3 ubiquitin ligase complex interacts with Nrf2, leading to Nrf2 ubiquitination and degradation. In this study, we focused on the disruption of the Keap1-Nrf2 interaction to upregulate Nrf2 expression and the transcription of ARE-controlled cytoprotective oxidative stress response enzymes, such as HO-1. We completed a drug-repositioning screening for inhibitors of Keap1-Nrf2 protein-protein interactions using a newly established fluorescence correlation spectroscopy (FCS) screening system. The binding reaction between Nrf2 and Keap1 was successfully detected with a KD of 2.6 μM using our FCS system. The initial screening of 1,633 drugs resulted in 12 candidate drugs. Among them, 2 drugs significantly increased Nrf2 protein levels in HepG2 cells. These two promising drugs also upregulated ARE gene promoter activity and increased HO-1 mRNA expression, which confirms their ability to dissociate Nrf2 and Keap1. Thus, drug-repositioning screening for Keap1-Nrf2 binding inhibitors using FCS enabled us to find two promising known drugs that can induce the activation of the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Yuki Yoshizaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mari Ishigami-Yuasa
- Chemical Biology Screening Center and Department of Medicinal and Organic Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eriko Kikuchi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daiei Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Moko Zeniya
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaro Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuya Araki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuri Kasagi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yohei Arai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Emi Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Yoshida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kagechika
- Chemical Biology Screening Center and Department of Medicinal and Organic Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
64
|
Grimm PR, Coleman R, Delpire E, Welling PA. Constitutively Active SPAK Causes Hyperkalemia by Activating NCC and Remodeling Distal Tubules. J Am Soc Nephrol 2017; 28:2597-2606. [PMID: 28442491 DOI: 10.1681/asn.2016090948] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/27/2017] [Indexed: 01/06/2023] Open
Abstract
Aberrant activation of with no lysine (WNK) kinases causes familial hyperkalemic hypertension (FHHt). Thiazide diuretics treat the disease, fostering the view that hyperactivation of the thiazide-sensitive sodium-chloride cotransporter (NCC) in the distal convoluted tubule (DCT) is solely responsible. However, aberrant signaling in the aldosterone-sensitive distal nephron (ASDN) and inhibition of the potassium-excretory renal outer medullary potassium (ROMK) channel have also been implicated. To test these ideas, we introduced kinase-activating mutations after Lox-P sites in the mouse Stk39 gene, which encodes the terminal kinase in the WNK signaling pathway, Ste20-related proline-alanine-rich kinase (SPAK). Renal expression of the constitutively active (CA)-SPAK mutant was specifically targeted to the early DCT using a DCT-driven Cre recombinase. CA-SPAK mice displayed thiazide-treatable hypertension and hyperkalemia, concurrent with NCC hyperphosphorylation. However, thiazide-mediated inhibition of NCC and consequent restoration of sodium excretion did not immediately restore urinary potassium excretion in CA-SPAK mice. Notably, CA-SPAK mice exhibited ASDN remodeling, involving a reduction in connecting tubule mass and attenuation of epithelial sodium channel (ENaC) and ROMK expression and apical localization. Blocking hyperactive NCC in the DCT gradually restored ASDN structure and ENaC and ROMK expression, concurrent with the restoration of urinary potassium excretion. These findings verify that NCC hyperactivity underlies FHHt but also reveal that NCC-dependent changes in the driving force for potassium secretion are not sufficient to explain hyperkalemia. Instead, a DCT-ASDN coupling process controls potassium balance in health and becomes aberrantly activated in FHHt.
Collapse
Affiliation(s)
- P Richard Grimm
- Department of Physiology, Maryland Kidney Discovery Center, University of Maryland Medical School, Baltimore, Maryland; and
| | - Richard Coleman
- Department of Physiology, Maryland Kidney Discovery Center, University of Maryland Medical School, Baltimore, Maryland; and
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, Tennessee
| | - Paul A Welling
- Department of Physiology, Maryland Kidney Discovery Center, University of Maryland Medical School, Baltimore, Maryland; and
| |
Collapse
|
65
|
Arai Y, Takahashi D, Asano K, Tanaka M, Oda M, Ko SBH, Ko MSH, Mandai S, Nomura N, Rai T, Uchida S, Sohara E. Salt suppresses IFNγ inducible chemokines through the IFNγ-JAK1-STAT1 signaling pathway in proximal tubular cells. Sci Rep 2017; 7:46580. [PMID: 28425456 PMCID: PMC5397865 DOI: 10.1038/srep46580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/17/2017] [Indexed: 12/04/2022] Open
Abstract
The mechanisms of immunoactivation by salt are now becoming clearer. However, those of immunosuppression remain unknown. Since clinical evidence indicates that salt protects proximal tubules from injury, we investigated mechanisms responsible for salt causing immunosuppression in proximal tubules. We focused on cytokine-related gene expression profiles in kidneys of mice fed a high salt diet using microarray analysis and found that both an interferon gamma (IFNγ) inducible chemokine, chemokine (C-X-C motif) ligand 9 (CXCL9), and receptor, CXCR3, were suppressed. We further revealed that a high salt concentration suppressed IFNγ inducible chemokines in HK2 proximal tubular cells. Finally, we demonstrated that a high salt concentration decreased IFNGR1 expression in the basolateral membrane of HK2 cells, leading to decreased phosphorylation of activation sites of Janus kinase 1 (JAK1) and Signal Transducers and Activator of Transcription 1 (STAT1), activators of chemokines. JAK inhibitor canceled the effect of a high salt concentration on STAT1 and chemokines, indicating that the JAK1-STAT1 signaling pathway is essential for this mechanism. In conclusion, a high salt concentration suppresses IFNγ-JAK1-STAT1 signaling pathways and chemokine expressions in proximal tubules. This finding may explain how salt ameliorates proximal tubular injury and offer a new insight into the linkage between salt and immunity.
Collapse
Affiliation(s)
- Yohei Arai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Daiei Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kenichi Asano
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masato Tanaka
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Mayumi Oda
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shigeru B. H. Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Minoru S. H. Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
66
|
Mandai S, Furukawa S, Kodaka M, Hata Y, Mori T, Nomura N, Ando F, Mori Y, Takahashi D, Yoshizaki Y, Kasagi Y, Arai Y, Sasaki E, Yoshida S, Furuichi Y, Fujii NL, Sohara E, Rai T, Uchida S. Loop diuretics affect skeletal myoblast differentiation and exercise-induced muscle hypertrophy. Sci Rep 2017; 7:46369. [PMID: 28417963 PMCID: PMC5394462 DOI: 10.1038/srep46369] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Muscle wasting or sarcopenia contributes to morbidity and mortality in patients with cancer, renal failure, or heart failure, and in elderly individuals. Na+-K+-2Cl− cotransporter 1 (NKCC1) is highly expressed in mammalian skeletal muscle, where it contributes to the generation of membrane ion currents and potential. However, the physiologic function of NKCC1 in myogenesis is unclear. We investigated this issue using the NKCC1 inhibitors bumetanide and furosemide, which are commonly used loop diuretics. NKCC1 protein levels increased during C2C12 murine skeletal myoblast differentiation, similarly to those of the myogenic markers myogenin and myosin heavy chain (MHC). NKCC1 inhibitors markedly suppressed myoblast fusion into myotubes and the expression of myogenin and MHC. Furthermore, phosphorylated and total NKCC1 levels were elevated in mouse skeletal muscles after 6 weeks’ voluntary wheel running. Immunofluorescence analyses of myofiber cross-sections revealed more large myofibers after exercise, but this was impaired by daily intraperitoneal bumetanide injections (0.2 or 10 mg/kg/day). NKCC1 plays an essential role in myogenesis and exercise-induced skeletal muscle hypertrophy, and sarcopenia in patients with renal or heart failure may be attributable to treatment with loop diuretics.
Collapse
Affiliation(s)
- Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Susumu Furukawa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Manami Kodaka
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Yutaro Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Daiei Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Yuki Yoshizaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Yuri Kasagi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Yohei Arai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Emi Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Sayaka Yoshida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji City, Tokyo 192-0397, Tokyo, Japan
| | - Nobuharu L Fujii
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji City, Tokyo 192-0397, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| |
Collapse
|
67
|
Kasagi Y, Takahashi D, Aida T, Nishida H, Nomura N, Zeniya M, Mori T, Sasaki E, Ando F, Rai T, Uchida S, Sohara E. Impaired degradation of medullary WNK4 in the kidneys of KLHL2 knockout mice. Biochem Biophys Res Commun 2017; 487:368-374. [PMID: 28414128 DOI: 10.1016/j.bbrc.2017.04.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022]
Abstract
Mutations in the with-no-lysine kinase 1 (WNK1), WNK4, Kelch-like 3 (KLHL3), and Cullin3 (CUL3) genes were identified as being responsible for hereditary hypertensive disease pseudohypoaldosteronism type II (PHAII). Normally, the KLHL3/CUL3 ubiquitin ligase complex degrades WNKs. In PHAII, the loss of interaction between KLHL3 and WNK4 increases levels of WNKs because of impaired ubiquitination, leading to abnormal over-activation of the WNK-OSR1/SPAK-NCC cascade in the kidney's distal convoluted tubules (DCT). KLHL2, which is highly homologous to KLHL3, was reported to ubiquitinate and degrade WNKs in vitro. Mutations in KLHL2 have not been reported in patients with PHAII, suggesting that KLHL2 plays a different physiological role than that played by KLHL3 in the kidney. To investigate the physiological roles of KLHL2 in the kidney, we generated KLHL2-/- mice. KLHL2-/- mice did not exhibit increased phosphorylation of the OSR1/SPAK-NCC cascade and PHAII-like phenotype. KLHL2 was predominantly expressed in the medulla compared with the cortex. Accordingly, medullary WNK4 protein levels were significantly increased in the kidneys of KLHL2-/- mice. KLHL2 is indeed a physiological regulator of WNK4 in vivo; however, its function might be different from that of KLHL3 because KLHL2 mainly localized in medulla.
Collapse
Affiliation(s)
- Yuri Kasagi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Daiei Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Tomomi Aida
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Laboratory of Recombinant Animals, MRI, Tokyo Medical and Dental University, Chiyoda, Tokyo 101-0062, Japan
| | - Hidenori Nishida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Moko Zeniya
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Emi Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan.
| |
Collapse
|
68
|
Sasaki E, Susa K, Mori T, Isobe K, Araki Y, Inoue Y, Yoshizaki Y, Ando F, Mori Y, Mandai S, Zeniya M, Takahashi D, Nomura N, Rai T, Uchida S, Sohara E. KLHL3 Knockout Mice Reveal the Physiological Role of KLHL3 and the Pathophysiology of Pseudohypoaldosteronism Type II Caused by Mutant KLHL3. Mol Cell Biol 2017; 37:e00508-16. [PMID: 28052936 PMCID: PMC5359427 DOI: 10.1128/mcb.00508-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/17/2016] [Accepted: 12/29/2016] [Indexed: 01/06/2023] Open
Abstract
Mutations in the with-no-lysine kinase 1 (WNK1), WNK4, kelch-like 3 (KLHL3), and cullin3 (CUL3) genes are known to cause the hereditary disease pseudohypoaldosteronism type II (PHAII). It was recently demonstrated that this results from the defective degradation of WNK1 and WNK4 by the KLHL3/CUL3 ubiquitin ligase complex. However, the other physiological in vivo roles of KLHL3 remain unclear. Therefore, here we generated KLHL3-/- mice that expressed β-galactosidase (β-Gal) under the control of the endogenous KLHL3 promoter. Immunoblots of β-Gal and LacZ staining revealed that KLHL3 was expressed in some organs, such as brain. However, the expression levels of WNK kinases were not increased in any of these organs other than the kidney, where WNK1 and WNK4 increased in KLHL3-/- mice but not in KLHL3+/- mice. KLHL3-/- mice also showed PHAII-like phenotypes, whereas KLHL3+/- mice did not. This clearly demonstrates that the heterozygous deletion of KLHL3 was not sufficient to cause PHAII, indicating that autosomal dominant type PHAII is caused by the dominant negative effect of mutant KLHL3. We further demonstrated that the dimerization of KLHL3 can explain this dominant negative effect. These findings could help us to further understand the physiological roles of KLHL3 and the pathophysiology of PHAII caused by mutant KLHL3.
Collapse
Affiliation(s)
- Emi Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichiro Susa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoshi Isobe
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuya Araki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuichi Inoue
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuki Yoshizaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaro Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Moko Zeniya
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daiei Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
69
|
Takahashi D, Mori T, Sohara E, Tanaka M, Chiga M, Inoue Y, Nomura N, Zeniya M, Ochi H, Takeda S, Suganami T, Rai T, Uchida S. WNK4 is an Adipogenic Factor and Its Deletion Reduces Diet-Induced Obesity in Mice. EBioMedicine 2017; 18:118-127. [PMID: 28314693 PMCID: PMC5405161 DOI: 10.1016/j.ebiom.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 11/25/2022] Open
Abstract
The with-no-lysine kinase (WNK) 4 gene is a causative gene in pseudohypoaldosteronism type II. Although WNKs are widely expressed in the body, neither their metabolic functions nor their extrarenal role is clear. In this study, we found that WNK4 was expressed in mouse adipose tissue and 3T3-L1 adipocytes. In mouse primary preadipocytes and in 3T3-L1 adipocytes, WNK4 was markedly induced in the early phase of adipocyte differentiation. WNK4 expression preceded the expression of key transcriptional factors PPARγ and C/EBPα. WNK4-siRNA-transfected 3T3-L1 cells and human mesenchymal stem cells showed reduced expression of PPARγ and C/EBPα and lipid accumulation. WNK4 protein affected the DNA-binding ability of C/EBPβ and thereby reduced PPARγ expression. In the WNK4−/− mice, PPARγ and C/EBPα expression were decreased in adipose tissues, and the mice exhibited partial resistance to high-fat diet-induced adiposity. These data suggest that WNK4 may be a proadipogenic factor, and offer insights into the relationship between WNKs and energy metabolism. WNK4 regulates adipocyte differentiation in mouse and human preadipocytes. WNK4−/− mice exhibit reduced adiposity and increased insulin sensitivity. WNK4 may be a drug target for diet-induced obesity and salt-sensitive hypertension.
The with-no-lysine kinase (WNK) 4 gene is a causative gene in pseudohypoaldosteronism type II, a hereditary hypertensive disease. Although WNKs are widely expressed in the body and are involved in the pathogenesis of hypertension, neither their metabolic functions nor their extrarenal role is clear. This study demonstrated a contribution of WNK4 to the regulation of core transcriptional factors for adipogenesis and that its depletion indicates some beneficial effects for obesity by a high-fat diet. This study suggests a role of hypertension-causing WNK4 as a proadipogenic factor and offers insights into the relationship between WNKs and energy metabolism.
Collapse
Affiliation(s)
- Daiei Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Motoko Chiga
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Yuichi Inoue
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Moko Zeniya
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Hiroki Ochi
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Shu Takeda
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan..
| |
Collapse
|
70
|
Abstract
WNK kinases, along with their upstream regulators (CUL3/KLHL3) and downstream targets (the SPAK/OSR1 kinases and the cation-Cl- cotransporters [CCCs]), comprise a signaling cascade essential for ion homeostasis in the kidney and nervous system. Recent work has furthered our understanding of the WNKs in epithelial transport, cell volume homeostasis, and GABA signaling, and uncovered novel roles for this pathway in immune cell function and cell proliferation.
Collapse
Affiliation(s)
- Masoud Shekarabi
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jinwei Zhang
- Departments of Neurosurgery, Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06477, USA; MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Arjun R Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| | - David H Ellison
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA; VA Portland Health Care System, Portland, OR 97239, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06477, USA.
| |
Collapse
|
71
|
Rashmi P, Colussi G, Ng M, Wu X, Kidwai A, Pearce D. Glucocorticoid-induced leucine zipper protein regulates sodium and potassium balance in the distal nephron. Kidney Int 2017; 91:1159-1177. [PMID: 28094030 DOI: 10.1016/j.kint.2016.10.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 10/06/2016] [Accepted: 10/27/2016] [Indexed: 01/21/2023]
Abstract
Glucocorticoid induced leucine zipper protein (GILZ) is an aldosterone-regulated protein that controls sodium transport in cultured kidney epithelial cells. Mice lacking GILZ have been reported previously to have electrolyte abnormalities. However, the mechanistic basis has not been explored. Here we provide evidence supporting a role for GILZ in modulating the balance of renal sodium and potassium excretion by regulating the sodium-chloride cotransporter (NCC) activity in the distal nephron. Gilz-/- mice have a higher plasma potassium concentration and lower fractional excretion of potassium than wild type mice. Furthermore, knockout mice are more sensitive to NCC inhibition by thiazides than are the wild type mice, and their phosphorylated NCC expression is higher. Despite increased NCC activity, knockout mice do not have higher blood pressure than wild type mice. However, during sodium deprivation, knockout mice come into sodium balance more quickly, than do the wild type, without a significant increase in plasma renin activity. Upon prolonged sodium restriction, knockout mice develop frank hyperkalemia. Finally, in HEK293T cells, exogenous GILZ inhibits NCC activity at least in part by inhibiting SPAK phosphorylation. Thus, GILZ promotes potassium secretion by inhibiting NCC and enhancing distal sodium delivery to the epithelial sodium channel. Additionally, Gilz-/- mice have features resembling familial hyperkalemic hypertension, a human disorder that manifests with hyperkalemia associated variably with hypertension.
Collapse
Affiliation(s)
- Priyanka Rashmi
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA
| | - GianLuca Colussi
- Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - Michael Ng
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA
| | - Xinhao Wu
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA
| | - Atif Kidwai
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA
| | - David Pearce
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA.
| |
Collapse
|
72
|
An angiotensin II type 1 receptor binding molecule has a critical role in hypertension in a chronic kidney disease model. Kidney Int 2017; 91:1115-1125. [PMID: 28081856 DOI: 10.1016/j.kint.2016.10.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/28/2016] [Accepted: 10/27/2016] [Indexed: 01/13/2023]
Abstract
Angiotensin II type 1 receptor-associated protein (ATRAP) promotes AT1R internalization along with suppression of hyperactivation of tissue AT1R signaling. Here, we provide evidence that renal ATRAP plays a critical role in suppressing hypertension in a mouse remnant kidney model of chronic kidney disease. The effect of 5/6 nephrectomy on endogenous ATRAP expression was examined in the kidney of C57BL/6 and 129/Sv mice. While 129/Sv mice with a remnant kidney showed decreased renal ATRAP expression and developed hypertension, C57BL/6 mice exhibited increased renal ATRAP expression and resistance to progressive hypertension. Consequently, we hypothesized that downregulation of renal ATRAP expression is involved in pathogenesis of hypertension in the remnant kidney model of chronic kidney disease. Interestingly, 5/6 nephrectomy in ATRAP-knockout mice on the hypertension-resistant C57BL/6 background caused hypertension with increased plasma volume. Moreover, in knockout compared to wild-type C57BL/6 mice after 5/6 nephrectomy, renal expression of the epithelial sodium channel α-subunit and tumor necrosis factor-α was significantly enhanced, concomitant with increased plasma membrane angiotensin II type 1 receptor in the kidneys. Thus, renal ATRAP downregulation is involved in the onset and progression of blood pressure elevation caused by renal mass reduction, and implicates ATRAP as a therapeutic target for hypertension in chronic kidney disease.
Collapse
|
73
|
Cuevas CA, Su XT, Wang MX, Terker AS, Lin DH, McCormick JA, Yang CL, Ellison DH, Wang WH. Potassium Sensing by Renal Distal Tubules Requires Kir4.1. J Am Soc Nephrol 2017; 28:1814-1825. [PMID: 28052988 DOI: 10.1681/asn.2016090935] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/23/2016] [Indexed: 11/03/2022] Open
Abstract
The mammalian distal convoluted tubule (DCT) makes an important contribution to potassium homeostasis by modulating NaCl transport. The thiazide-sensitive Na+/Cl- cotransporter (NCC) is activated by low potassium intake and by hypokalemia. Coupled with suppression of aldosterone secretion, activation of NCC helps to retain potassium by increasing electroneutral NaCl reabsorption, therefore reducing Na+/K+ exchange. Yet the mechanisms by which DCT cells sense plasma potassium concentration and transmit the information to the apical membrane are not clear. Here, we tested the hypothesis that the potassium channel Kir4.1 is the potassium sensor of DCT cells. We generated mice in which Kir4.1 could be deleted in the kidney after the mice are fully developed. Deletion of Kir4.1 in these mice led to moderate salt wasting, low BP, and profound potassium wasting. Basolateral membranes of DCT cells were depolarized, nearly devoid of conductive potassium transport, and unresponsive to plasma potassium concentration. Although renal WNK4 abundance increased after Kir4.1 deletion, NCC abundance and function decreased, suggesting that membrane depolarization uncouples WNK kinases from NCC. Together, these results indicate that Kir4.1 mediates potassium sensing by DCT cells and couples this signal to apical transport processes.
Collapse
Affiliation(s)
- Catherina A Cuevas
- Division of Nephrology and Hypertension, Departments of Medicine and Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
| | - Xiao-Tong Su
- Department of Pharmacology, New York Medical College, Valhalla, New York; and
| | - Ming-Xiao Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York; and
| | - Andrew S Terker
- Division of Nephrology and Hypertension, Departments of Medicine and Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York; and
| | - James A McCormick
- Division of Nephrology and Hypertension, Departments of Medicine and Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Departments of Medicine and Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon.,Renal Section, Veterans Administration Portland Health Care System, Portland, Oregon
| | - David H Ellison
- Division of Nephrology and Hypertension, Departments of Medicine and Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon; .,Renal Section, Veterans Administration Portland Health Care System, Portland, Oregon
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York; and
| |
Collapse
|
74
|
Hadchouel J, Ellison DH, Gamba G. Regulation of Renal Electrolyte Transport by WNK and SPAK-OSR1 Kinases. Annu Rev Physiol 2016; 78:367-89. [PMID: 26863326 DOI: 10.1146/annurev-physiol-021115-105431] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of four genes responsible for pseudohypoaldosteronism type II, or familial hyperkalemic hypertension, which features arterial hypertension with hyperkalemia and metabolic acidosis, unmasked a complex multiprotein system that regulates electrolyte transport in the distal nephron. Two of these genes encode the serine-threonine kinases WNK1 and WNK4. The other two genes [kelch-like 3 (KLHL3) and cullin 3 (CUL3)] form a RING-type E3-ubiquitin ligase complex that modulates WNK1 and WNK4 abundance. WNKs regulate the activity of the Na(+):Cl(-) cotransporter (NCC), the epithelial sodium channel (ENaC), the renal outer medullary potassium channel (ROMK), and other transport pathways. Interestingly, the modulation of NCC occurs via the phosphorylation by WNKs of other serine-threonine kinases known as SPAK-OSR1. In contrast, the process of regulating the channels is independent of SPAK-OSR1. We present a review of the remarkable advances in this area in the past 10 years.
Collapse
Affiliation(s)
- Juliette Hadchouel
- INSERM UMR970, Paris Cardiovascular Research Center, 75015 Paris, France.,Faculty of Medicine, Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France
| | - David H Ellison
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City 14080, Mexico;
| |
Collapse
|
75
|
Wnt5a induces renal AQP2 expression by activating calcineurin signalling pathway. Nat Commun 2016; 7:13636. [PMID: 27892464 PMCID: PMC5133730 DOI: 10.1038/ncomms13636] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/20/2016] [Indexed: 12/27/2022] Open
Abstract
Heritable nephrogenic diabetes insipidus (NDI) is characterized by defective urine concentration mechanisms in the kidney, which are mainly caused by loss-of-function mutations in the vasopressin type 2 receptor. For the treatment of heritable NDI, novel strategies that bypass the defective vasopressin type 2 receptor are required to activate the aquaporin-2 (AQP2) water channel. Here we show that Wnt5a regulates AQP2 protein expression, phosphorylation and trafficking, suggesting that Wnt5a is an endogenous ligand that can regulate AQP2 without the activation of the classic vasopressin/cAMP signalling pathway. Wnt5a successfully increases the apical membrane localization of AQP2 and urine osmolality in an NDI mouse model. We also demonstrate that calcineurin is a key regulator of Wnt5a-induced AQP2 activation without affecting intracellular cAMP level and PKA activity. The importance of calcineurin is further confirmed with its activator, arachidonic acid, which shows vasopressin-like effects underlining that calcineurin activators may be potential therapeutic targets for heritable NDI.
Collapse
|
76
|
OSR1 and SPAK cooperatively modulate Sertoli cell support of mouse spermatogenesis. Sci Rep 2016; 6:37205. [PMID: 27853306 PMCID: PMC5112561 DOI: 10.1038/srep37205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
We investigated the role of oxidative stress-responsive kinase-1 (OSR1) and STE20 (sterile 20)/SPS1-related proline/alanine-rich kinase (SPAK), upstream regulators of the Na+-K+-2Cl− cotransporter (NKCC1)—essential for spermatogenesis—in mouse models of male fertility. Global OSR1+/− gene mutations, but not global SPAK−/− or Sertoli cell (SC)-specific OSR1 gene knockout (SC-OSR1−/−), cause subfertility with impaired sperm function and are associated with reduced abundance of phosphorylated (p)-NKCC1 but increased p-SPAK expression in testicular tissue and spermatozoa. To dissect further in a SC-specific manner the compensatory effect of OSR1 and SPAK in male fertility, we generated SC-OSR1−/− and SPAK−/− double knockout (DKO) male mice. These are infertile with defective spermatogenesis, presenting a SC-only-like syndrome. Disrupted meiotic progression and increased germ cell apoptosis occurred in the first wave of spermatogenesis. The abundance of total and p-NKCC1 was significantly decreased in the testicular tissues of DKO mice. These results indicate that OSR1 and SPAK cooperatively regulate NKCC1-dependent spermatogenesis in a SC-restricted manner.
Collapse
|
77
|
Murthy M, Kurz T, O'Shaughnessy KM. WNK signalling pathways in blood pressure regulation. Cell Mol Life Sci 2016; 74:1261-1280. [PMID: 27815594 PMCID: PMC5346417 DOI: 10.1007/s00018-016-2402-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 01/11/2023]
Abstract
Hypertension (high blood pressure) is a major public health problem affecting more than a billion people worldwide with complications, including stroke, heart failure and kidney failure. The regulation of blood pressure is multifactorial reflecting genetic susceptibility, in utero environment and external factors such as obesity and salt intake. In keeping with Arthur Guyton's hypothesis, the kidney plays a key role in blood pressure control and data from clinical studies; physiology and genetics have shown that hypertension is driven a failure of the kidney to excrete excess salt at normal levels of blood pressure. There is a number of rare Mendelian blood pressure syndromes, which have shed light on the molecular mechanisms involved in dysregulated ion transport in the distal kidney. One in particular is Familial hyperkalemic hypertension (FHHt), an autosomal dominant monogenic form of hypertension characterised by high blood pressure, hyperkalemia, hyperchloremic metabolic acidosis, and hypercalciuria. The clinical signs of FHHt are treated by low doses of thiazide diuretic, and it mirrors Gitelman syndrome which features the inverse phenotype of hypotension, hypokalemic metabolic alkalosis, and hypocalciuria. Gitelman syndrome is caused by loss of function mutations in the thiazide-sensitive Na/Cl cotransporter (NCC); however, FHHt patients do not have mutations in the SCL12A3 locus encoding NCC. Instead, mutations have been identified in genes that have revealed a key signalling pathway that regulates NCC and several other key transporters and ion channels in the kidney that are critical for BP regulation. This is the WNK kinase signalling pathway that is the subject of this review.
Collapse
Affiliation(s)
- Meena Murthy
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Thimo Kurz
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow, G12 8QQ, Scotland, UK
| | - Kevin M O'Shaughnessy
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
78
|
Calcineurin inhibitors block sodium-chloride cotransporter dephosphorylation in response to high potassium intake. Kidney Int 2016; 91:402-411. [PMID: 28341239 DOI: 10.1016/j.kint.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/25/2016] [Accepted: 09/01/2016] [Indexed: 11/23/2022]
Abstract
Dietary potassium intake is inversely related to blood pressure and mortality. Moreover, the sodium-chloride cotransporter (NCC) plays an important role in blood pressure regulation and urinary potassium excretion in response to potassium intake. Previously, it was shown that NCC is activated by the WNK4-SPAK cascade and dephosphorylated by protein phosphatase. However, the mechanism of NCC regulation with acute potassium intake is still unclear. To identify the molecular mechanism of NCC regulation in response to potassium intake, we used adult C57BL/6 mice fed a 1.7% potassium solution by oral gavage. We confirmed that acute potassium load rapidly dephosphorylated NCC, which was not dependent on the accompanying anions. Mice were treated with tacrolimus (calcineurin inhibitor) and W7 (calmodulin inhibitor) before the oral potassium loads. Dephosphorylation of NCC induced by potassium was significantly inhibited by both tacrolimus and W7 treatment. There was no significant difference in WNK4, OSR1, and SPAK expression after high potassium intake, even after tacrolimus and W7 treatment. Another phosphatase, protein phosphatase 1, and its endogenous inhibitor I-1 did not show a significant change after potassium intake. Hyperkaliuria, induced by high potassium intake, was significantly suppressed by tacrolimus treatment. Thus, calcineurin is activated by an acute potassium load, which rapidly dephosphorylates NCC, leading to increased urinary potassium excretion.
Collapse
|
79
|
Wang L, Peng JB. Phosphorylation of KLHL3 at serine 433 impairs its interaction with the acidic motif of WNK4: a molecular dynamics study. Protein Sci 2016; 26:163-173. [PMID: 27727489 DOI: 10.1002/pro.3063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/09/2016] [Accepted: 10/09/2016] [Indexed: 12/17/2022]
Abstract
Interaction between the acidic motif (AM) of protein kinase WNK4 and the Kelch domain of KLHL3 are involved in the pathogenesis of pseudohypoaldosteronism type II, a hereditary form of hypertension. This interaction is disrupted by some disease-causing mutations in either WNK4 or KLHL3, or by angiotensin II- and insulin-induced phosphorylation of KLHL3 at serine 433, which is also a site frequently mutated in patients. However, the mechanism by which this phosphorylation disrupts the interaction is unclear. In this study, we approached this problem using molecular dynamics simulation with structural, dynamical and energetic analyses. Results from independent simulations indicate that when S433 was phosphorylated, the electrostatic potential became more negative in the AM binding site of KLHL3 and therefore was unfavorable for binding with the negatively charged AM. In addition, the intermolecular hydrogen bond network that kept the AM stable in the binding site of KLHL3 was disrupted, and the forces for the hydrophobic interactions between the AM of WNK4 and KLHL3 were also reduced. As a result, the weakened interactions were no longer capable of holding the AM of WNK4 at its binding site in KLHL3. In conclusion, phosphorylation of KLHL3 at S433 disrupts the hydrogen bonds, hydrophobic and electrostatic interactions between the Kelch domain of KLHL3 and the AM of WNK4. This study provides a key molecular understanding of the KLHL3-mediated regulation of WNK4, which is an integrative regulator of electrolyte homeostasis and blood pressure regulation in the kidney. Significances Statement: WNK4 is an integrative regulator of electrolyte homeostasis, which is important in the blood pressure regulation by the kidney. Interaction between WNK4 and KLHL3 is a key physiological process that is impaired in a hereditary form of hypertension. This study provides substantial new insights into the role of phosphorylation of KLHL3 in regulating the interaction with WNK4, and therefore advances our understanding of molecular pathogenesis of hypertension and the mechanism of blood pressure regulation.
Collapse
Affiliation(s)
- Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, 35294.,Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294
| |
Collapse
|
80
|
Lan CC, Peng CK, Tang SE, Lin HJ, Yang SS, Wu CP, Huang KL. Inhibition of Na-K-Cl cotransporter isoform 1 reduces lung injury induced by ischemia-reperfusion. J Thorac Cardiovasc Surg 2016; 153:206-215. [PMID: 27986254 DOI: 10.1016/j.jtcvs.2016.09.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Ischemia-reperfusion acute lung injury is characterized by increased vascular permeability, lung edema, and neutrophil sequestration. Ischemia-reperfusion acute lung injury occurs in lung transplantation and other major surgical procedures. Effective regulation of alveolar fluid balance is critical for pulmonary edema. Sodium-potassium-chloride co-transporter regulates alveolar fluid and is associated with inflammation. We hypothesized that sodium-potassium-chloride co-transporter is important in ischemia-reperfusion acute lung injury. Bumetanide, a sodium-potassium-chloride co-transporter inhibitor, is used to treat pulmonary edema clinically. We studied the effect of bumetanide in ischemia-reperfusion acute lung injury. METHODS Isolated perfusion of mouse lungs in situ was performed. The main pulmonary artery and left atrium were catheterized for lung perfusion and effluent collection for recirculation, respectively, with perfusate consisting of 1 mL blood and 9 mL physiologic solution. Ischemia-reperfusion was induced by 120 minutes of ischemia (no ventilation or perfusion) and reperfused for 60 minutes. Wild-type, SPAK knockout (SPAK-/-), and WNK4 knockin (WNK4D561A/+) mice were divided into control, ischemia-reperfusion, and ischemia-reperfusion + bumetanide groups (n = 6 per group). Bumetanide was administered via perfusate during reperfusion. Measurements were taken of lung wet/dry weight, microvascular permeability, histopathology, cytokine concentrations, and activity of the nuclear factor-κB pathway. RESULTS In wild-type mice, ischemia-reperfusion caused lung edema (wet/dry weight 6.30 ± 0.36) and hyperpermeability (microvascular permeability, 0.29 ± 0.04), neutrophil sequestration (255.0 ± 55.8 cells/high-power field), increased proinflammatory cytokines, and nuclear factor-κB activation (1.33 ± 0.13). Acute lung injury was more severe in WNK4 mice with more lung edema, permeability, neutrophil sequestration, and nuclear factor-κB activation. Severity of acute lung injury was attenuated in SPAK-/-mice. Bumetanide decreased pulmonary edema (wild-type: wet/dry weight 5.05 ± 0.44, WNK4: wet/dry weight 5.13 ± 0.70), neutrophil sequestration (wild-type: 151.7 ± 27.8 cells/high-power field, WNK4: 135.3 ± 19.1 cells/high-power field), permeability (wild-type: 0.19 ± 0.01, WNK4: 0.21 ± 0.03), cytokines, and nuclear factor-κB activation after ischemia-reperfusion. CONCLUSIONS Functional reduction of sodium-potassium-chloride co-transporter by genetic or pharmacologic treatment to inhibit sodium-potassium-chloride co-transporter resulted in lower severity of acute lung injury induced by ischemia-reperfusion. Sodium-potassium-chloride co-transporter may present a promising target for therapeutic interventions in a clinical setting.
Collapse
Affiliation(s)
- Chou-Chin Lan
- Division of Pulmonary Medicine, Buddhist Tzu Chi General Hospital, Taipei, Taiwan, Republic of China; School of Medicine, Tzu-Chi University, Hualien, Taiwan, Republic of China
| | - Chung-Kan Peng
- Division of Pulmonary Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Shih-En Tang
- Division of Pulmonary Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Hsueh-Ju Lin
- Institute of Undersea and Hyperbaric Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Sung-Sen Yang
- Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chin-Pyng Wu
- Department of Critical Care Medicine, Li-Shin Hospital, Tao-Yuan County, Taiwan, Republic of China
| | - Kun-Lun Huang
- Division of Pulmonary Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan, Republic of China; Institute of Undersea and Hyperbaric Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
81
|
Lin TJ, Yang SS, Hua KF, Tsai YL, Lin SH, Ka SM. SPAK plays a pathogenic role in IgA nephropathy through the activation of NF-κB/MAPKs signaling pathway. Free Radic Biol Med 2016; 99:214-224. [PMID: 27519267 DOI: 10.1016/j.freeradbiomed.2016.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 01/13/2023]
Abstract
Sterile 20/SPS1-related proline/alanine-rich kinase (SPAK) can stimulate production of proinflammatory cytokines and interact with inflammation-related molecules. However, it has yet to be determined whether SPAK plays a pathophysiological role in the complicated pathological mechanisms of IgA nephropathy (IgAN), which is mainly characterized by mesangial cell (MC) proliferation and is the most common form of glomerulonephritis. In the present study, we examined the pathophysiological role of SPAK in IgAN using a mouse model and cell models. Our results clearly showed that (1) SPAK deficiency prevents the development of IgAN and inhibits production of immune/inflammatory mediators and T cell activation and proliferation; and (2) when primed with IgA immune complexes (IgA IC), both peritoneal macrophages and primary MCs from SPAK knockout mice show markedly reduced production of proinflammatory cytokines and inhibition of NF-κB/MAPKs activation. We proposed that activation of SPAK and the NF-κB/MAPKs signaling pathway in MCs, macrophages and T cells of the glomerulus may be a mechanism underlying the pathogenesis of IgAN. The activation of SPAK in renal tubuloepithelial cells either directly by IgA IC or an indirect action of the activated MCs or infiltrating mononuclear leukocytes seen in the kidney may further aggravate the disease process of IgAN. Our results suggest that SPAK is a potential therapeutic target for the glomerular disorder.
Collapse
Affiliation(s)
- Tsai-Jung Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sung-Sen Yang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Institute of BioMedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Yu-Ling Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan; Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
82
|
Savas Ü, Wei S, Hsu MH, Falck JR, Guengerich FP, Capdevila JH, Johnson EF. 20-Hydroxyeicosatetraenoic Acid (HETE)-dependent Hypertension in Human Cytochrome P450 (CYP) 4A11 Transgenic Mice: NORMALIZATION OF BLOOD PRESSURE BY SODIUM RESTRICTION, HYDROCHLOROTHIAZIDE, OR BLOCKADE OF THE TYPE 1 ANGIOTENSIN II RECEPTOR. J Biol Chem 2016; 291:16904-19. [PMID: 27298316 DOI: 10.1074/jbc.m116.732297] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/06/2022] Open
Abstract
Male and female homozygous 129/Sv mice carrying four copies of the human cytochrome P450 4A11 gene (CYP4A11) under control of its native promoter (B-129/Sv-4A11(+/+)) develop hypertension (142 ± 8 versus 113 ± 7 mm Hg systolic blood pressure (BP)), and exhibit increased 20-hydroxyeicosatetraenoic acid (20-HETE) in kidney and urine. The hypertension is reversible by a low-sodium diet and by the CYP4A inhibitor HET0016. B-129/Sv-4A11(+/+) mice display an 18% increase of plasma potassium (p < 0.02), but plasma aldosterone, angiotensin II (ANGII), and renin activities are unchanged. This phenotype resembles human genetic disorders with elevated activity of the sodium chloride co-transporter (NCC) and, accordingly, NCC abundance is increased by 50% in transgenic mice, and NCC levels are normalized by HET0016. ANGII is known to increase NCC abundance, and renal mRNA levels of its precursor angiotensinogen are increased 2-fold in B-129/Sv-4A11(+/+), and blockade of the ANGII receptor type 1 with losartan normalizes BP. A pro-hypertensive role for 20-HETE was implicated by normalization of BP and reversal of renal angiotensin mRNA increases by administration of the 20-HETE antagonists 2-((6Z,15Z)-20-hydroxyicosa-6,15-dienamido)acetate or (S)-2-((6Z,15Z)-20-hydroxyicosa-6,15-dienamido)succinate. SGK1 expression is also increased in B-129/Sv-4A11(+/+) mice and paralleled increases seen for NCC. Losartan, HET0016, and 20-HETE antagonists each normalized SGK1 mRNA expression. These results point to a potential 20-HETE dependence of intrarenal angiotensinogen production and ANGII receptor type 1 activation that are associated with increases in NCC and SGK1 and identify elevated P450 4A11 activity and 20-HETE as potential risk factors for salt-sensitive human hypertension by perturbation of the renal renin-angiotensin axis.
Collapse
Affiliation(s)
- Üzen Savas
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | | | - Mei-Hui Hsu
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - John R Falck
- the Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - F Peter Guengerich
- Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, and
| | | | - Eric F Johnson
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037,
| |
Collapse
|
83
|
Ferdaus MZ, Barber KW, López-Cayuqueo KI, Terker AS, Argaiz ER, Gassaway BM, Chambrey R, Gamba G, Rinehart J, McCormick JA. SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule. J Physiol 2016; 594:4945-66. [PMID: 27068441 DOI: 10.1113/jp272311] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/07/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS STE20 (Sterile 20)/SPS-1 related proline/alanine-rich kinase (SPAK) and oxidative stress-response kinase-1 (OSR1) phosphorylate and activate the renal Na(+) -K(+) -2Cl(-) cotransporter 2 (NKCC2) and Na(+) Cl(-) cotransporter (NCC). Mouse models suggest that OSR1 mainly activates NKCC2-mediated sodium transport along the thick ascending limb, while SPAK mainly activates NCC along the distal convoluted tubule, but the kinases may compensate for each other. We hypothesized that disruption of both kinases would lead to polyuria and severe salt-wasting, and generated SPAK/OSR1 double knockout mice to test this. Despite a lack of SPAK and OSR1, phosphorylated NKCC2 abundance was still high, suggesting the existence of an alternative activating kinase. Compensatory changes in SPAK/OSR1-independent phosphorylation sites on both NKCC2 and NCC and changes in sodium transport along the collecting duct were also observed. Potassium restriction revealed that SPAK and OSR1 play essential roles in the emerging model that NCC activation is central to sensing changes in plasma [K(+) ]. ABSTRACT STE20 (Sterile 20)/SPS-1 related proline/alanine-rich kinase (SPAK) and oxidative stress-response kinase-1 (OSR1) activate the renal cation cotransporters Na(+) -K(+) -2Cl(-) cotransporter (NKCC2) and Na(+) -Cl(-) cotransporter (NCC) via phosphorylation. Knockout mouse models suggest that OSR1 mainly activates NKCC2, while SPAK mainly activates NCC, with possible cross-compensation. We tested the hypothesis that disrupting both kinases causes severe polyuria and salt-wasting by generating SPAK/OSR1 double knockout (DKO) mice. DKO mice displayed lower systolic blood pressure compared with SPAK knockout (SPAK-KO) mice, but displayed no severe phenotype even after dietary salt restriction. Phosphorylation of NKCC2 at SPAK/OSR1-dependent sites was lower than in SPAK-KO mice, but still significantly greater than in wild type mice. In the renal medulla, there was significant phosphorylation of NKCC2 at SPAK/OSR1-dependent sites despite a complete absence of SPAK and OSR1, suggesting the existence of an alternative activating kinase. The distal convoluted tubule has been proposed to sense plasma [K(+) ], with NCC activation serving as the primary effector pathway that modulates K(+) secretion, by metering sodium delivery to the collecting duct. Abundance of phosphorylated NCC (pNCC) is dramatically lower in SPAK-KO mice than in wild type mice, and the additional disruption of OSR1 further reduced pNCC. SPAK-KO and kidney-specific OSR1 single knockout mice maintained plasma [K(+) ] following dietary potassium restriction, but DKO mice developed severe hypokalaemia. Unlike mice lacking SPAK or OSR1 alone, DKO mice displayed an inability to phosphorylate NCC under these conditions. These data suggest that SPAK and OSR1 are essential components of the effector pathway that maintains plasma [K(+) ].
Collapse
Affiliation(s)
- Mohammed Z Ferdaus
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Karl W Barber
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, 06520, USA.,Systems Biology Institute, Yale University, Orange, CT, 06477, USA
| | - Karen I López-Cayuqueo
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Andrew S Terker
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Eduardo R Argaiz
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Brandon M Gassaway
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, 06520, USA.,Systems Biology Institute, Yale University, Orange, CT, 06477, USA
| | - Régine Chambrey
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, 06520, USA.,Systems Biology Institute, Yale University, Orange, CT, 06477, USA
| | - James A McCormick
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
84
|
Relative roles of principal and intercalated cells in the regulation of sodium balance and blood pressure. Curr Hypertens Rep 2016; 17:538. [PMID: 25794953 DOI: 10.1007/s11906-015-0538-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The kidney continuously adapts daily renal excretion of NaCl to match dietary intakes in order to maintain the NaCl content of the body, and keep vascular volume constant. Any situation that leads to NaCl retention favors a rise in blood pressure. The aldosterone-sensitive distal nephron, which contains two main types of cells, principal (PC) and intercalated (IC) cells, is an important site for the final regulation of urinary Na(+) excretion. Research over the past 20 years established a paradigm in which PCs are the exclusive site of Na(+) absorption while ICs are solely dedicated to acid-base transport. Recent studies have revealed the unexpected importance of ICs for NaCl reabsorption. Here, we review the mechanisms of Na(+) and Cl(-) transport in the aldosterone-sensitive distal nephron, with emphasis on the role of ICs in maintaining NaCl balance and normal blood pressure.
Collapse
|
85
|
Osmotic stress induces the phosphorylation of WNK4 Ser575 via the p38MAPK-MK pathway. Sci Rep 2016; 6:18710. [PMID: 26732173 PMCID: PMC4702109 DOI: 10.1038/srep18710] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/23/2015] [Indexed: 12/24/2022] Open
Abstract
The With No lysine [K] (WNK)-Ste20-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway has been reported to be a crucial signaling pathway for triggering pseudohypoaldosteronism type II (PHAII), an autosomal dominant hereditary disease that is characterized by hypertension. However, the molecular mechanism(s) by which the WNK-SPAK/OSR1 pathway is regulated remain unclear. In this report, we identified WNK4 as an interacting partner of a recently identified MAP3K, apoptosis signal-regulating kinase 3 (ASK3). We found that WNK4 is phosphorylated in an ASK3 kinase activity-dependent manner. By exploring the ASK3-dependent phosphorylation sites, we identified Ser575 as a novel phosphorylation site in WNK4 by LC-MS/MS analysis. ASK3-dependent WNK4 Ser575 phosphorylation was mediated by the p38MAPK-MAPK-activated protein kinase (MK) pathway. Osmotic stress, as well as hypotonic low-chloride stimulation, increased WNK4 Ser575 phosphorylation via the p38MAPK-MK pathway. ASK3 was required for the p38MAPK activation induced by hypotonic stimulation but was not required for that induced by hypertonic stimulation or hypotonic low-chloride stimulation. Our results suggest that the p38MAPK-MK pathway might regulate WNK4 in an osmotic stress-dependent manner but its upstream regulators might be divergent depending on the types of osmotic stimuli.
Collapse
|
86
|
With-No-Lysine Kinase 4 Mediates Alveolar Fluid Regulation in Hyperoxia-Induced Lung Injury. Crit Care Med 2015; 43:e412-9. [PMID: 26035408 DOI: 10.1097/ccm.0000000000001144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To investigate mechanisms involved in the regulation of epithelial ion channels and alveolar fluid clearance in hyperoxia-induced lung injury. DESIGN Laboratory animal experiments. SETTING Animal care facility procedure room in a medical center. SUBJECTS Wild-type, STE20/SPS1-related proline/alanine-rich kinase knockout (SPAK(-/-)), and with-no-lysine kinase 4 knockin (WNK4(D561A/+)) mice. INTERVENTIONS Mice were exposed to room air or 95% hyperoxia for 60 hours. MEASUREMENTS AND MAIN RESULTS Exposure to hyperoxia for 60 hours increased the lung expression of with-no-lysine kinase 4 and led to STE20/SPS1-related proline/alanine-rich kinase and sodium-potassium-chloride cotransporter phosphorylation, which resulted in the suppression of alveolar fluid clearance and increase of lung edema. WNK4(D561A/+) mice at the baseline presented an abundance of epithelium sodium channel and high levels of STE20/SPS1-related proline/alanine-rich kinase and sodium-potassium-chloride cotransporter phosphorylation. Compared with the wild-type group, hyperoxia caused greater epithelium sodium channel expression in WNK4(D561A/+) mice, but no significant difference in STE20/SPS1-related proline/alanine-rich kinase and sodium-potassium-chloride cotransporter phosphorylation. The functional inactivation of sodium-potassium-chloride cotransporter by gene knockout in SPAK(-/-) mice yielded a lower severity of lung injury and longer animal survival, whereas constitutive expression of with-no-lysine kinase 4 exacerbated the hyperoxia-induced lung injury. Pharmacologic inhibition of sodium-potassium-chloride cotransporter by inhaled furosemide improved animal survival in WNK4(D561A/+) mice. By contrast, inhibition of epithelium sodium channel exacerbated the hyperoxia-induced lung injury and animal death. CONCLUSIONS With-no-lysine kinase 4 plays a crucial role in the regulation of epithelial ion channels and alveolar fluid clearance, mainly via phosphorylation and activation of STE20/SPS1-related proline/alanine-rich kinase and sodium-potassium-chloride cotransporter.
Collapse
|
87
|
Abstract
More than two dozen types of potassium channels, with different biophysical and regulatory properties, are expressed in the kidney, influencing renal function in many important ways. Recently, a confluence of discoveries in areas from human genetics to physiology, cell biology, and biophysics has cast light on the special function of five different potassium channels in the distal nephron, encoded by the genes KCNJ1, KCNJ10, KCNJ16, KCNMA1, and KCNN3. Research aimed at understanding how these channels work in health and go awry in disease has transformed our understanding of potassium balance and provided new insights into mechanisms of renal sodium handling and the maintenance of blood pressure. This review focuses on recent advances in this rapidly evolving field.
Collapse
Affiliation(s)
- Paul A Welling
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| |
Collapse
|
88
|
Impaired degradation of WNK by Akt and PKA phosphorylation of KLHL3. Biochem Biophys Res Commun 2015; 467:229-34. [DOI: 10.1016/j.bbrc.2015.09.184] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/29/2015] [Indexed: 01/09/2023]
|
89
|
Involvement of selective autophagy mediated by p62/SQSTM1 in KLHL3-dependent WNK4 degradation. Biochem J 2015; 472:33-41. [DOI: 10.1042/bj20150500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 09/08/2015] [Indexed: 12/20/2022]
Abstract
WNK4 is degraded not only by proteasomes but also by p62–KLHL3-mediated selective autophagy, which may be involved in WNK regulation under certain pathophysiological conditions.
Collapse
|
90
|
Ellison DH, Terker AS, Gamba G. Potassium and Its Discontents: New Insight, New Treatments. J Am Soc Nephrol 2015; 27:981-9. [PMID: 26510885 DOI: 10.1681/asn.2015070751] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hyperkalemia is common in patients with impaired kidney function or who take drugs that inhibit the renin-angiotensin-aldosterone axis. During the past decade, substantial advances in understanding how the body controls potassium excretion have been made, which may lead to improved standard of care for these patients. Renal potassium disposition is primarily handled by a short segment of the nephron, comprising part of the distal convoluted tubule and the connecting tubule, and regulation results from the interplay between aldosterone and plasma potassium. When dietary potassium intake and plasma potassium are low, the electroneutral sodium chloride cotransporter is activated, leading to salt retention. This effect limits sodium delivery to potassium secretory segments, limiting potassium losses. In contrast, when dietary potassium intake is high, aldosterone is stimulated. Simultaneously, potassium inhibits the sodium chloride cotransporter. Because more sodium is then delivered to potassium secretory segments, primed by aldosterone, kaliuresis results. When these processes are disrupted, hyperkalemia results. Recently, new agents capable of removing potassium from the body and treating hyperkalemia have been tested in clinical trials. This development suggests that more effective and safer approaches to the prevention and treatment of hyperkalemia may be on the horizon.
Collapse
Affiliation(s)
- David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; Renal Section, Veterans Affairs Portland Health Care System, Portland, Oregon; and
| | - Andrew S Terker
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico
| |
Collapse
|
91
|
Araki Y, Rai T, Sohara E, Mori T, Inoue Y, Isobe K, Kikuchi E, Ohta A, Sasaki S, Uchida S. Generation and analysis of knock-in mice carrying pseudohypoaldosteronism type II-causing mutations in the cullin 3 gene. Biol Open 2015; 4:1509-17. [PMID: 26490675 PMCID: PMC4728349 DOI: 10.1242/bio.013276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Pseudohypoaldosteronism type II (PHAII) is a hereditary hypertensive disease caused by mutations in four different genes: with-no-lysine kinases (WNK) 1 and 4, Kelch-like family member 3 (KLHL3), and cullin 3 (Cul3). Cul3 and KLHL3 form an E3 ligase complex that ubiquitinates and reduces the expression level of WNK4. PHAII-causing mutations in WNK4 and KLHL3 impair WNK4 ubiquitination. However, the molecular pathogenesis of PHAII caused by Cul3 mutations is unclear. In cultured cells and human leukocytes, PHAII-causing Cul3 mutations result in the skipping of exon 9, producing mutant Cul3 protein lacking 57 amino acids. However, whether this phenomenon occurs in the kidneys and is responsible for the pathogenesis of PHAII in vivo is unknown. We generated knock-in mice carrying a mutation in the C-terminus of intron 8 of Cul3, c.1207−1G>A, which corresponds to a PHAII-causing mutation in the human Cul3 gene. Heterozygous Cul3G(−1)A/+ knock-in mice did not exhibit PHAII phenotypes, and the skipping of exon 9 was not evident in their kidneys. However, the level of Cul3 mRNA expression in the kidneys of heterozygous knock-in mice was approximately half that of wild-type mice. Furthermore, homozygous knock-in mice were nonviable. It suggested that the mutant allele behaved like a knockout allele and did not produce Cul3 mRNA lacking exon 9. A reduction in Cul3 expression alone was not sufficient to develop PHAII in the knock-in mice. Our findings highlighted the pathogenic role of mutant Cul3 protein and provided insight to explain why PHAII-causing mutations in Cul3 cause kidney-predominant PHAII phenotypes. Summary: A knock-in mutation in intron 8 of Cul3 in mice led to decreased Cul3 protein expression. Decreased Cul3 protein expression alone did not cause pseudohypoaldosteronism type II (PHAII).
Collapse
Affiliation(s)
- Yuya Araki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Yuichi Inoue
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Kiyoshi Isobe
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Eriko Kikuchi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Akihito Ohta
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Sei Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| |
Collapse
|
92
|
Schumacher FR, Siew K, Zhang J, Johnson C, Wood N, Cleary SE, Al Maskari RS, Ferryman JT, Hardege I, Yasmin, Figg NL, Enchev R, Knebel A, O'Shaughnessy KM, Kurz T. Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia. EMBO Mol Med 2015; 7:1285-1306. [PMID: 26286618 PMCID: PMC4604684 DOI: 10.15252/emmm.201505444] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 02/05/2023] Open
Abstract
Deletion of exon 9 from Cullin-3 (CUL3, residues 403-459: CUL3(Δ403-459)) causes pseudohypoaldosteronism type IIE (PHA2E), a severe form of familial hyperkalaemia and hypertension (FHHt). CUL3 binds the RING protein RBX1 and various substrate adaptors to form Cullin-RING-ubiquitin-ligase complexes. Bound to KLHL3, CUL3-RBX1 ubiquitylates WNK kinases, promoting their ubiquitin-mediated proteasomal degradation. Since WNK kinases activate Na/Cl co-transporters to promote salt retention, CUL3 regulates blood pressure. Mutations in both KLHL3 and WNK kinases cause PHA2 by disrupting Cullin-RING-ligase formation. We report here that the PHA2E mutant, CUL3(Δ403-459), is severely compromised in its ability to ubiquitylate WNKs, possibly due to altered structural flexibility. Instead, CUL3(Δ403-459) auto-ubiquitylates and loses interaction with two important Cullin regulators: the COP9-signalosome and CAND1. A novel knock-in mouse model of CUL3(WT) (/Δ403-459) closely recapitulates the human PHA2E phenotype. These mice also show changes in the arterial pulse waveform, suggesting a vascular contribution to their hypertension not reported in previous FHHt models. These findings may explain the severity of the FHHt phenotype caused by CUL3 mutations compared to those reported in KLHL3 or WNK kinases.
Collapse
Affiliation(s)
- Frances-Rose Schumacher
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Keith Siew
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Clare Johnson
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Nicola Wood
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Sarah E Cleary
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Raya S Al Maskari
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - James T Ferryman
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Iris Hardege
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Yasmin
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Nichola L Figg
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Kevin M O'Shaughnessy
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Thimo Kurz
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
93
|
Mandai S, Mori T, Sohara E, Rai T, Uchida S. Generation of Hypertension-Associated STK39 Polymorphism Knockin Cell Lines With the Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 System. Hypertension 2015; 66:1199-206. [PMID: 26416847 DOI: 10.1161/hypertensionaha.115.05872] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/08/2015] [Indexed: 01/11/2023]
Abstract
Previous genome-wide association studies identified serine threonine kinase 39 (STK39), encoding STE20/SPS1-related proline/alanine-rich kinase, as one of a limited number of hypertension susceptibility genes. A recent meta-analysis confirmed the association of STK39 intronic polymorphism rs3754777 with essential hypertension, among previously reported hypertension-associated STK39 polymorphisms. However, the biochemical function of this polymorphism in the mechanism responsible for hypertension is yet to be clarified. We generated rs3754777G>A knockin human cell lines with clustered regularly interspaced short palindromic repeats-mediated genome engineering. Homozygous (A/A) and heterozygous (G/A) knockin human embryonic kidney cell lines were generated using a double nickase, single-guide RNAs targeting STK39 intron 5 around single-nucleotide polymorphism, and a 100-bp donor single-stranded DNA oligonucleotide. Reverse transcription polymerase chain reaction with sequencing analyses revealed the identical STK39 transcripts among the wild-type and both knockin cell lines. Quantitative reverse transcription polymerase chain reaction showed increased STK39 mRNA expression, and immunoblot analysis revealed increases in total and phosphorylated STE20/SPS1-related proline/alanine-rich kinase with increased phosphorylated Na-K-Cl cotransporter isoform 1 in both knockin cell lines. The largest increases in these molecules were observed in the homozygous cell line. These findings indicated that this intronic polymorphism increases STK39 transcription, leading to activation of the STE20/SPS1-related proline/alanine-rich kinase-solute carrier family 12A signaling cascade. Increased interactions between STE20/SPS1-related proline/alanine-rich kinase and the target cation-chloride cotransporters may be responsible for hypertension susceptibility in individuals with this polymorphism.
Collapse
Affiliation(s)
- Shintaro Mandai
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Takayasu Mori
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Eisei Sohara
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Tatemitsu Rai
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Shinichi Uchida
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan.
| |
Collapse
|
94
|
Sohara E, Uchida S. Kelch-like 3/Cullin 3 ubiquitin ligase complex and WNK signaling in salt-sensitive hypertension and electrolyte disorder. Nephrol Dial Transplant 2015; 31:1417-24. [DOI: 10.1093/ndt/gfv259] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/22/2015] [Indexed: 12/20/2022] Open
|
95
|
Hunter RW, Ivy JR, Flatman PW, Kenyon CJ, Craigie E, Mullins LJ, Bailey MA, Mullins JJ. Hypertrophy in the Distal Convoluted Tubule of an 11β-Hydroxysteroid Dehydrogenase Type 2 Knockout Model. J Am Soc Nephrol 2015; 26:1537-48. [PMID: 25349206 PMCID: PMC4483573 DOI: 10.1681/asn.2013060634] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/12/2014] [Indexed: 11/03/2022] Open
Abstract
Na(+) transport in the renal distal convoluted tubule (DCT) by the thiazide-sensitive NaCl cotransporter (NCC) is a major determinant of total body Na(+) and BP. NCC-mediated transport is stimulated by aldosterone, the dominant regulator of chronic Na(+) homeostasis, but the mechanism is controversial. Transport may also be affected by epithelial remodeling, which occurs in the DCT in response to chronic perturbations in electrolyte homeostasis. Hsd11b2(-/-) mice, which lack the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) and thus exhibit the syndrome of apparent mineralocorticoid excess, provided an ideal model in which to investigate the potential for DCT hypertrophy to contribute to Na(+) retention in a hypertensive condition. The DCTs of Hsd11b2(-/-) mice exhibited hypertrophy and hyperplasia and the kidneys expressed higher levels of total and phosphorylated NCC compared with those of wild-type mice. However, the striking structural and molecular phenotypes were not associated with an increase in the natriuretic effect of thiazide. In wild-type mice, Hsd11b2 mRNA was detected in some tubule segments expressing Slc12a3, but 11βHSD2 and NCC did not colocalize at the protein level. Thus, the phosphorylation status of NCC may not necessarily equate to its activity in vivo, and the structural remodeling of the DCT in the knockout mouse may not be a direct consequence of aberrant corticosteroid signaling in DCT cells. These observations suggest that the conventional concept of mineralocorticoid signaling in the DCT should be revised to recognize the complexity of NCC regulation by corticosteroids.
Collapse
Affiliation(s)
- Robert W Hunter
- British Heart Foundation Centre for Cardiovascular Science and
| | - Jessica R Ivy
- British Heart Foundation Centre for Cardiovascular Science and
| | - Peter W Flatman
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Eilidh Craigie
- British Heart Foundation Centre for Cardiovascular Science and
| | - Linda J Mullins
- British Heart Foundation Centre for Cardiovascular Science and
| | | | - John J Mullins
- British Heart Foundation Centre for Cardiovascular Science and
| |
Collapse
|
96
|
Huang CL, Cheng CJ. A unifying mechanism for WNK kinase regulation of sodium-chloride cotransporter. Pflugers Arch 2015; 467:2235-41. [PMID: 25904388 DOI: 10.1007/s00424-015-1708-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
Abstract
Mammalian with-no-lysine [K] (WNK) kinases are a family of four serine-threonine protein kinases, WNK1-4. Mutations of WNK1 and WNK4 in humans cause pseudohypoaldosteronism type II (PHA2), an autosomal-dominant disease characterized by hypertension and hyperkalemia. Increased Na(+) reabsorption through Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule plays an important role in the pathogenesis of hypertension in patients with PHA2. However, how WNK1 and WNK4 regulate NCC and how mutations of WNKs cause activation of NCC have been controversial. Here, we review current state of literature supporting a compelling model that WNK1 and WNK4 both contribute to stimulation of NCC. The precise combined effects of WNK1 and WNK4 on NCC remain unclear but likely are positive rather than antagonistic. The recent discovery that WNK kinases may function as an intracellular chloride sensor adds a new dimension to the physiological role of WNK kinases. Intracellular chloride-dependent regulation of WNK's may underlie the mechanism of regulation of NCC by extracellular K(+). Definite answer yet will require future investigation by tubular perfusion in mice with altered WNK kinase expression.
Collapse
Affiliation(s)
- Chou-Long Huang
- Department of Internal Medicine, Division of Nephrology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-8856, USA.
| | - Chih-Jen Cheng
- Department of Medicine, Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
97
|
Mayan H, Carmon V, Oleinikov K, London S, Halevy R, Holtzman EJ, Tenenbaum-Rakover Y, Farfel Z, Hanukoglu A. Hypercalciuria in familial hyperkalemia and hypertension with KLHL3 mutations. Nephron Clin Pract 2015; 130:59-65. [PMID: 25925082 DOI: 10.1159/000381563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/10/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Familial hyperkalemia and hypertension (FHHt) is a rare genetic disorder manifested by hyperkalemia and early hypertension. Hypercalciuria is another accompanying feature. Mutations in WNK4 and WNK1 were found initially, and recently additional mutations were found in two genes, KLHL3 and CUL3, which are components of the Ubiquitin system. It was not reported whether these latter mutations are accompanied by hypercalciuria. METHODS We compared urinary calcium excretion (UCa) in affected subjects with FHHt and KLHL3 mutations, and in their unaffected family members, and in affected subjects with FHHt and WNK4 Q565E mutation. RESULTS Two new families with FHHt including a total number of 23 subjects, 10 of them affected, in whom previously described mutations in KLHL3 (Q309R and R528H) were identified. Presenting features were short stature in the first family, and transient tachypnea of the newborn (TTN) in the second. Affected subjects had hypercalciuria. UCa levels in affected subjects in the two families were significantly higher than in unaffected subjects (0.608 ± 0.196 vs. 0.236 ± 0.053 mmol Ca per mmol creatinine, respectively (p < 0.0001)). Hypercalciuria in FHHt with KLHL3 mutations is less severe than that observed in FHHt with the Q565E WNK4 mutation (0.608 ± 0.196 (n = 10) mmol Ca per mmol creatinine versus 0.860 ± 0.295 (n = 29), respectively (p = 0.0168)). CONCLUSIONS FHHt caused by KLHL3 mutations is accompanied by hypercalciuria as well as hyperkalemia and hypertension. The similar phenomena observed for FHHt caused by WNK4 mutations fits the other evidence that WNK4 mutations are activating, and the aberrant mechanism of calcium handling by the kidney in FHHt.
Collapse
Affiliation(s)
- Haim Mayan
- Department of Medicine E, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Grimm PR, Lazo-Fernandez Y, Delpire E, Wall SM, Dorsey SG, Weinman EJ, Coleman R, Wade JB, Welling PA. Integrated compensatory network is activated in the absence of NCC phosphorylation. J Clin Invest 2015; 125:2136-50. [PMID: 25893600 DOI: 10.1172/jci78558] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/09/2015] [Indexed: 12/11/2022] Open
Abstract
Thiazide diuretics are used to treat hypertension; however, compensatory processes in the kidney can limit antihypertensive responses to this class of drugs. Here, we evaluated compensatory pathways in SPAK kinase-deficient mice, which are unable to activate the thiazide-sensitive sodium chloride cotransporter NCC (encoded by Slc12a3). Global transcriptional profiling, combined with biochemical, cell biological, and physiological phenotyping, identified the gene expression signature of the response and revealed how it establishes an adaptive physiology. Salt reabsorption pathways were created by the coordinate induction of a multigene transport system, involving solute carriers (encoded by Slc26a4, Slc4a8, and Slc4a9), carbonic anhydrase isoforms, and V-type H⁺-ATPase subunits in pendrin-positive intercalated cells (PP-ICs) and ENaC subunits in principal cells (PCs). A distal nephron remodeling process and induction of jagged 1/NOTCH signaling, which expands the cortical connecting tubule with PCs and replaces acid-secreting α-ICs with PP-ICs, were partly responsible for the compensation. Salt reabsorption was also activated by induction of an α-ketoglutarate (α-KG) paracrine signaling system. Coordinate regulation of a multigene α-KG synthesis and transport pathway resulted in α-KG secretion into pro-urine, as the α-KG-activated GPCR (Oxgr1) increased on the PP-IC apical surface, allowing paracrine delivery of α-KG to stimulate salt transport. Identification of the integrated compensatory NaCl reabsorption mechanisms provides insight into thiazide diuretic efficacy.
Collapse
|
99
|
Regulation of blood pressure and renal electrolyte balance by Cullin-RING ligases. Curr Opin Nephrol Hypertens 2015; 23:487-93. [PMID: 24992566 DOI: 10.1097/mnh.0000000000000049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Efforts to explore the pathogenic mechanisms underlying hereditary hypertension caused by a single gene mutation have brought about conceptual advances in our understanding of blood pressure regulation. We here discuss a novel pathogenic mechanism underlying the hereditary hypertensive disease pseudohypoaldosteronism type II (PHAII), caused by mutations in three different genes encoding for Cullin-3, Kelch-like protein 3 (KLHL3), and with-no-lysine kinases (WNKs). RECENT FINDINGS In 2001, mutations in genes encoding for WNKs were identified as being responsible for PHAII. Recent advancements in genetics, in particular whole-exome sequencing, have revealed that mutations in two additional genes encoding for KLHL3 and Cyllin3 also cause PHAII. This discovery contributed to the clarification of the previously unknown regulatory mechanism of WNKs, namely WNK ubiquitination by the KLHL3-Cullin-3 E3 ligase complex. SUMMARY Levels of WNKs within cells are regulated via ubiquitination by the KLHL3-Cullin-3 E3 ligase complex and are important determinants of the activity of the WNK-oxidative stress-responsive gene 1 and Ste20-related proline-alanine-rich kinase-SLC12A transporter signaling cascade. The PHAII-causing mutations in WNK4, KLHL3, and Cullin-3 result in the decreased ubiquitination and increased abundance of WNK4 in the kidney, thereby activating the thiazide-sensitive NaCl cotransporter and causing PHAII.
Collapse
|
100
|
Abstract
The kidney filters vast quantities of Na at the glomerulus but excretes a very small fraction of this Na in the final urine. Although almost every nephron segment participates in the reabsorption of Na in the normal kidney, the proximal segments (from the glomerulus to the macula densa) and the distal segments (past the macula densa) play different roles. The proximal tubule and the thick ascending limb of the loop of Henle interact with the filtration apparatus to deliver Na to the distal nephron at a rather constant rate. This involves regulation of both filtration and reabsorption through the processes of glomerulotubular balance and tubuloglomerular feedback. The more distal segments, including the distal convoluted tubule (DCT), connecting tubule, and collecting duct, regulate Na reabsorption to match the excretion with dietary intake. The relative amounts of Na reabsorbed in the DCT, which mainly reabsorbs NaCl, and by more downstream segments that exchange Na for K are variable, allowing the simultaneous regulation of both Na and K excretion.
Collapse
Affiliation(s)
- Lawrence G Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York; and
| | - Jürgen Schnermann
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|