51
|
Yue Q, Martin RC. Phonological Working Memory Representations in the Left Inferior Parietal Lobe in the Face of Distraction and Neural Stimulation. Front Hum Neurosci 2022; 16:890483. [PMID: 35814962 PMCID: PMC9259857 DOI: 10.3389/fnhum.2022.890483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
The neural basis of phonological working memory (WM) was investigated through an examination of the effects of irrelevant speech distractors and disruptive neural stimulation from transcranial magnetic stimulation (TMS). Embedded processes models argue that the same regions involved in speech perception are used to support phonological WM whereas buffer models assume that a region separate from speech perception regions is used to support WM. Thus, according to the embedded processes approach but not the buffer approach, irrelevant speech and TMS to the speech perception region should disrupt the decoding of phonological WM representations. According to the buffer account, decoding of WM items should be possible in the buffer region despite distraction and should be disrupted with TMS to this region. Experiment 1 used fMRI and representational similarity analyses (RSA) with a delayed recognition memory paradigm using nonword stimuli. Results showed that decoding of memory items in the speech perception regions (superior temporal gyrus, STG) was possible in the absence of distractors. However, the decoding evidence in the left STG was susceptible to interference from distractors presented during the delay period whereas decoding in the proposed buffer region (supramarginal gyrus, SMG) persisted. Experiment 2 examined the causal roles of the speech processing region and the buffer region in phonological WM performance using TMS. TMS to the SMG during the early delay period caused a disruption in recognition performance for the memory nonwords, whereas stimulations at the STG and an occipital control region did not affect WM performance. Taken together, results from the two experiments are consistent with predictions of a buffer model of phonological WM, pointing to a critical role of the left SMG in maintaining phonological representations.
Collapse
Affiliation(s)
- Qiuhai Yue
- Department of Psychological Sciences, Rice University, Houston, TX, United States
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
- *Correspondence: Qiuhai Yue Randi C. Martin
| | - Randi C. Martin
- Department of Psychological Sciences, Rice University, Houston, TX, United States
- *Correspondence: Qiuhai Yue Randi C. Martin
| |
Collapse
|
52
|
Nishimura A, Sutoko S, Kiguchi M, Atsumori H, Obata A, Funane T, Kandori A, Mizuguchi T, Shimonaga K, Hama S, Tsuji T. Projection of Damaged Visual and Language Regions on Low Trail Making Test Part-B Performance in Stroke Patients. Front Neurol 2022; 13:853942. [PMID: 35720060 PMCID: PMC9201080 DOI: 10.3389/fneur.2022.853942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe Trail Making Test Part-B (TMT-B) is an attention functional test to investigate cognitive dysfunction. It requires the ability to recognize not only numbers but also letters. We analyzed the relationship between brain lesions in stroke patients and their TMT-B performance.MethodsFrom the TMT-B, two parameters (score and completion time) were obtained. The subjects were classified into several relevant groups by their scores and completion times through a data-driven analysis (k-means clustering). The score-classified groups were characterized by low (≤10), moderate (10 < score < 25), and high (25) scores. In terms of the completion time, the subjects were classified into four groups. The lesion degree in the brain was calculated for each of the 116 regions classified by automated anatomical labeling (AAL). For each group, brain sites with a significant difference (corrected p < 0.1) between each of the 116 regions were determined by a Wilcoxon Rank–Sum significant difference test.ResultsLesions at the cuneus and the superior occipital gyrus, which are mostly involved in visual processing, were significant (corrected p < 0.1) in the low-score group. Furthermore, the moderate-score group showed more-severe lesion degrees (corrected p < 0.05) in the regions responsible for the linguistic functions, such as the superior temporal gyrus and the supramarginal gyrus. As for the completion times, lesions in the calcarine, the cuneus, and related regions were significant (corrected p < 0.1) in the fastest group as compared to the slowest group. These regions are also involved in visual processing.ConclusionThe TMT-B results revealed that the subjects in the low-score group or the slowest- group mainly had damage in the visual area, whereas the subjects in the moderate-score group mainly had damage in the language area. These results suggest the potential utility of TMT-B performance in the lesion site.
Collapse
Affiliation(s)
- Ayako Nishimura
- Center for Exploratory Research, Research & Development Group, Hitachi. Ltd., Kokubunji, Japan
- Department of Rehabilitation, Hibino Hospital, Hiroshima, Japan
- *Correspondence: Ayako Nishimura
| | - Stephanie Sutoko
- Center for Exploratory Research, Research & Development Group, Hitachi. Ltd., Kokubunji, Japan
- Department of Rehabilitation, Hibino Hospital, Hiroshima, Japan
| | - Masashi Kiguchi
- Center for Exploratory Research, Research & Development Group, Hitachi. Ltd., Kokubunji, Japan
- Department of Rehabilitation, Hibino Hospital, Hiroshima, Japan
| | - Hirokazu Atsumori
- Center for Exploratory Research, Research & Development Group, Hitachi. Ltd., Kokubunji, Japan
- Department of Rehabilitation, Hibino Hospital, Hiroshima, Japan
| | - Akiko Obata
- Center for Exploratory Research, Research & Development Group, Hitachi. Ltd., Kokubunji, Japan
- Department of Rehabilitation, Hibino Hospital, Hiroshima, Japan
| | - Tsukasa Funane
- Center for Exploratory Research, Research & Development Group, Hitachi. Ltd., Kokubunji, Japan
- Department of Rehabilitation, Hibino Hospital, Hiroshima, Japan
| | - Akihiko Kandori
- Center for Exploratory Research, Research & Development Group, Hitachi. Ltd., Kokubunji, Japan
- Department of Rehabilitation, Hibino Hospital, Hiroshima, Japan
| | - Tomohiko Mizuguchi
- IoT Innovation Department, New Business Produce Division, Maxell Ltd., Yokohama, Japan
| | - Koji Shimonaga
- Department of Neurosurgery and Interventional Neuroradiology, Hiroshima City Asa Citizens Hospital, Hiroshima, Japan
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Seiji Hama
- Department of Rehabilitation, Hibino Hospital, Hiroshima, Japan
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshio Tsuji
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
53
|
Wu YJ, Hou X, Peng C, Yu W, Oppenheim GM, Thierry G, Zhang D. Rapid learning of a phonemic discrimination in the first hours of life. Nat Hum Behav 2022; 6:1169-1179. [PMID: 35654965 PMCID: PMC9391223 DOI: 10.1038/s41562-022-01355-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
Human neonates can discriminate phonemes, but the neural mechanism underlying this ability is poorly understood. Here we show that the neonatal brain can learn to discriminate natural vowels from backward vowels, a contrast unlikely to have been learnt in the womb. Using functional near-infrared spectroscopy, we examined the neuroplastic changes caused by 5 h of postnatal exposure to random sequences of natural and reversed (backward) vowels (T1), and again 2 h later (T2). Neonates in the experimental group were trained with the same stimuli as those used at T1 and T2. Compared with controls, infants in the experimental group showed shorter haemodynamic response latencies for forward vs backward vowels at T1, maximally over the inferior frontal region. At T2, neural activity differentially increased, maximally over superior temporal regions and the left inferior parietal region. Neonates thus exhibit ultra-fast tuning to natural phonemes in the first hours after birth.
Collapse
Affiliation(s)
- Yan Jing Wu
- Faculty of Foreign Languages, Ningbo University, Ningbo, China
| | - Xinlin Hou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Cheng Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wenwen Yu
- School of Psychology, Shenzhen University, Shenzhen, China
| | | | - Guillaume Thierry
- School of Psychology, Bangor University, Bangor, Wales, UK.,Faculty of English, Adam Mickiewicz University, Poznań, Poland
| | - Dandan Zhang
- School of Psychology, Shenzhen University, Shenzhen, China. .,Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China. .,Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.
| |
Collapse
|
54
|
Associations between Brain Microstructure and Phonological Processing Ability in Preschool Children. CHILDREN 2022; 9:children9060782. [PMID: 35740719 PMCID: PMC9221994 DOI: 10.3390/children9060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies have associated brain changes in children with future reading and language skills, but few studies have investigated the association between language skills and white matter structure in preschool-aged children. Using 208 data sets acquired in 73 healthy children aged 2–7 years, we investigated the relationship between developmental brain microstructure and phonological processing ability as measured using their phonological processing raw score (PPRS). The correlation analysis showed that across the whole age group, with increasing age, PPRS increased, fractional anisotropy (FA) of the internal capsule and inferior fronto-occipital fasciculus and some other regions increased, and mean diffusivity (MD) of the corpus callosum and internal capsule and some other regions decreased. The results of the mediation analysis suggest that increased FA may be the basis of phonological processing ability development during this period, and the increased number of fiber connections between the right inferior parietal lobule and right supramarginal gyrus may be a key imaging feature of phonological processing ability development. Our study reflects the changes in brain microstructure and contributes to understanding the underlying neural mechanisms of language development in preschool children.
Collapse
|
55
|
Leroy A, Very E, Birmes P, Yger P, Szaffarczyk S, Lopes R, Outteryck O, Faure C, Duhem S, Grandgenèvre P, Warembourg F, Vaiva G, Jardri R. Intrusive experiences in posttraumatic stress disorder: Treatment response induces changes in the directed functional connectivity of the anterior insula. Neuroimage Clin 2022; 34:102964. [PMID: 35189456 PMCID: PMC8861823 DOI: 10.1016/j.nicl.2022.102964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 11/18/2022]
Abstract
Many causal paths were less influenced by the AI after effective therapy for PTSD. Insular influences over the rest of the brain were found to be positively correlated with re-experiencing. Re-experiencing was linked with changes in intrinsic networks’ spatial stability after treatment.
Background One of the core features of posttraumatic stress disorder (PTSD) is re-experiencing trauma. The anterior insula (AI) has been proposed to play a crucial role in these intrusive experiences. However, the dynamic function of the AI in re-experiencing trauma and its putative modulation by effective therapy need to be specified. Methods Thirty PTSD patients were enrolled and exposed to traumatic memory reactivation therapy. Resting-state functional magnetic resonance imaging (fMRI) scans were acquired before and after treatment. To explore AI-directed influences over the rest of the brain, we referred to a mixed model using pre-/posttreatment Granger causality analysis seeded on the AI as a within-subject factor and treatment response as a between-subject factor. To further identify correlates of re-experiencing trauma, we investigated how intrusive severity affected (i) causality maps and (ii) the spatial stability of other intrinsic brain networks. Results We observed changes in AI-directed functional connectivity patterns in PTSD patients. Many within- and between-network causal paths were found to be less influenced by the AI after effective therapy. Insular influences were found to be positively correlated with re-experiencing symptoms, while they were linked with a stronger default mode network (DMN) and more unstable central executive network (CEN) connectivity. Conclusion We showed that directed changes in AI signaling to the DMN and CEN at rest may underlie the degree of re-experiencing symptoms in PTSD. A positive response to treatment further induced changes in network-to-network anticorrelated patterns. Such findings may guide targeted neuromodulation strategies in PTSD patients not suitably improved by conventional treatment.
Collapse
Affiliation(s)
- Arnaud Leroy
- Univ Lille, INSERM, CHU Lille, Lille Neuroscience & Cognition Centre (U-1172), Plasticity & SubjectivitY Team, CURE Platform, 59000 Lille, France; CHU Lille, Fontan Hospital, General Psychiatry Dpt., 59037 Lille Cedex, France; Centre National de Ressources et Résilience pour les psychotraumatismes (CN2R Lille - Paris), 59000 Lille, France.
| | - Etienne Very
- CHU Toulouse, Purpan Hospital, Psychiatry Department, 31059 Toulouse Cedex, France; ToNIC, Toulouse NeuroImaging Center, INSERM U-1214, UPS, France
| | - Philippe Birmes
- ToNIC, Toulouse NeuroImaging Center, INSERM U-1214, UPS, France
| | - Pierre Yger
- Univ Lille, INSERM, CHU Lille, Lille Neuroscience & Cognition Centre (U-1172), Plasticity & SubjectivitY Team, CURE Platform, 59000 Lille, France; Institut de la Vision, Sorbonne Université, Inserm S968, CNRS UMR7210, Paris, France
| | - Sébastien Szaffarczyk
- Univ Lille, INSERM, CHU Lille, Lille Neuroscience & Cognition Centre (U-1172), Plasticity & SubjectivitY Team, CURE Platform, 59000 Lille, France
| | - Renaud Lopes
- Univ Lille, INSERM, CHU Lille, Lille Neuroscience & Cognition Centre (U-1772), Degenerative & Vascular Cognitive Disorders Team, 59000 Lille, France; Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, 59000 Lille, France
| | - Olivier Outteryck
- Univ Lille, INSERM, CHU Lille, Lille Neuroscience & Cognition Centre (U-1772), Degenerative & Vascular Cognitive Disorders Team, 59000 Lille, France; CHU Lille, Department of Neuroradiology, Roger Salengro Hospital, 59037 Lille Cedex, France
| | - Cécile Faure
- Univ Lille, INSERM, CHU Lille, Lille Neuroscience & Cognition Centre (U-1172), Plasticity & SubjectivitY Team, CURE Platform, 59000 Lille, France
| | - Stéphane Duhem
- CHU Lille, Fontan Hospital, General Psychiatry Dpt., 59037 Lille Cedex, France; Centre National de Ressources et Résilience pour les psychotraumatismes (CN2R Lille - Paris), 59000 Lille, France; Université de Lille, Inserm, CHU Lille, CIC 1403 - Clinical Investigation Center, 59000 Lille, France
| | - Pierre Grandgenèvre
- Univ Lille, INSERM, CHU Lille, Lille Neuroscience & Cognition Centre (U-1172), Plasticity & SubjectivitY Team, CURE Platform, 59000 Lille, France; CHU Lille, Fontan Hospital, General Psychiatry Dpt., 59037 Lille Cedex, France
| | | | - Guillaume Vaiva
- Univ Lille, INSERM, CHU Lille, Lille Neuroscience & Cognition Centre (U-1172), Plasticity & SubjectivitY Team, CURE Platform, 59000 Lille, France; CHU Lille, Fontan Hospital, General Psychiatry Dpt., 59037 Lille Cedex, France; Centre National de Ressources et Résilience pour les psychotraumatismes (CN2R Lille - Paris), 59000 Lille, France
| | - Renaud Jardri
- Univ Lille, INSERM, CHU Lille, Lille Neuroscience & Cognition Centre (U-1172), Plasticity & SubjectivitY Team, CURE Platform, 59000 Lille, France; CHU Lille, Fontan Hospital, Child & Adolescent Psychiatry Dpt., 59037 Lille Cedex, France
| |
Collapse
|
56
|
Xie Y, He Y, Guan M, Zhou G, Wang Z, Ma Z, Wang H, Yin H. Impact of low-frequency rTMS on functional connectivity of the dentate nucleus subdomains in schizophrenia patients with auditory verbal hallucination. J Psychiatr Res 2022; 149:87-96. [PMID: 35259665 DOI: 10.1016/j.jpsychires.2022.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 01/10/2023]
Abstract
Despite low-frequency repetitive transcranial magnetic stimulation (rTMS) is effective in treating schizophrenia patients with auditory verbal hallucinations (AVH), the underlying neural mechanisms of the effect still need to be clarified. Using the cerebellar dentate nucleus (DN) subdomain (dorsal and versal DN) as seeds, the present study investigated resting state functional connectivity (FC) alternations of the seeds with the whole brain and their associations with clinical responses in schizophrenia patients with AVH receiving 1 Hz rTMS treatment. The results showed that the rTMS treatment improved the psychiatric symptoms (e.g., AVH and positive symptoms) and certain neurocognitive functions (e.g., visual learning and verbal learning) in the patients. In addition, the patients at baseline showed increased FC between the DN subdomains and temporal lobes (e.g., right superior temporal gyrus and right middle temporal gyrus) and decreased FC between the DN subdomains and the left superior frontal gyrus, right postcentral gyrus, left supramarginal gyrus and regional cerebellum (e.g., lobule 4-5) compared to controls. Furthermore, these abnormal DN subdomain connectivity patterns did not persist and decreased FC of DN subdomains with cerebellum lobule 4-5 were reversed in patients after rTMS treatment. Linear regression analysis showed that the FC difference values of DN subdomains with the temporal lobes, supramarginal gyrus and cerebellum 4-5 between the patients at baseline and posttreatment were associated with clinical improvements (e.g., AVH and verbal learning) after rTMS treatment. The results suggested that rTMS treatment may modulate the neural circuits of the DN subdomains and hint to underlying neural mechanisms for low-frequency rTMS treating schizophrenia with AVH.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xinyang College, Xinyang, China; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Ying He
- Department of Psychiatry, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | | | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Military Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
57
|
Nakayama Y, Sugawara SK, Fukunaga M, Hamano YH, Sadato N, Nishimura Y. The dorsal premotor cortex encodes the step-by-step planning processes for goal-directed motor behavior in humans. Neuroimage 2022; 256:119221. [PMID: 35447355 DOI: 10.1016/j.neuroimage.2022.119221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022] Open
Abstract
The dorsal premotor cortex (PMd) plays an essential role in visually guided goal-directed motor behavior. Although there are several planning processes for achieving goal-directed behavior, the separate neural processes are largely unknown. Here, we created a new visuo-goal task to investigate the step-by-step planning processes for visuomotor and visuo-goal behavior in humans. Using functional magnetic resonance imaging, we found activation in different portions of the bilateral PMd during each processing step. In particular, the activated area for rule-based visuomotor and visuo-goal mapping was located at the ventrorostral portion of the bilateral PMd, that for action plan specification was at the dorsocaudal portion of the left PMd, that for transformation was at the rostral portion of the left PMd, and that for action preparation was at the caudal portion of the bilateral PMd. Thus, the left PMd was involved throughout all of the processes, but the right PMd was involved only in rule-based visuomotor and visuo-goal mapping and action preparation. The locations related to each process were generally spatially separated from each other, but they overlapped partially. These findings revealed that there are functional subregions in the bilateral PMd in humans and these subregions form a functional gradient to achieve goal-directed behavior.
Collapse
Affiliation(s)
- Yoshihisa Nakayama
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya, Tokyo 156-8506, Japan; Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan.
| | - Sho K Sugawara
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya, Tokyo 156-8506, Japan; Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Yuki H Hamano
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Yukio Nishimura
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
58
|
Pathophysiological Heterogeneity of the BBSOA Neurodevelopmental Syndrome. Cells 2022; 11:cells11081260. [PMID: 35455940 PMCID: PMC9024734 DOI: 10.3390/cells11081260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
The formation and maturation of the human brain is regulated by highly coordinated developmental events, such as neural cell proliferation, migration and differentiation. Any impairment of these interconnected multi-factorial processes can affect brain structure and function and lead to distinctive neurodevelopmental disorders. Here, we review the pathophysiology of the Bosch–Boonstra–Schaaf Optic Atrophy Syndrome (BBSOAS; OMIM 615722; ORPHA 401777), a recently described monogenic neurodevelopmental syndrome caused by the haploinsufficiency of NR2F1 gene, a key transcriptional regulator of brain development. Although intellectual disability, developmental delay and visual impairment are arguably the most common symptoms affecting BBSOAS patients, multiple additional features are often reported, including epilepsy, autistic traits and hypotonia. The presence of specific symptoms and their variable level of severity might depend on still poorly characterized genotype–phenotype correlations. We begin with an overview of the several mutations of NR2F1 identified to date, then further focuses on the main pathological features of BBSOAS patients, providing evidence—whenever possible—for the existing genotype–phenotype correlations. On the clinical side, we lay out an up-to-date list of clinical examinations and therapeutic interventions recommended for children with BBSOAS. On the experimental side, we describe state-of-the-art in vivo and in vitro studies aiming at deciphering the role of mouse Nr2f1, in physiological conditions and in pathological contexts, underlying the BBSOAS features. Furthermore, by modeling distinct NR2F1 genetic alterations in terms of dimer formation and nuclear receptor binding efficiencies, we attempt to estimate the total amounts of functional NR2F1 acting in developing brain cells in normal and pathological conditions. Finally, using the NR2F1 gene and BBSOAS as a paradigm of monogenic rare neurodevelopmental disorder, we aim to set the path for future explorations of causative links between impaired brain development and the appearance of symptoms in human neurological syndromes.
Collapse
|
59
|
Wandelt SK, Kellis S, Bjånes DA, Pejsa K, Lee B, Liu C, Andersen RA. Decoding grasp and speech signals from the cortical grasp circuit in a tetraplegic human. Neuron 2022; 110:1777-1787.e3. [PMID: 35364014 DOI: 10.1016/j.neuron.2022.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]
Abstract
The cortical grasp network encodes planning and execution of grasps and processes spoken and written aspects of language. High-level cortical areas within this network are attractive implant sites for brain-machine interfaces (BMIs). While a tetraplegic patient performed grasp motor imagery and vocalized speech, neural activity was recorded from the supramarginal gyrus (SMG), ventral premotor cortex (PMv), and somatosensory cortex (S1). In SMG and PMv, five imagined grasps were well represented by firing rates of neuronal populations during visual cue presentation. During motor imagery, these grasps were significantly decodable from all brain areas. During speech production, SMG encoded both spoken grasp types and the names of five colors. Whereas PMv neurons significantly modulated their activity during grasping, SMG's neural population broadly encoded features of both motor imagery and speech. Together, these results indicate that brain signals from high-level areas of the human cortex could be used for grasping and speech BMI applications.
Collapse
Affiliation(s)
- Sarah K Wandelt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Spencer Kellis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - David A Bjånes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kelsie Pejsa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brian Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Charles Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Richard A Andersen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
60
|
Xie Y, He Y, Guan M, Wang Z, Zhou G, Ma Z, Wang H, Yin H. Low-frequency rTMS treatment alters the topographical organization of functional brain networks in schizophrenia patients with auditory verbal hallucination. Psychiatry Res 2022; 309:114393. [PMID: 35042065 DOI: 10.1016/j.psychres.2022.114393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023]
Abstract
Auditory verbal hallucinations (AVH) are an important characteristic of schizophrenia. Repeated transcranial magnetic stimulation (rTMS) has been evidence to be effective in treating AVH. We evaluated the topological properties of resting-state functional brain networks in schizophrenia patients with AVH (n = 32) who received 1-Hz rTMS treatment and matched healthy controls (n = 33). The results showed that the psychotic symptoms and certain neurocognitive performances in patients were improved by rTMS treatment. Furthermore, the pretreatment patients showed abnormal global topological metrics compared with the controls, including lower global efficiency (Eglob, represents the relative quality of information transmission between all nodes in the network) and higher characteristic path length (Lp, characterizes the mean shortest distance between any two nodes in the network). The pretreament patients also showed decreased local topological metrics relative to the controls, including the nodal shortest path (NLp, quantifies the mean distance between the given node and the other nodes in the network) and nodal efficiency (Ne, measures the information interchange among the neighbor nodes when one node is removed), mainly located in the prefrontal cortex, occipital cortex, and subcortical regions. While the abnormal global and local topological patterns were normalized in patients after rTMS treatment. The multiple linear regression analysis indicated that the baseline topological metrics could be associated with the clinical responses after treatment in the patient group. The results suggested that the topological organization of the functional brain network was globally and regionally altered in schizophrenia patients with AVH after rTMS treatment and may be a potential therapeutic effect for AVH in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xinyang College, Xinyang, China; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Ying He
- Department of Psychiatry, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | - Zhujing Ma
- Department of Military Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
61
|
Bonyadi N, Dolatkhah N, Salekzamani Y, Hashemian M. Effect of berry-based supplements and foods on cognitive function: a systematic review. Sci Rep 2022; 12:3239. [PMID: 35217779 PMCID: PMC8881511 DOI: 10.1038/s41598-022-07302-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Abstract
In the current decade, a growing body of evidence has proposed the correlation between diet and cognitive function or dementia in the ageing population. This study was designed to appraise discoveries from the randomized controlled trials to confirm the effects of berry-based supplements or foods on cognitive function in older adults. PubMed/MEDLINE, Cochrane Central Register of Controlled Trials, Web of Science, Scopus, EMBASE, Google Scholar, and ProQuest as well as SID, Magiran, and Iranmedex electronic databases were explored for human interventional studies up to March 2021. In total, eleven articles were identified using frozen blueberry (n = 4 studies), blueberry concentrate (n = 2), beverage (n = 3), capsule (n = 1), extract and powder (n = 1). These studies had been performed among older people with no recognized cognitive impairment or mild cognitive impairment (MCI). The primary outcomes included global cognitive function, psychomotor function, learning and memory, working memory capacity, executive functions, and brain perfusion/activity. To our knowledge, this is the first systematic review of available clinical trials on the effects of berry-based supplements and foods on cognitive performances as well as brain perfusion parameters among the elderly with normal cognition or MCI. Existing evidence concludes that berry-based supplements and foods have beneficial effects on resting brain perfusion, cognitive function, memory performance, executive functioning, processing speed, and attention indices.
Collapse
Affiliation(s)
- Negar Bonyadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yaghoub Salekzamani
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hashemian
- Department of Biology, School of Arts and Sciences, Utica College, Utica, USA
| |
Collapse
|
62
|
Lin Y, Tsao Y, Hsieh PJ. Neural correlates of individual differences in predicting ambiguous sounds comprehension level. Neuroimage 2022; 251:119012. [DOI: 10.1016/j.neuroimage.2022.119012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
|
63
|
Tocco C, Bertacchi M, Studer M. Structural and Functional Aspects of the Neurodevelopmental Gene NR2F1: From Animal Models to Human Pathology. Front Mol Neurosci 2022; 14:767965. [PMID: 34975398 PMCID: PMC8715095 DOI: 10.3389/fnmol.2021.767965] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023] Open
Abstract
The assembly and maturation of the mammalian brain result from an intricate cascade of highly coordinated developmental events, such as cell proliferation, migration, and differentiation. Any impairment of this delicate multi-factorial process can lead to complex neurodevelopmental diseases, sharing common pathogenic mechanisms and molecular pathways resulting in multiple clinical signs. A recently described monogenic neurodevelopmental syndrome named Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is caused by NR2F1 haploinsufficiency. The NR2F1 gene, coding for a transcriptional regulator belonging to the steroid/thyroid hormone receptor superfamily, is known to play key roles in several brain developmental processes, from proliferation and differentiation of neural progenitors to migration and identity acquisition of neocortical neurons. In a clinical context, the disruption of these cellular processes could underlie the pathogenesis of several symptoms affecting BBSOAS patients, such as intellectual disability, visual impairment, epilepsy, and autistic traits. In this review, we will introduce NR2F1 protein structure, molecular functioning, and expression profile in the developing mouse brain. Then, we will focus on Nr2f1 several functions during cortical development, from neocortical area and cell-type specification to maturation of network activity, hippocampal development governing learning behaviors, assembly of the visual system, and finally establishment of cortico-spinal descending tracts regulating motor execution. Whenever possible, we will link experimental findings in animal or cellular models to corresponding features of the human pathology. Finally, we will highlight some of the unresolved questions on the diverse functions played by Nr2f1 during brain development, in order to propose future research directions. All in all, we believe that understanding BBSOAS mechanisms will contribute to further unveiling pathophysiological mechanisms shared by several neurodevelopmental disorders and eventually lead to effective treatments.
Collapse
Affiliation(s)
- Chiara Tocco
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | |
Collapse
|
64
|
Context dependent differences in working memory related brain activity in heavy cannabis users. Psychopharmacology (Berl) 2022; 239:1373-1385. [PMID: 34448889 PMCID: PMC9110519 DOI: 10.1007/s00213-021-05956-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022]
Abstract
RATIONALE Compromised cognitive control in cannabis use-tempting situations is thought to play a key role in the development of cannabis use disorders. However, little is known about how exposure to cannabis cues and contexts may influence cognitive control and the underlying neural mechanisms in cannabis users. OBJECTIVES Working memory (WM) is an attention reliant executive function central to cognitive control. In this study, we investigated how distracting cannabis words affected WM load-dependent performance and related brain activity in near-daily cannabis users (N = 36) relative to controls (N = 33). METHODS Brain activity was recorded during a novel N-back flanker WM task with neutral and cannabis flankers added as task-irrelevant distractors. RESULTS On a behavioural level, WM performance did not differ between groups, and the presence of cannabis flankers did not affect performance. However, in cannabis users compared to controls, the presence of cannabis flankers reduced WM load-related activity in multiple regions, including the insula, thalamus, superior parietal lobe and supramarginal gyrus. CONCLUSIONS The group specificity of these effects suggest that cannabis users might differ from controls in the way they process cannabis-related cues and that cannabis cue exposure could interfere with other cognitive processes under cognitively demanding circumstances. Future studies should focus on the role of context in cognitive control-related processes like WM and attention to further elucidate potential cognitive impairments in heavy cannabis users and how these relate to loss of control over drug seeking itself.
Collapse
|
65
|
Neural basis of in-group bias and prejudices: A systematic meta-analysis. Neurosci Biobehav Rev 2021; 131:1214-1227. [PMID: 34715150 DOI: 10.1016/j.neubiorev.2021.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/14/2021] [Accepted: 10/24/2021] [Indexed: 01/06/2023]
Abstract
In-group favoritism and prejudices relate to discriminatory behaviors but, despite decades of research, understanding of their neural correlates has been limited. A systematic coordinate-based meta-analysis of functional magnetic resonance imaging (fMRI) studies (altogether 87 original datasets, n = 2328) was conducted to investigate neural inter-group biases, i.e., responses toward in-group vs. out-group in different contexts. We found inter-group biases in some previously identified brain regions (e.g., the medial prefrontal cortex, insula) but also in many previously non-identified brain regions (e.g., the cerebellum, precentral gyrus). Sub-group analyses indicated that neural correlates of inter-group biases may be mostly context-specific. Regarding different types of group memberships, inter-group bias toward trivial groups was evident only in the cingulate cortex, while inter-group biases toward "real" groups (ethnic, national, or political groups) involved broader sets of brain regions. Additionally, there were heightened neural threat responses toward out-groups' faces and stronger neural empathic responses toward in-groups' suffering. We did not obtain significant publication bias. Overall, the findings provide novel implications for theory and prejudice-reduction interventions.
Collapse
|
66
|
Wu CL, Chan YC, Chen HC. Neurocognitive Mechanism of Remote and Close Associations: An fMRI Study. AMERICAN JOURNAL OF PSYCHOLOGY 2021. [DOI: 10.5406/amerjpsyc.134.3.0333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Remote association is the ability to combine seemingly unrelated components into new concepts and is evaluated via the Remote Associates Test (RAT). The RAT has generally been used to examine brain activation during insight problem solving but not remote association. Moreover, little is known about the neural correlates of remote association and close association. To address this issue, we used the associative distance in the development of the RAT and designed remote associated items and close associated items. We collected brain images during observation of remote and close associated items from 30 adult participants and analyzed the activation of brain regions involved in remote and close associations. The results showed that processing of remote and close association occurred in the posterior cingulate cortex. After controlling for the influence of other associations, we found that the rostromedial prefrontal cortex, precuneus, and middle temporal gyrus were involved exclusively in remote association. These results showed that remote association has conjunctive and disjunctive neurocognitive mechanisms. Our results contribute to the understanding of the neurocognitive mechanisms of different associations and provide empirical support for the associative theory of creativity.
Collapse
|
67
|
Zhang J, Zhang Y, Pan Y, Xu Y, Xue Y. The neural foundation of associative memory: a dynamic functional connectivity study for right-handed young adults. Exp Brain Res 2021; 239:3527-3536. [PMID: 34537860 DOI: 10.1007/s00221-021-06222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/12/2021] [Indexed: 11/30/2022]
Abstract
The medial temporal lobe (MTL) is the core neural construction related to associative memory. This study sought to explore the dynamic functional connectivity (dFC) between the subdivisions of MTL and other regions in the whole brain. Additionally, it sought to determine relationships between connectivity stability and associative memory function, to elucidate the neural foundation of associative memory from the perspectives of dFC. A Wechsler Memory Scale China revised edition (WMS-RC) measurement and a resting-state functional magnetic resonance imaging were conducted to clarify adults' function of associative memory and dFC patterns in subdivisions of the MTL. A multiple regression analysis was carried out to analyze the relationships described above. The results demonstrated that (i) connectivity in the left brain included the anterior hippocampus (aHIP) and right fusiform (Fusiform_R), middle hippocampus (mHIP) and right inferior parietal lobule (IPL_R), posterior hippocampus (pHIP) and left inferior parietal lobule (IPL_L), perirhinal cortex (PRC) and left supramarginal gyrus (SMG_L), entorhinal cortex (ERC) and [left middle temporal gyrus (MTG_L), left superior parietal lobule (SPL_L), right fusiform (Fusiform_R)], anterior parahippocampal cortex (aPHC) and right precentral gyrus (PCG_R); (ii) connectivity in the right brain included the aHIP and right supramarginal gyrus (SMG_R), mHIP and left paracentral lobule (PCL_L), pHIP and left superior occipital gyrus (SOG_L), PRC and left middle occipital gyrus (MOG_L), ERC and right middle occipital gyrus (MOG_R); (iii) for most connectivity patterns, the more stable the dFC, the better are the associative memory functions. This study elucidates the neural foundations of associative memory in terms of dFC patterns.
Collapse
Affiliation(s)
- Jian Zhang
- School of Psychology, Guizhou Normal University, Guiyang, People's Republic of China
| | - Yujia Zhang
- Department of Community Prevention, Tianjin Anding Hospital, Tianjin, People's Republic of China
| | - Yun Pan
- School of Psychology, Guizhou Normal University, Guiyang, People's Republic of China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, 030001, People's Republic of China. .,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.
| | - Yunzhen Xue
- Department of Humanities and Social Science, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
68
|
McCann B, Levman J, Baumer N, Lam MY, Shiohama T, Cogger L, MacDonald A, Ijner P, Takahashi E. Structural magnetic resonance imaging demonstrates volumetric brain abnormalities in down syndrome: Newborns to young adults. Neuroimage Clin 2021; 32:102815. [PMID: 34520978 PMCID: PMC8441087 DOI: 10.1016/j.nicl.2021.102815] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/29/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022]
Abstract
Down syndrome (DS) is a genetic disorder caused by the presence of an extra full or partial copy of chromosome 21 and characterized by intellectual disability. We hypothesize that performing a retrospective analysis of 73 magnetic resonance imaging (MRI) examinations of participants with DS (aged 0 to 22 years) and comparing them to a large cohort of 993 brain MRI examinations of neurotypical participants (aged 0 to 32 years), will assist in better understanding what brain differences may explain phenotypic developmental features in DS, as well as to provide valuable confirmation of prospective literature findings clinically. Measurements for both absolute volumes and volumes corrected as a percentage of estimated total intracranial volume (%ETIV) were extracted from each examination. Our results presented novel findings such as volume increases (%ETIV) in the perirhinal cortex, entorhinal cortex, choroid plexus, and Brodmann's areas (BA) 3a, 3b, and 44, as well as volume decreases (%ETIV) in the white matter of the cuneus, the paracentral lobule, the postcentral gyrus, and the supramarginal gyrus. We also confirmed volumetric brain abnormalities previously discussed in the literature. Findings suggest the presence of volumetric brain abnormalities in DS that can be detected clinically with MRI.
Collapse
Affiliation(s)
- Bernadette McCann
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Jacob Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada.
| | - Nicole Baumer
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Melanie Y Lam
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Liam Cogger
- Department of Education, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Allissa MacDonald
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Prahar Ijner
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 401 Park Dr., Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA
| |
Collapse
|
69
|
Lega C, Chelazzi L, Cattaneo L. Two Distinct Systems Represent Contralateral and Ipsilateral Sensorimotor Processes in the Human Premotor Cortex: A Dense TMS Mapping Study. Cereb Cortex 2021; 30:2250-2266. [PMID: 31828296 DOI: 10.1093/cercor/bhz237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/19/2019] [Accepted: 09/13/2019] [Indexed: 11/12/2022] Open
Abstract
Animal brains contain behaviorally committed representations of the surrounding world, which integrate sensory and motor information. In primates, sensorimotor mechanisms reside in part in the premotor cortex (PM), where sensorimotor neurons are topographically clustered according to functional specialization. Detailed functional cartography of the human PM is still under investigation. We explored the topographic distribution of spatially dependent sensorimotor functions in healthy volunteers performing left or right, hand or foot, responses to visual cues presented in the left or right hemispace, thus combining independently stimulus side, effector side, and effector type. Event-related transcranial magnetic stimulation was applied to single spots of a dense grid of 10 points on the participants' left hemiscalp, covering the whole PM. Results showed: (1) spatially segregated hand and foot representations, (2) focal representations of contralateral cues and movements in the dorsal PM, and (3) distributed representations of ipsilateral cues and movements in the ventral and dorso-medial PM. The present novel causal information indicates that (1) the human PM is somatotopically organized and (2) the left PM contains sensory-motor representations of both hemispaces and of both hemibodies, but the hemispace and hemibody contralateral to the PM are mapped on a distinct, nonoverlapping cortical region compared to the ipsilateral ones.
Collapse
Affiliation(s)
- Carlotta Lega
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Leonardo Chelazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.,Italian Institute of Neuroscience, Section of Verona, Verona, Italy
| | - Luigi Cattaneo
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.,Italian Institute of Neuroscience, Section of Verona, Verona, Italy
| |
Collapse
|
70
|
Analysis of the differences in brain function response after acupuncture and moxibustion at Zúsānlĭ (足三里ST36) in the patients with functional dyspepsia based on fractional amplitude of low frequency fluctuation of rest functional magnetic resonance imaging. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2021. [DOI: 10.1016/j.wjam.2021.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
71
|
Hatoum AS, Johnson EC, Baranger DAA, Paul SE, Agrawal A, Bogdan R. Polygenic risk scores for alcohol involvement relate to brain structure in substance-naïve children: Results from the ABCD study. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12756. [PMID: 34092032 PMCID: PMC8645657 DOI: 10.1111/gbb.12756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 05/09/2023]
Abstract
Brain imaging-derived structural correlates of alcohol involvement have largely been speculated to arise as a consequence of alcohol exposure. However, they may also reflect predispositional risk. In substance naïve children of European ancestry who completed the baseline session of the Adolescent Brain Cognitive Development (ABCD) Study (n = 3013), mixed-effects models estimated whether polygenic risk scores (PRS) for problematic alcohol use (PAU-PRS) and drinks per week (DPW-PRS) are associated with magnetic resonance imaging-derived brain structure phenotypes (i.e., total and regional: cortical thickness, surface area and volume; subcortical volume; white matter volume, fractional anisotropy, mean diffusivity). Follow-up analyses evaluated whether any identified regions were also associated with polygenic risk among substance naïve children of African ancestry (n = 898). After adjustment for multiple testing correction, polygenic risk for PAU was associated with lower volume of the left frontal pole and greater cortical thickness of the right supramarginal gyrus (|βs| > 0.009; ps < 0.001; psfdr < 0.046; r2 s < 0.004). PAU PRS and DPW PRS showed nominally significant associations with a host of other regional brain structure phenotypes (e.g., insula surface area and volume). None of these regions showed any, even nominal association among children of African ancestry. Genomic liability to alcohol involvement may manifest as variability in brain structure during middle childhood prior to alcohol use initiation. Broadly, alcohol-related variability in brain morphometry may partially reflect predisposing genomic influence. Larger discovery genome-wide association studies and target samples of diverse ancestries are needed to determine whether observed associations may generalize across ancestral origins.
Collapse
Affiliation(s)
- Alexander S Hatoum
- Department of Psychiatry, Washington University St. Louis Medical School, St. Louis, Missouri, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University St. Louis Medical School, St. Louis, Missouri, USA
| | - David A A Baranger
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sarah E Paul
- Department of Psychology & Brain Sciences, Washington University St. Louis, St. Louis, Missouri, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University St. Louis Medical School, St. Louis, Missouri, USA
| | - Ryan Bogdan
- Department of Psychology & Brain Sciences, Washington University St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
72
|
Turker S, Hartwigsen G. Exploring the neurobiology of reading through non-invasive brain stimulation: A review. Cortex 2021; 141:497-521. [PMID: 34166905 DOI: 10.1016/j.cortex.2021.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/01/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Non-invasive brain stimulation (NIBS) has gained increasing popularity as a modulatory tool for drawing causal inferences and exploring task-specific network interactions. Yet, a comprehensive synthesis of reading-related NIBS studies is still missing. We fill this gap by synthesizing the results of 78 NIBS studies investigating the causal involvement of brain regions for reading processing, and then link these results to a neurobiological model of reading. The included studies provide evidence for a functional-anatomical double dissociation for phonology versus semantics during reading-related processes within left inferior frontal and parietal areas. Additionally, the posterior parietal cortex and the anterior temporal lobe are identified as critical regions for reading-related processes. Overall, the findings provide some evidence for a dual-stream neurobiological model of reading, in which a dorsal stream (left temporo-parietal and inferior frontal areas) processes unfamiliar words and pseudowords, and a ventral stream (left occipito-temporal and inferior frontal areas, with assistance from the angular gyrus and the anterior temporal lobe) processes known words. However, individual differences in reading abilities and strategies, as well as differences in stimulation parameters, may impact the neuromodulatory effects induced by NIBS. We emphasize the need to investigate task-specific network interactions in future studies by combining NIBS with neuroimaging.
Collapse
Affiliation(s)
- Sabrina Turker
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Gesa Hartwigsen
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
73
|
Zhu Y, Zang F, Wang Q, Zhang Q, Tan C, Zhang S, Hu T, Qi L, Xu S, Ren Q, Xie C. Connectome-based model predicts episodic memory performance in individuals with subjective cognitive decline and amnestic mild cognitive impairment. Behav Brain Res 2021; 411:113387. [PMID: 34048872 DOI: 10.1016/j.bbr.2021.113387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/19/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To explore whether the whole brain resting-state functional connectivity (rs-FC) could predict episodic memory performance in individuals with subjective cognitive decline and amnestic mild cognitive impairment. METHOD This study included 33 cognitive normal (CN), 26 subjective cognitive decline (SCD) and 27 amnestic mild cognitive impairment (aMCI) patients, and all the participants completed resting-state fMRI (rs-fMRI) scan and neuropsychological scale test data. Connectome-based predictive modeling (CPM) based on the rs-FC data was used to predict the auditory verbal learning test-delayed recall (AVLT-DR) scores, which measured episodic memory in individuals. Pearson correlation between each brain connection in the connectivity matrices and AVLT-DR scores was computed across the patients in predementia stages of Alzheimer's disease (AD). The Pearson correlation coefficient values separated into a positive network and a negative network. Predictive networks were then defined and employed by calculating positive and negative network strengths. CPM with leave-one-out cross-validation (LOOCV) was conducted to train linear models to respectively relate positive and negative network strengths to AVLT-DR scores in the training set. During the testing procedure, each left-out testing subject's strengths of positive and negative network was normalized using the parameters acquired during training procedure, and then the trained models were used to predict the testing participant's AVLT-DR score. RESULTS The negative network predictive model tested LOOCV significantly predicted individual differences in episodic memory from rs-FC. Key nodes that brain regions contributed to the prediction model were mainly located in the prefrontal cortex, frontal cortex, parietal cortex and temporal lobe. CONCLUSION Our findings demonstrated that rs-FC among multiple neural systems could predict episodic memory at the individual level.
Collapse
Affiliation(s)
- Yao Zhu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210000, China
| | - Feifei Zang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210000, China
| | - Qing Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210000, China
| | - Qianqian Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210000, China
| | - Chang Tan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210000, China
| | - Shaoke Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210000, China
| | - Tianjian Hu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210000, China
| | - Lingyu Qi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210000, China
| | - Shouyong Xu
- Department of Radiology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China.
| | - Qingguo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210000, China.
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
74
|
Ye H, Fan Z, Chai G, Li G, Wei Z, Hu J, Sheng X, Chen L, Zhu X. Self-Related Stimuli Decoding With Auditory and Visual Modalities Using Stereo-Electroencephalography. Front Neurosci 2021; 15:653965. [PMID: 34017235 PMCID: PMC8129191 DOI: 10.3389/fnins.2021.653965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022] Open
Abstract
Name recognition plays important role in self-related cognitive processes and also contributes to a variety of clinical applications, such as autism spectrum disorder diagnosis and consciousness disorder analysis. However, most previous name-related studies usually adopted noninvasive EEG or fMRI recordings, which were limited by low spatial resolution and temporal resolution, respectively, and thus millisecond-level response latencies in precise brain regions could not be measured using these noninvasive recordings. By invasive stereo-electroencephalography (SEEG) recordings that have high resolution in both the spatial and temporal domain, the current study distinguished the neural response to one's own name or a stranger's name, and explored common active brain regions in both auditory and visual modalities. The neural activities were classified using spatiotemporal features of high-gamma, beta, and alpha band. Results showed that different names could be decoded using multi-region SEEG signals, and the best classification performance was achieved at high gamma (60–145 Hz) band. In this case, auditory and visual modality-based name classification accuracies were 84.5 ± 8.3 and 79.9 ± 4.6%, respectively. Additionally, some single regions such as the supramarginal gyrus, middle temporal gyrus, and insula could also achieve remarkable accuracies for both modalities, supporting their roles in the processing of self-related information. The average latency of the difference between the two responses in these precise regions was 354 ± 63 and 285 ± 59 ms in the auditory and visual modality, respectively. This study suggested that name recognition was attributed to a distributed brain network, and the subsets with decoding capabilities might be potential implanted regions for awareness detection and cognition evaluation.
Collapse
Affiliation(s)
- Huanpeng Ye
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Fan
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, China
| | - Guohong Chai
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guangye Li
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zixuan Wei
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Hu
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, China
| | - Xinjun Sheng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, China
| | - Xiangyang Zhu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
75
|
Xue C, Sun H, Yue Y, Wang S, Qi W, Hu G, Ge H, Yuan Q, Rao J, Tian L, Xiao C, Chen J. Structural and Functional Disruption of Salience Network in Distinguishing Subjective Cognitive Decline and Amnestic Mild Cognitive Impairment. ACS Chem Neurosci 2021; 12:1384-1394. [PMID: 33825444 DOI: 10.1021/acschemneuro.1c00051] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Salience network (SN), playing a vital role in advanced cognitive function, is regarded to be impaired in subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI). The purpose of the study was to explore the importance of structural and functional features of SN in the diagnosis of SCD and aMCI. Structural and resting-state functional magnetic resonance imaging were collected from SCD, aMCI, and healthy control (HC). Cortex thickness, gray matter (GM) volume, spontaneous brain activity, functional connectivity (FC) within SN, and its relationship with cognitive function were analyzed. Moreover, the receiver operating characteristic analysis was performed to assess diagnostic efficacy of altered indictors for SCD and aMCI. Compared to HC, both SCD and aMCI showed decreased GM volume, decreased spontaneous brain activity, and increased FC within SN, while aMCI showed additional decreased cortex thickness. Furthermore, the altered FC in SCD and aMCI was significantly correlated with cognitive function. Particularly, the best-fitting classification models of SCD and aMCI were based on the combined multiple indicators. In conclusion, structure and function of SN were disrupted in SCD and aMCI, which involved in cognitive decline. The combined multiple indicators of SN provided powerful biomarkers for the diagnosis of SCD and aMCI.
Collapse
Affiliation(s)
- Chen Xue
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu210029, China
| | - Haiting Sun
- Department of Pediatrics, Xijing Hospital, the Fourth Milit ary Medical University (Air Force Medical University), Xi’an, Shaanxi 710032, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Siyu Wang
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Wenzhang Qi
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu210029, China
| | - Guanjie Hu
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Honglin Ge
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Qianqian Yuan
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu210029, China
| | - Jiang Rao
- Department of Rehabilitation, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lei Tian
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu210029, China
| | - Chaoyong Xiao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu210029, China
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Institute of Neuropsychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
76
|
Isaiah A, Ernst T, Cloak CC, Clark DB, Chang L. Associations between frontal lobe structure, parent-reported obstructive sleep disordered breathing and childhood behavior in the ABCD dataset. Nat Commun 2021; 12:2205. [PMID: 33850154 PMCID: PMC8044120 DOI: 10.1038/s41467-021-22534-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/16/2021] [Indexed: 02/03/2023] Open
Abstract
Parents frequently report behavioral problems among children who snore. Our understanding of the relationship between symptoms of obstructive sleep disordered breathing (oSDB) and childhood behavioral problems associated with brain structural alterations is limited. Here, we examine the associations between oSDB symptoms, behavioral measures such as inattention, and brain morphometry in the Adolescent Brain Cognitive Development (ABCD) study comprising 10,140 preadolescents. We observe that parent-reported symptoms of oSDB are associated with composite and domain-specific problem behaviors measured by parent responses to the Child Behavior Checklist. Alterations of brain structure demonstrating the strongest negative associations with oSDB symptoms are within the frontal lobe. The relationships between oSDB symptoms and behavioral measures are mediated by significantly smaller volumes of multiple frontal lobe regions. These results provide population-level evidence for an association between regional structural alterations in cortical gray matter and problem behaviors reported in children with oSDB.
Collapse
Grants
- U01 DA041174 NIDA NIH HHS
- U01 DA041048 NIDA NIH HHS
- U01 DA041156 NIDA NIH HHS
- U01 DA041093 NIDA NIH HHS
- U01 DA041106 NIDA NIH HHS
- U01 DA050989 NIDA NIH HHS
- U01 DA041089 NIDA NIH HHS
- U01 DA050988 NIDA NIH HHS
- U01 DA041028 NIDA NIH HHS
- U01 DA041134 NIDA NIH HHS
- U24 DA041147 NIDA NIH HHS
- U01 DA050987 NIDA NIH HHS
- P50 DA046346 NIDA NIH HHS
- U01 DA041022 NIDA NIH HHS
- U01 DA041025 NIDA NIH HHS
- U01 DA051037 NIDA NIH HHS
- U01 DA051016 NIDA NIH HHS
- U01 DA041148 NIDA NIH HHS
- U24 DA041123 NIDA NIH HHS
- U01 DA041117 NIDA NIH HHS
- U01 DA041120 NIDA NIH HHS
- U01 DA051039 NIDA NIH HHS
- U01 DA051018 NIDA NIH HHS
- U01 DA051038 NIDA NIH HHS
- U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- The ABCD Study is supported by the National Institutes of Health (NIH) and additional federal partners under award numbers U01DA041022, U01DA041028, U01DA041048, U01DA041089, U01DA041106, U01DA041117, U01DA041120, U01DA041134, U01DA041148, U01DA041156, U01DA041174, U24DA041123, U24DA041147, U01DA041093, and U01DA041025. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/Consortium_Members.pdf.
Collapse
Affiliation(s)
- Amal Isaiah
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Thomas Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christine C Cloak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Duncan B Clark
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
77
|
Jiao Y, Lin F, Wu J, Li H, Fu W, Huo R, Cao Y, Wang S, Zhao J. Plasticity in language cortex and white matter tracts after resection of dominant inferior parietal lobule arteriovenous malformations: a combined fMRI and DTI study. J Neurosurg 2021; 134:953-960. [PMID: 32197246 DOI: 10.3171/2019.12.jns191987] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/10/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The dominant inferior parietal lobe (IPL) contains cortical and subcortical structures that serve language processing. A high incidence of postoperative short-term aphasia and good potential for language reorganization have been observed. The authors' goal was to study the plasticity of the language cortex and language-related fibers in patients with brain arteriovenous malformations (BAVMs) located in the IPL. METHODS A total of 6 patients who underwent microsurgical treatment of an IPL BAVM were prospectively recruited between September 2016 and May 2018. Blood oxygen level-dependent functional MRI (BOLD-fMRI) and diffusion tensor imaging (DTI) were performed within 1 week before and 6 months after microsurgery. Language-related white matter (WM) eloquent fiber tracts and their contralateral homologous fiber tracts were tracked. The Western Aphasia Battery was administered to assess language function. The authors determined the total number of fibers and mean fractional anisotropy (FA) indices for each individual tract. In addition, they calculated the laterality index (LI) between the activated language cortex voxels in the lesional and contralesional hemispheres and compared these indices between the preoperative and postoperative fMR and DT images. RESULTS Of the 6 patients with IPL BAVMs, all experienced postoperative short-term language deficits, and 5 (83.3%) recovered completely at 6 months after surgery. Five patients (83.3%) had right homologous reorganization of BOLD signal activations in both Broca's and Wernicke's areas. More fibers were observed in the arcuate fasciculus (AF) in the lesional hemisphere than in the contralesional hemisphere (1905 vs 254 fibers, p = 0.035). Six months after surgery, a significantly increased number of fibers was seen in the right hemispheric AF (249 fibers preoperatively vs 485 postoperatively, p = 0.026). There were significantly more nerve fibers in the postoperative left inferior frontooccipital fasciculus (IFOF) (874 fibers preoperatively vs 1186 postoperatively, p = 0.010). A statistically significant increase in right hemispheric dominance of Wernicke's area was observed. The overall functional LI showed functional lateralization of Wernicke's area in the right hemisphere (LI ≤ -0.20) in all patients. CONCLUSIONS The authors' findings provide evidence for the functional reorganization by recruiting the right hemispheric homologous region of Broca's and Wernicke's areas, right hemispheric AFs, and left hemispheric IFOFs following resection of IPL BAVMs.Clinical trial registration no.: NCT02868008 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Yuming Jiao
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 2China National Clinical Research Center for Neurological Diseases, Beijing
- 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing
- 4Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing; and
| | - Fuxin Lin
- 5Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Jun Wu
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 2China National Clinical Research Center for Neurological Diseases, Beijing
- 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing
- 4Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing; and
| | - Hao Li
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 2China National Clinical Research Center for Neurological Diseases, Beijing
- 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing
- 4Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing; and
| | - Weilun Fu
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 2China National Clinical Research Center for Neurological Diseases, Beijing
- 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing
- 4Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing; and
| | - Ran Huo
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 2China National Clinical Research Center for Neurological Diseases, Beijing
- 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing
- 4Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing; and
| | - Yong Cao
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 2China National Clinical Research Center for Neurological Diseases, Beijing
- 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing
- 4Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing; and
| | - Shuo Wang
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 2China National Clinical Research Center for Neurological Diseases, Beijing
- 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing
- 4Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing; and
| | - Jizong Zhao
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 2China National Clinical Research Center for Neurological Diseases, Beijing
- 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing
- 4Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing; and
| |
Collapse
|
78
|
Chen J, Liu S, Wang C, Zhang C, Cai H, Zhang M, Si L, Zhang S, Xu Y, Zhu J, Yu Y. Associations of Serum Liver Function Markers With Brain Structure, Function, and Perfusion in Healthy Young Adults. Front Neurol 2021; 12:606094. [PMID: 33716920 PMCID: PMC7947675 DOI: 10.3389/fneur.2021.606094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Previous neuroimaging studies have demonstrated brain abnormalities in patients with hepatic diseases. However, the identified liver-brain associations are largely limited to disease-affected populations, and the nature and extent of such relations in healthy subjects remain unclear. We hypothesized that serum liver function markers within a normal level would affect brain properties. Method: One hundred fifty-seven healthy young adults underwent structural, resting-state functional, and arterial spin labeling MRI scans. Gray matter volume (GMV), regional homogeneity (ReHo), and cerebral blood flow (CBF) analyses were performed to assess brain structure, function, and perfusion, respectively. Peripheral venous blood samples were collected to measure serum liver function markers. Correlation analyses were conducted to test potential associations between liver function markers and brain imaging parameters. Results: First, serum proteins showed relations to brain structure characterized by higher albumin associated with increased GMV in the parahippocampal gyrus and amygdala and lower globulin and a higher albumin/globulin ratio with increased GMV in the olfactory cortex and parahippocampal gyrus. Second, serum bilirubin was linked to brain function characterized by higher bilirubin associated with increased ReHo in the precuneus, middle cingulate gyrus, inferior parietal lobule, and supramarginal gyrus and decreased ReHo in the caudate nucleus. Third, serum alanine transaminase (ALT) was related to brain perfusion characterized by higher ALT associated with increased CBF in the superior frontal gyrus and decreased CBF in the middle occipital gyrus, angular gyrus, precuneus, and middle temporal gyrus. More importantly, we found that CBF in the superior frontal gyrus was a significant mediator of the association between serum ALT level and working memory performance. Conclusion: These findings may not only expand existing knowledge about the relationship between the liver and the brain but also have clinical implications for studying brain impairments secondary to liver diseases as well as providing potential neural targets for their diagnosis and treatment.
Collapse
Affiliation(s)
- Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huanhuan Cai
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Min Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Si
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
79
|
Suárez-Méndez I, Walter S, López-Sanz D, Pasquín N, Bernabé R, Castillo Gallo E, Valdés M, Del Pozo F, Maestú F, Rodríguez-Mañas L. Ongoing Oscillatory Electrophysiological Alterations in Frail Older Adults: A MEG Study. Front Aging Neurosci 2021; 13:609043. [PMID: 33679373 PMCID: PMC7935553 DOI: 10.3389/fnagi.2021.609043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The role of the central nervous system in the pathophysiology of frailty is controversial. We used magnetoencephalography (MEG) to search for abnormalities in the ongoing oscillatory neural activity of frail individuals without global cognitive impairment. Methods: Fifty four older (≥70 years) and cognitively healthy (Mini-Mental State Examination ≥24) participants were classified as robust (0 criterion, n = 34) or frail (≥ 3 criteria, n = 20) following Fried's phenotype. Memory, language, attention, and executive function were assessed through well-validated neuropsychological tests. Every participant underwent a resting-state MEG and a T1-weighted magnetic resonance imaging scan. We performed MEG power spectral analyses to compare the electrophysiological profiles of frail and robust individuals. We used an ensemble learner to investigate the ability of MEG spectral power to discriminate frail from robust participants. Results: We identified increased relative power in the frail group in the mu (p < 0.05) and sensorimotor (p < 0.05) frequencies across right sensorimotor, posterior parietal, and frontal regions. The ensemble learner discriminated frail from robust participants [area under the curve = 0.73 (95% CI = 0.49–0.98)]. Frail individuals performed significantly worse in the Trail Making Test, Digit Span Test (forward), Rey-Osterrieth Complex Figure, and Semantic Fluency Test. Interpretation: Frail individuals without global cognitive impairment showed ongoing oscillatory alterations within brain regions associated with aspects of motor control, jointly to failures in executive function. Our results suggest that some physical manifestations of frailty might partly arise from failures in central structures relevant to sensorimotor and executive processing.
Collapse
Affiliation(s)
- Isabel Suárez-Méndez
- Laboratory of Cognitive and Computational Neuroscience (Complutense University of Madrid - Universidad Politécnica de Madrid), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.,Department of Structure of Matter, Thermal Physics and Electronics, Complutense University of Madrid (UCM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Stefan Walter
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Spain.,Department of Medicine and Public Health, Rey Juan Carlos University, Madrid, Spain
| | - David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (Complutense University of Madrid - Universidad Politécnica de Madrid), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.,Department of Psychobiology and Methodology in Behavioral Sciences, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Natalia Pasquín
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain
| | - Raquel Bernabé
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain
| | | | - Myriam Valdés
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain.,Geriatric Service, University Hospital of Getafe, Getafe, Spain
| | - Francisco Del Pozo
- Laboratory of Cognitive and Computational Neuroscience (Complutense University of Madrid - Universidad Politécnica de Madrid), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (Complutense University of Madrid - Universidad Politécnica de Madrid), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Leocadio Rodríguez-Mañas
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Spain.,Geriatric Service, University Hospital of Getafe, Getafe, Spain
| |
Collapse
|
80
|
Ruotsalainen I, Glerean E, Karvanen J, Gorbach T, Renvall V, Syväoja HJ, Tammelin TH, Parviainen T. Physical activity and aerobic fitness in relation to local and interhemispheric functional connectivity in adolescents' brains. Brain Behav 2021; 11:e01941. [PMID: 33369275 PMCID: PMC7882164 DOI: 10.1002/brb3.1941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Adolescents have experienced decreased aerobic fitness levels and insufficient physical activity levels over the past decades. While both physical activity and aerobic fitness are related to physical and mental health, little is known concerning how they manifest in the brain during this stage of development, characterized by significant physical and psychosocial changes. The aim of the study is to examine the associations between both physical activity and aerobic fitness with brains' functional connectivity. METHODS Here, we examined how physical activity and aerobic fitness are associated with local and interhemispheric functional connectivity of the adolescent brain (n = 59), as measured with resting-state functional magnetic resonance imaging. Physical activity was measured by hip-worn accelerometers, and aerobic fitness by a maximal 20-m shuttle run test. RESULTS We found that higher levels of moderate-to-vigorous intensity physical activity, but not aerobic fitness, were linked to increased local functional connectivity as measured by regional homogeneity in 13-16-year-old participants. However, we did not find evidence for significant associations between adolescents' physical activity or aerobic fitness and interhemispheric connectivity, as indicated by homotopic connectivity. CONCLUSIONS These results suggest that physical activity, but not aerobic fitness, is related to local functional connectivity in adolescents. Moreover, physical activity shows an association with a specific brain area involved in motor functions but did not display any widespread associations with other brain regions. These results can advance our understanding of the behavior-brain associations in adolescents.
Collapse
Affiliation(s)
- Ilona Ruotsalainen
- Department of Psychology, Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Enrico Glerean
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.,International Laboratory of Social Neurobiology, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Juha Karvanen
- Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, Finland
| | - Tetiana Gorbach
- Umeå School of Business, Economics and Statistics, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ville Renvall
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.,AMI Centre, Aalto University School of Science, Espoo, Finland
| | - Heidi J Syväoja
- LIKES Research Centre for Physical Activity and Health, Jyväskylä, Finland
| | - Tuija H Tammelin
- LIKES Research Centre for Physical Activity and Health, Jyväskylä, Finland
| | - Tiina Parviainen
- Department of Psychology, Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
81
|
Expert Programmers Have Fine-Tuned Cortical Representations of Source Code. eNeuro 2021; 8:ENEURO.0405-20.2020. [PMID: 33318072 PMCID: PMC7877476 DOI: 10.1523/eneuro.0405-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/14/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022] Open
Abstract
Expertise enables humans to achieve outstanding performance on domain-specific tasks, and programming is no exception. Many studies have shown that expert programmers exhibit remarkable differences from novices in behavioral performance, knowledge structure, and selective attention. However, the underlying differences in the brain of programmers are still unclear. We here address this issue by associating the cortical representation of source code with individual programming expertise using a data-driven decoding approach. This approach enabled us to identify seven brain regions, widely distributed in the frontal, parietal, and temporal cortices, that have a tight relationship with programming expertise. In these brain regions, functional categories of source code could be decoded from brain activity and the decoding accuracies were significantly correlated with individual behavioral performances on a source-code categorization task. Our results suggest that programming expertise is built on fine-tuned cortical representations specialized for the domain of programming.
Collapse
|
82
|
Berretz G, Packheiser J, Kumsta R, Wolf OT, Ocklenburg S. The brain under stress-A systematic review and activation likelihood estimation meta-analysis of changes in BOLD signal associated with acute stress exposure. Neurosci Biobehav Rev 2021; 124:89-99. [PMID: 33497786 DOI: 10.1016/j.neubiorev.2021.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
Psychosocial stress is an omnipresent phenomenon whose neural correlates in humans are still poorly understood. Several paradigms have been developed to induce acute stress in fMRI settings, but it is unclear whether there is a global brain activation pattern related to psychosocial stress. To integrate the different neuronal activation patterns, we conducted an activation likelihood estimation analysis on 31 studies totaling 1279 participants. Studies used the ScanSTRESS, Montreal Imaging Stress Test, aversive viewing paradigm (AVP), Social-Evaluative Threat or Cyberball. The analysis revealed bilateral activation clusters comprising the claustrum, insula and inferior frontal gyrus. This indicates that exposure to psychosocial stress leads to activations in brain areas involved in affective processing and the endocrine stress response. Furthermore, in a systematic review, Cyberball and AVP presented themselves as outliers due to increased activation in motor areas and lack of induction of stress related activity changes, respectively. As different paradigms emphasize different dimensions of psychosocial stress such as social evaluation or performance pressure, future research is needed to identify differences between the paradigms.
Collapse
Affiliation(s)
- Gesa Berretz
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany.
| | - Julian Packheiser
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Robert Kumsta
- Department of Genetic Psychology, Institute of Health and Development, Ruhr University Bochum, Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
83
|
Leng Y, Zhang J, Zhangyu Y, Yang X. Action Modulates the Conscious Reasoning Process of Moral Judgment: Evidence From Behavior and Neurophysiology. Front Behav Neurosci 2021; 14:577252. [PMID: 33488365 PMCID: PMC7815760 DOI: 10.3389/fnbeh.2020.577252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Moral judgment can be highly affected by the action and intention factors on a behavior level. Previous neuroimaging studies have demonstrated that the intention factor can modulate both the affective and cognitive processing of moral judgment. The present event-related potentials (ERP) study examined how the action factor modulated the neural dynamics of moral judgment under a newly developed moral dilemma paradigm including three different conditions: harm caused by action (i.e., doing harm), harm caused by omission (i.e., allowing harm), and no harm. Behavior data showed that participants preferred utilitarian judgments and spent less time on the allowing harm condition than for the doing harm condition. ERP results revealed that, compared with the doing harm and no harm dilemmas, the allowing harm dilemmas elicited an enhanced N450 response associated with cognitive control and/or cognitive effort processes, but attenuated a late positive potentials (LPP) response associated with top-down control of attention and cognitive "rational" control processes. Such LPP amplitude differences were positively correlated with the C-score of the moral competence test which indexed the cognitive aspect of moral judgment competency. These findings suggested that people have a strong omission bias, and such an action factor modulates the conscious reasoning process during moral judgment, including the cognitive control and/or cognitive effort, and attentional allocation processes.
Collapse
Affiliation(s)
- Yue Leng
- School of Biomedical Science and Medical Engineering, Southeast University, Nanjing, China
- Research Center for Learning Science, Southeast University, Nanjing, China
- Key Laboratory of Child Development and Learning Science (Ministry of Education), Southeast University, Nanjing, China
| | - Jili Zhang
- School of Biomedical Science and Medical Engineering, Southeast University, Nanjing, China
- Research Center for Learning Science, Southeast University, Nanjing, China
- Key Laboratory of Child Development and Learning Science (Ministry of Education), Southeast University, Nanjing, China
| | - Yanan Zhangyu
- School of Biomedical Science and Medical Engineering, Southeast University, Nanjing, China
- Research Center for Learning Science, Southeast University, Nanjing, China
- Key Laboratory of Child Development and Learning Science (Ministry of Education), Southeast University, Nanjing, China
| | - Xiaoyuan Yang
- School of Biomedical Science and Medical Engineering, Southeast University, Nanjing, China
- Research Center for Learning Science, Southeast University, Nanjing, China
- Key Laboratory of Child Development and Learning Science (Ministry of Education), Southeast University, Nanjing, China
| |
Collapse
|
84
|
Alfred KL, Hillis ME, Kraemer DJM. Individual Differences in the Neural Localization of Relational Networks of Semantic Concepts. J Cogn Neurosci 2020; 33:390-401. [PMID: 33284078 DOI: 10.1162/jocn_a_01657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Semantic concepts relate to each other to varying degrees to form a network of zero-order relations, and these zero-order relations serve as input into networks of general relation types as well as higher order relations. Previous work has studied the neural mapping of semantic concepts across domains, although much work remains to be done to understand how the localization and structure of those architectures differ depending on various individual differences in attentional bias toward different content presentation formats. Using an item-wise model of semantic distance of zero-order relations (Word2vec) between stimuli (presented both in word and picture forms), we used representational similarity analysis to identify individual differences in the neural localization of semantic concepts and how those localization differences can be predicted by individual variance in the degree to which individuals attend to word information instead of pictures. Importantly, there were no reliable representations of this zero-order semantic relational network when looking at the full group, and it was only through considering individual differences that a stable localization difference became evident. These results indicate that individual differences in the degree to which a person habitually attends to word information instead of picture information substantially affects the neural localization of zero-order semantic representations.
Collapse
|
85
|
Yates M, Shelley-Tremblay J, Knapp DL. Measuring the influence of phonological neighborhood on visual word recognition with the N400: Evidence for semantic scaffolding. BRAIN AND LANGUAGE 2020; 211:104866. [PMID: 33074109 DOI: 10.1016/j.bandl.2020.104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/15/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Research in visual word recognition has shown that phonological neighborhood density facilitates visual word recognition. The current research was designed to determine the electrophysiological effect of phonological neighborhood density (PND). In two experiments, participants made lexical decisions to words varying on phonological neighborhood while Event-related Potentials (ERPs) were recorded. Behaviorally, the results replicate previous research by showing that words with many phonological neighbors were responded to more rapidly than were words with few phonological neighbors. However, the main contribution of the current research is that it shows an effect of PND on the N400 and Late Positive Component Event-Related Potentials. In contrast to previous reports in the literature, the nature of the effect was such that the N400 was larger to words with few phonological neighbors than to words with many. Experiment 2 replicated these findings and provided estimates of the independent components' time course and source localization. The increased N400 for small neighborhood words is thought to reflect additional semantic processing required for these words due their weaker phonological representations.
Collapse
Affiliation(s)
- Mark Yates
- Department of Psychology, University of South Alabama, Mobile, AL 36688-0002, United States.
| | - John Shelley-Tremblay
- Department of Psychology, University of South Alabama, Mobile, AL 36688-0002, United States.
| | - Donald Lee Knapp
- Department of Psychology, University of South Alabama, Mobile, AL 36688-0002, United States.
| |
Collapse
|
86
|
Piai V, Nieberlein L, Hartwigsen G. Effects of transcranial magnetic stimulation over the left posterior superior temporal gyrus on picture-word interference. PLoS One 2020; 15:e0242941. [PMID: 33253319 PMCID: PMC7703954 DOI: 10.1371/journal.pone.0242941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/11/2020] [Indexed: 12/01/2022] Open
Abstract
Word-production theories argue that during language production, a concept activates multiple lexical candidates in left temporal cortex, and the intended word is selected from this set. Evidence for theories on spoken-word production comes, for example, from the picture-word interference task, where participants name pictures superimposed by congruent (e.g., picture: rabbit, distractor "rabbit"), categorically related (e.g., distractor "sheep"), or unrelated (e.g., distractor "fork") words. Typically, whereas congruent distractors facilitate naming, related distractors slow down picture naming relative to unrelated distractors, resulting in semantic interference. However, the neural correlates of semantic interference are debated. Previous neuroimaging studies have shown that the left mid-to-posterior STG (pSTG) is involved in the interference associated with semantically related distractors. To probe the functional relevance of this area, we targeted the left pSTG with focal repetitive transcranial magnetic stimulation (rTMS) while subjects performed a picture-word interference task. Unexpectedly, pSTG stimulation did not affect the semantic interference effect but selectively increased the congruency effect (i.e., faster naming with congruent distractors). The facilitatory TMS effect selectively occurred in the more difficult list with an overall lower name agreement. Our study adds new evidence to the causal role of the left pSTG in the interaction between picture and distractor representations or processing streams, only partly supporting previous neuroimaging studies. Moreover, the observed unexpected condition-specific facilitatory rTMS effect argues for an interaction of the task- or stimulus-induced brain state with the modulatory TMS effect. These issues should be systematically addressed in future rTMS studies on language production.
Collapse
Affiliation(s)
- Vitória Piai
- Donders Centre for Cognition, Radboud University, Nijmegen, the Netherlands
- Department of Medical Psychology, Donders Centre for Medical Neuroscience, Radboudumc, Nijmegen, the Netherlands
| | - Laura Nieberlein
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
87
|
Kausel L, Zamorano F, Billeke P, Sutherland ME, Larrain-Valenzuela J, Stecher X, Schlaug G, Aboitiz F. Neural Dynamics of Improved Bimodal Attention and Working Memory in Musically Trained Children. Front Neurosci 2020; 14:554731. [PMID: 33132820 PMCID: PMC7578432 DOI: 10.3389/fnins.2020.554731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/04/2020] [Indexed: 11/30/2022] Open
Abstract
Attention and working memory (WM) are core components of executive functions, and they can be enhanced by training. One activity that has shown to improve executive functions is musical training, but the brain networks underlying these improvements are not well known. We aimed to identify, using functional MRI (fMRI), these networks in children who regularly learn and play a musical instrument. Girls and boys aged 10–13 with and without musical training completed an attention and WM task while their brain activity was measured with fMRI. Participants were presented with a pair of bimodal stimuli (auditory and visual) and were asked to pay attention only to the auditory, only to the visual, or to both at the same time. The stimuli were afterward tested with a memory task in order to confirm attention allocation. Both groups had higher accuracy on items that they were instructed to attend, but musicians had an overall better performance on both memory tasks across attention conditions. In line with this, musicians showed higher activation than controls in cognitive control regions such as the fronto-parietal control network during all encoding phases. In addition, facilitated encoding of auditory stimuli in musicians was positively correlated with years of training and higher activity in the left inferior frontal gyrus and the left supramarginal gyrus, structures that support the phonological loop. Taken together, our results elucidate the neural dynamics that underlie improved bimodal attention and WM of musically trained children and contribute new knowledge to this model of brain plasticity.
Collapse
Affiliation(s)
- Leonie Kausel
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (CICS), Universidad del Desarrollo, Santiago, Chile
| | - Francisco Zamorano
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (CICS), Universidad del Desarrollo, Santiago, Chile.,Unidad de Imágenes Cuantitativas Avanzadas, Cl nica Alemana, Universidad del Desarrollo, Santiago, Chile.,Departamento de Imágenes, Cl nica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Pablo Billeke
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (CICS), Universidad del Desarrollo, Santiago, Chile
| | - Mary E Sutherland
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Josefina Larrain-Valenzuela
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (CICS), Universidad del Desarrollo, Santiago, Chile
| | - Ximena Stecher
- Unidad de Imágenes Cuantitativas Avanzadas, Cl nica Alemana, Universidad del Desarrollo, Santiago, Chile.,Departamento de Imágenes, Cl nica Alemana, Universidad del Desarrollo, Santiago, Chile.,Neuroradiology, Radiology Department, Clinica Alemana de Santiago, Santiago, Chile
| | - Gottfried Schlaug
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Francisco Aboitiz
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
88
|
Chyl K, Kossowski B, Wang S, Dębska A, Łuniewska M, Marchewka A, Wypych M, Bunt MVD, Mencl W, Pugh K, Jednoróg K. The brain signature of emerging reading in two contrasting languages. Neuroimage 2020; 225:117503. [PMID: 33130273 DOI: 10.1016/j.neuroimage.2020.117503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 11/19/2022] Open
Abstract
Despite dissimilarities among scripts, a universal hallmark of literacy in skilled readers is the convergent brain activity for print and speech. Little is known, however, whether this differs as a function of grapheme to phoneme transparency in beginning readers. Here we compare speech and orthographic processing circuits in two contrasting languages, Polish and English, in 100 7-year-old children performing fMRI language localizer tasks. Results show limited language variation, with speech-print convergence evident mostly in left frontotemporal perisylvian regions. Correlational and intersect analyses revealed subtle differences in the strength of this coupling in several regions of interest. Specifically, speech-print convergence was higher for transparent Polish than opaque English in the right temporal area, associated with phonological processing. Conversely, speech-print convergence was higher for English than Polish in left fusiform, associated with visual word recognition. We conclude that speech-print convergence is a universal marker of reading even at the beginning of reading acquisition with minor variations that can be explained by the differences in grapheme to phoneme transparency. This finding at the earliest stages of reading acquisition conforms well with claims that reading exhibits a good deal of universality despite writing systems differences.
Collapse
Affiliation(s)
- Katarzyna Chyl
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland.
| | - Bartosz Kossowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Shuai Wang
- Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, China; CNRS, LPL, Aix Marseille University, Aix-en-Provence, France; Institute of Language, Communication and the Brain, Brain and Language Research Institute, Aix Marseille University, Aix-en-Provence, France
| | - Agnieszka Dębska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Magdalena Łuniewska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Marek Wypych
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | | | | | - Kenneth Pugh
- Haskins Laboratories, New Haven, CT, USA; Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA; Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland.
| |
Collapse
|
89
|
Kuhnke P, Beaupain MC, Cheung VKM, Weise K, Kiefer M, Hartwigsen G. Left posterior inferior parietal cortex causally supports the retrieval of action knowledge. Neuroimage 2020; 219:117041. [PMID: 32534127 DOI: 10.1016/j.neuroimage.2020.117041] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 06/06/2020] [Indexed: 11/15/2022] Open
Abstract
Conceptual knowledge is central to human cognition. The left posterior inferior parietal lobe (pIPL) is implicated by neuroimaging studies as a multimodal hub representing conceptual knowledge related to various perceptual-motor modalities. However, the causal role of left pIPL in conceptual processing remains unclear. Here, we transiently disrupted left pIPL function with transcranial magnetic stimulation (TMS) to probe its causal relevance for the retrieval of action and sound knowledge. We compared effective TMS over left pIPL with sham TMS, while healthy participants performed three different tasks-lexical decision, action judgment, and sound judgment-on words with a high or low association to actions and sounds. We found that pIPL-TMS selectively impaired action judgments on low sound-low action words. For the first time, we directly related computational simulations of the TMS-induced electrical field to behavioral performance, which revealed that stronger stimulation of left pIPL is associated with worse performance for action but not sound judgments. These results indicate that left pIPL causally supports conceptual processing when action knowledge is task-relevant and cannot be compensated by sound knowledge. Our findings suggest that left pIPL is specialized for the retrieval of action knowledge, challenging the view of left pIPL as a multimodal conceptual hub.
Collapse
Affiliation(s)
- Philipp Kuhnke
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Marie C Beaupain
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Vincent K M Cheung
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Konstantin Weise
- Methods and Development Group 'Brain Networks', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Gesa Hartwigsen
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
90
|
Yu YJ, Liang RB, Yang QC, Ge QM, Li QY, Li B, Shi WQ, Shao Y. Altered Spontaneous Brain Activity Patterns in Patients After Lasik Surgery Using Amplitude of Low-Frequency Fluctuation: A Resting-State Functional MRI Study. Neuropsychiatr Dis Treat 2020; 16:1907-1917. [PMID: 32821107 PMCID: PMC7423348 DOI: 10.2147/ndt.s252850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/28/2020] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Previous studies demonstrated that myopia could result in alterations of brain activity in specific areas. However, whether the visual function could improve by Lasik surgery, with the brain activity alterations also change, is still unknown. Here, we intended to use the amplitude of low-frequency fluctuation (ALFF) technique to investigate the intrinsic brain activity changes in pre-Lasik (PRL) and post-Lasik (POL) patients. METHODS A total of 15 patients with myopia (nine male and six female) were recruited in our study, who were matched according to age, weight, and height. These patients comprised both the PRL and POL groups, which is self-controlled. The patients all underwent resting-state functional magnetic resonance imaging (MRI), and the spontaneous brain activity changes were recorded by the ALFF technique. The data were recorded and arranged in the receiver operating characteristic (ROC) curve, which presented how intrinsic activities altered in different brain regions. Moreover, by Graphpad prism 8, we can analyze the linear correlation between HADS (Hospital Anxiety and Depression Scale) and ALFF values as well. RESULTS Differences in ALFF values existed in brain regions between the same patient before and after the Lasik operation. The regions with increased ALFF values after Lasik surgery were the left parahippocampal gyrus, cerebellar vermis, and left posterior cingulate cortex. The regions with decreased ALFF values after Lasik surgery were the left supramarginal gyrus and right trigonometric inferior frontal gyrus. CONCLUSION We demonstrated significant fluctuations of ALFF values in specific brain areas between the same patients before and after the Lasik surgery. The altered ALFF values reflected the hyperactivity or hypoactivity of the specific brain areas, which may help predict the recovery level of patients' vision after Lasik surgery. Furthermore, based on the experimental results that presented significant activity alterations in specific brian regions, patients could be speculated equipped with a better visual function.
Collapse
Affiliation(s)
- Ya-Jie Yu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi, People’s Republic of China
| | - Rong-Bin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi, People’s Republic of China
| | - Qi-Chen Yang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong999077, People’s Republic of China
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi, People’s Republic of China
| | - Qiu-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi, People’s Republic of China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi, People’s Republic of China
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi, People’s Republic of China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi, People’s Republic of China
| |
Collapse
|
91
|
Zhao B, Yang B, Tan Z, Hu W, Sang L, Zhang C, Wang X, Wang Y, Liu C, Mo J, Shao X, Zhang J, Zhang K. Intrinsic brain activity changes in temporal lobe epilepsy patients revealed by regional homogeneity analysis. Seizure 2020; 81:117-122. [PMID: 32781401 DOI: 10.1016/j.seizure.2020.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Temporal lobe epilepsy is increasingly being recognized as a disorder associated with brain networks extending outside the seizure onset zone. In the current study, we aim to clarify regional functional changes using a regional homogeneity method. METHODS We retrospectively included resting-state fMRI data from 14 left and 18 right temporal lobe epilepsy patients. Data from the control group were acquired from an open dataset. Regional homogeneity was calculated, and a two-sample t-test was performed to compare the left and right temporal lobe epilepsy groups with the control group. RESULTS Compared with the healthy control group, the left temporal lobe epilepsy group showed increased regional homogeneity in the left anterior and middle cingulate cortex, and putamen; right inferior frontal gyrus; bilateral temporal lobe and precentral gyrus and decreased regional homogeneity in the left superior parietal gyrus, cuneus and inferior occipital gyrus; right inferior parietal lobule and bilateral rectus. The right temporal lobe epilepsy group showed increased regional homogeneity in the left middle cingulate cortex, precuneus, precentral and postcentral gyrus; right insula and bilateral temporal lobe and decreased regional homogeneity in the left cuneus and superior occipital gyrus; right supramarginal gyrus, fusiform gyrus, lingual gyrus, inferior occipital gyrus and putamen; and the bilateral rectus. CONCLUSION Regional homogeneity measurements provide evidence supporting that temporal lobe epilepsy is a complex network disease. Functional disruption of temporal lobe epilepsy at the brain region level was revealed, which may provide novel insights for any potential diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bowen Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongjian Tan
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Lin Sang
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
92
|
The Topography of Visually Guided Grasping in the Premotor Cortex: A Dense-Transcranial Magnetic Stimulation (TMS) Mapping Study. J Neurosci 2020; 40:6790-6800. [PMID: 32709693 DOI: 10.1523/jneurosci.0560-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 11/21/2022] Open
Abstract
Visuomotor transformations at the cortical level occur along a network where posterior parietal regions are connected to homologous premotor regions. Grasping-related activity is represented in a diffuse, ventral and dorsal system in the posterior parietal regions, but no systematic causal description of a premotor counterpart of a similar diffuse grasping representation is available. To fill this gap, we measured the kinematics of right finger movements in 17 male and female human participants during grasping of three objects of different sizes. Single-pulse transcranial magnetic stimulation was applied 100 ms after visual presentation of the object over a regular grid of 8 spots covering the left premotor cortex (PMC) and 2 Sham stimulations. Maximum finger aperture during reach was used as the feature to classify object size in different types of classifiers. Classification accuracy was taken as a measure of the efficiency of visuomotor transformations for grasping. Results showed that transcranial magnetic stimulation reduced classification accuracy compared with Sham stimulation when it was applied to 2 spots in the ventral PMC and 1 spot in the medial PMC, corresponding approximately to the ventral PMC and the dorsal portion of the supplementary motor area. Our results indicate a multifocal representation of object geometry for grasping in the PMC that matches the known multifocal parietal maps of grasping representations. Additionally, we confirm that, by applying a uniform spatial sampling procedure, transcranial magnetic stimulation can produce cortical functional maps independent of a priori spatial assumptions.SIGNIFICANCE STATEMENT Visually guided actions activate a large frontoparietal network. Here, we used a dense grid of transcranial magnetic stimulation spots covering the whole premotor cortex (PMC), to identify with accurate spatial mapping the functional specialization of the human PMC during grasping movement. Results corroborate previous findings about the role of the ventral PMC in preshaping the fingers according to the size of the target. Crucially, we found that the medial part of PMC, putatively covering the supplementary motor area, plays a direct role in object grasping. In concert with findings in nonhuman primates, these results indicate a multifocal representation of object geometry for grasping in the PMC and expand our understanding of how our brain integrates visual and motor information to perform visually guided actions.
Collapse
|
93
|
Wang J, Gu Y, Dong W, Zhao M, Tian J, Sun T, Yu X, Ouyang G, Wang H. Lower Small-Worldness of Intrinsic Brain Networks Facilitates the Cognitive Protection of Intellectual Engagement in Elderly People Without Dementia: A Near-Infrared Spectroscopy Study. Am J Geriatr Psychiatry 2020; 28:722-731. [PMID: 32173205 DOI: 10.1016/j.jagp.2020.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Lifetime intellectual engagement may be associated with cognitive ability late in life. However, the current evidence on whether cognitive activities will improve and/or maintain cognitive function is heterogeneous. Drawing on knowledge of the brain's intrinsic small-world organization which combines regional specialization and efficient global information transfer, we aimed to explore that whether individual differences in the small-worldness of resting-state functional connectivity (rsFC) networks would explain the variability in the strength of the association between intellectual engagement and cognitive functioning. METHODS Sixty-five elderly people without dementia were enrolled and scanned with a 52-channel near-infrared spectroscopy system. The number, frequency, and participation hours of intellectual activities were investigated to measure intellectual engagement. Global cognition was assessed by the Montreal Cognitive Assessment. The general linear models and the simple slope analysis were employed to measure the modulatory role of network properties. RESULTS The small-worldness of the brain network emerged as a moderator of the association between intellectual engagement and cognition. Exclusively among elderly people with lower small-worldness, greater intellectual engagement, including the frequency and participation hours of activities, was associated with greater global cognitive function. Furthermore, we observed that elderly people with lower small-worldness exhibited decreased rsFC across the bilateral frontopolar areas and increased rsFC across the bilateral parietal cortex. CONCLUSION The individual differences in the small-worldness of rsFC networks might explain the varying strength of the association between intellectual engagement and cognitive functioning. Our findings imply that the intrinsic small-worldness of the brain network might be a potential neurobiological contributor that interacts with the intellectual engagement in enhancing the cognitive ability in late life.
Collapse
Affiliation(s)
- Jing Wang
- Peking University Institute of Mental Health (Sixth Hospital) (JW, WD, MZ, JT, TS, XY, HW), Beijing, China; National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health (Peking University) (JW, WD, MZ, JT, TS, XY HW), Beijing, China; Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia (JW, MZ, TS, XY, HW), Beijing, China
| | - Yue Gu
- Key Laboratory of Computer Vision and System (Ministry of Education), School of Computer Science and Engineering, Tianjin University of Technology (YG), Tianjin, China
| | - Wentian Dong
- Peking University Institute of Mental Health (Sixth Hospital) (JW, WD, MZ, JT, TS, XY, HW), Beijing, China; National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health (Peking University) (JW, WD, MZ, JT, TS, XY HW), Beijing, China
| | - Mei Zhao
- Peking University Institute of Mental Health (Sixth Hospital) (JW, WD, MZ, JT, TS, XY, HW), Beijing, China; National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health (Peking University) (JW, WD, MZ, JT, TS, XY HW), Beijing, China; Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia (JW, MZ, TS, XY, HW), Beijing, China; Department of Psychiatry, University of Melbourne (MZ), Melbourne, Australia
| | - Ju Tian
- Peking University Institute of Mental Health (Sixth Hospital) (JW, WD, MZ, JT, TS, XY, HW), Beijing, China; National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health (Peking University) (JW, WD, MZ, JT, TS, XY HW), Beijing, China
| | - Tingting Sun
- Peking University Institute of Mental Health (Sixth Hospital) (JW, WD, MZ, JT, TS, XY, HW), Beijing, China; National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health (Peking University) (JW, WD, MZ, JT, TS, XY HW), Beijing, China; Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia (JW, MZ, TS, XY, HW), Beijing, China
| | - Xin Yu
- Peking University Institute of Mental Health (Sixth Hospital) (JW, WD, MZ, JT, TS, XY, HW), Beijing, China; National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health (Peking University) (JW, WD, MZ, JT, TS, XY HW), Beijing, China; Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia (JW, MZ, TS, XY, HW), Beijing, China
| | - Gaoxiang Ouyang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University (GO), Beijing, China
| | - Huali Wang
- Peking University Institute of Mental Health (Sixth Hospital) (JW, WD, MZ, JT, TS, XY, HW), Beijing, China; National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health (Peking University) (JW, WD, MZ, JT, TS, XY HW), Beijing, China; Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia (JW, MZ, TS, XY, HW), Beijing, China.
| |
Collapse
|
94
|
Bertacchi M, Romano AL, Loubat A, Tran Mau-Them F, Willems M, Faivre L, Khau van Kien P, Perrin L, Devillard F, Sorlin A, Kuentz P, Philippe C, Garde A, Neri F, Di Giaimo R, Oliviero S, Cappello S, D'Incerti L, Frassoni C, Studer M. NR2F1 regulates regional progenitor dynamics in the mouse neocortex and cortical gyrification in BBSOAS patients. EMBO J 2020; 39:e104163. [PMID: 32484994 PMCID: PMC7327499 DOI: 10.15252/embj.2019104163] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
The relationships between impaired cortical development and consequent malformations in neurodevelopmental disorders, as well as the genes implicated in these processes, are not fully elucidated to date. In this study, we report six novel cases of patients affected by BBSOAS (Boonstra‐Bosch‐Schaff optic atrophy syndrome), a newly emerging rare neurodevelopmental disorder, caused by loss‐of‐function mutations of the transcriptional regulator NR2F1. Young patients with NR2F1 haploinsufficiency display mild to moderate intellectual disability and show reproducible polymicrogyria‐like brain malformations in the parietal and occipital cortex. Using a recently established BBSOAS mouse model, we found that Nr2f1 regionally controls long‐term self‐renewal of neural progenitor cells via modulation of cell cycle genes and key cortical development master genes, such as Pax6. In the human fetal cortex, distinct NR2F1 expression levels encompass gyri and sulci and correlate with local degrees of neurogenic activity. In addition, reduced NR2F1 levels in cerebral organoids affect neurogenesis and PAX6 expression. We propose NR2F1 as an area‐specific regulator of mouse and human brain morphology and a novel causative gene of abnormal gyrification.
Collapse
Affiliation(s)
- Michele Bertacchi
- Université Côte d'Azur, CNRS, Inserm, iBV, Paris, France.,Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Agnès Loubat
- Université Côte d'Azur, CNRS, Inserm, iBV, Paris, France
| | - Frederic Tran Mau-Them
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Marjolaine Willems
- Hôpital Arnaud de Villeneuve, Service de Génétique Médicale, CHU de Montpellier, Montpellier, France
| | - Laurence Faivre
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Philippe Khau van Kien
- Hôpital Carémeau, UF de Génétique Médicale et Cytogénétique, Centre de Compétences Anomalies du Développement et Syndromes Malformatifs, CHU de Nîmes, Nîmes, France
| | - Laurence Perrin
- Unité Fonctionnelle de Génétique Clinique, Hôpital Robert Debré, Paris, France
| | - Françoise Devillard
- Département de Génétique et Procréation, Hôpital Couple-Enfant, CHU de Grenoble, Grenoble, France
| | - Arthur Sorlin
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de référence maladies rares « Déficiences intellectuelles de causes rares », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Paul Kuentz
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Génétique Biologique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Christophe Philippe
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Aurore Garde
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Francesco Neri
- Epigenetics Unit, Italian Institute for Genomic Medicine, University of Torino, Torino, Italy.,Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Rossella Di Giaimo
- Department of Biology, University of Naples Federico II, Napoli, Italy.,Max Planck Institute of Psychiatry, München, Germany
| | - Salvatore Oliviero
- Epigenetics Unit, Italian Institute for Genomic Medicine, University of Torino, Torino, Italy
| | | | - Ludovico D'Incerti
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Carolina Frassoni
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Michèle Studer
- Université Côte d'Azur, CNRS, Inserm, iBV, Paris, France
| |
Collapse
|
95
|
Lv X, Chen Y, Tan W, Yu Y, Zou H, Shao Y, Zan S, Tao J, Miao W. Functional Neuroanatomy of the Human Accommodation Response to an "E" Target Varying from -3 to -6 Diopters. Front Integr Neurosci 2020; 14:29. [PMID: 32508603 PMCID: PMC7253675 DOI: 10.3389/fnint.2020.00029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Background: We aimed to identify the functional brain networks involved in the regulation of visual accommodation by contrasting the cortical functional areas evoked by foveal fixation to an "E" target, which were subservient to the accommodation responses to a -3/-6 diopter stimulus. Methods: Neural activity was assessed in healthy volunteers by changes in blood oxygen level-dependent (BOLD) signals measured with functional magnetic resonance imaging (fMRI). Twenty-five right-handed subjects viewed the "E" target presented in a hierarchical block design. They participated in two monocular tasks: (i) sustained foveal fixation upon an "E" target on a white background at 33 cm (-3.03D accommodative demand); and (ii) sustained fixation through an attached -3D concave lens (-6D accommodative demand) in front of the fixated eye; each condition cycled through a standard alternating 30-s eye open/30-s eye closed design to provide the BOLD contrast. The total sustained period was 480 s. Results: The contrast between the -3D and the rest condition revealed activation in the occipital lobe (Lingual gyrus, Cuneus, Calcarine_L, and Calcarine_R); cerebellum (Cerebellum_Crus1_L and Cerebellum_6_L); precentral lobe (Precentral_R); frontal lobe (Frontal_Inf_Oper_R and Frontal_Mid_R); and cingulate cortex (Cingulum_Ant_L). With the -3D concave lenses (-6D accommodative demand) in front of the fixated eye, the voxel size and peak intensity of activation in the occipital lobe and cerebellum were greater than with the -3D accommodative demand; emergent activated brain areas included the parietal lobe (bilateral precuneus gyrus and right supramarginal gyrus); the precentral lobe and cingulate cortex failed to reach the threshold in the -6D vs. rest contrast. In the -3D and -6D contrast comparison, the frontal lobe (Frontal_Sup_Medial_L) and parietal lobe (Precuneus_L and Precuneus_R) passed the significance threshold of cluster-level family-wise error (FWE) correction. The mean activation in the -3D and -6D contrast revealed an incremental summation of the activations than that found in the previous -3D vs. rest and -6D vs. rest comparisons. Conclusions: Neural circuits were selectively activated during the -3D/-6D accommodative response to blur cues. Cognitive-perceptual processing is involved in signal regulation of ocular accommodative functions.
Collapse
Affiliation(s)
- Xiaoli Lv
- Department of Ophthalmology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yilei Chen
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenli Tan
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Yu
- Department of Ophthalmology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zou
- Department of Ophthalmology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shao
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Songhua Zan
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinhua Tao
- Department of Ophthalmology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanhong Miao
- Department of Ophthalmology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
96
|
Ishkhanyan B, Michel Lange V, Boye K, Mogensen J, Karabanov A, Hartwigsen G, Siebner HR. Anterior and Posterior Left Inferior Frontal Gyrus Contribute to the Implementation of Grammatical Determiners During Language Production. Front Psychol 2020; 11:685. [PMID: 32395113 PMCID: PMC7197372 DOI: 10.3389/fpsyg.2020.00685] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/20/2020] [Indexed: 11/13/2022] Open
Abstract
The left inferior frontal gyrus (IFG) is a key region for language comprehension and production. Previous studies point to a preferential involvement of left anterior IFG (aIFG) in lexical and semantic processes, while the posterior IFG (pIFG) has been implicated in supporting syntactic and phonological processes. Here we used focal neuronavigated transcranial magnetic stimulation (TMS) to probe the functional involvement of left IFG in lexical and grammatical processing at the sentence level. We applied 10 Hz TMS effective or sham bursts to left aIFG and pIFG, while healthy volunteers performed an adjective-noun production task contrasting grammatical and lexical determiners. For each trial, we measured the time from the stimulus onset to the moment of articulation (response time) and the time from articulation onset to the end of articulation (duration). Focal TMS of IFG generally delayed response times. The TMS-induced delay in response times was relatively stronger for the grammatical condition compared to the lexical condition, when TMS targeted aIFG. Articulation of the determiner was generally shorter in trials presenting grammatical determiners relative to lexical determiners. The shorter articulation time for grammar determiners was facilitated by effective TMS to pIFG. Together, the effects of TMS on task performance provide novel evidence for a joint involvement of anterior and posterior parts of left IFG in implementing grammatical determiners during language production, suggesting an involvement of aIFG in the initiation and pIFG in the production of grammatically appropriate verbal responses at the sentence level.
Collapse
Affiliation(s)
- Byurakn Ishkhanyan
- Department of Nordic Studies and Linguistics, University of Copenhagen, Copenhagen, Denmark.,Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, Aarhus, Denmark
| | - Violaine Michel Lange
- Department of Nordic Studies and Linguistics, University of Copenhagen, Copenhagen, Denmark.,Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Kasper Boye
- Department of Nordic Studies and Linguistics, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Mogensen
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Anke Karabanov
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Faculty of Medical and Health Sciences, Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
97
|
Zhang Y, Chen S, Deng Z, Yang J, Yuan J. Benefits of Implicit Regulation of Instructed Fear: Evidence From Neuroimaging and Functional Connectivity. Front Neurosci 2020; 14:201. [PMID: 32231516 PMCID: PMC7082334 DOI: 10.3389/fnins.2020.00201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/24/2020] [Indexed: 11/29/2022] Open
Abstract
Instructed fear, which denotes fearful emotions learned from others' verbal instructions, is an important form of fear acquisition in humans. Maladaptive instructed fear produces detrimental effects on health, but little is known about performing an efficient regulation of instructed fear and its underlying neural substrates. To address this question, 26 subjects performed an instructed fear task where emotional experiences and functional neuroimages were recorded during watching, explicit regulation (calmness imagination), and implicit regulation (calmness priming) conditions. Results indicated that implicit regulation decreased activity in the left amygdala and left insula for instructed fear; however, these effects were absent in explicit regulation. The implementation of implicit regulation did not increase activity in the frontoparietal control regions, while explicit regulation increased dorsolateral prefrontal cortex activity. Furthermore, implicit regulation increased functional connectivity between the right amygdala and right fusiform gyrus, and decreased functional connectivity between the right medial temporal gyrus and left inferior frontal gyrus, which are key nodes of memory retrieval and cognitive control networks, respectively. These findings suggest a favourable effect of implicit regulation on instructed fear, which is subserved by less involvement of control-related brain mechanisms.
Collapse
Affiliation(s)
- Yicheng Zhang
- The Laboratory for Affect Cognition and Regulation (ACRLab), Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Shengdong Chen
- The Laboratory for Affect Cognition and Regulation (ACRLab), Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Zhongyan Deng
- The Laboratory for Affect Cognition and Regulation (ACRLab), Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Jiemin Yang
- The Laboratory for Affect Cognition and Regulation (ACRLab), Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Jiajin Yuan
- The Laboratory for Affect Cognition and Regulation (ACRLab), Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
98
|
Yue Y, Jiang Y, Shen T, Pu J, Lai HY, Zhang B. ALFF and ReHo Mapping Reveals Different Functional Patterns in Early- and Late-Onset Parkinson's Disease. Front Neurosci 2020; 14:141. [PMID: 32158380 PMCID: PMC7052327 DOI: 10.3389/fnins.2020.00141] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/04/2020] [Indexed: 11/13/2022] Open
Abstract
Heterogeneity between late-onset Parkinson's disease (LOPD) and early-onset Parkinson's disease (EOPD) is mainly reflected in the following aspects including genetics, disease progression, drug response, clinical manifestation, and neuropathological change. Although many studies have investigated these differences in relation to clinical significance, the functional processing circuits and underlying neural mechanisms have not been entirely understood. In this study, regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF) maps were used to explore different spontaneous brain activity patterns in EOPD and LOPD patients. Abnormal synchronizations were found in the motor and emotional circuits of the EOPD group, as well as in the motor, emotional, and visual circuits of the LOPD group. EOPD patients showed functional activity change in the visual, emotional and motor circuits, and LOPD patients only showed increased functional activity in the emotional circuits. In summary, the desynchronization process in the LOPD group was relatively strengthened, and the brain areas with changed functional activity in the EOPD group were relatively widespread. The results might point out different impairments in the synchronization and functional activity for EOPD and LOPD patients.
Collapse
Affiliation(s)
- Yumei Yue
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yasi Jiang
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Ting Shen
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jiali Pu
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hsin-Yi Lai
- Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
99
|
Jha A, Teotonio R, Smith AL, Bomanji J, Dickson J, Diehl B, Duncan JS, Nachev P. Metabolic lesion-deficit mapping of human cognition. Brain 2020; 143:877-890. [PMID: 32203579 PMCID: PMC7089650 DOI: 10.1093/brain/awaa032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/12/2019] [Accepted: 12/27/2019] [Indexed: 11/14/2022] Open
Abstract
In theory the most powerful technique for functional localization in cognitive neuroscience, lesion-deficit mapping is in practice distorted by unmodelled network disconnections and strong 'parasitic' dependencies between collaterally damaged ischaemic areas. High-dimensional multivariate modelling can overcome these defects, but only at the cost of commonly impracticable data scales. Here we develop lesion-deficit mapping with metabolic lesions-discrete areas of hypometabolism typically seen on interictal 18F-fluorodeoxyglucose PET imaging in patients with focal epilepsy-that inherently capture disconnection effects, and whose structural dependence patterns are sufficiently benign to allow the derivation of robust functional anatomical maps with modest data. In this cross-sectional study of 159 patients with widely distributed focal cortical impairments, we derive lesion-deficit maps of a broad range of psychological subdomains underlying affect and cognition. We demonstrate the potential clinical utility of the approach in guiding therapeutic resection for focal epilepsy or other neurosurgical indications by applying high-dimensional modelling to predict out-of-sample verbal IQ and depression from cortical metabolism alone.
Collapse
Affiliation(s)
- Ashwani Jha
- UCL Queen Square Institute of Neurology, London, UK
| | - Rute Teotonio
- Neurology Department of Centro Hospitalar de Leiria, Leiria, Portugal
| | | | | | | | - Beate Diehl
- UCL Queen Square Institute of Neurology, London, UK
| | | | | |
Collapse
|
100
|
Nazli ŞB, Koçak OM, Kirkici B, Sevındık M, Kokurcan A. Investigation of the Processing of Noun and Verb Words with fMRI in Patients with Schizophrenia. ACTA ACUST UNITED AC 2020; 57:9-14. [PMID: 32110143 DOI: 10.29399/npa.23521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 08/15/2019] [Indexed: 11/07/2022]
Abstract
Introduction Action naming is reported to be more damaged in patients with schizophrenia than object naming. Aim of this study is to understand the cortical mechanism underlying the negative symptoms seen in patients with schizophrenia such as inactivity, restricted behavioral repertoire, by using functional MRI (fMRI) to determine whether the action origin words have a different representation in the brain regions of patients with schizophrenia and healthy individuals. Our hypothesis is that restriction in the repertoire of movement and behavior and the failure of words of "action" than words of "object" are interrelated through the same cortical mechanisms. If this hypothesis is correct, the reason for not taking action in patients with schizophrenia may be improper definition of the action (verb). Methods fMRI study was conducted with 12 patients with schizophrenia and 12 healthy individuals. fMRI recording was performed after applying positive and negative syndrome (PANSS) scale, Calgary depression scale, hand preference scale to the participants. During the sessions, "lexical decision task" is applied by showing a total of 240 words (120 words - 60 verbs (words of action) and 60 nouns (words of object) - and 120 non-words) to the subjects. Results In fMRI findings, in the group main effect, which can also be expressed as the difference of the noun and verb words in the group of schizophrenia from the noun and verb words in the healthy control group, the activation of the anterior prefrontal cortex is found to be lower in patients with schizophrenia than in healthy individuals. When the brain areas which show the difference in verb words in schizophrenia group from both noun words in schizophrenia group and noun and verb words in healthy individuals are examined, inferior frontal gyrus pars triangularis (BA45) showed more activation in patients with schizophrenia than healthy individuals, but again for the same task, inferior frontal gyrus pars opercularis (BA44) and left primary sensory area showed less activation in patients with schizophrenia than healthy individuals. There is no difference between patients with schizophrenia and healthy volunteers in terms of correctly identified words and reaction time. Conclusion Considering the lack of difference between the groups in terms of number of correctly identified words and reaction time, and BA 44's role in recognition and imitation of action and being a part of the mirror neuron system, the significant inverse correlation between PANSS negative score and BA40 can be seen as an effort to compensate for BA44 inadequate activity through BA40.
Collapse
Affiliation(s)
- Şerif Bora Nazli
- Department of Psychiatry, Ankara Gülhane Training and Research Hospital, Ankara, Turkey
| | - Orhan Murat Koçak
- Department of Psychiatry, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Bilal Kirkici
- Department of Foreign Languages Education, Middle East Technical University, Ankara, Turkey
| | - Muhammet Sevındık
- Department of Psychiatry, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Ahmet Kokurcan
- Department of Psychiatry, Dışkapı Training and Research Hospital, Ankara, Turkey
| |
Collapse
|