51
|
Abstract
Sleep maintains the function of the entire body through homeostasis. Chronic sleep deprivation (CSD) is a prime health concern in the modern world. Previous reports have shown that CSD has profound negative effects on brain vasculature at both the cellular and molecular levels, and that this is a major cause of cognitive dysfunction and early vascular ageing. However, correlations among sleep deprivation (SD), brain vascular changes and ageing have barely been looked into. This review attempts to correlate the alterations in the levels of major neurotransmitters (acetylcholine, adrenaline, GABA and glutamate) and signalling molecules (Sirt1, PGC1α, FOXO, P66shc, PARP1) in SD and changes in brain vasculature, cognitive dysfunction and early ageing. It also aims to connect SD-induced loss in the number of dendritic spines and their effects on alterations in synaptic plasticity, cognitive disabilities and early vascular ageing based on data available in scientific literature. To the best of our knowledge, this is the first article providing a pathophysiological basis to link SD to brain vascular ageing.
Collapse
|
52
|
Zhang J, Zhang L, Chang Y, Gu Q, Zhang J, Zhu Z, Qian Z, Wei C, Liu Z, Ren W, Han J. The Endocannabinoid System Contributes to Memory Deficits Induced by Rapid-eye-movement Sleep Deprivation in Adolescent Mice. Neuroscience 2020; 433:174-183. [PMID: 32198011 DOI: 10.1016/j.neuroscience.2020.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Sleep loss or insomnia is among the contributing factors of cognitive deficit, the underlying mechanisms of which remain largely elusive. The endocannabinoid (eCB) system plays a role in sleep, while it is unknown if it is involved in the regulation of memory retrieval by sleep deprivation. In addition, it still controversial how rapid-eye-movement sleep deprivation (REMSD) affects the spatial memory of adolescent mice. Here, we found that 24-h REMSD impairs spatial memory retrieval of adolescent mice in an object-place recognition task, which was rescued by NESS0327, a neutral cannabinoid receptor 1 (CB1R) antagonist. Mechanistically, REMSD induced eCB-mediated short-term and long-term synaptic plasticity changing including depolarization-induced suppression of inhibition (DSI) in the pyramidal neurons of the hippocampus, in which long-term synaptic plasticity changing was rescued by NESS0327. REMSD downregulated monoacylglycerol lipase, a hydrolase for the endocannabinoid 2-arachidonoylglycerol (2-AG), suggesting the involvement of eCB accumulation and the consequent synaptic plasticity in REMSD-elicited memory impairment in adolescent mice. These findings shed light on the role of sleep disorders in learning and memory deficit of adolescents.
Collapse
Affiliation(s)
- Jinming Zhang
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Lizi Zhang
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China; College of Life Sciences, Shaanxi Normal University, China
| | - Yuan Chang
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Qiaofen Gu
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Junmin Zhang
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Zhaoqiang Qian
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Chunling Wei
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Zhiqiang Liu
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Wei Ren
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Jing Han
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China.
| |
Collapse
|
53
|
Zuo JX, Li M, Jiang L, Lan F, Tang YY, Kang X, Zou W, Wang CY, Zhang P, Tang XQ. Hydrogen Sulfide Prevents Sleep Deprivation-Induced Hippocampal Damage by Upregulation of Sirt1 in the Hippocampus. Front Neurosci 2020; 14:169. [PMID: 32218719 PMCID: PMC7078349 DOI: 10.3389/fnins.2020.00169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/14/2020] [Indexed: 11/13/2022] Open
Abstract
Sleep deprivation (SD) induces hippocampal damage. Hydrogen sulfide (H2S) is a neuronal protective factor. Silence information regulating factor 1 (Sirt1) plays an important role in neuroprotection. Therefore, this study was aimed at exploring whether H2S meliorates SD-induced hippocampal damage and whether Sirt1 mediates this protective role of H2S. We found that sodium hydrosulfide (NaHS, a donor of H2S) alleviated SD-generated hippocampal oxidative stress, including increases in the activation of SOD and the level of GSH as well as a decrease in the level of MDA. Meanwhile, we found that NaHS reduced SD-exerted hippocampal endoplasmic reticulum (ER) Stress, including downregulations of GRP78, CHOP, and cleaved-caspase-12 expression. Moreover, NaHS reduced the apoptosis in the SD-exposed hippocampus, and this included decreases in the number of apoptotic cells and the activation of caspase-3, downregulation of Bax expression, and upregulation of Bcl-2 expression. NaHS upregulated the expression of Sirt1 in the hippocampus of SD-exposed rats. Furthermore, Sirtinol, the inhibitor of Sirt1, abrogated the protection of NaHS against SD-exerted hippocampal oxidative stress, ER stress, and apoptosis. These results suggested that H2S alleviates SD-induced hippocampal damage by upregulation of hippocampal Sirt1.
Collapse
Affiliation(s)
- Jin-Xi Zuo
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Min Li
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Li Jiang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Fang Lan
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China.,Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yi-Yun Tang
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Xuan Kang
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China.,Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Zou
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Chun-Yan Wang
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Ping Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China.,Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
54
|
Dissel S, Morgan E, Duong V, Chan D, van Swinderen B, Shaw P, Zars T. Sleep restores place learning to the adenylyl cyclase mutant rutabaga. J Neurogenet 2020; 34:83-91. [PMID: 31997683 PMCID: PMC7250152 DOI: 10.1080/01677063.2020.1720674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/20/2020] [Indexed: 01/29/2023]
Abstract
Sleep plays an important role in regulating plasticity. In Drosophila, the relationship between sleep and learning and memory has primarily focused on mushroom body dependent operant-learning assays such as aversive phototaxic suppression and courtship conditioning. In this study, sleep was increased in the classic mutant rutabaga (rut2080) and dunce (dnc1) by feeding them the GABA-A agonist gaboxadol (Gab). Performance was evaluated in each mutant in response to social enrichment and place learning, tasks that do not require the mushroom body. Gab-induced sleep did not restore behavioral plasticity to either rut2080 or dnc1 mutants following social enrichment. However, increased sleep restored place learning to rut2080 mutants. These data extend the positive effects of enhanced sleep to place learning and highlight the utility of Gab for elucidating the beneficial effects of sleep on brain functioning.
Collapse
Affiliation(s)
- Stephane Dissel
- School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City, MO 64110
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Ellen Morgan
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Vincent Duong
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Dorothy Chan
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Bruno van Swinderen
- The Queensland Brain Institute, University of Queensland, Brisbane Qld 4072 Australia
| | - Paul Shaw
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
55
|
Heckman PRA, Roig Kuhn F, Raven F, Bolsius YG, Prickaerts J, Meerlo P, Havekes R. Phosphodiesterase inhibitors roflumilast and vardenafil prevent sleep deprivation-induced deficits in spatial pattern separation. Synapse 2020; 74:e22150. [PMID: 32056276 PMCID: PMC9285343 DOI: 10.1002/syn.22150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 01/06/2023]
Abstract
Sleep deprivation (SD) is known to impair hippocampus‐dependent memory processes, in part by stimulating the phosphodiesterase (PDE) activity. In the present study, we assessed in mice whether SD also affects spatial pattern separation, a cognitive process that specifically requires the dentate gyrus (DG) subregion of the hippocampus. Adult male mice were trained in an object pattern separation (OPS) task in the middle of the light phase and then tested 24 hr thereafter. In total, we conducted three studies using the OPS task. In the first study, we validated the occurrence of pattern separation and tested the effects of SD. We found that 6 hr of SD during the first half of the light phase directly preceding the test trial impaired the spatial pattern separation performance. As a next step, we assessed in two consecutive studies whether the observed SD‐induced performance deficits could be prevented by the systemic application of two different PDE inhibitors that are approved for human use. Both the PDE4 inhibitor roflumilast and PDE5 inhibitor vardenafil successfully prevented SD‐induced deficits in spatial pattern separation. As a result, these PDE inhibitors have clinical potential for the prevention of memory deficits associated with loss of sleep.
Collapse
Affiliation(s)
- Pim R A Heckman
- Neurobiology Expert Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Femke Roig Kuhn
- Neurobiology Expert Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Frank Raven
- Neurobiology Expert Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Youri G Bolsius
- Neurobiology Expert Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience (MHeNs), European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - Peter Meerlo
- Neurobiology Expert Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Robbert Havekes
- Neurobiology Expert Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
56
|
Raven F, Bolsius YG, Renssen LV, Meijer EL, Zee EA, Meerlo P, Havekes R. Elucidating the role of protein synthesis in hippocampus‐dependent memory consolidation across the day and night. Eur J Neurosci 2020; 54:6972-6981. [PMID: 31965655 PMCID: PMC8596627 DOI: 10.1111/ejn.14684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 01/11/2023]
Abstract
It is widely acknowledged that de novo protein synthesis is crucial for the formation and consolidation of long‐term memories. While the basal activity of many signaling cascades that modulate protein synthesis fluctuates in a circadian fashion, it is unclear whether the temporal dynamics of protein synthesis‐dependent memory consolidation vary depending on the time of day. More specifically, it is unclear whether protein synthesis inhibition affects hippocampus‐dependent memory consolidation in rodents differentially across the day (i.e., the inactive phase with an abundance of sleep) and night (i.e., the active phase with little sleep). To address this question, male and female C57Bl6/J mice were trained in a contextual fear conditioning task at the beginning or the end of the light phase. Animals received a single systemic injection with the protein synthesis inhibitor anisomycin or vehicle directly, 4, 8 hr, or 11.5 hr following training, and memory was assessed after 24 hr. Here, we show that protein synthesis inhibition impaired the consolidation of context–fear memories selectively when the protein synthesis inhibitor was administered at the first three time points, irrespective of timing of training. Even though the basal activity of signaling pathways regulating de novo protein synthesis may fluctuate across the 24‐hr cycle, these results suggest that the temporal dynamics of protein synthesis‐dependent memory consolidation are similar for day‐time and night‐time learning.
Collapse
Affiliation(s)
- Frank Raven
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Youri G. Bolsius
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Lara V. Renssen
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Elroy L. Meijer
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Eddy A. Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| |
Collapse
|
57
|
da Luz MHM, Pino JMV, Santos TG, Antunes HKM, Martins VR, de Souza AAL, Torquato RJS, Lee KS. Sleep deprivation regulates availability of PrP C and Aβ peptides which can impair interaction between PrP C and laminin and neuronal plasticity. J Neurochem 2020; 153:377-389. [PMID: 31950499 PMCID: PMC7383904 DOI: 10.1111/jnc.14960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022]
Abstract
PrPC is a glycoprotein capable to interact with several molecules and mediates diverse signaling pathways. Among numerous ligands, laminin (LN) is known to promote neurite outgrowth and memory consolidation, while amyloid‐beta oligomers (Aβo) trigger synaptic dysfunction. In both pathways, mGluR1 is recruited as co‐receptor. The involvement of PrPC/mGluR1 in these opposite functions suggests that this complex is a key element in the regulation of synaptic activity. Considering that sleep‐wake cycle is important for synaptic homeostasis, we aimed to investigate how sleep deprivation affects the expression of PrPC and its ligands, laminin, Aβo, and mGluR1, a multicomplex that can interfere with neuronal plasticity. To address this question, hippocampi of control (CT) and sleep deprived (SD) C57BL/6 mice were collected at two time points of circadian period (13 hr and 21 hr). We observed that sleep deprivation reduced PrPC and mGluR1 levels with higher effect in active state (21 hr). Sleep deprivation also caused accumulation of Aβ peptides in rest period (13 hr), while laminin levels were not affected. In vitro binding assay showed that Aβo can compete with LN for PrPC binding. The influence of Aβo was also observed in neuritogenesis. LN alone promoted longer neurite outgrowth than non‐treated cells in both Prnp+/+ and Prnp0/0 genotypes. Aβo alone did not show any effects, but when added together with LN, it attenuated the effects of LN only in Prnp+/+ cells. Altogether, our findings indicate that sleep deprivation regulates the availability of PrPC and Aβ peptides, and based on our in vitro assays, these alterations induced by sleep deprivation can negatively affect LN–PrPC interaction, which is known to play roles in neuronal plasticity. ![]()
Collapse
Affiliation(s)
- Marcio H M da Luz
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jessica M V Pino
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tiago G Santos
- International Research Center. A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Hanna K M Antunes
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vilma R Martins
- International Research Center. A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Altay A L de Souza
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo J S Torquato
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Kil S Lee
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
58
|
Wei Y. Comparative transcriptome analysis of the hippocampus from sleep-deprived and Alzheimer's disease mice. Genet Mol Biol 2020; 43:e20190052. [PMID: 32338274 PMCID: PMC7249779 DOI: 10.1590/1678-4685-gmb-2019-0052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
We did a comparative analysis of the gene expression profiles of the hippocampus from sleep deprivation and Alzheimer’s disease (AD) mice. Differentially expressed genes (DEGs) were identified by comparing the transcriptome profiles of the hippocampus of sleep deprivation or AD mouse models to matched controls. The common DEGs between sleep deprivation and AD were identified by the overlapping analysis, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The results showed that a total of 16 common DEGs showed similar change patterns in both sleep deprivation mice and AD mice. Sgk1, Ly6a, Atp6v0e, Hspb8, Htra1, Pdk4, Pfkfb3, Golm1, and Plin3 were up-regulated in the two disorders, whereas, Marcksl1, Fgd1, Scarb1, Mvd, Klhl13, Elovl2, and Vps29 were down-regulated. Acetyl-CoA metabolic process and lipid biosynthetic process were significantly enriched by those DEGs. The highly expressed DEGs and the two GO terms were associated with neuropathological changes according to the previous studies. As expected, sleep deprivation may contribute the AD development through these common DEGs.
Collapse
Affiliation(s)
- Yi Wei
- Nanjing Forest Police College, Nanjing 210023, China
| |
Collapse
|
59
|
Serchov T, Schwarz I, Theiss A, Sun L, Holz A, Döbrössy MD, Schwarz MK, Normann C, Biber K, van Calker D. Enhanced adenosine A 1 receptor and Homer1a expression in hippocampus modulates the resilience to stress-induced depression-like behavior. Neuropharmacology 2019; 162:107834. [PMID: 31682853 DOI: 10.1016/j.neuropharm.2019.107834] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/19/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022]
Abstract
Resilience to stress is critical for the development of depression. Enhanced adenosine A1 receptor (A1R) signaling mediates the antidepressant effects of acute sleep deprivation (SD). However, chronic SD causes long-lasting upregulation of brain A1R and increases the risk of depression. To investigate the effects of A1R on mood, we utilized two transgenic mouse lines with inducible A1R overexpression in forebrain neurons. These two lines have identical levels of A1R increase in the cortex, but differ in the transgenic A1R expression in the hippocampus. Switching on the transgene promotes robust antidepressant and anxiolytic effects in both lines. The mice of the line without transgenic A1R overexpression in the hippocampus (A1Hipp-) show very strong resistance towards development of stress-induced chronic depression-like behavior. In contrast, the mice of the line in which A1R upregulation extends to the hippocampus (A1Hipp+), exhibit decreased resilience to depression as compared to A1Hipp-. Similarly, automatic analysis of reward behavior of the two lines reveals that depression resistant A1Hipp-transgenic mice exhibit high sucrose preference, while mice of the vulnerable A1Hipp + line developed stress-induced anhedonic phenotype. The A1Hipp + mice have increased Homer1a expression in hippocampus, correlating with impaired long-term potentiation in the CA1 region, mimicking the stressed mice. Furthermore, virus-mediated overexpression of Homer1a in the hippocampus decreases stress resilience. Taken together our data indicate for first time that increased expression of A1R and Homer1a in the hippocampus modulates the resilience to stress-induced depression and thus might potentially mediate the detrimental effects of chronic sleep restriction on mood.
Collapse
Affiliation(s)
- Tsvetan Serchov
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| | - Inna Schwarz
- Functional Neuroconnectomics Group, Department of Experimental Epileptology and Cognition Research, Life and Brain Centre, University of Bonn, Medical School, 53105, Bonn, Germany
| | - Alice Theiss
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Lu Sun
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany; Department Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, 9713, AV Groningen, the Netherlands
| | - Amrei Holz
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany; Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Mate D Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Martin K Schwarz
- Functional Neuroconnectomics Group, Department of Experimental Epileptology and Cognition Research, Life and Brain Centre, University of Bonn, Medical School, 53105, Bonn, Germany
| | - Claus Normann
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Knut Biber
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany; Department Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, 9713, AV Groningen, the Netherlands
| | - Dietrich van Calker
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| |
Collapse
|
60
|
Havekes R, Heckman PRA, Wams EJ, Stasiukonyte N, Meerlo P, Eisel ULM. Alzheimer's disease pathogenesis: The role of disturbed sleep in attenuated brain plasticity and neurodegenerative processes. Cell Signal 2019; 64:109420. [PMID: 31536750 DOI: 10.1016/j.cellsig.2019.109420] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/15/2019] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairments. The classical symptoms of the disease include gradual deterioration of memory and language. Epidemiological studies indicate that around 25-40% of AD patients have sleep-wake cycle disturbances. Importantly, a series of studies suggested that the relationship between AD and sleep disturbance may be complex and bidirectional. Indeed, accumulation of the extracellular neuronal protein amyloid-beta (Aβ) leads to altered sleep-wake behavior in both mice and humans. At the same time, disturbances of the normal sleep-wake cycle may facilitate AD pathogenesis. This paper will review the mechanisms underlying this potential interrelated connection including locus coeruleus damage, reductions in orexin neurotransmission, alterations in melatonin levels, and elevated cytokine levels. In addition, we will also highlight how both the development of AD and sleep disturbances lead to changes in intracellular signaling pathways involved in regulating neuronal plasticity and connectivity, particularly extremes in cofilin phosphorylation. Finally, current pharmacological and nonpharmacological therapeutic approaches will be discussed.
Collapse
Affiliation(s)
- Robbert Havekes
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.
| | - Pim R A Heckman
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Emma J Wams
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Neringa Stasiukonyte
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter Meerlo
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
61
|
Mohammadipoor-Ghasemabad L, Sangtarash MH, Sheibani V, Sasan HA, Esmaeili-Mahani S. Hippocampal microRNA-191a-5p Regulates BDNF Expression and Shows Correlation with Cognitive Impairment Induced by Paradoxical Sleep Deprivation. Neuroscience 2019; 414:49-59. [DOI: 10.1016/j.neuroscience.2019.06.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022]
|
62
|
Dorrian J, Centofanti S, Smith A, McDermott KD. Self-regulation and social behavior during sleep deprivation. PROGRESS IN BRAIN RESEARCH 2019; 246:73-110. [PMID: 31072564 DOI: 10.1016/bs.pbr.2019.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An emerging literature is specifically focusing on the effects of sleep deprivation on aspects of social functioning and underlying neural changes. Two critical facets of social behavior emerge that are negatively impacted by sleep deprivation-self-regulation, which includes behavioral and emotional regulation, and social monitoring, which includes perceiving and interpreting cues relating to self and others. Sleep deprived individuals performing tasks with social components show altered brain activity in areas of the prefrontal cortex implicated in self-control, inhibition, evaluation, and decision-making, in proximity to mesocorticolimbic pathways to reward and emotional processing areas. These cognitive changes lead to increased reward seeking and behaviors that promote negative health outcomes (such as increased consumption of indulgence foods). These changes also lead to emotional disinhibition and increased responses to negative stimuli, leading to reductions in trust, empathy, and humor. Concomitant attentional instability leads to impaired social information processing, impairing individual and team performance and increasing likelihood of error, incident, and injury. Together, changes to reward seeking, the foundational components of social interaction, and interpretation of social cues, can result in unpleasant or deviant behavior. These behaviors are perceived and negatively responded to by others, leading to a cycle of conflict and withdrawal. Further studies are necessary and timely. Educational and behavioral interventions are required to reduce health-damaging behaviors, and to reduce emotionally-laden negative interpretation of sleep-deprived exchanges. This may assist with health, and with team cohesion (and improved performance and safety) in the workplace and the home.
Collapse
Affiliation(s)
- Jillian Dorrian
- Behaviour-Brain-Body Research Centre, School of Psychology, Social Work, and Social Policy, University of South Australia, Adelaide, SA, Australia.
| | - Stephanie Centofanti
- Behaviour-Brain-Body Research Centre, School of Psychology, Social Work, and Social Policy, University of South Australia, Adelaide, SA, Australia
| | - Ashleigh Smith
- Behaviour-Brain-Body Research Centre, School of Psychology, Social Work, and Social Policy, University of South Australia, Adelaide, SA, Australia; Alliance for Research in Exercise Nutrition and Activity (ARENA), School of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Kathryn Demos McDermott
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University and The Miriam Hospital, Weight Control and Diabetes Research Center, Providence, RI, United States
| |
Collapse
|
63
|
Dufort-Gervais J, Mongrain V, Brouillette J. Bidirectional relationships between sleep and amyloid-beta in the hippocampus. Neurobiol Learn Mem 2019; 160:108-117. [DOI: 10.1016/j.nlm.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/18/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022]
|
64
|
Barone I, Hawks-Mayer H, Lipton JO. Mechanisms of sleep and circadian ontogeny through the lens of neurodevelopmental disorders. Neurobiol Learn Mem 2019; 160:160-172. [DOI: 10.1016/j.nlm.2019.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 12/05/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
|
65
|
Winsky-Sommerer R, de Oliveira P, Loomis S, Wafford K, Dijk DJ, Gilmour G. Disturbances of sleep quality, timing and structure and their relationship with other neuropsychiatric symptoms in Alzheimer’s disease and schizophrenia: Insights from studies in patient populations and animal models. Neurosci Biobehav Rev 2019; 97:112-137. [DOI: 10.1016/j.neubiorev.2018.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 08/31/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023]
|
66
|
Misrani A, Tabassum S, Chen X, Tan SY, Wang JC, Yang L, Long C. Differential effects of citalopram on sleep-deprivation-induced depressive-like behavior and memory impairments in mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:102-111. [PMID: 30017777 DOI: 10.1016/j.pnpbp.2018.07.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/09/2023]
Abstract
Recently there is increasing concern over the association between sleep deprivation (S-Dep) and depression. Mounting evidence suggests that S-Dep might be a risk factor for depression. However, underlying molecular mechanism remains elusive and currently there is no effective therapy to negate the effects of S-Dep. In this study, we aimed to examine whether subchronic treatment of citalopram (CTM), an antidepressant, can attenuate the negative effects of S-Dep in mice. Three-month-old C57BL/6J mice were divided into control, S-Dep, CTM control and CTM + S-Dep groups. CTM and CTM + S-Dep group treated with citalopram for 5 consecutive days at a dose of 10 mg/kg per day before experimental procedure. S-Dep and CTM + S-Dep group mice were sleep deprived for 24 h using an automated treadmill method. Our results revealed that S-Dep animals displayed an increased depressive-like behavior in forced swim, tail suspension and sucrose preference test and anxiety-like behavior in the open field and elevated plus maze, as well as disrupted spatial memory in Morris water maze. Western blotting analysis revealed that S-Dep caused reductions in the levels of the plasticity- and memory-related signaling molecules i.e. pCaMKII and pCREB in the hippocampus. Moreover, S-Dep animals showed synaptic plasticity deficits in the Schaffer collateral pathway. Interestingly, subchronic CTM treatment prevented S-Dep-induced decrease in pCaMKII and pCREB levels in the hippocampus. Furthermore, CTM treatment prevented S-Dep-induced deficits in synaptic plasticity, spatial memory, depressive-like behavior in sucrose preference test and anxiety-like behavior in open field test but not in force swim, tail suspension and elevated plus maze test. This data suggests differential effects of CTM on S-Dep-associated behavioral alterations and cognitive impairments.
Collapse
Affiliation(s)
- Afzal Misrani
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Sidra Tabassum
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xi Chen
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shu-Yi Tan
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ji-Chen Wang
- School of Psychology, South China Normal University, Guangzhou 510631, PR China
| | - Li Yang
- School of Psychology, South China Normal University, Guangzhou 510631, PR China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
67
|
Abstract
Sleep is a highly conserved phenomenon in endotherms, and therefore it must serve at least one basic function across this wide range of species. What that function is remains one of the biggest mysteries in neurobiology. By using the word neurobiology, we do not mean to exclude possible non-neural functions of sleep, but it is difficult to imagine why the brain must be taken offline if the basic function of sleep did not involve the nervous system. In this chapter we discuss several current hypotheses about sleep function. We divide these hypotheses into two categories: ones that propose higher-order cognitive functions and ones that focus on housekeeping or restorative processes. We also pose four aspects of sleep that any successful functional hypothesis has to account for: why do the properties of sleep change across the life span? Why and how is sleep homeostatically regulated? Why must the brain be taken offline to accomplish the proposed function? And, why are there two radically different stages of sleep?The higher-order cognitive function hypotheses we discuss are essential mechanisms of learning and memory and synaptic plasticity. These are not mutually exclusive hypotheses. Each focuses on specific mechanistic aspects of sleep, and higher-order cognitive processes are likely to involve components of all of these mechanisms. The restorative hypotheses are maintenance of brain energy metabolism, macromolecular biosynthesis, and removal of metabolic waste. Although these three hypotheses seem more different than those related to higher cognitive function, they may each contribute important components to a basic sleep function. Any sleep function will involve specific gene expression and macromolecular biosynthesis, and as we explain there may be important connections between brain energy metabolism and the need to remove metabolic wastes.A deeper understanding of sleep functions in endotherms will enable us to answer whether or not rest behaviors in species other than endotherms are homologous with mammalian and avian sleep. Currently comparisons across the animal kingdom depend on superficial and phenomenological features of rest states and sleep, but investigations of sleep functions would provide more insight into the evolutionary relationships between EEG-defined sleep in endotherms and rest states in ectotherms.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, USA
| | - H Craig Heller
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
68
|
Effects of post-learning REM sleep deprivation on hippocampal plasticity-related genes and microRNA in mice. Behav Brain Res 2018; 361:7-13. [PMID: 30594545 DOI: 10.1016/j.bbr.2018.12.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 11/20/2022]
Abstract
Sleep is essential for memory consolidation that stabilizes a memory trace. Memory consolidation includes waves of new gene expression and protein synthesis. Recently, microRNAs (miRNAs) have emerged as critical regulators of memory processes. Previous studies demonstrated that rapid eye movement (REM) sleep deprivation (REM SD) during specific time windows after training in the Morris water maze (MWM) task impairs memory consolidation. Here, we showed that the post-learning REM sleep, extending from 3 to 6 h after last training, is critical for spatial learning in the MWM task. Further, we found that the REM SD after training significantly changes the hippocampal expression of brain-derived neurotrophic factor (BDNF) mRNA; however, it causes minimal difference in the hippocampal expressions of calcium-calmodulin-dependent protein kinase II (CAMKII) and cAMP response-element-binding (CREB). In addition, it considerably affected the hippocampal expressions of miR-132, miR-182, and miR-124. In conclusion, after the MWM task, the post-learning REM sleep during specific time windows can modulate spatial memory consolidation, and its deprivation can impact the hippocampal transcriptional processes including memory-related miRNAs and mRNAs.
Collapse
|
69
|
Hippocampal Reactivation Extends for Several Hours Following Novel Experience. J Neurosci 2018; 39:866-875. [PMID: 30530857 DOI: 10.1523/jneurosci.1950-18.2018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022] Open
Abstract
New memories are believed to be consolidated over several hours of post-task sleep. The reactivation or "replay" of hippocampal cell assemblies has been proposed to provide a key mechanism for this process. However, previous studies have indicated that such replay is restricted to the first 10-30 min of post-task sleep, suggesting that it has a limited role in memory consolidation. We performed long-duration recordings in sleeping and behaving male rats and applied methods for evaluating the reactivation of neurons in pairs as well as in larger ensembles while controlling for the continued activation of ensembles already present during pre-task sleep ("preplay"). We found that cell assemblies reactivate for up to 10 h, with a half-maximum timescale of ∼6 h, in sleep following novel experience, even when corrected for preplay. We further confirmed similarly prolonged reactivation in post-task sleep of rats in other datasets that used behavior in novel environments. In contrast, we saw limited reactivation in sleep following behavior in familiar environments. Overall, our findings reconcile the duration of replay with the timescale attributed to cellular memory consolidation and provide strong support for an integral role of replay in memory.SIGNIFICANCE STATEMENT Neurons that are active during an experience reactivate again afterward during rest and sleep. This replay of ensembles of neurons has been proposed to help strengthen memories, but it has also been reported that replay occurs only in the first 10-30 min of sleep, suggesting a circumscribed role. We performed long-duration recordings in the hippocampus of rats and found that replay persists for several hours in sleep following novel experience, far beyond the limits found in previous reports based on shorter recordings. These findings reconcile the duration of replay with the hours-long timescales attributed to memory consolidation.
Collapse
|
70
|
Mogilever NB, Zuccarelli L, Burles F, Iaria G, Strapazzon G, Bessone L, Coffey EBJ. Expedition Cognition: A Review and Prospective of Subterranean Neuroscience With Spaceflight Applications. Front Hum Neurosci 2018; 12:407. [PMID: 30425628 PMCID: PMC6218582 DOI: 10.3389/fnhum.2018.00407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/21/2018] [Indexed: 01/10/2023] Open
Abstract
Renewed interest in human space exploration has highlighted the gaps in knowledge needed for successful long-duration missions outside low-Earth orbit. Although the technical challenges of such missions are being systematically overcome, many of the unknowns in predicting mission success depend on human behavior and performance, knowledge of which must be either obtained through space research or extrapolated from human experience on Earth. Particularly in human neuroscience, laboratory-based research efforts are not closely connected to real environments such as human space exploration. As caves share several of the physical and psychological challenges of spaceflight, underground expeditions have recently been developed as a spaceflight analog for astronaut training purposes, suggesting that they might also be suitable for studying aspects of behavior and cognition that cannot be fully examined under laboratory conditions. Our objective is to foster a bi-directional exchange between cognitive neuroscientists and expedition experts by (1) describing the cave environment as a worthy space analog for human research, (2) reviewing work conducted on human neuroscience and cognition within caves, (3) exploring the range of topics for which the unique environment may prove valuable as well as obstacles and limitations, (4) outlining technologies and methods appropriate for cave use, and (5) suggesting how researchers might establish contact with potential expedition collaborators. We believe that cave expeditions, as well as other sorts of expeditions, offer unique possibilities for cognitive neuroscience that will complement laboratory work and help to improve human performance and safety in operational environments, both on Earth and in space.
Collapse
Affiliation(s)
| | | | - Ford Burles
- Department of Psychology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Giuseppe Iaria
- Department of Psychology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research - Institute of Mountain Emergency Medicine, Bolzano, Italy
| | - Loredana Bessone
- Directorate of Human and Robotics, Exploration, European Space Agency, Köln, Germany
| | - Emily B J Coffey
- Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
71
|
Mullane K, Williams M. Alzheimer's disease (AD) therapeutics - 2: Beyond amyloid - Re-defining AD and its causality to discover effective therapeutics. Biochem Pharmacol 2018; 158:376-401. [PMID: 30273552 DOI: 10.1016/j.bcp.2018.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/25/2022]
Abstract
Compounds targeted for the treatment of Alzheimer's Disease (AD) have consistently failed in clinical trials despite evidence for target engagement and pharmacodynamic activity. This questions the relevance of compounds acting at current AD drug targets - the majority of which reflect the seminal amyloid and, to a far lesser extent, tau hypotheses - and limitations in understanding AD causality as distinct from general dementia. The preeminence of amyloid and tau led to many alternative approaches to AD therapeutics being ignored or underfunded to the extent that their causal versus contributory role in AD remains unknown. These include: neuronal network dysfunction; cerebrovascular disease; chronic, local or systemic inflammation involving the innate immune system; infectious agents including herpes virus and prion proteins; neurotoxic protein accumulation associated with sleep deprivation, circadian rhythm and glymphatic/meningeal lymphatic system and blood-brain-barrier dysfunction; metabolic related diseases including diabetes, obesity hypertension and hypocholesterolemia; mitochondrial dysfunction and environmental factors. As AD has become increasingly recognized as a multifactorial syndrome, a single treatment paradigm is unlikely to work in all patients. However, the biomarkers required to diagnose patients and parse them into mechanism/disease-based sub-groups remain rudimentary and unvalidated as do non-amyloid, non-tau translational animal models. The social and economic impact of AD is also discussed in the context of new FDA regulatory draft guidance and a proposed biomarker-based Framework (re)-defining AD and its stages as part of the larger landscape of treating dementia via the 2013 G8 initiative to identify a disease-modifying therapy for dementia/AD by 2025.
Collapse
Affiliation(s)
- Kevin Mullane
- Gladstone Institutes, San Francisco, CA, United States
| | - Michael Williams
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
72
|
Sleep and mindfulness meditation as they relate to false memory. PSYCHOLOGICAL RESEARCH 2018; 84:1084-1111. [PMID: 30244286 DOI: 10.1007/s00426-018-1098-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022]
Abstract
By a systematic analysis of the current literature, we compare two states of sleep and meditation in terms of their role in the formation or suppression of Deese-Roediger-McDermott (DRM) false memory. We aim to suggest that the occurrence of false memory under these two states is a result of reinforcing some abilities and changes in cognitive systems which can ultimately improve some aspects of cognitive functions. In our analogy, we propose that: (1) both sleep and meditation may improve source monitoring ability whose failure is one of the most important mechanisms in producing false memories, and (2) despite improvement in source monitoring ability, adaptive cognitive processes, as mechanisms which are common in sleep and meditation, can still produce false memories. In conclusion, we propose that in spite of their contribution to false memory through adaptive processes, the beneficial role of sleep and meditation in cognition may be more prominent than their harmful role.
Collapse
|
73
|
A brief period of sleep deprivation causes spine loss in the dentate gyrus of mice. Neurobiol Learn Mem 2018; 160:83-90. [PMID: 29588221 DOI: 10.1016/j.nlm.2018.03.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/05/2018] [Accepted: 03/23/2018] [Indexed: 11/22/2022]
Abstract
Sleep and sleep loss have a profound impact on hippocampal function, leading to memory impairments. Modifications in the strength of synaptic connections directly influences neuronal communication, which is vital for normal brain function, as well as the processing and storage of information. In a recently published study, we found that as little as five hours of sleep deprivation impaired hippocampus-dependent memory consolidation, which was accompanied by a reduction in dendritic spine numbers in hippocampal area CA1. Surprisingly, loss of sleep did not alter the spine density of CA3 neurons. Although sleep deprivation has been reported to affect the function of the dentate gyrus, it is unclear whether a brief period of sleep deprivation impacts spine density in this region. Here, we investigated the impact of a brief period of sleep deprivation on dendritic structure in the dentate gyrus of the dorsal hippocampus. We found that five hours of sleep loss reduces spine density in the dentate gyrus with a prominent effect on branched spines. Interestingly, the inferior blade of the dentate gyrus seems to be more vulnerable in terms of spine loss than the superior blade. This decrease in spine density predominantly in the inferior blade of the dentate gyrus may contribute to the memory deficits observed after sleep loss, as structural reorganization of synaptic networks in this subregion is fundamental for cognitive processes.
Collapse
|
74
|
Sleep deprivation decreases neuronal excitability and responsiveness in rats both in vivo and ex vivo. Brain Res Bull 2018; 137:166-177. [DOI: 10.1016/j.brainresbull.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 11/19/2022]
|
75
|
Abstract
Sleep deprivation disrupts the lives of millions of people every day and has a profound impact on the molecular biology of the brain. These effects begin as changes within a neuron, at the DNA and RNA level, and result in alterations in neuronal plasticity and dysregulation of many cognitive functions including learning and memory. The epigenome plays a critical role in regulating gene expression in the context of memory storage. In this review article, we begin by describing the effects of epigenetic alterations on the regulation of gene expression, focusing on the most common epigenetic mechanisms: (i) DNA methylation; (ii) histone modifications; and (iii) non-coding RNAs. We then discuss evidence suggesting that sleep loss impacts the epigenome and that these epigenetic alterations might mediate the changes in cognition seen following disruption of sleep. The link between sleep and the epigenome is only beginning to be elucidated, but clear evidence exists that epigenetic alterations occur following sleep deprivation. In the future, these changes to the epigenome could be utilized as biomarkers of sleep loss or as therapeutic targets for sleep-related disorders.
Collapse
Affiliation(s)
- Marie E Gaine
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Snehajyoti Chatterjee
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Ted Abel
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
76
|
O'Callaghan EK, Green EW, Franken P, Mongrain V. Omics Approaches in Sleep-Wake Regulation. Handb Exp Pharmacol 2018; 253:59-81. [PMID: 29796779 DOI: 10.1007/164_2018_125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although sleep seems an obvious and simple behaviour, it is extremely complex involving numerous interactions both at the neuronal and the molecular levels. While we have gained detailed insight into the molecules and neuronal networks responsible for the circadian organization of sleep and wakefulness, the molecular underpinnings of the homeostatic aspect of sleep regulation are still unknown and the focus of a considerable research effort. In the last 20 years, the development of techniques allowing the simultaneous measurement of hundreds to thousands of molecular targets (i.e. 'omics' approaches) has enabled the unbiased study of the molecular pathways regulated by and regulating sleep. In this chapter, we will review how the different omics approaches, including transcriptomics, epigenomics, proteomics, and metabolomics, have advanced sleep research. We present relevant data in the framework of the two-process model in which circadian and homeostatic processes interact to regulate sleep. The integration of the different omics levels, known as 'systems genetics', will eventually lead to a better understanding of how information flows from the genome, to molecules, to networks, and finally to sleep both in health and disease.
Collapse
Affiliation(s)
- Emma K O'Callaghan
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Edward W Green
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Valérie Mongrain
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada. .,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
77
|
Lewin M, Ilina M, Betz J, Masiello K, Hui M, Wilson DA, Saito M. Developmental Ethanol-Induced Sleep Fragmentation, Behavioral Hyperactivity, Cognitive Impairment and Parvalbumin Cell Loss are Prevented by Lithium Co-treatment. Neuroscience 2017; 369:269-277. [PMID: 29183826 DOI: 10.1016/j.neuroscience.2017.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 02/08/2023]
Abstract
Developmental ethanol exposure is a well-known cause of lifelong cognitive deficits, behavioral hyperactivity, emotional dysregulation, and more. In healthy adults, sleep is thought to have a critical involvement in each of these processes. Our previous work has demonstrated that some aspects of cognitive impairment in adult mice exposed at postnatal day 7 (P7) to ethanol (EtOH) correlate with slow-wave sleep (SWS) fragmentation (Wilson et al., 2016). We and others have also previously demonstrated that co-treatment with LiCl on the day of EtOH exposure prevents many of the anatomical and physiological impairments observed in adults. Here we explored cognitive function, diurnal rhythms (activity, temperature), SWS, and parvalbumin (PV) and perineuronal net (PNN)-positive cell densities in adult mice that had received a single day of EtOH exposure on P7 and saline-treated littermate controls. Half of the animals also received a LiCl injection on P7. The results suggest that developmental EtOH resulted in adult behavioral hyperactivity, cognitive impairment, and reduced SWS compared to saline controls. Both of these effects were reduced by LiCl treatment on the day of EtOH exposure. Finally, developmental EtOH resulted in decreased PV/PNN-expressing cells in retrosplenial (RS) cortex and dorsal CA3 hippocampus at P90. As with sleep and behavioral activity, LiCl treatment reduced this decrease in PV expression. Together, these results further clarify the long-lasting effects of developmental EtOH on adult behavior, physiology, and anatomy. Furthermore, they demonstrate the neuroprotective effects of LiCl co-treatment on this wide range of developmental EtOH's long-lasting consequences.
Collapse
Affiliation(s)
- M Lewin
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Sackler Neuroscience Graduate Program, NYU School of Medicine, New York, NY, United States
| | - M Ilina
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - J Betz
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - K Masiello
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - M Hui
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - D A Wilson
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, United States.
| | - M Saito
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Department of Psychiatry, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
78
|
Navarro-Sanchis C, Brock O, Winsky-Sommerer R, Thuret S. Modulation of Adult Hippocampal Neurogenesis by Sleep: Impact on Mental Health. Front Neural Circuits 2017; 11:74. [PMID: 29075182 PMCID: PMC5643465 DOI: 10.3389/fncir.2017.00074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022] Open
Abstract
The process of neurogenesis has been demonstrated to occur throughout life in the subgranular zone (SGZ) of the hippocampal dentate gyrus of several mammals, including humans. The basal rate of adult hippocampal neurogenesis can be altered by lifestyle and environmental factors. In this perspective review, the evidence for sleep as a modulator of adult hippocampal neurogenesis is first summarized. Following this, the impacts of sleep and sleep disturbances on hippocampal-dependent functions, including learning and memory, and depression are critically evaluated. Finally, we postulate that the effects of sleep on hippocampal-dependent functions may possibly be mediated by a change in adult hippocampal neurogenesis. This could provide a route to new treatments for cognitive impairments and psychiatric disorders.
Collapse
Affiliation(s)
- Cristina Navarro-Sanchis
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Olivier Brock
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Raphaelle Winsky-Sommerer
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, United Kingdom
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
79
|
Marti AR, Patil S, Mrdalj J, Meerlo P, Skrede S, Pallesen S, Pedersen TT, Bramham CR, Grønli J. No Escaping the Rat Race: Simulated Night Shift Work Alters the Time-of-Day Variation in BMAL1 Translational Activity in the Prefrontal Cortex. Front Neural Circuits 2017; 11:70. [PMID: 29085284 PMCID: PMC5649179 DOI: 10.3389/fncir.2017.00070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/12/2017] [Indexed: 01/26/2023] Open
Abstract
Millions of people worldwide work during the night, resulting in disturbed circadian rhythms and sleep loss. This may cause deficits in cognitive functions, impaired alertness and increased risk of errors and accidents. Disturbed circadian rhythmicity resulting from night shift work could impair brain function and cognition through disrupted synthesis of proteins involved in synaptic plasticity and neuronal function. Recently, the circadian transcription factor brain-and-muscle arnt-like protein 1 (BMAL1) has been identified as a promoter of mRNA translation initiation, the most highly regulated step in protein synthesis, through binding to the mRNA “cap”. In this study we investigated the effects of simulated shift work on protein synthesis markers. Male rats (n = 40) were exposed to forced activity, either in their rest phase (simulated night shift work) or in their active phase (simulated day shift work) for 3 days. Following the third work shift, experimental animals and time-matched undisturbed controls were euthanized (rest work at ZT12; active work at ZT0). Tissue lysates from two brain regions (prefrontal cortex, PFC and hippocampus) implicated in cognition and sleep loss, were analyzed with m7GTP (cap) pull-down to examine time-of-day variation and effects of simulated shift work on cap-bound protein translation. The results show time-of-day variation of protein synthesis markers in PFC, with increased protein synthesis at ZT12. In the hippocampus there was little difference between ZT0 and ZT12. Active phase work did not induce statistically significant changes in protein synthesis markers at ZT0 compared to time-matched undisturbed controls. Rest work, however, resulted in distinct brain-region specific changes of protein synthesis markers compared to time-matched controls at ZT12. While no changes were observed in the hippocampus, phosphorylation of cap-bound BMAL1 and its regulator S6 kinase beta-1 (S6K1) was significantly reduced in the PFC, together with significant reduction in the synaptic plasticity associated protein activity-regulatedcytoskeleton-associated protein (Arc). Our results indicate considerable time-of-day and brain-region specific variation in cap-dependent translation initiation. We concludethat simulated night shift work in rats disrupts the pathways regulating the circadian component of the translation of mRNA in the PFC, and that this may partly explain impaired waking function during night shift work.
Collapse
Affiliation(s)
- Andrea R Marti
- Bergen Stress and Sleep Group, Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Sudarshan Patil
- Department of Biomedicine, University of Bergen, Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Jelena Mrdalj
- Bergen Stress and Sleep Group, Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Silje Skrede
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.,Section of Clinical Pharmacology, Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Ståle Pallesen
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
| | - Torhild T Pedersen
- Bergen Stress and Sleep Group, Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Janne Grønli
- Bergen Stress and Sleep Group, Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| |
Collapse
|
80
|
Puentes-Mestril C, Aton SJ. Linking Network Activity to Synaptic Plasticity during Sleep: Hypotheses and Recent Data. Front Neural Circuits 2017; 11:61. [PMID: 28932187 PMCID: PMC5592216 DOI: 10.3389/fncir.2017.00061] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
Research findings over the past two decades have supported a link between sleep states and synaptic plasticity. Numerous mechanistic hypotheses have been put forth to explain this relationship. For example, multiple studies have shown structural alterations to synapses (including changes in synaptic volume, spine density, and receptor composition) indicative of synaptic weakening after a period of sleep. Direct measures of neuronal activity and synaptic strength support the idea that a period of sleep can reduce synaptic strength. This has led to the synaptic homeostasis hypothesis (SHY), which asserts that during slow wave sleep, synapses are downscaled throughout the brain to counteract net strengthening of network synapses during waking experience (e.g., during learning). However, neither the cellular mechanisms mediating these synaptic changes, nor the sleep-dependent activity changes driving those cellular events are well-defined. Here we discuss potential cellular and network dynamic mechanisms which could underlie reductions in synaptic strength during sleep. We also discuss recent findings demonstrating circuit-specific synaptic strengthening (rather than weakening) during sleep. Based on these data, we explore the hypothetical role of sleep-associated network activity patterns in driving synaptic strengthening. We propose an alternative to SHY—namely that depending on experience during prior wake, a variety of plasticity mechanisms may operate in the brain during sleep. We conclude that either synaptic strengthening or synaptic weakening can occur across sleep, depending on changes to specific neural circuits (such as gene expression and protein translation) induced by experiences in wake. Clarifying the mechanisms underlying these different forms of sleep-dependent plasticity will significantly advance our understanding of how sleep benefits various cognitive functions.
Collapse
Affiliation(s)
- Carlos Puentes-Mestril
- Neuroscience Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, United States
| | - Sara J Aton
- Neuroscience Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, United States
| |
Collapse
|
81
|
Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Proc Natl Acad Sci U S A 2017. [PMID: 28630298 DOI: 10.1073/pnas.1700983114] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hcrt gene inactivation in mice leads to behavioral state instability, abnormal transitions to paradoxical sleep, and cataplexy, hallmarks of narcolepsy. Sleep homeostasis is, however, considered unimpaired in patients and narcoleptic mice. We find that whereas Hcrtko/ko mice respond to 6-h sleep deprivation (SD) with a slow-wave sleep (SWS) EEG δ (1.0 to 4.0 Hz) power rebound like WT littermates, spontaneous waking fails to induce a δ power reflecting prior waking duration. This correlates with impaired θ (6.0 to 9.5 Hz) and fast-γ (55 to 80 Hz) activity in prior waking. We algorithmically identify a theta-dominated wakefulness (TDW) substate underlying motivated behaviors and typically preceding cataplexy in Hcrtko/ko mice. Hcrtko/ko mice fully implement TDW when waking is enforced, but spontaneous TDW episode duration is greatly reduced. A reformulation of the classic sleep homeostasis model, where homeostatic pressure rises exclusively in TDW rather than all waking, predicts δ power dynamics both in Hcrtko/ko and WT mouse baseline and recovery SWS. The low homeostatic impact of Hcrtko/ko mouse spontaneous waking correlates with decreased cortical expression of neuronal activity-related genes (notably Bdnf, Egr1/Zif268, and Per2). Thus, spontaneous TDW stability relies on Hcrt to sustain θ/fast-γ network activity and associated plasticity, whereas other arousal circuits sustain TDW during SD. We propose that TDW identifies a discrete global brain activity mode that is regulated by context-dependent neuromodulators and acts as a major driver of sleep homeostasis. Hcrt loss in Hcrtko/ko mice causes impaired TDW maintenance in baseline wake and blunted δ power in SWS, reproducing, respectively, narcolepsy excessive daytime sleepiness and poor sleep quality.
Collapse
|
82
|
Guo JN, Tian LY, Liu WY, Mu J, Zhou D. Activation of the Akt/mTOR signaling pathway: A potential response to long-term neuronal loss in the hippocampus after sepsis. Neural Regen Res 2017; 12:1832-1842. [PMID: 29239329 PMCID: PMC5745837 DOI: 10.4103/1673-5374.219044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Survivors of sepsis may suffer chronic cognitive impairment as a long-term sequela. However, the precise mechanisms of cognitive dysfunction after sepsis are not well understood. We employed the cecal ligation-and-puncture-induced septic mouse model. We observed elevated phosphorylation of Akt, mammalian target of rapamycin (mTOR) and p70S6K on days 14 and 60, progressive neuronal loss in the cornu ammonis 1 region, and abnormal neuronal morphology in the hippocampus in the sepsis mouse model. These findings indicate that changes in neuronal morphology and number in the hippocampus after sepsis were associated with strong activation of the Akt/mTOR signaling pathway, and may reflect a "self-rescuing" feedback response to neuronal loss after sepsis.
Collapse
Affiliation(s)
- Jia-Nan Guo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lin-Yu Tian
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wen-Yu Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jie Mu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|