51
|
Ribeiro FM, Silva MA, Lyssa V, Marques G, Lima HK, Franco OL, Petriz B. The molecular signaling of exercise and obesity in the microbiota-gut-brain axis. Front Endocrinol (Lausanne) 2022; 13:927170. [PMID: 35966101 PMCID: PMC9365995 DOI: 10.3389/fendo.2022.927170] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is one of the major pandemics of the 21st century. Due to its multifactorial etiology, its treatment requires several actions, including dietary intervention and physical exercise. Excessive fat accumulation leads to several health problems involving alteration in the gut-microbiota-brain axis. This axis is characterized by multiple biological systems generating a network that allows bidirectional communication between intestinal bacteria and brain. This mutual communication maintains the homeostasis of the gastrointestinal, central nervous and microbial systems of animals. Moreover, this axis involves inflammatory, neural, and endocrine mechanisms, contributes to obesity pathogenesis. The axis also acts in appetite and satiety control and synthesizing hormones that participate in gastrointestinal functions. Exercise is a nonpharmacologic agent commonly used to prevent and treat obesity and other chronic degenerative diseases. Besides increasing energy expenditure, exercise induces the synthesis and liberation of several muscle-derived myokines and neuroendocrine peptides such as neuropeptide Y, peptide YY, ghrelin, and leptin, which act directly on the gut-microbiota-brain axis. Thus, exercise may serve as a rebalancing agent of the gut-microbiota-brain axis under the stimulus of chronic low-grade inflammation induced by obesity. So far, there is little evidence of modification of the gut-brain axis as a whole, and this narrative review aims to address the molecular pathways through which exercise may act in the context of disorders of the gut-brain axis due to obesity.
Collapse
Affiliation(s)
- Filipe M. Ribeiro
- Post-Graduation Program in Physical Education, Catholic University of Brasilia, Brasilia, Brazil
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
- Laboratory of Molecular Exercise Physiology - University Center of the Federal District - UDF, Brasilia, Brazil
| | - Maycon A. Silva
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
| | - Victória Lyssa
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, University of Brasilia, Brasilia, Brazil
| | - Gabriel Marques
- Laboratory of Molecular Exercise Physiology - University Center of the Federal District - UDF, Brasilia, Brazil
| | - Henny K. Lima
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
| | - Octavio L. Franco
- Post-Graduation Program in Physical Education, Catholic University of Brasilia, Brasilia, Brazil
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
- S-Inova Biotech, Catholic University Dom Bosco, Biotechnology Program, Campo Grande, Brazil
| | - Bernardo Petriz
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
- Laboratory of Molecular Exercise Physiology - University Center of the Federal District - UDF, Brasilia, Brazil
- Postgraduate Program in Rehabilitation Sciences - University of Brasília, Brasília, Brazil
| |
Collapse
|
52
|
Horiguchi H, Kadomatsu T, Yumoto S, Masuda T, Miyata K, Yamamura S, Sato M, Morinaga J, Ohtsuki S, Baba H, Moroishi T, Oike Y. Tumor cell-derived ANGPTL2 promotes β-catenin-driven intestinal tumorigenesis. Oncogene 2022; 41:4028-4041. [PMID: 35831580 DOI: 10.1038/s41388-022-02405-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Uncontrolled proliferation of intestinal epithelial cells caused by mutations in genes of the WNT/β-catenin pathway is associated with development of intestinal cancers. We previously reported that intestinal stromal cell-derived angiopoietin-like protein 2 (ANGPTL2) controls epithelial regeneration and intestinal immune responses. However, the role of tumor cell-derived ANGPTL2 in intestinal tumorigenesis remained unclear. Here, we show that tumor cell-derived ANGPTL2 promotes β-catenin-driven intestinal tumorigenesis. ANGPTL2 deficiency suppressed intestinal tumor development in an experimental mouse model of sporadic colon cancer. We also found that increased ANGPTL2 expression in colorectal cancer (CRC) cells augments β-catenin pathway signaling and promotes tumor cell proliferation. Relevant to mechanism, our findings suggest that tumor cell-derived ANGPTL2 upregulates expression of OB-cadherin, which then interacts with β-catenin, blocking destruction complex-independent proteasomal degradation of β-catenin proteins. Moreover, our observations support a model whereby ANGPTL2-induced OB-cadherin expression in CRC cells is accompanied by decreased cell surface integrin α5β1 expression. These findings overall provide novel insight into mechanisms of β-catenin-driven intestinal tumorigenesis.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Aging and Geriatric Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Shinsei Yumoto
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Shuji Yamamura
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Department of Aging and Geriatric Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
53
|
Wang K, Wang YY, Wu LL, Jiang LY, Hu Y, Xiao XH, Wang YD. Paracrine Regulation of Adipose Tissue Macrophages by Their Neighbors in the Microenvironment of Obese Adipose Tissue. Endocrinology 2022; 163:bqac062. [PMID: 35536227 DOI: 10.1210/endocr/bqac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/19/2022]
Abstract
Obesity has recently been defined as a chronic low-grade inflammatory disease. Obesity-induced inflammation of adipose tissue (AT) is an essential trigger for insulin resistance (IR) and related metabolic diseases. Although the underlying molecular basis of this inflammation has not been fully identified, there is consensus that the recruited and activated macrophages in AT are the most important culprits of AT chronic inflammation. Adipose tissue macrophages (ATMs) are highly plastic and could be polarized from an anti-inflammatory M2 to proinflammatory M1 phenotypes on stimulation by microenvironmental signals from obese AT. Many efforts have been made to elucidate the molecular signaling pathways of macrophage polarization; however, the upstream drivers governing and activating macrophage polarization have rarely been summarized, particularly regulatory messages from the AT microenvironment. In addition to adipocytes, the AT bed also contains a variety of immune cells, stem cells, as well as vascular, neural, and lymphatic tissues throughout, which together orchestrate the AT microenvironment. Here, we summarize how the aforesaid neighbors of ATMs in the AT microenvironment send messages to ATMs and thus regulate its phenotype during obesity. Deciphering the biology and polarization of ATMs in the obese environment is expected to provide a precise immunotherapy for adipose inflammation and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Kai Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Liang-Liang Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Li-Yan Jiang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yin Hu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
54
|
Zhao W, Morinaga J, Ukawa S, Endo M, Yamada H, Kawamura T, Wakai K, Tsushita K, Ando M, Suzuki K, Oike Y, Tamakoshi A. Plasma angiopoietin-like protein 2 levels and mortality risk among younger-old Japanese people: a population-based case-cohort study. J Gerontol A Biol Sci Med Sci 2022; 77:1150-1158. [PMID: 35037044 DOI: 10.1093/gerona/glac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 11/14/2022] Open
Abstract
Aging is important medical and social problem. Excessive angiopoietin-like protein (ANGPTL)-2 signaling causes chronic tissue inflammation, promoting development and progression of aging-related diseases. Moreover, circulating ANGPTL2 levels reportedly predict risk of some aging-related diseases and subsequent death. However, there are as yet no reports of whether circulating ANGPTL2 levels predict vital prognosis in younger-old, community-dwelling populations. This study investigated associations between plasma ANGPTL2 levels and all-cause and specific-cause mortality in this population. The case-cohort study was abstracted from an on-going, age-specific prospective cohort study: the New Integrated Suburban Seniority Investigation Project. This project enrolled 3073 participants aged 64 years at the beginning of the investigation from 1996 through 2005. A sub-cohort of 714 randomly sampled participants plus 387 cases representing deceased participants followed through 2015 underwent survival analysis. Plasma ANGPTL2 concentrations were positively associated with >80% and 100% higher risk of all-cause mortality and cancer mortality, respectively, after adjustment for gender, smoking, alcohol consumption, walking time, sleep duration, caloric intake, medical status, disease history, BMI, and triglyceride, creatinine, uric acid, and high sensitivity C-reactive protein levels. More robust association between ANGPTL2 levels and all-cause and cancer mortality was seen in subjects with either frailties or with lifestyles of heavier drinking or current smoking. Elevated plasma ANGPTL2 levels are associated with high all-cause and cancer mortality in a community-dwelling sample of younger-old adults. These findings expand our knowledge of human aging and associated diseases.
Collapse
Affiliation(s)
- Wenjing Zhao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China.,Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigekazu Ukawa
- Research Unit of Advanced Interdisciplinary Care Science, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Aichi, Japan
| | | | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuyo Tsushita
- Comprehensive Health Science Center, Aichi Health Promotion Public Interest Foundation, Chita, Aichi, Japan
| | - Masahiko Ando
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Aichi, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiko Tamakoshi
- Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
55
|
Chen W, Wang J, Wang X, Chang P, Liang M. Knockdown of hypoxia-inducible factor 1-alpha (HIF1α) interferes with angiopoietin-like protein 2 (ANGPTL2) to attenuate high glucose-triggered hypoxia/reoxygenation injury in cardiomyocytes. Bioengineered 2022; 13:1476-1490. [PMID: 34974813 PMCID: PMC8805963 DOI: 10.1080/21655979.2021.2019874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
To investigate the role of hypoxia-inducible factor 1-alpha (HIF1A) in hypoxia/reoxygenation (H/R) injury of cardiomyocytes induced by high glucose (HG). The in vitro model of coronary heart disease with diabetes was that H9c2 cells were stimulated by H/R and HG. Quantitative reverse transcription PCR (RT-qPCR) and Western blot analysis were used to detect the expression of HIF1A and angiopoietin-like protein 2 (ANGPTL2) in H9c2 cells. Cell viability and apoptosis were, respectively, estimated by Cell Counting Kit 8 (CCK-8) and TUNEL assays. Lactate dehydrogenase (LDH) activity, inflammation and oxidative stress were in turn detected by their commercial assay kits. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were used to confirm the association between HIF1A and ANGPTL2 promoter. The expression of nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway-related proteins and apoptosis-related proteins were also detected by Western blot analysis. As a result, ANGPTL2 expression was upregulated in H9c2 cells induced by HG or/and H/R. ANGPTL2 positively modulated HIF1A expression in H9c2 cells. HG or/and H/R suppressed the cell viability and promoted apoptosis, inflammatory response and oxidative stress levels in H9c2 cells. However, the knockdown of ANGPTL2 could reverse the above phenomena in H/R-stimulated-H9c2 cells through activation of Nrf2/HO-1 pathway. HIF1A transcriptionally activated ANGPTL2 expression. The effect of knockdown of ANGPTL2 on H/R triggered-H9c2 cells was weakened by HIF1A overexpression. In conclusion, knockdown of HIF1A downregulated ANGPTL2 to alleviate H/R injury in HG-induced H9c2 cells by activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Weiguo Chen
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, P.R. China
| | - Jianbang Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, P.R. China
| | - Xihui Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, P.R. China
| | - Pan Chang
- Experimental Center, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, P.R. China
| | - Meng Liang
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, P.R. China
| |
Collapse
|
56
|
Dai H, Liu F, Lu J, Yang Y, Liu P. miR-124-3p Combined with ANGPTL2 Has High Diagnostic Values for Obese and Nonobese Polycystic Ovary Syndrome. Int J Endocrinol 2022; 2022:2155018. [PMID: 35747760 PMCID: PMC9213205 DOI: 10.1155/2022/2155018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/08/2022] [Accepted: 05/10/2022] [Indexed: 12/28/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a hormonal disorder that affects 5-20% of women of reproductive age. Interestingly, serum miR-124-3p and ANGPTL2 are differentially expressed in PCOS patients. Accordingly, this study set out to explore the clinical roles of serum miR-124-3p/ANGPTL2 in PCOS. Firstly, miR-124-3p/ANGPTL2 expression patterns were detected in the serum of 102 PCOS patients and 100 healthy subjects. miR-124-3p or/and ANGPTL2 diagnostic efficacy on PCOS was further analyzed, in addition to the measurement of lipid metabolism, glucose metabolism, sex hormone indexes, and inflammation levels. Correlations between serum miR-124-3p/ANGPTL2 expressions and age, BMI, Ferriman-Gallwey score, lipid metabolism, glucose metabolism, sex hormone indexes, TNF-α, and IL-6 in PCOS patients were determined. The expression correlation and binding relationship of ANGPTL2 and miR-124-3p were identified. In addition, miR-124-3p was downregulated and ANGPTL2 was upregulated in the serum of obese and nonobese PCOS patients. miR-124-3p expression was found to be negatively correlated with Ferriman-Gallwey score and serum total testosterone (T), and negatively related to prolactin (PRL). ANGPTL2 expression was positively correlated with FNS and inversely linked with PRL. TNF-α and IL-6 were negatively correlated with miR-124-3p, but positively correlated with ANGPTL2. Furthermore, there was a negative correlation and a targeting relationship between ANGPTL2 and miR-124-3p expression in the serum of obese and nonobese PCOS patients. Collectively, our findings indicated that miR-124-3p might target ANGPTL2 expression in obese and nonobese PCOS patients, and further underscored the diagnostic value of their combination.
Collapse
Affiliation(s)
- Hongmei Dai
- Department of Reproductive Medicine, Dongying People's Hospital, Dongying, Shandong, China
| | - Fangting Liu
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong, China
| | - Jianshu Lu
- Department of Orthopaedics, Dongying People's Hospital, Dongying, Shandong, China
| | - Yan Yang
- Department of Respiratory, Dongying People's Hospital, Dongying, Shandong, China
| | - Pingping Liu
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong, China
| |
Collapse
|
57
|
Endothelial cell-derived angiopoietin-like protein 2 supports hematopoietic stem cell activities in bone marrow niches. Blood 2021; 139:1529-1540. [PMID: 34929029 PMCID: PMC9015010 DOI: 10.1182/blood.2021011644] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/11/2021] [Indexed: 11/20/2022] Open
Abstract
Endothelial cell-derived ANGPTL2 is important for the maintenance of HSC activities in bone marrow niches. ANGPTL2-mediated signaling pathways enhance PPARδ expression to transactivate G0s2 to sustain HSC activities.
Bone marrow niche cells have been reported to fine-tune hematopoietic stem cell (HSC) stemness via direct interaction or secreted components. Nevertheless, how niche cells control HSC activities remains largely unknown. We previously showed that angiopoietin-like protein 2 (ANGPTL2) can support the ex vivo expansion of HSCs by binding to human leukocyte immunoglobulin-like receptor B2. However, how ANGPTL2 from specific niche cell types regulates HSC activities under physiological conditions is still not clear. Herein, we generated an Angptl2-flox/flox transgenic mouse line and conditionally deleted Angptl2 expression in several niche cells, including Cdh5+ or Tie2+ endothelial cells, Prx1+ mesenchymal stem cells, and Pf4+ megakaryocytes, to evaluate its role in the regulation of HSC fate. Interestingly, we demonstrated that only endothelial cell-derived ANGPTL2 and not ANGPTL2 from other niche cell types plays important roles in supporting repopulation capacity, quiescent status, and niche localization. Mechanistically, ANGPTL2 enhances peroxisome-proliferator-activated receptor D (PPARD) expression to transactivate G0s2 to sustain the perinuclear localization of nucleolin to prevent HSCs from entering the cell cycle. These findings reveal that endothelial cell-derived ANGPTL2 serves as a critical niche component to maintain HSC stemness, which may benefit the understanding of stem cell biology in bone marrow niches and the development of a unique strategy for the ex vivo expansion of HSCs.
Collapse
|
58
|
Takano M, Hirose N, Sumi C, Yanoshita M, Nishiyama S, Onishi A, Asakawa Y, Tanimoto K. ANGPTL2 Promotes Inflammation via Integrin α5β1 in Chondrocytes. Cartilage 2021; 13:885S-897S. [PMID: 31581797 PMCID: PMC8804837 DOI: 10.1177/1947603519878242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Angiopoietin-like protein 2 (ANGPTL2) is a secreted molecule with numerous physiologic and pathologic functions, for example, in angiogenesis, hematopoiesis, and tumorigenesis. Although recent studies implicated ANGPTL2 in chronic inflammation in mouse peritoneal macrophages, human ligamentum flavum fibroblasts, and human retinal microvascular endothelial cells, the mechanism underlying ANGPTL2-associated inflammation in chondrocytes remains unclear. Therefore, it was investigated whether ANGPTL2 is expressed in or functions in chondrocytes. METHODS Expression of ANGPTL2 and its receptor, integrin α5β1 were examined over time in ATDC5 cells using real-time RT-PCR (reverse transcription-polymerase chain reaction) analysis. ATDC5 cells were then incubated with or without ANGPTL2 for 3 hours, and expression of the IL-1β, TNF-α, COX-2, aggrecanase (ADAMTS)-5, matrix metalloproteinase (MMP)-3, and MMP-13 genes were examined using real-time RT-PCR. Additionally, phosphorylation of ERK, JNK, p38, Akt, and NF-κB was examined by western blotting. Furthermore, it was also investigated for the effect of anti-integrin α5β1 antibody on the expression of inflammatory markers and intracellular signaling pathways. RESULTS ANGPTL2 induced the phosphorylation of all 3 MAPKs, Akt, and NF-κB and dramatically upregulated the expression of inflammation-related factor genes. Inhibiting the activation of integrin α5β1 suppressed these reactions. CONCLUSION ANGPTL2 may induce inflammatory factors by stimulating the integrin α5β1/MAPKs, Akt, and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Mami Takano
- Department of Orthodontics and
Craniofacial Developmental Biology, Hiroshima University Graduate School of
Biomedical and Health Sciences, Hiroshima, Japan
| | - Naoto Hirose
- Department of Orthodontics and
Craniofacial Developmental Biology, Hiroshima University Graduate School of
Biomedical and Health Sciences, Hiroshima, Japan,Naoto Hirose, Department of Orthodontics and
Craniofacial Developmental Biology, Hiroshima University Graduate School of
Biomedical and Health Sciences, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551,
Japan.
| | - Chikako Sumi
- Department of Orthodontics and
Craniofacial Developmental Biology, Hiroshima University Graduate School of
Biomedical and Health Sciences, Hiroshima, Japan
| | - Makoto Yanoshita
- Department of Orthodontics and
Craniofacial Developmental Biology, Hiroshima University Graduate School of
Biomedical and Health Sciences, Hiroshima, Japan
| | - Sayuri Nishiyama
- Department of Orthodontics and
Craniofacial Developmental Biology, Hiroshima University Graduate School of
Biomedical and Health Sciences, Hiroshima, Japan
| | - Azusa Onishi
- Department of Orthodontics and
Craniofacial Developmental Biology, Hiroshima University Graduate School of
Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuki Asakawa
- Department of Orthodontics and
Craniofacial Developmental Biology, Hiroshima University Graduate School of
Biomedical and Health Sciences, Hiroshima, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and
Craniofacial Developmental Biology, Hiroshima University Graduate School of
Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
59
|
Thorin-Trescases N, Labbé P, Mury P, Lambert M, Thorin E. Angptl2 is a Marker of Cellular Senescence: The Physiological and Pathophysiological Impact of Angptl2-Related Senescence. Int J Mol Sci 2021; 22:12232. [PMID: 34830112 PMCID: PMC8624568 DOI: 10.3390/ijms222212232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is a cell fate primarily induced by DNA damage, characterized by irreversible growth arrest in an attempt to stop the damage. Senescence is a cellular response to a stressor and is observed with aging, but also during wound healing and in embryogenic developmental processes. Senescent cells are metabolically active and secrete a multitude of molecules gathered in the senescence-associated secretory phenotype (SASP). The SASP includes inflammatory cytokines, chemokines, growth factors and metalloproteinases, with autocrine and paracrine activities. Among hundreds of molecules, angiopoietin-like 2 (angptl2) is an interesting, although understudied, SASP member identified in various types of senescent cells. Angptl2 is a circulatory protein, and plasma angptl2 levels increase with age and with various chronic inflammatory diseases such as cancer, atherosclerosis, diabetes, heart failure and a multitude of age-related diseases. In this review, we will examine in which context angptl2 was identified as a SASP factor, describe the experimental evidence showing that angptl2 is a marker of senescence in vitro and in vivo, and discuss the impact of angptl2-related senescence in both physiological and pathological conditions. Future work is needed to demonstrate whether the senescence marker angptl2 is a potential clinical biomarker of age-related diseases.
Collapse
Affiliation(s)
- Nathalie Thorin-Trescases
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
| | - Pauline Labbé
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Pauline Mury
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Eric Thorin
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
60
|
Jiang C, Yao S, Guo Y, Ma L, Wang X, Chen Y, Zhang H, Cao Z. Angiopoietin-like protein 2 deficiency promotes periodontal inflammation and alveolar bone loss. J Periodontol 2021; 93:1525-1539. [PMID: 34709660 DOI: 10.1002/jper.21-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/29/2021] [Accepted: 10/21/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Human periodontitis is a highly prevalent inflammatory disease that leads to connective tissue degradation, alveolar bone resorption, and tooth loss. Angiopoietin-like 2 (ANGPTL2) regulates chronic inflammation in various diseases and is functionally involved in maintaining tissue homeostasis and promoting tissue regeneration, but there is limited information about its function in periodontitis. Here we investigated the expression and explicit role of ANGPTL2 in periodontitis. METHODS Immunohistochemistry and quantitative real-time PCR (qRT-PCR) were used to detect the ANGPTL2 expression in periodontal tissues and periodontal ligament cells (PDLCs). A ligature-induced periodontitis model was generated in wild-type and ANGPTL2 knockout mice. qRT-PCR and enzyme-linked immunosorbent assay were used to assess the production of inflammatory cytokines and matrix metalloproteinases (MMPs) in cultured PDLCs. Western blot was performed to detect proteins in relevant signaling pathways. RESULTS Increased ANGPTL2 expression was observed in inflamed periodontal tissues and PDLCs. ANGPTL2 deficiency promoted alveolar bone loss with enhanced osteoclastogenesis and inflammatory reactions in ligature-induced periodontitis. Downregulation of ANGPTL2 remarkably enhanced expression levels of interleukin (IL)-6, IL-8, MMP1, and MMP13 in Porphyromonas gingivalis lipopolysaccharide-induced PDLCs, whereas ANGPTL2-overexpressing PDLCs showed opposite trends. ANGPTL2 downregulation activated STAT3 and nuclear factor-κB pathways and blocked Akt signaling under inflammatory environment. Treatment with a STAT3 inhibitor partially suppressed the inflammatory reaction of PDLCs mediated by ANGPTL2 knockdown. CONCLUSIONS Our study provides the first evidence of an anti-inflammatory effect of ANGPTL2 in murine periodontitis. The findings demonstrate the critical and protective role of ANGPTL2 in alveolar bone loss and periodontal inflammation.
Collapse
Affiliation(s)
- Chenxi Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Siqi Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuan Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huihui Zhang
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
61
|
Tanaka C, Kurose S, Morinaga J, Takao N, Miyauchi T, Tsutsumi H, Shiojima I, Oike Y, Kimura Y. Serum Angiopoietin-Like Protein 2 and NT-Pro BNP Levels and Their Associated Factors in Patients with Chronic Heart Failure Participating in a Phase III Cardiac Rehabilitation Program. Int Heart J 2021; 62:980-987. [PMID: 34544978 DOI: 10.1536/ihj.21-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Angiopoietin-like protein 2 (ANGPTL2) promotes chronic inflammation and plays a key role in the pathogenesis of heart failure. Cardiac rehabilitation (CR) is an integral component of heart failure management and has been shown to have anti-inflammatory effects. However, ANGPTL2 concentration in chronic heart failure patients undergoing CR has not been evaluated. This study aimed to investigate serum ANGPTL2 levels and their associated factors and compare the results with those of N-terminal pro-brain natriuretic peptide (NT-proBNP) in patients with chronic heart failure undergoing phase III CR.A total of 56 patients were enrolled. Clinical characteristics including body composition, grip strength, exercise tolerance, duration of CR, blood counts and biochemistry, and echocardiographic parameters were evaluated for their association with serum ANGPTL2 and NT-proBNP levels.The median (first and third quartiles) value of ANGPTL2 was 4.05 (2.70-5.57) ng/mL. Clinical parameters that correlated with serum ANGPTL2 levels were body weight, body mass index, body fat mass, body fat percentage, anaerobic threshold (AT), C-reactive protein, and total protein (TP), which were mostly distinct from those that correlated with serum NT-proBNP levels. A multivariate analysis revealed that AT and TP were independent factors related to ANGPTL2 levels, whereas age, left ventricular ejection fraction, and left atrial dimension were independently related to NT-proBNP levels.These observations suggest that CR increases the exercise tolerance and exhibits anti-inflammatory effects simultaneously, and this situation is reflected by decreased serum ANGPLT2 and TP levels. ANGPTL2 may be a useful marker of inflammation and impaired exercise tolerance in patients with chronic heart failure.
Collapse
Affiliation(s)
- Chiharu Tanaka
- Department of Health Science, Kansai Medical University.,Division of Cardiology, Department of Medicine II, Kansai Medical University.,Health Science Center, Kansai Medical University Hospital
| | | | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| | - Nana Takao
- Department of Health Science, Kansai Medical University.,Health Science Center, Kansai Medical University Hospital
| | - Takumi Miyauchi
- Department of Health Science, Kansai Medical University.,Health Science Center, Kansai Medical University Hospital
| | | | - Ichiro Shiojima
- Division of Cardiology, Department of Medicine II, Kansai Medical University
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| | - Yutaka Kimura
- Department of Health Science, Kansai Medical University.,Division of Cardiology, Department of Medicine II, Kansai Medical University.,Health Science Center, Kansai Medical University Hospital
| |
Collapse
|
62
|
Angiopoietin-Like Proteins 2 and 3 in Children and Adolescents with Obesity and Their Relationship with Hypertension and Metabolic Syndrome. Int J Hypertens 2021; 2021:6748515. [PMID: 34422408 PMCID: PMC8376435 DOI: 10.1155/2021/6748515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background Angiopoietin-like protein 2 (ANGPTL2) is one of the adipocyte-derived inflammatory factors which connects obesity to insulin resistance. ANGPTL3 has a direct role in regulation of lipid metabolism. The objective of this study was to evaluate ANGPTL2 and ANGPTL3 in childhood obesity and their relationship with metabolic syndrome. Methods 70 children and adolescents, 35 obese and 35 normal-weight subjects, were enrolled in this research after complete clinical examination and anthropometric evaluations. Serum ANGPTL2 and ANGPTL3 and insulin were measured by enzyme-linked immunosorbent assay (ELISA). Homeostatic model assessment of insulin resistance (HOMA-IR) was calculated and used to estimate insulin resistance (IR). Colorimetric methods were used for the assessment of fasting plasma glucose (FPG), LDL-C, HDL-C, total cholesterol (TC), and triglyceride (TG). Results The levels of ANGPTL2 and ANGPTL3 were significantly higher in obese subjects than those in controls, but they did not differ significantly in subjects with or without IR. ANGPTL3 was found to be significantly elevated in obese children with metabolic syndrome (MetS) in comparison with those without MetS. Both of the studied ANGPTLs were positively correlated with BMI, systolic blood pressure (SBP), diastolic blood pressure (DBP), TC, and LDL-C. The correlation between ANGPTL3 and either TC or LDL-C remained significant after adjusting for BMI. Conclusion Serum ANGPTL2 and ANGPTL3 were elevated in obesity and associated with blood pressure and indices of metabolic syndrome, suggesting that they might be involved in the advancement of obesity-related hypertension and metabolic syndrome.
Collapse
|
63
|
Liu L, Zhang X, Li C, Qu Y. The value of Angipoietin-2 as a biomarker for the prognosis of osteosarcoma: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26923. [PMID: 34397935 PMCID: PMC8360409 DOI: 10.1097/md.0000000000026923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The function of Angipoietin-2 (Agn2) in osteosarcoma has not been fully explored and exists controversial. Therefore, we conducted a meta-analysis to investigate the role of Agn2 in the prognosis of osteosarcoma. In addition, bioinformatics analysis was carried out to reveal the mechanism and related pathways of Agn2 in osteosarcoma. METHODS Literature search was operated on databases up to July 2021, including PubMed, Web of Science, China National Knowledge Infrastructure, China Biology Medicine disc, and Wan Fang Data. The relation between Agn2 expression and survival outcome was estimated by hazard ratio and 95% confidence interval. Meta-analysis was performed on the Stata 16.0. Being obtained from The Cancer Genome Atlas, the original data were used to further verify the prognostic role of Agn2 in osteosarcoma. Gene set enrichment analysis was applied to predict the potential mechanism of Agn2. The correlation between Agn2 and osteosarcoma immune infiltration was analyzed by TIMER database. RESULTS The results of this meta-analysis would be submitted to peer-reviewed journals for publication. CONCLUSION This study will provide evidence for the exploration of the relationship between Agn2 and the prognosis of osteosarcoma and its mechanism. ETHICS AND DISSEMINATION The private information from individuals will not be published. This systematic review also should not damage participants' rights. Ethical approval is not available. The results will be published in a peer-reviewed journal or disseminated in relevant conferences. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/GWQ53.
Collapse
Affiliation(s)
- Lizhu Liu
- Department of Traumatic Surgery, The Second Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Xinbo Zhang
- Department of Traumatic Surgery, The Second Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Chaoyi Li
- Department of Orthopaedic, The Second Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Ye Qu
- Department of Traumatic Surgery, The Second Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| |
Collapse
|
64
|
Yang J, Song QY, Niu SX, Chen HJ, Petersen RB, Zhang Y, Huang K. Emerging roles of angiopoietin-like proteins in inflammation: Mechanisms and potential as pharmacological targets. J Cell Physiol 2021; 237:98-117. [PMID: 34289108 DOI: 10.1002/jcp.30534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/16/2021] [Accepted: 07/09/2021] [Indexed: 12/17/2022]
Abstract
Angiopoietin-like proteins (ANGPTLs), a family of eight secreted glycoproteins termed ANGTPL1-8, are involved in angiogenesis, lipid metabolism, cancer progression, and inflammation. Their roles in regulating lipid metabolism have been intensively studied, as some ANGPTLs are promising pharmacological targets for hypertriglyceridemia and associated cardiovascular disease. Recently, the emerging roles of ANGPTLs in inflammation have attracted great attention. First, elevated levels of multiple circulating ANGPTLs in inflammatory diseases make them potential disease biomarkers. Second, multiple ANGPTLs regulate acute or chronic inflammation via various mechanisms, including triggering inflammatory signaling through their action as ligands for integrin or forming homo- /hetero-oligomers to regulate signal transduction via extra- or intracellular mechanisms. As dysregulation of the inflammatory response is a critical trigger in many diseases, understanding the roles of ANGPTLs in inflammation will aid in drug/therapy development. Here, we summarize the roles, mechanisms, and potential therapeutic values for ANGPTLs in inflammation and inflammatory diseases.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| | - Qiu-Yi Song
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| | - Shu-Xuan Niu
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| | - Hui-Jing Chen
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Yu Zhang
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| | - Kun Huang
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
65
|
Foxc2 Alleviates Ox-LDL-Induced Lipid Accumulation, Inflammation, and Apoptosis of Macrophage via Regulating the Expression of Angptl2. Inflammation 2021; 43:1397-1410. [PMID: 32170602 DOI: 10.1007/s10753-020-01217-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The present study aimed to investigate the role of Forkhead box protein C2 (Foxc2) in oxidized low-density lipoprotein (ox-LDL)-induced macrophages and identify the potential mechanisms. RAW264.7 cells, the murine macrophage cell line, were stimulated by ox-LDL, and cell proliferation was examined. The levels of inflammation- and oxidative stress-related markers were detected using kits after induction with ox-LDL. Subsequently, the expression of Foxc2 was measured using Western blotting. After transfection with Foxc2 pcDNA3.1, intracellular lipid droplets were examined using oil red O staining. The levels of total cholesterol (TC), free cholesterol (FC), inflammatory cytokines, and oxidative stress markers were determined. Moreover, apoptosis of RAW264.7 cells was detected using flow cytometry, and apoptosis-related proteins were measured using Western blotting. Angiopoietin-like protein 2 (Angptl2) was predicted as a target gene of Foxc2. Therefore, the expression of Angptl2 was examined after Foxc2 overexpression in ox-LDL-induced RAW264.7 cells. Then, the changes of intracellular lipid droplets, TC, FC, inflammatory cytokines, oxidative stress factors, and cell apoptosis were detected after Angptl2 overexpression or co-transfection with Foxc2 and Angptl2 pcDNA3.1. The results revealed that ox-LDL induction inhibited proliferation of RAW264.7 cells and promoted the release of inflammatory factors. Importantly, the expression of Foxc2 was obviously decreased after stimulation by ox-LDL. Foxc2 overexpression suppressed lipid accumulation, TC, FC levels, inflammation, oxidative stress, and apoptosis induced by ox-LDL, whereas these inhibitory effects were relieved after co-transfection with Angptl2 pcDNA3.1. These findings demonstrated that Foxc2 can alleviate ox-LDL-induced lipid accumulation, inflammation, and apoptosis of macrophage via regulating the expression of Angptl2.
Collapse
|
66
|
Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gestational diabetes mellitus. Biosci Rep 2021; 41:228450. [PMID: 33890634 PMCID: PMC8145272 DOI: 10.1042/bsr20210617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the metabolic disorder that appears during pregnancy. The current investigation aimed to identify central differentially expressed genes (DEGs) in GDM. The transcription profiling by array data (E-MTAB-6418) was obtained from the ArrayExpress database. The DEGs between GDM samples and non-GDM samples were analyzed. Functional enrichment analysis were performed using ToppGene. Then we constructed the protein–protein interaction (PPI) network of DEGs by the Search Tool for the Retrieval of Interacting Genes database (STRING) and module analysis was performed. Subsequently, we constructed the miRNA–hub gene network and TF–hub gene regulatory network. The validation of hub genes was performed through receiver operating characteristic curve (ROC). Finally, the candidate small molecules as potential drugs to treat GDM were predicted by using molecular docking. Through transcription profiling by array data, a total of 869 DEGs were detected including 439 up-regulated and 430 down-regulated genes. Functional enrichment analysis showed these DEGs were mainly enriched in reproduction, cell adhesion, cell surface interactions at the vascular wall and extracellular matrix organization. Ten genes, HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN, ABL1, SMAD3, STAT3 and PRKCA were associated with GDM, according to ROC analysis. Finally, the most significant small molecules were predicted based on molecular docking. This investigation identified hub genes, signal pathways and therapeutic agents, which might help us, enhance our understanding of the mechanisms of GDM and find some novel therapeutic agents for GDM.
Collapse
|
67
|
Takeshita Y, Motohara T, Kadomatsu T, Doi T, Obayashi K, Oike Y, Katabuchi H, Endo M. Angiopoietin-like protein 2 decreases peritoneal metastasis of ovarian cancer cells by suppressing anoikis resistance. Biochem Biophys Res Commun 2021; 561:26-32. [PMID: 34000514 DOI: 10.1016/j.bbrc.2021.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Peritoneal metastasis is a common mode of spread of ovarian cancer. Despite therapeutic advances, some patients have intractable peritoneal metastasis. Therefore, in-depth characterization of the molecular mechanism of peritoneal metastasis is a key imperative. Angiopoietin-like protein 2 (ANGPTL2) is an inflammatory factor which activates NF-κB signaling and plays an important role in the pathogenesis of various inflammatory diseases including cancers, such as lung and breast cancer. In this study, we examined the role of ANGPTL2 in ovarian cancer peritoneal metastasis. We observed no difference of cell proliferation between ANGPTL2-expressing and control cells. In the mouse intraperitoneal xenograft model, formation of peritoneal metastasis by ANGPTL2-expressing cells was significantly decreased compared to control. In the in vitro analysis, the expressions of integrin α5β1, α6, and β4, but not those of αvβ3, α3, α4, and β1, were significantly decreased in ANGPTL2-expressing cells compared to control cells. ANGPTL2-expressing cells showed significantly inhibited adherence to laminin compared to control. In addition, we observed upregulation of anoikis (a form of programmed cell death occurring under an anchorage-independent condition) and significant decrease in the expression of Bcl-2 in ANGPTL2-expressing cells as compared to control cells. These results suggest that ANGPTL2 expression in ovarian cancer cells represses peritoneal metastasis by suppressing anoikis resistance.
Collapse
Affiliation(s)
- Yuko Takeshita
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan; Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takeshi Motohara
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tomomitsu Doi
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kunie Obayashi
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| |
Collapse
|
68
|
The Inflammatory Profile of Obesity and the Role on Pulmonary Bacterial and Viral Infections. Int J Mol Sci 2021; 22:ijms22073456. [PMID: 33810619 PMCID: PMC8037155 DOI: 10.3390/ijms22073456] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity is a globally increasing health problem, entailing diverse comorbidities such as infectious diseases. An obese weight status has marked effects on lung function that can be attributed to mechanical dysfunctions. Moreover, the alterations of adipocyte-derived signal mediators strongly influence the regulation of inflammation, resulting in chronic low-grade inflammation. Our review summarizes the known effects regarding pulmonary bacterial and viral infections. For this, we discuss model systems that allow mechanistic investigation of the interplay between obesity and lung infections. Overall, obesity gives rise to a higher susceptibility to infectious pathogens, but the pathogenetic process is not clearly defined. Whereas, viral infections often show a more severe course in obese patients, the same patients seem to have a survival benefit during bacterial infections. In particular, we summarize the main mechanical impairments in the pulmonary tract caused by obesity. Moreover, we outline the main secretory changes within the expanded adipose tissue mass, resulting in chronic low-grade inflammation. Finally, we connect these altered host factors to the influence of obesity on the development of lung infection by summarizing observations from clinical and experimental data.
Collapse
|
69
|
Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration. Prog Retin Eye Res 2021; 85:100966. [PMID: 33775825 DOI: 10.1016/j.preteyeres.2021.100966] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Integrins are a class of transmembrane receptors that are involved in a wide range of biological functions. Dysregulation of integrins has been implicated in many pathological processes and consequently, they are attractive therapeutic targets. In the ophthalmology arena, there is extensive evidence suggesting that integrins play an important role in diabetic retinopathy (DR), age-related macular degeneration (AMD), glaucoma, dry eye disease and retinal vein occlusion. For example, there is extensive evidence that arginyl-glycyl-aspartic acid (Arg-Gly-Asp; RGD)-binding integrins are involved in key disease hallmarks of DR and neovascular AMD (nvAMD), specifically inflammation, vascular leakage, angiogenesis and fibrosis. Based on such evidence, drugs that engage integrin-linked pathways have received attention for their potential to block all these vision-threatening pathways. This review focuses on the pathophysiological role that RGD-binding integrins can have in complex multifactorial retinal disorders like DR, diabetic macular edema (DME) and nvAMD, which are leading causes of blindness in developed countries. Special emphasis will be given on how RGD-binding integrins can modulate the intricate molecular pathways and regulate the underlying pathological mechanisms. For instance, the interplay between integrins and key molecular players such as growth factors, cytokines and enzymes will be summarized. In addition, recent clinical advances linked to targeting RGD-binding integrins in the context of DME and nvAMD will be discussed alongside future potential for limiting progression of these diseases.
Collapse
|
70
|
The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin Sci (Lond) 2021; 135:731-752. [PMID: 33729498 PMCID: PMC7969664 DOI: 10.1042/cs20200895] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
The global obesity epidemic is a major contributor to chronic disease and disability in the world today. Since the discovery of leptin in 1994, a multitude of studies have characterized the pathological changes that occur within adipose tissue in the obese state. One significant change is the dysregulation of adipokine production. Adipokines are an indispensable link between metabolism and optimal immune system function; however, their dysregulation in obesity contributes to chronic low-grade inflammation and disease pathology. Herein, I will highlight current knowledge on adipokine structure and physiological function, and focus on the known roles of these factors in the modulation of the immune response. I will also discuss adipokines in rheumatic and autoimmune diseases.
Collapse
|
71
|
Xie P, Wang H, Fang J, Du D, Tian Z, Zhen J, Liu Y, Ding Y, Fu B, Liu F, Huang D, Yu J. CSN5 Promotes Carcinogenesis of Thyroid Carcinoma Cells Through ANGPTL2. Endocrinology 2021; 162:6122687. [PMID: 33508120 DOI: 10.1210/endocr/bqaa206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 12/13/2022]
Abstract
COP9 signalosome subunit 5 (CSN5) plays a key role in carcinogenesis of multiple cancers and contributes to the stabilization of target proteins through deubiquitylation. However, the underlying role of CSN5 in thyroid carcinoma has not been reported. In this research, our data showed that CSN5 was overexpressed in thyroid carcinoma tissues compared with paracancerous tissues. Furthermore, a series of gain/loss functional assays were performed to demonstrate the role of CSN5 in facilitating thyroid carcinoma cell proliferation and metastasis. Additionally, we found there was a positive correlation between CSN5 and angiopoietin-like protein 2 (ANGPTL2) protein levels in thyroid carcinoma tissues and that CSN5 promoted thyroid carcinoma cell proliferation and metastasis through ANGPTL2. We also identified the underlying mechanism that CSN5 elevated ANGPTL2 protein level by directly binding it, decreasing its ubiquitination and degradation. Overall, our results highlight the significance of CSN5 in promoting thyroid carcinoma carcinogenesis and implicate CSN5 as a promising candidate for thyroid carcinoma treatment.
Collapse
Affiliation(s)
- Peiyi Xie
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Wang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, China National Research Center for Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, China
| | - Jiayu Fang
- Second College of Clinical Medicine, Nanchang University, China
| | - Dongnian Du
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ze Tian
- Second College of Clinical Medicine, Nanchang University, China
| | - Jing Zhen
- Second College of Clinical Medicine, Nanchang University, China
| | - Yue Liu
- Second College of Clinical Medicine, Nanchang University, China
| | - Yongqi Ding
- Second College of Clinical Medicine, Nanchang University, China
| | - Bidong Fu
- Second College of Clinical Medicine, Nanchang University, China
| | - Fanrong Liu
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jichun Yu
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
72
|
Wu Z, Liu J, Chen G, Du J, Cai H, Chen X, Ye G, Luo Y, Luo Y, Zhang L, Duan H, Liu Z, Yang S, Sun H, Cui Y, Sun L, Zhang H, Shi G, Wei T, Liu P, Yan X, Feng J, Bu P. CD146 is a Novel ANGPTL2 Receptor that Promotes Obesity by Manipulating Lipid Metabolism and Energy Expenditure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004032. [PMID: 33747748 PMCID: PMC7967059 DOI: 10.1002/advs.202004032] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/18/2020] [Indexed: 05/08/2023]
Abstract
Obesity and its related complications pose an increasing threat to human health; however, targetable obesity-related membrane receptors are not yet elucidated. Here, the membrane receptor CD146 is demonstrated to play an essential role in obesity. In particular, CD146 acts as a new adipose receptor for angiopoietin-like protein 2 (ANGPTL2), which is thought to act on endothelial cells to activate adipose inflammation. ANGPTL2 binds to CD146 to activate cAMP response element-binding protein (CREB), which then upregulates CD146 during adipogenesis and adipose inflammation. CD146 is present in preadipocytes and mature adipocytes, where it is mediated by its ligands ANGPTL2 and galectin-1. In preadipocytes, CD146 ablation suppresses adipogenesis, whereas the loss of CD146 in mature adipocytes suppresses lipid accumulation and enhances energy expenditure. Moreover, anti-CD146 antibodies inhibit obesity by disrupting the interactions between CD146 and its ligands. Together, these findings demonstrate that ANGPTL2 directly affects adipocytes via CD146 to promote obesity, suggesting that CD146 can be a potential target for treating obesity.
Collapse
|
73
|
Rajesh Y, Sarkar D. Association of Adipose Tissue and Adipokines with Development of Obesity-Induced Liver Cancer. Int J Mol Sci 2021; 22:ijms22042163. [PMID: 33671547 PMCID: PMC7926723 DOI: 10.3390/ijms22042163] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is rapidly dispersing all around the world and is closely associated with a high risk of metabolic diseases such as insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease (NAFLD), leading to carcinogenesis, especially hepatocellular carcinoma (HCC). It results from an imbalance between food intake and energy expenditure, leading to an excessive accumulation of adipose tissue (AT). Adipocytes play a substantial role in the tumor microenvironment through the secretion of several adipokines, affecting cancer progression, metastasis, and chemoresistance via diverse signaling pathways. AT is considered an endocrine organ owing to its ability to secrete adipokines, such as leptin, adiponectin, resistin, and a plethora of inflammatory cytokines, which modulate insulin sensitivity and trigger chronic low-grade inflammation in different organs. Even though the precise mechanisms are still unfolding, it is now established that the dysregulated secretion of adipokines by AT contributes to the development of obesity-related metabolic disorders. This review focuses on several obesity-associated adipokines and their impact on obesity-related metabolic diseases, subsequent metabolic complications, and progression to HCC, as well as their role as potential therapeutic targets. The field is rapidly developing, and further research is still required to fully understand the underlying mechanisms for the metabolic actions of adipokines and their role in obesity-associated HCC.
Collapse
Affiliation(s)
- Yetirajam Rajesh
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Massey Cancer Center, Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-827-2339
| |
Collapse
|
74
|
Seyhanli Z, Seyhanli A, Aksun S, Pamuk BO. Evaluation of serum Angiopoietin-like protein 2 (ANGPTL-2), Angiopoietin-like protein 8 (ANGPTL-8), and high-sensitivity C-reactive protein (hs-CRP) levels in patients with gestational diabetes mellitus and normoglycemic pregnant women. J Matern Fetal Neonatal Med 2021; 35:5647-5652. [PMID: 33615956 DOI: 10.1080/14767058.2021.1888919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In the present study, we aimed to investigate the role of the fasting serum levels of Anjiopoetın 2 - like protein (ANGPTL2), Anjiopoetın 8-like protein (ANGPTL8), and high-sensitivity C-reactive protein (hs-CRP) in the etiopathogenesis of gestational diabetes mellitus (GDM), and analyze the relationships between insulin resistance parameters. MATERIAL AND METHOD The 90 individuals admitted to İzmir Katip Celebi University Hospital Internal Medicine, Endocrinology and Obstetrics, and gynecology outpatient clinic were included in the study of similar ages and similar demographic characteristics. Forty-five women with diet-controlled GDM and 45 women with normoglycemic pregnancy were enrolled. ANGPTL-2, ANGPTL-8, hs-CRP, creatinine, ALT, GGT, lipid profile, HBA1c(%), and serum insülin, c-peptide levels were studied in the fasting serum samples of research groups. All individuals had 75-g OGTT testing. GDM screening was performed at 24-28 weeks' gestation. Exclusion criteria were as follows: Age <18 years or >40 years, pregestational diabetes (type 1 or 2), drug or alcohol abuse, thyroid dysfunction, Hepatitis B, and other infectious diseases (Herpes virus, Streptococcus B carriers, Chlamydia and Candida), Thalassemia carriers or other significant medical conditions, the use of any medication that interferes with lipid or glucose metabolism that would affect glucose regulation. RESULT Forty-five women with GDM and for the control group, 45 women with normoglycemic pregnant women were identified. The mean gestational age was 30.7 (18-38) for GDM and 29.6 (24-39) for the control group. Serum ANGPTL-8 (GDM =19.5 ± 93 Control = 0.73 ± 3.78 p = <.001). There was a statistically significant difference between the case and control groups for serum ANGPTL-8 levels. Serum ANGPTL-2 (GDM =19.9 ± 23.1 Control = 26.0 ± 23.4 p = .105) and serum hs-CRP(GDM =106 ± 65.1 Control =98.2 ± 87.3 p = .768). There was no statistically significant difference between the case and control groups for serum ANGPTL-2 and hsCRP levels. Serum ANGPTL8 levels were positively correlated with FPG (r = 0.391, p = <.001), FPI (r = 0.212, p = .045), 1-h PPG (r = 0.514, p = <.001), 2-h PPG (r = 0.502, p = <.001), HOMA-IR) score (r = 0.310, p = .003), TG (r = 0.245, p = .020); they were not except for BMI, hs-CRP levels and ANGPTL2 levels. CONCLUSIONS ANGPTL8 levels were significantly higher in GDM than in healthy control group. ANGPTL2 levels and hs-CRP levels were similar to the healthy control group. Elevated serum ANGPTL8 levels were correlated significantly with insulin resistance parameters, the main component of GDM pathophysiology. Our data showed that ANGPTL8 could be a new biomarker for diagnosing GDM.
Collapse
Affiliation(s)
- Zeynep Seyhanli
- Obstetrics and Gynaecology, Izmir Gaziemir Nevvar Salih Isgoren State Hospital, Izmir, Turkey
| | - Ahmet Seyhanli
- Department of Internal Medicine (Hematology), Sivas Numune Hastanesi, Sivas, Turkey
| | - Saliha Aksun
- Biochemistry Department, Izmir Katip Celebi University Atatürk Training and Research Hospital, Izmir, Turkey
| | - Baris Onder Pamuk
- Endocrine and Metabolic Diseases Department Izmir, Izmir Katip Celebi University, Atatürk Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
75
|
Yin R, Zhang N, Zhang D, Zhao W, Ke J, Zhao D. Higher levels of circulating ANGPTL2 are associated with macular edema in patients with type 2 diabetes. Medicine (Baltimore) 2021; 100:e24638. [PMID: 33578584 PMCID: PMC7886454 DOI: 10.1097/md.0000000000024638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/15/2021] [Indexed: 01/05/2023] Open
Abstract
Macular edema (ME) is an inflammatory disease characterized by increased microvascular permeability. Here, we proposed that plasma angiopoietin-like protein 2 (ANGPTL2) level may be related to the severity of ME patients with type 2 diabetes mellitus (T2DM). In this cross-sectional study, 172 T2DM patients were recruited and divided into clinically significant macular edema (CSME), non-CSME (nCSME), and control groups. Serum ANGPTL2 level was quantified by ELISA and best corrected vision acuity (BCVA) was detected. After adjust age, sex, body mass index (BMI), and duration of diabetes variables, ANGPTL2 performed statistics difference among CSME-, nCSME-groups, and control group (4.46 [3.97, 4.96, 95%CI] ng/mL in CSME group, 3.80 [3.42, 4.18, 95%CI] ng/mL in nCSME-group, 3.33 [3.03, 3.63, 95%CI] ng/mL in control, P < .01). After adjustment of confounding factors, high levels of circulating ANGPTL2 were related with the diagnosis of ME, BCVA, and C reactive protein (CRP) through univariate regression analysis (P < .05). Meanwhile, in the multiple regression model, ANGPTL2 took the mainly effect proportion for the diagnosis of diabetic macular edema (DME), with a LogWorth value 3.559 (P < .001). Our study suggested that elevated circulating ANGPTL2 may be associated with the development of DME and the severity of visual impairment in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Ruili Yin
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University
- Beijing Key Laboratory of Diabetes Research and Care
| | - Ning Zhang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University
- Beijing Key Laboratory of Diabetes Research and Care
| | - Dawei Zhang
- Department of Ophthalmology, Beijing Luhe Hospital Capital Medical University, Beijing, 101149, China
| | - Wenying Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University
| | - Jing Ke
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University
| |
Collapse
|
76
|
Nishiyama S, Hirose N, Yanoshita M, Takano M, Kubo N, Yamauchi Y, Onishi A, Ito S, Sakata S, Kita D, Asakawa-Tanne Y, Tanimoto K. ANGPTL2 Induces Synovial Inflammation via LILRB2. Inflammation 2021; 44:1108-1118. [PMID: 33538932 DOI: 10.1007/s10753-020-01406-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Angiopoietin-like proteins (ANGPTLs) are circulating proteins that are expressed in various cells and tissues and are thought to be involved in the repair and remodeling of damaged tissues; however, ANGPTL2 hyperfunction has been shown to cause chronic inflammation, leading to the progression of various diseases. ANGPTL2 is known to exert cellular effects via receptors such as integrin α5β1 and leukocyte immunoglobulin-like receptor subfamily B member 2 (LILRB2); however, their roles in ANGPTL2-induced inflammation remain unclear. In this study, we investigated the mechanisms underlying ANGPTL2-induced inflammation involving LILRB2 and various signaling pathways in human fibroblast-like synoviocytes (HFLS). The effects of ANGPTL2 and an anti-LILRB2 antibody on the gene expression of various inflammation-related factors were examined using real-time RT-PCR, while their effects on MAPK, NF-κB, and Akt phosphorylation were analyzed by western blotting. We found that the addition of ANGPTL2 enhanced the gene expression of inflammatory factors, whereas pretreatment with the anti-LILRB2 antibody for 12 h decreased the expression of these factors. Similarly, ANGPTL2 addition activated the phosphorylation of ERK, p38, JNK, NF-κB, and Akt in HFLS; however, this effect was significantly inhibited by pretreatment with the anti-LILRB2 antibody. Together, the findings of this study demonstrate that ANGPTL2 induces the expression of inflammatory factors via LILRB2 in synovial cells. Therefore, LILRB2 could be a potential therapeutic agent for treating matrix degradation in osteoarthritis.
Collapse
Affiliation(s)
- Sayuri Nishiyama
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima-shi, Hiroshima Prefecture, Japan
| | - Naoto Hirose
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima-shi, Hiroshima Prefecture, Japan.
| | - Makoto Yanoshita
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima-shi, Hiroshima Prefecture, Japan
| | - Mami Takano
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima-shi, Hiroshima Prefecture, Japan
| | - Naoki Kubo
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima-shi, Hiroshima Prefecture, Japan
| | - Yuka Yamauchi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima-shi, Hiroshima Prefecture, Japan
| | - Azusa Onishi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima-shi, Hiroshima Prefecture, Japan
| | - Shota Ito
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima-shi, Hiroshima Prefecture, Japan
| | - Shuzo Sakata
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima-shi, Hiroshima Prefecture, Japan
| | - Daiki Kita
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima-shi, Hiroshima Prefecture, Japan
| | - Yuki Asakawa-Tanne
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima-shi, Hiroshima Prefecture, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima-shi, Hiroshima Prefecture, Japan
| |
Collapse
|
77
|
Abstract
The adipose tissue has been recognized as an active organ involved in numerous metabolic, hormonal and immunological processes. Obesity and associated chronic inflammation leads to many metabolic and autoimmune disorders. The number of cells, their phenotype and distribution in adipose tissue depends on the degree of obesity. Polarization of macrophages towards M1, neutrophils influx to adipose tissue, activation of Th1 and Th17 cells and increased level of proinflammatory cytokines are characteristic for obesity-induced inflammation. Several mechanisms, such as adipocytes’ hypoxia, oxidative stress, endoplasmic reticulum stress, impairment of PPAR receptors, inflammasomes’ activation and activation of TLR are involved into development of chronic obesity-induced inflammation. A better understanding of this processes can provide new treatments for obesity and related disorders.
Collapse
|
78
|
Protective Effect of Irbesartan by Inhibiting ANGPTL2 Expression in Diabetic Kidney Disease. Curr Med Sci 2021; 40:1114-1120. [PMID: 33263178 DOI: 10.1007/s11596-020-2304-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/02/2020] [Indexed: 10/22/2022]
Abstract
Angiopoietin-like protein 2 (ANGPTL2) stimulates inflammation and is important in the pathogenesis of diabetic kidney disease (DKD). Irbesartan is helpful in reducing diabetes-induced renal damage. In this study, the effects of irbesartan on DKD and its renal protective role involving ANGPTL2 in DKD rats were examined. Wistar rats were divided into normal, DKD, and DKD + irbesartan groups. The DKD + irbesartan group was treated once daily for 8 weeks with 50 mg/kg irbesartan via intragastric gavage. The 24-h urinary albumin was determined each week, renal pathological changes were observed, and expression of ANGPTL2 and nuclear factor-kappa B (NF-κB) in rat renal tissue was assessed by immunohistochemistry. Mouse podocytes cultured in a high concentration of glucose were classified into four groups based on the irbesartan concentrations (0, 25, 50, and 75 ºg/mL). Expression of ANGPTL2 and phosphorylated IκB-α was assessed by Western blotting. The mRNA levels of ANGPTL2 and monocyte chemotactic protein 1 (MCP-1) were assessed by real-time polymerase chain reaction. The DKD rats displayed proteinuria, podocyte injury, and increased ANGPTL2 and NF-κB expression. All were relieved by irbesartan treatment. In podocytes cultured in elevated glucose, ANGPTL2 and phosphorylated IκB-α were overexpressed at the protein level, and ANGPTL2 and MCP-1 were highly expressed at the mRNA level. Irbesartan down-regulated ANGPTL2 and phosphorylated IκB-αexpression at the protein level and inhibited ANGPTL2 and MCP-1 expression at the mRNA level. The ameliorative effects of irbesartan against DKD involves podocyte protection and suppression of ANGPTL2.
Collapse
|
79
|
Jiang K, Chen H, Fang Y, Chen L, Zhong C, Bu T, Dai S, Pan X, Fu D, Qian Y, Wei J, Ding K. Exosomal ANGPTL1 attenuates colorectal cancer liver metastasis by regulating Kupffer cell secretion pattern and impeding MMP9 induced vascular leakiness. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:21. [PMID: 33413536 PMCID: PMC7792106 DOI: 10.1186/s13046-020-01816-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/13/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Angiopoietin-like protein 1 (ANGPTL1) has been proved to suppress tumor metastasis in several cancers. However, its extracellular effects on the pre-metastatic niches (PMNs) are still unclear. ANGPTL1 has been identified in exosomes, while its function remains unknown. This study was designed to explore the role of exosomal ANGPTL1 on liver metastasis in colorectal cancer (CRC). METHODS Exosomes were isolated by ultracentrifugation. The ANGPTL1 level was detected in exosomes derived from human CRC tissues. The effects of exosomal ANGPTL1 on CRC liver metastasis were explored by the intrasplenic injection mouse model. The liver PMN was examined by vascular permeability assays. Exosomal ANGPTL1 localization was validated by exosome labeling. The regulatory mechanisms of exosomal ANGPTL1 on Kupffer cells were determined by RNA sequencing. qRT-PCR, Western Blot, and ELISA analysis were conducted to examine gene expressions at mRNA and protein levels. RESULTS ANGPTL1 protein level was significantly downregulated in the exosomes derived from CRC tumors compared with paired normal tissues. Besides, exosomal ANGPTL1 attenuated liver metastasis and impeded vascular leakiness in the liver PMN. Moreover, exosomal ANGPTL1 was mainly taken up by KCs and regulated the KCs secretion pattern, enormously decreasing the MMP9 expression, which finally prevented the liver vascular leakiness. In mechanism, exosomal ANGPTL1 downregulated MMP9 level in KCs by inhibiting the JAK2-STAT3 signaling pathway. CONCLUSIONS Taken together, exosomal ANGPTL1 attenuated CRC liver metastasis and impeded vascular leakiness in the liver PMN by reprogramming the Kupffer cell and decreasing the MMP9 expression. This study suggests a suppression role of exosomal ANGPTL1 on CRC liver metastasis and expands the approach of ANGPTL1 functioning.
Collapse
Affiliation(s)
- Kai Jiang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiyan Chen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yimin Fang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liubo Chen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenhan Zhong
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tongtong Bu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siqi Dai
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiang Pan
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongliang Fu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yucheng Qian
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingsun Wei
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
80
|
Wang Y, Zheng Z, Yang Y, Lang J, Zhang N, Yang L, Zhao D. Angiopoietin-like 2 is a potential biomarker for diabetic foot patients. BMC Endocr Disord 2020; 20:178. [PMID: 33256685 PMCID: PMC7706189 DOI: 10.1186/s12902-020-00657-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 11/22/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Circulating angiopoietin-like 2 (ANGPTL2) protein levels are known to be significantly increased in numerous chronic inflammatory diseases and are associated with the diagnosis and/or prognosis of cardiovascular diseases, diabetes, chronic kidney disease, and various types of cancers. However, no data regarding the relationship between ANGPTL2 and diabetic foot ulcers (DFUs) are available. Here, we explored the potential link between ANGPTL2 and DFUs. METHODS A total of 68 participants with type 2 diabetes mellitus (T2DM) were recruited, including 28 patients with DFU and 40 diabetic patients without DFUs. The clinical characteristics of T2DM patients with and without DFUs were compared. Serum concentrations of ANGPTL2 and VEGF were measured using enzyme-linked immunosorbent assay (ELISA) kits. The correlations between ANGPTL2 and clinical variables were analyzed. Multiple linear regression and logistic regression models were constructed to test the associations between ANGPTL2 and the severity and presence of DFUs. RESULTS Serum levels of ANGPTL2 were higher in patients with DFUs than those in diabetic controls. Serum ANGPTL2 levels were higher in the advanced stages of DFUs. Spearman correlation analysis revealed strong positive associations of ANGPTL2 with CRP, VEGF and ESR in all subjects. In addition, serum ANGPTL2 was still positively correlated with DFUs stage after adjusting the risk factors. After adjusting for age, sex, HbA1C and duration of diabetes, ANGPTL2 was found to be independently associated with the presence of DFUs. CONCLUSIONS Circulating ANGPTL2 levels are an independent risk factor for DFUs. This suggests that ANGPTL2 may play important roles in the development of DFUs, a possibility that needs to investigated in prospective studies.
Collapse
Affiliation(s)
- Yan Wang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149 China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149 China
| | - Zhaohui Zheng
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149 China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149 China
| | - Yuxian Yang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149 China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149 China
| | - Jianan Lang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149 China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149 China
| | - Ning Zhang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149 China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149 China
| | - Longyan Yang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149 China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149 China
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149 China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149 China
| |
Collapse
|
81
|
Morinaga J, Kakuma T, Fukami H, Hayata M, Uchimura K, Mizumoto T, Kakizoe Y, Miyoshi T, Shiraishi N, Adachi M, Izumi Y, Kuwabara T, Okadome Y, Sato M, Horiguchi H, Sugizaki T, Kadomatsu T, Miyata K, Tajiri S, Tajiri T, Tomita K, Kitamura K, Oike Y, Mukoyama M. Circulating angiopoietin-like protein 2 levels and mortality risk in patients receiving maintenance hemodialysis: a prospective cohort study. Nephrol Dial Transplant 2020; 35:854-860. [PMID: 31840173 DOI: 10.1093/ndt/gfz236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Patients undergoing hemodialysis treatment have a poor prognosis, as many develop premature aging. Systemic inflammatory conditions often underlie premature aging phenotypes in uremic patients. We investigated whether angiopoietin-like protein 2 (ANGPTL 2), a factor that accelerates the progression of aging-related and noninfectious inflammatory diseases, was associated with increased mortality risk in hemodialysis patients. METHODS We conducted a multicenter prospective cohort study of 412 patients receiving maintenance hemodialysis and evaluated the relationship between circulating ANGPTL2 levels and the risk for all-cause mortality. Circulating ANGPTL2 levels were log-transformed to correct for skewed distribution and analyzed as a continuous variable. RESULTS Of 412 patients, 395 were included for statistical analysis. Time-to-event data analysis showed high circulating ANGPTL2 levels were associated with an increased risk for all-cause mortality after adjustment for age, sex, hemodialysis vintage, nutritional status, metabolic parameters and circulating high-sensitivity C-reactive protein levels {hazard ratio [HR] 2.04 [95% confidence interval (CI) 1.10-3.77]}. High circulating ANGPTL2 levels were also strongly associated with an increased mortality risk, particularly in patients with a relatively benign prognostic profile [HR 3.06 (95% CI 1.86-5.03)]. Furthermore, the relationship between circulating ANGPTL2 levels and mortality risk was particularly strong in patients showing few aging-related phenotypes, such as younger patients [HR 7.99 (95% CI 3.55-18.01)], patients with a short hemodialysis vintage [HR 3.99 (95% CI 2.85-5.58)] and nondiabetic patients [HR 5.15 (95% CI 3.19-8.32)]. CONCLUSION We conclude that circulating ANGPTL2 levels are positively associated with mortality risk in patients receiving maintenance hemodialysis and that ANGPTL2 could be a unique marker for the progression of premature aging and subsequent mortality risk in uremic patients, except those with significant aging-related phenotypes.
Collapse
Affiliation(s)
- Jun Morinaga
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Clinical Investigation, Kumamoto University Hospital, Kumamoto, Japan.,Biostatistics Center, Kurume University, Fukuoka, Japan
| | | | - Hirotaka Fukami
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Hayata
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Uchimura
- Third Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Teruhiko Mizumoto
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taku Miyoshi
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoki Shiraishi
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masataka Adachi
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusuke Okadome
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taichi Sugizaki
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | - Kimio Tomita
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenichiro Kitamura
- Third Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
82
|
Potential Benefits of Acupuncture and Herbs for Obesity-Related Chronic Inflammation by Adipokines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3285363. [PMID: 33133214 PMCID: PMC7568779 DOI: 10.1155/2020/3285363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 11/18/2022]
Abstract
The adipose tissue is an organ that stores energy in the form of fats. It also has been known as an endocrine playing an integral role in metabolic homeostasis by secreting various adipokines. In obesity, the adipokine components and secretion patterns are altered toward proinflammation with weight gain, causing low chronic inflammation, which is closely linked to various metabolic diseases. Acupuncture and herbs are used for the management of obesity and its comorbidities, and it has been observed that these therapies affect the amount of expression and concentration of adipokines with improved metabolic phenotypes in both animal and human metabolic diseases. In this review, we discuss the role of adipokines and summarize beneficial effects of the treatments such as electroacupuncture, pharmacopuncture, catgut embedding acupuncture, and single and multiple medicinal herbs on obesity and its relations to adipokine composition. It will provide a new insight for applying adipokines as surrogate markers in complementary and alternative medicine practice.
Collapse
|
83
|
Fukami H, Morinaga J, Okadome Y, Nishiguchi Y, Iwata Y, Kanki T, Nakagawa T, Izumi Y, Kakizoe Y, Kuwabara T, Horiguchi H, Sato M, Kadomatsu T, Miyata K, Tajiri T, Oike Y, Mukoyama M. Circulating angiopoietin-like protein 2 levels and arterial stiffness in patients receiving maintenance hemodialysis: A cross-sectional study. Atherosclerosis 2020; 315:18-23. [PMID: 33197687 DOI: 10.1016/j.atherosclerosis.2020.10.890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Chronic low-grade inflammation is receiving much attention as a critical pathology that induces various aging phenotypes, a concept known as "inflammaging". Uremic patients undergoing hemodialysis therapy show vascular aging phenotypes characterized by greater arterial stiffness and calcification compared to healthy controls of the same generation. In the current study, we investigated whether levels of inflammaging markers in the circulation were associated with vascular aging phenotypes in hemodialysis patients, as estimated by the cardio-ankle vascular index (CAVI). METHODS We conducted a multicenter cross-sectional study of 412 patients receiving hemodialysis and evaluated the relationship between circulating hs-CRP or ANGPTL2 levels, as markers of inflammaging, and CAVI. RESULTS Of 412 patients, 376 were analyzed statistically. While circulating hs-CRP levels had no significant association with CAVI, generalized linear models revealed that high circulating ANGPTL2 levels were significantly associated with increasing CAVI after adjustment for classical metabolic factors and hemodialysis-related parameters [β 0.63 (95%CI 0.07-1.18)]. Exploratory analysis revealed that high circulating ANGPTL2 levels were also strongly associated with increased CAVI, particularly in patients with conditions of increased vascular mechanical stress, such elevated blood pressure [β 1.00 (95%CI 0.23-1.76)], elevated pulse pressure [β 0.75 (95%CI 0.52-0.98)], or excess body fluid [β 1.25 (95%CI 0.65-1.84)]. CONCLUSIONS We conclude that circulating levels of ANGPTL2 rather than hs-CRP are positively associated with CAVI in the uremic population and that ANGPTL2 could be a unique marker of progression of vascular aging in patients receiving hemodialysis.
Collapse
Affiliation(s)
- Hirotaka Fukami
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan; Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Jun Morinaga
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan; Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan; Department of Clinical Investigation, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan.
| | - Yusuke Okadome
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yoshihiko Nishiguchi
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yasunobu Iwata
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Tomoko Kanki
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Terumasa Nakagawa
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Tetsuya Tajiri
- Medical Corporation, Jinseikai, 2-3-10 Toshima-nishi Higashi-ku, Kumamoto, Kumamoto, 861-8043, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan.
| | - Masashi Mukoyama
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan.
| |
Collapse
|
84
|
Berezin AE, Berezin AA, Lichtenauer M. Emerging Role of Adipocyte Dysfunction in Inducing Heart Failure Among Obese Patients With Prediabetes and Known Diabetes Mellitus. Front Cardiovasc Med 2020; 7:583175. [PMID: 33240938 PMCID: PMC7667132 DOI: 10.3389/fcvm.2020.583175] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue dysfunction is a predictor for cardiovascular (CV) events and heart failure (HF) in patient population with obesity, metabolic syndrome, and known type 2 diabetes mellitus. Previous preclinical and clinical studies have yielded controversial findings regarding the role of accumulation of adipose tissue various types in CV risk and HF-related clinical outcomes in obese patients. There is evidence for direct impact of infiltration of epicardial adipocytes into the underlying myocardium to induce adverse cardiac remodeling and mediate HF development and atrial fibrillation. Additionally, perivascular adipocytes accumulation is responsible for release of proinflammatory adipocytokines (adiponectin, leptin, resistin), stimulation of oxidative stress, macrophage phenotype switching, and worsening vascular reparation, which all lead to microvascular inflammation, endothelial dysfunction, atherosclerosis acceleration, and finally to increase in CV mortality. However, systemic effects of white and brown adipose tissue can be different, and adipogenesis including browning of adipose tissue and deficiency of anti-inflammatory adipocytokines (visfatin, omentin, zinc-α2-glycoprotein, glypican-4) was frequently associated with adipose triglyceride lipase augmentation, altered glucose homeostasis, resistance to insulin of skeletal muscles, increased cardiomyocyte apoptosis, lowered survival, and weak function of progenitor endothelial cells, which could significantly influence on HF development, as well as end-organ fibrosis and multiple comorbidities. The exact underlying mechanisms for these effects are not fully understood, while they are essential to help develop improved treatment strategies. The aim of the review is to summarize the evidence showing that adipocyte dysfunction may induce the onset of HF and support advance of HF through different biological mechanisms involving inflammation, pericardial, and perivascular adipose tissue accumulation, adverse and electrical cardiac remodeling, and skeletal muscle dysfunction. The unbalancing effects of natriuretic peptides, neprilysin, and components of renin-angiotensin system, as exacerbating cause of altered adipocytokine signaling on myocardium and vasculature, in obesity patients at high risk of HF are disputed. The profile of proinflammatory and anti-inflammatory adipocytokines as promising biomarker for HF risk stratification is discussed in the review.
Collapse
Affiliation(s)
- Alexander E. Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Alexander A. Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Division of Cardiology, Department of Internal Medicine II, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
85
|
Goto K, Kitazono T. Endothelium-dependent hyperpolarization (EDH) in diet-induced obesity. ENDOCRINE AND METABOLIC SCIENCE 2020. [DOI: 10.1016/j.endmts.2020.100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
86
|
Kumar G, Dey SK, Kundu S. Functional implications of vascular endothelium in regulation of endothelial nitric oxide synthesis to control blood pressure and cardiac functions. Life Sci 2020; 259:118377. [PMID: 32898526 DOI: 10.1016/j.lfs.2020.118377] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022]
Abstract
The endothelium is the innermost vascular lining performing significant roles all over the human body while maintaining the blood pressure at physiological levels. Malfunction of endothelium is thus recognized as a biomarker linked with many vascular diseases including but not limited to atherosclerosis, hypertension and thrombosis. Alternatively, prevention of endothelial malfunctioning or regulating the functions of its associated physiological partners like endothelial nitric oxide synthase can prevent the associated vascular disorders which account for the highest death toll worldwide. While many anti-hypertensive drugs are available commercially, a comprehensive description of the key physiological roles of the endothelium and its regulation by endothelial nitric oxide synthase or vice versa is the need of the hour to understand its contribution in vascular homeostasis. This, in turn, will help in designing new therapeutics targeting endothelial nitric oxide synthase or its interacting partners present in the cellular pool. This review describes the central role of vascular endothelium in the regulation of endothelial nitric oxide synthase while outlining the emerging drug targets present in the vasculature with potential to treat vascular disorders including hypertension.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India
| | - Sanjay Kumar Dey
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India; Center for Advanced Biotechnology and Medicine, Rutgers University, NJ 08854, USA
| | - Suman Kundu
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India.
| |
Collapse
|
87
|
Horiguchi H, Kadomatsu T, Miyata K, Terada K, Sato M, Torigoe D, Morinaga J, Moroishi T, Oike Y. Stroma-derived ANGPTL2 establishes an anti-tumor microenvironment during intestinal tumorigenesis. Oncogene 2020; 40:55-67. [PMID: 33051596 DOI: 10.1038/s41388-020-01505-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
Previous studies show that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) functions as a tumor promoter in some cancer contexts. However, we recently reported that host ANGPTL2 also shows tumor suppressive activity by enhancing dendritic cell-mediated CD8+ T cell anti-tumor immune responses in mouse kidney cancer and murine syngeneic models. However, mechanisms underlying ANGPTL2-mediated tumor suppression are complex and not well known. Here, we investigated ANGPTL2 tumor suppressive function in chemically-induced intestinal tumorigenesis. ANGPTL2 deficiency enhanced intestinal tumor growth in an experimental mouse colitis-associated colon cancer (CAC) model. Angptl2-deficient mice also showed a decrease not only in CD8+ T cell responses but in CD4+ T cell responses during intestinal tumorigenesis. Furthermore, we show that stroma-derived ANGPTL2 can activate the myeloid immune response. Notably, ANGPTL2 drove generation of immunostimulatory macrophages via the NF-κB pathway, accelerating CD4+ T helper 1 (Th1) cell activation. These findings overall provide novel insight into the complex mechanisms underlying ANGPTL2 anti-tumor function in cancer pathology.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Aging and Geriatric Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Institute of Resource Development and Analysis (IRDA), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Daisuke Torigoe
- Institute of Resource Development and Analysis (IRDA), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, 332-0012, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Department of Aging and Geriatric Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
88
|
Wang D, Guo Y, Chai S, Shen K, Li Y, Zhao R. Expression of angiopoietin-like protein 2 in ovarian tissue of rat polycystic ovarian syndrome model and its correlation study. Reprod Biol Endocrinol 2020; 18:94. [PMID: 32988397 PMCID: PMC7520960 DOI: 10.1186/s12958-020-00651-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/17/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This study investigated the expression of angiopoietin-like protein 2 (ANGPTL2) in the tissues of rat models of polycystic ovary syndrome (PCOS) and its correlation with PCOS. METHODS Six-weeks-old female specific pathogen-free rats (n = 60) were divided into blank control, PCOS model, and metformin groups (n = 20/group). After 21 days of metformin intervention, the serum sex hormones, fasting blood glucose, fasting insulin, and insulin resistance (IR) of rats in each group were measured. The mRNA levels of ANGPTL2, Foxol, and Akt in the ovarian tissues were monitored by real-time fluorescence quantitative PCR. RESULTS Compared with the control group, the levels of serum sex hormones, fasting blood glucose, fasting insulin, and IR in the model group showed significant increases, and the levels of ANGPTL2, Foxol, and Akt in the ovarian tissue also showed significant increases. Compared with the PCOS group, the serum sex hormones, fasting blood glucose, fasting insulin, and IR of rats in the metformin group were significantly decreased, and the levels of ANGPTL2, Foxol, and Akt in ovarian tissues also showed significant decreases. CONCLUSIONS These findings suggest that ANGPTL2 might participate in the development of PCOS through the PI3K/Akt signaling pathway. Metformin improves IR by reducing the expression of ANGPTL2, thus improving the endocrine environment of PCOS and might change the disease outcome.
Collapse
Affiliation(s)
- Dandan Wang
- Reproduction Center, The Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yihong Guo
- Reproductive and Genetic Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Shujuan Chai
- Reproduction Center, The Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Ke Shen
- Reproduction Center, The Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yanchun Li
- Reproduction Center, The Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Ruiqin Zhao
- Reproduction Center, The Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
89
|
Lu X. Structure and Function of Angiopoietin-like Protein 3 (ANGPTL3) in Atherosclerosis. Curr Med Chem 2020; 27:5159-5174. [PMID: 31223079 DOI: 10.2174/0929867326666190621120523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Angiopoietin-Like Proteins (ANGPTLs) are structurally related to the angiopoietins. A total of eight ANGPTLs (from ANGPTL1 to ANGPTL8) have been identified so far. Most ANGPTLs possess multibiological functions on lipid metabolism, atherosclerosis, and cancer. Among them, ANGPTL3 has been shown to regulate the levels of Very Low-Density Lipoprotein (VLDL) made by the liver and play a crucial role in human lipoprotein metabolism. METHOD A systematic appraisal of ANGPTLs was conducted, focusing on the main features of ANGPTL3 that has a significant role in atherosclerosis. RESULTS Angiopoietins including ANGPTL3 are vascular growth factors that are highly specific for endothelial cells, perform a variety of other regulatory activities to influence inflammation, and have been shown to possess both pro-atherosclerotic and atheroprotective effects. CONCLUSION ANGPTL3 has been demonstrated as a promising target in the pharmacological management of atherosclerosis. However, many questions remain about its biological functions.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London SW3 6LR, England, United Kingdom
| |
Collapse
|
90
|
Sun R, Yang L, Hu Y, Wang Y, Zhang Q, Zhang Y, Ji Z, Zhao D. ANGPTL1 is a potential biomarker for differentiated thyroid cancer diagnosis and recurrence. Oncol Lett 2020; 20:240. [PMID: 32973954 PMCID: PMC7509504 DOI: 10.3892/ol.2020.12103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Differentiated thyroid cancer (DTC) is a common type of cancer among women with an increasing worldwide incidence rate. However, there are no specific and sensitive molecular biomarkers for DTC diagnosis or prognosis. Angiopoietin-like protein 1 (ANGPTL1) may be a novel tumor suppressor in lung, breast, colorectal and hepatocellular carcinoma. However, little is known about the influence of ANGPTL1 on the malignant properties of thyroid cancer cells or DTC recurrence in patients. Thus, the present study aimed to investigate the effects of ANGPTL1 on thyroid cancer malignancy or recurrence. The present study examined the mRNA levels of ANGPTL1 in thyroid cancer and paracancerous tissues using RNA sequencing data from The Cancer Genome Atlas. The present study also determined the effects of ANGPTL1 on thyroid cancer cell proliferation using the Cell Counting Kit-8 assay. Associations were identified among ANGPTL1 expression levels and thyroid cancer proliferation, migration and metastasis using The Cancer Genome Atlas data set and by Gene Set Enrichment Analysis. The expression of ANGPTL1 in patients with DTC and without recurrence was compared in order to assess its potential as a prognostic biomarker for DTC. In addition, ANGPTL1 concentrations in the serum of patients with DTC and individuals with benign thyroid nodules were compared to evaluate the sensitivity and specificity of ANGPTL1 as a predictive biomarker for DTC. The results of the present study demonstrated that ANGPTL1 expression levels were lower in thyroid cancer compared with those in adjacent normal thyroid tissues. ANGPTL1 expression was observed to decrease with thyroid cancer progression. In addition, ANGPTL1 was demonstrated to inhibit thyroid cancer cell proliferation, migration and invasion and ANGPTL1 expression levels were reduced in patients with DTC with recurrence compared with those in patients with non-recurrent DTC. Additionally, serum concentrations of ANGPTL1 in patients with DTC were decreased compared with those in individuals with benign thyroid nodules. In conclusion, ANGPTL1 may be a novel predictive biomarker for DTC diagnosis and recurrence in patients with DTC.
Collapse
Affiliation(s)
- Rongxin Sun
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Longyan Yang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Yangping Hu
- Department of Pathology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Yan Wang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Zhili Ji
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| |
Collapse
|
91
|
Ren S, Wang W, Shen H, Zhang C, Hao H, Sun M, Wang Y, Zhang X, Lu B, Chen C, Wang Z. Development and Validation of a Clinical Prognostic Model Based on Immune-Related Genes Expressed in Clear Cell Renal Cell Carcinoma. Front Oncol 2020; 10:1496. [PMID: 32983989 PMCID: PMC7485294 DOI: 10.3389/fonc.2020.01496] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is the most frequent and terminal subtype of RCC. Reliable markers associated with the immune response are not available to predict the prognosis of patients with ccRCC. We exploited the extensive number of ccRCC samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) repository to perform a comprehensive analysis of immune-related genes (IRGs). Methods: Based on TCGA data, we incorporated IRGs and their expression profiles of 72 normal and 539 ccRCC samples. Univariate Cox analysis was used to evaluate the relationship between overall survival (OS) and IRGs expression. The Lasso Cox regression model identified prognostic genes used to establish a clinical immune prognostic model. The TF-IRG network was used to study the potential molecular mechanisms of action and properties of ccRCC-specific IRGs. Multivariate Cox analysis established a clinical prognostic model of IRGs. Results: We found a significant correlation among 15 differentially expressed IRGs with the OS of patients with ccRCC. Gene function enrichment analysis showed that these IRGs are significantly associated with response to receptor ligand activity. Lasso Cox regression analysis identified 10 genes with the greatest prognostic value. A clinical prognostic model based on six IRGs, which performed well for predicting prognosis, revealed significant associations of patients' survival with age, sex, stage, tumor, node, and metastasis. Moreover, these findings reflect the infiltration of tumors by various immune cells. Conclusion: We identified six clinically significant IRGs and incorporated them into a clinical prognostic model with great significance for monitoring and predicting prognosis of ccRCC.
Collapse
Affiliation(s)
- Shiqi Ren
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China.,Department of Medicine, Nantong University Xinling College, Nantong, China
| | - Wei Wang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China.,Department of Medicine, Nantong University Xinling College, Nantong, China
| | - Hanyu Shen
- Medical School of Nantong University, Nantong, China
| | - Chenlin Zhang
- Department of Orthopaedics, Qidong Hospital of Chinese Medicine, Nantong, China
| | - Haiyan Hao
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Mengjing Sun
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China.,Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Yingjing Wang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China.,Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Xiaojing Zhang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
| | - Bing Lu
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
| | - Chen Chen
- Department of Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Ziheng Wang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
| |
Collapse
|
92
|
Keles A, Sonmez K, Erol YO, Ayyıldız SN, Ogus E. Vitreous levels of vascular endothelial growth factor, stromal cell-derived factor-1α, and angiopoietin-like protein 2 in patients with active proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2020; 259:53-60. [PMID: 32813109 DOI: 10.1007/s00417-020-04889-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To determine the vitreous levels of vascular endothelial growth factor (VEGF), stromal cell-derived factor-1α (SDF-1α) and angiopoietin-like protein 2 (ANGPTL2) in patients with active proliferative diabetic retinopathy (PDR), and to ascertain their contribution on different clinical presentation of active PDR. METHODS This case-control study included 31 eyes with active PDR and 10 eyes with idiopathic macular hole (MH) (control group). Eyes with active PDR were divided into three subgroups: vitreous hemorrhage (VH), tractional retinal detachment (TRD) caused by active fibrovascular membrane (FVM), and coexistence of VH and TRD with FVM. Vitreous samples obtained during vitrectomy were analyzed for concentrations of VEGF, SDF-1α, and ANGPTL2. RESULTS Vitreous level of VEGF (2021 (168-6550) pg/ml vs 110.1 (74.5-236) pg/ml), SDF-1α (517 (194-1044) pg/ml vs 388 (320-535) pg/ml), and ANGPTL2 (725 (131-1590) ng/ml vs 196 (75.9-437) ng/ml) were significantly higher in eyes with active PDR than in control group (p < 0.001, p = 0.002, and p < 0.001, respectively). The concentrations of these meaditors in each active PDR subgroups were also significantly higher than control group (p < 0.05). The vitreous level of ANGPTL2 was significantly higher in eyes with TRD caused by FVM (1033 ± 401 ng/ml) than in eyes with VH (561 ± 237 ng/ml; p = 0.008). CONCLUSION High levels of SDF-1α, ANGPTL2 and particularly VEGF seem to be associated with PDR. Since the vitreous levels of ANGPTL2 tend to be higher in eyes with active fibrovascular tractional detachment, vitreous levels of this chemokine seem to be affected by the clinical presentation of vascularly active PDR eyes.
Collapse
Affiliation(s)
- Ali Keles
- Department of Ophthalmology, Cizre State Hospital, Sırnak, Turkey
| | - Kenan Sonmez
- Ulucanlar Eye Training and Research Hospital, University of Health Sciences, Kale Mh. Ulucanlar Cd. No:59, 06250, Altındag, Ankara, Turkey.
| | - Yasemin Ozdamar Erol
- Ulucanlar Eye Training and Research Hospital, University of Health Sciences, Kale Mh. Ulucanlar Cd. No:59, 06250, Altındag, Ankara, Turkey
| | - Sema Nur Ayyıldız
- Department of Medical Biochemistry, Ankara Training and Research Hospital, Ankara, Turkey
| | - Elmas Ogus
- Department of Medical Biochemistry, Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
93
|
Xu T, Xu L, Meng P, Ma X, Yang X, Zhou Y, Feng M. Angptl7 promotes insulin resistance and type 2 diabetes mellitus by multiple mechanisms including SOCS3-mediated IRS1 degradation. FASEB J 2020; 34:13548-13560. [PMID: 32786125 DOI: 10.1096/fj.202000246rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 01/17/2023]
Abstract
Angptl7 is a secreted and circulating cytokine that belongs to Angiopoietin-like family. The current knowledge about the function of Angptl7 is still limited, and its biological role is only marginally known, such as in the promotion of angiogenesis and inflammation. Here, we demonstrated that Angptl7 promotes insulin resistance and type 2 diabetes mellitus (T2DM). We found that the circulating Angptl7 levels in T2DM patient and mouse models were significantly elevated. Artificial overexpression of Angptl7 in hepatic cells inhibited glucose uptake and impaired insulin signaling pathway. Furthermore, in vivo overexpression of Angptl7 in experimental healthy mice also caused insulin resistance-like characteristics. Mechanistic studies revealed that Angptl7 can upregulate SOCS3 expression, leading to the IRS1 degradation in proteasome. Furthermore, over-expressed Angptl7 inhibited the phosphorylation of Akt and promoted the phosphorylation of ERK1/2, which was known to be associated with insulin resistance. Taken together, our study provided strong evidence that Angptl7 promotes insulin resistance and T2DM by multiple mechanisms, which made Angptl7 a new potential therapeutic target for treatment of insulin resistance and T2DM.
Collapse
Affiliation(s)
- Tong Xu
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Lilei Xu
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Panpan Meng
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuqian Ma
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoqing Yang
- Clinical Laboratory, Hospital of Huazhong Agricultural University, Wuhan, China
| | - Yaru Zhou
- Department of Endocrinology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingqian Feng
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
94
|
Usui T, Morito N, Shawki HH, Sato Y, Tsukaguchi H, Hamada M, Jeon H, Yadav MK, Kuno A, Tsunakawa Y, Okada R, Ojima T, Kanai M, Asano K, Imamura Y, Koshida R, Yoh K, Usui J, Yokoi H, Kasahara M, Yoshimura A, Muratani M, Kudo T, Oishi H, Yamagata K, Takahashi S. Transcription factor MafB in podocytes protects against the development of focal segmental glomerulosclerosis. Kidney Int 2020; 98:391-403. [DOI: 10.1016/j.kint.2020.02.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
|
95
|
Associations of cardiovascular biomarkers and plasma albumin with exceptional survival to the highest ages. Nat Commun 2020; 11:3820. [PMID: 32732919 PMCID: PMC7393489 DOI: 10.1038/s41467-020-17636-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
Supercentenarians (those aged ≥110 years) are approaching the current human longevity limit by preventing or surviving major illness. Identifying specific biomarkers conducive to exceptional survival might provide insights into counter-regulatory mechanisms against aging-related disease. Here, we report associations between cardiovascular disease-related biomarkers and survival to the highest ages using a unique dataset of 1,427 oldest individuals from three longitudinal cohort studies, including 36 supercentenarians, 572 semi-supercentenarians (105–109 years), 288 centenarians (100–104 years), and 531 very old people (85–99 years). During follow-up, 1,000 participants (70.1%) died. Overall, N-terminal pro-B-type natriuretic peptide (NT-proBNP), interleukin-6, cystatin C and cholinesterase are associated with all-cause mortality independent of traditional cardiovascular risk factors and plasma albumin. Of these, low NT-proBNP levels are statistically associated with a survival advantage to supercentenarian age. Only low albumin is associated with high mortality across age groups. These findings expand our knowledge on the biology of human longevity. Supercentenarians are approaching the current longevity limit by avoiding or surviving major illness, thus identifying biomarkers for exceptional survival might provide insights into the protection against disease of aging. Here, the authors show low NT-proBNP and high albumin in plasma are the biological correlates of survival to the highest ages.
Collapse
|
96
|
Knockdown of angiopoietin-like 2 induces clearance of vascular endothelial senescent cells by apoptosis, promotes endothelial repair and slows atherogenesis in mice. Aging (Albany NY) 2020; 11:3832-3850. [PMID: 31186381 PMCID: PMC6594793 DOI: 10.18632/aging.102020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022]
Abstract
Elimination of senescent cells (SnC) is anti-atherogenic, but the specific contribution of senescent vascular endothelial cells (EC) is unknown. We inactivated angiopoietin like-2 (angptl2), a marker of SnEC and a pro-atherogenic cytokine in LDLr-/-, hApoB100+/+ atherosclerotic (ATX) mice. Three months after a single vascular delivery of a small hairpin (sh)Angptl2 in 3-month old ATX mice using an adeno-associated virus serotype 1 (AAV1), aortic atheroma plaque progression was slowed by 58% (p<0.0001). In the native aortic endothelium, angptl2 expression was decreased by 80%, in association with a reduced expression of p21, a cyclin-dependent kinase inhibitor overexpressed in growth-arrested SnC. Endothelial activation was reduced (lower Icam-1, Il-1β and Mcp-1 expression), decreasing monocyte Cd68 expression in the endothelium. One week post-injection, the ratio Bax/Bcl2 increased in the endothelium only, suggesting that angptl2+/p21+ SnEC were eliminated by apoptosis. Four weeks post-injection, the endothelial progenitor marker Cd34 increased, suggesting endothelial repair. In arteries of atherosclerotic patients, we observed a strong correlation between p21 and ANGPTL2 (r=0.727, p=0.0002) confirming the clinical significance of angptl2-associated senescence. Our data suggest that therapeutic down-regulation of vascular angptl2 leads to the clearance of SnEC by apoptosis, stimulates endothelial repair and reduces atherosclerosis.
Collapse
|
97
|
Lu Z, He B, Chen Z, Yan M, Wu L. Anti-inflammatory activity of berberine in non-alcoholic fatty liver disease via the Angptl2 pathway. BMC Immunol 2020; 21:28. [PMID: 32429849 PMCID: PMC7236478 DOI: 10.1186/s12865-020-00358-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease worldwide. Recent studies have shown that the Angptl2 pathway mediated hepatic inflammatory response plays an important role in the progression of nonalcoholic fatty liver disease. Our study investigated the possible molecular mechanisms of berberine (BBR) in the treatment of the liver inflammatory response in the livers of rats with high-fat diet-induced NAFLD via the Angptl2 pathway. Results At the end of 12 weeks, compared with the control group rats, the high-fat- diet group rats showed obvious pathological and biochemical changes. The levels of pro-infalmmatory cytokines (CCL2, TNF-α) were increased, the infiltration of inflammatory cells (CCR2) was elevated, and the hepatic mRNA and protein levels of Angptl2, NF-κB and Foxo1 were increased to different degrees. Nevertheless, following treatment with BBR, liver tissue pathology, biochemical data, and Angptl2 pathway-related genes expression were significantly ameliorated. Conclusions Our findings demonstrate that BBR might attenuate the liver inflammatory response in the livers of rats with high-fat diet-induced NAFLD through the regulation of the Angptl2 pathway.
Collapse
Affiliation(s)
- Zengsheng Lu
- Department of Infectious Diseases, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Zhejiang, 310012, Hangzhou, China
| | - Beihui He
- Key Laboratory of Diagnosis and Treatment of Circulatory Diseases in Combination with Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Hospital of Traditional Chinese Medicine, 54 Youdian Road, Zhejiang, 310006, Hangzhou, China
| | - Zhiyun Chen
- Key Laboratory of Diagnosis and Treatment of Circulatory Diseases in Combination with Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Hospital of Traditional Chinese Medicine, 54 Youdian Road, Zhejiang, 310006, Hangzhou, China
| | - Maoxiang Yan
- Key Laboratory of Diagnosis and Treatment of Circulatory Diseases in Combination with Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Hospital of Traditional Chinese Medicine, 54 Youdian Road, Zhejiang, 310006, Hangzhou, China
| | - Liyan Wu
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Zhejiang, 310012, Hangzhou, China.
| |
Collapse
|
98
|
Fan KC, Wu HT, Wei JN, Chuang LM, Hsu CY, Yen IW, Lin CH, Lin MS, Shih SR, Wang SH, Chang TJ, Li HY. Serum Angiopoietin-like Protein 6, Risk of Type 2 Diabetes, and Response to Hyperglycemia: A Prospective Cohort Study. J Clin Endocrinol Metab 2020; 105:5775438. [PMID: 32123920 DOI: 10.1210/clinem/dgaa103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Angiopoietin-like protein 6 (ANGPTL6) is a hepatokine that improves insulin sensitivity in animals. However, serum ANGPTL6 concentration was found to be higher in human participants with diabetes or metabolic syndrome in cross-sectional studies, implying that ANGPTL6 may be induced to counteract hyperglycemia. OBJECTIVE To investigate whether serum ANGPTL6 can predict incident diabetes and explore whether glucose or insulin can regulate ANGPTL6 expression and secretion. DESIGN This cohort study included adults without diabetes at baseline who were followed every 2 years for incident diabetes. Serum ANGPTL6 concentrations were measured at baseline and during oral glucose tolerance tests (OGTTs). A hepatic cell line, HepG2, and diet-induced obesity mouse model were used to evaluate the response of ANGPTL6 expression and secretion to hyperglycemia and the metabolic syndrome. RESULTS We recruited 1103 participants without diabetes at baseline. During the 4.22-year follow-up, 113 (10.2%) participants developed incident diabetes. Serum ANGPTL6 was negatively associated with the incidence of diabetes (adjusted hazard ratio, 0.77; P = 0.042). However, serum ANGPTL6 level was higher in participants with prediabetes (P = 0.018) and was elevated during OGTT. In HepG2 cells, treatment with glucose, but not insulin, induced ANGPTL6 expression. Hepatic ANGPTL6 expression and serum ANGPTL6 concentrations were significantly higher in mice fed with a high-fat diet than in those fed with a standard chow (both P < 0.05). CONCLUSION A high serum ANGPTL6 level is associated with a low incidence of diabetes in humans. ANGPTL6 is expressed and secreted in response to hyperglycemia to maintain glucose homeostasis.
Collapse
Affiliation(s)
- Kang-Chih Fan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Tsung Wu
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Jung-Nan Wei
- Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Yao Hsu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - I-Weng Yen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Chia-Hung Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Mao-Shin Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shyang-Rong Shih
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Huei Wang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Yuan Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
99
|
Kira S, Abe I, Ishii Y, Miyoshi M, Oniki T, Arakane M, Daa T, Teshima Y, Yufu K, Shimada T, Takahashi N. Role of angiopoietin-like protein 2 in atrial fibrosis induced by human epicardial adipose tissue: Analysis using an organo-culture system. Heart Rhythm 2020; 17:1591-1601. [PMID: 32330625 DOI: 10.1016/j.hrthm.2020.04.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND We have recently reported that peri-left atrial epicardial adipose tissue (EAT) is associated with atrial myocardial fibrosis, in which angiopoietin-like protein 2 (Angptl2) protein content in EAT is associated with atrial myocardial fibrosis. OBJECTIVE This study aimed to examine whether Angptl2 contained in peri-left atrial EAT can induce atrial myocardial fibrosis. METHODS Human peri-left atrial EAT and abdominal subcutaneous adipose tissue (SAT) were collected from 9 autopsy cases. EAT- or SAT-conditioned medium was dropped onto the rat left atrial epicardial surface using an organo-culture system. Conditioned medium, recombinant Angptl2, and its antibody effects on organo-cultured rat atrial myocardial fibrosis were evaluated. Angptl2 effects on cultured neonatal rat fibroblasts were also investigated. RESULTS EAT-conditioned medium induced atrial fibrosis in organo-cultured rat atrium with a progressive increase in the number of myofibroblasts. The profibrotic effect of EAT was greater than that of SAT. EAT in patients with atrial fibrillation induced a more significant atrial fibrosis than in those without. Treatment with human recombinant Angptl2 induced fibrosis in organo-cultured rat atrium, which was suppressed by the concomitant treatment with Angptl2 antibody. In cultured fibroblasts, Angptl2 upregulated the expression of α-smooth muscle actin, transforming growth factor-β1, phospho-extracellular signal-regulated kinase,phospho-inhibitor of κBα, and phospho-p38 mitogen-activated protein kinase. CONCLUSION This study demonstrated that Angptl2 contained in EAT played a crucial role in EAT-induced inflammatory atrial fibrosis. The results also suggested that antagonizing the expression of Angptl2 in EAT can be a novel therapeutic approach to prevent atrial fibrillation.
Collapse
Affiliation(s)
- Shintaro Kira
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Ichitaro Abe
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan.
| | - Yumi Ishii
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Miho Miyoshi
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Takahiro Oniki
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Motoki Arakane
- Department of Diagnostic Pathology, Oita University Faculty of Medicine, Oita, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Oita University Faculty of Medicine, Oita, Japan
| | - Yasushi Teshima
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Kunio Yufu
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Tatsuo Shimada
- Oita Medical Technology School, Japan College of Judo-Therapy Acupuncture & Moxibustion Therapy, Oita, Japan
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan.
| |
Collapse
|
100
|
Hammad MM, Abu-Farha M, Al-Taiar A, Alam-Eldin N, Al-Sabah R, Shaban L, Al-Mulla F, Abubaker J, Rahman A. Correlation of circulating ANGPTL5 levels with obesity, high sensitivity C-reactive protein and oxidized low-density lipoprotein in adolescents. Sci Rep 2020; 10:6330. [PMID: 32286392 PMCID: PMC7156513 DOI: 10.1038/s41598-020-63076-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Angiopoietin-like proteins (ANGPTL) is a family of eight members known to play an important role in metabolic diseases. Of these, ANGPTL5 is suggested to regulate triglyceride metabolism and is increased in obesity and diabetes. However, its role in metabolic diseases in adolescents is not well-studied. In this study, we tested the hypothesis of a positive association between plasma ANGPTL5, and obesity, high sensitivity C-reactive protein (HsCRP) and oxidized low-density lipoprotein (Ox-LDL) in adolescents. Adolescents (N = 431; age 11–14 years) were randomly selected from middle schools in Kuwait. Obesity was classified by the BMI-for-age based on the WHO growth charts. Plasma ANGPTL5, HsCRP, and Ox-LDL were measured using ELISA. The prevalence of overweight and obesity was 20.65% and 33.18%, respectively. Mean (SD) plasma ANGPTL5 levels were significantly higher in obese, compared with overweight and normal-weight adolescents (23.05 (8.79) vs 18.39 (7.08) ng/mL, and 18.26 (6.95) ng/ml, respectively). ANGPTL5 was positively associated with both HsCRP (ρ=0.27, p < 0.001) and Ox-LDL (ρ = 0.24, p < 0.001). In Conclusion, ANGPTL5 levels are elevated in obese adolescents and are associated with cardiovascular disease risk factors, HsCRP and Ox-LDL. The use of ANGPTL5 as a powerful diagnostic and prognostic tool in obesity and metabolic diseases needs to be further evaluated.
Collapse
Affiliation(s)
- Maha M Hammad
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdullah Al-Taiar
- School of Community & Environmental Health, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| | - Nada Alam-Eldin
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Reem Al-Sabah
- Department of Community Medicine and Behavioural Sciences, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Lemia Shaban
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | - Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait.
| |
Collapse
|