51
|
Tinaz S. Functional Connectome in Parkinson's Disease and Parkinsonism. Curr Neurol Neurosci Rep 2021; 21:24. [PMID: 33817766 DOI: 10.1007/s11910-021-01111-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW There has been an exponential growth in functional connectomics research in neurodegenerative disorders. This review summarizes the recent findings and limitations of the field in Parkinson's disease (PD) and atypical parkinsonian syndromes. RECENT FINDINGS Increasingly more sophisticated methods ranging from seed-based to network and whole-brain dynamic functional connectivity have been used. Results regarding the disruption in the functional connectome vary considerably based on disease severity and phenotypes, and treatment status in PD. Non-motor symptoms of PD also link to the dysfunction in heterogeneous networks. Studies in atypical parkinsonian syndromes are relatively scarce. An important clinical goal of functional connectomics in neurodegenerative disorders is to establish the presence of pathology, track disease progression, predict outcomes, and monitor treatment response. The obstacles of reliability and reproducibility in the field need to be addressed to improve the potential of the functional connectome as a biomarker for these purposes in PD and atypical parkinsonian syndromes.
Collapse
Affiliation(s)
- Sule Tinaz
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, 15 York St, LCI 710, New Haven, CT, 06510, USA.
| |
Collapse
|
52
|
Ruppert MC, Greuel A, Freigang J, Tahmasian M, Maier F, Hammes J, van Eimeren T, Timmermann L, Tittgemeyer M, Drzezga A, Eggers C. The default mode network and cognition in Parkinson's disease: A multimodal resting-state network approach. Hum Brain Mapp 2021; 42:2623-2641. [PMID: 33638213 PMCID: PMC8090788 DOI: 10.1002/hbm.25393] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Involvement of the default mode network (DMN) in cognitive symptoms of Parkinson's disease (PD) has been reported by resting-state functional MRI (rsfMRI) studies. However, the relation to metabolic measures obtained by [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) is largely unknown. We applied multimodal resting-state network analysis to clarify the association between intrinsic metabolic and functional connectivity abnormalities within the DMN and their significance for cognitive symptoms in PD. PD patients were classified into normal cognition (n = 36) and mild cognitive impairment (MCI; n = 12). The DMN was identified by applying an independent component analysis to FDG-PET and rsfMRI data of a matched subset (16 controls and 16 PD patients) of the total cohort. Besides metabolic activity, metabolic and functional connectivity within the DMN were compared between the patients' groups and healthy controls (n = 16). Glucose metabolism was significantly reduced in all DMN nodes in both patient groups compared to controls, with the lowest uptake in PD-MCI (p < .05). Increased metabolic and functional connectivity along fronto-parietal connections was identified in PD-MCI patients compared to controls and unimpaired patients. Functional connectivity negatively correlated with cognitive composite z-scores in patients (r = -.43, p = .005). The current study clarifies the commonalities of metabolic and hemodynamic measures of brain network activity and their individual significance for cognitive symptoms in PD, highlighting the added value of multimodal resting-state network approaches for identifying prospective biomarkers.
Collapse
Affiliation(s)
- Marina C Ruppert
- Department of Neurology, University Hospital of Marburg, Marburg, Germany.,Center for Mind, Brain, and Behavior-CMBB, Universities of Marburg and Gießen, Marburg, Germany
| | - Andrea Greuel
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - Julia Freigang
- Department of Neurology, University Hospital of Marburg, Marburg, Germany.,Center for Mind, Brain, and Behavior-CMBB, Universities of Marburg and Gießen, Marburg, Germany
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Franziska Maier
- Medical Faculty, Department of Psychiatry, University Hospital Cologne, Cologne, Germany
| | - Jochen Hammes
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Cologne, Germany.,Department of Neurology, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany.,Center for Mind, Brain, and Behavior-CMBB, Universities of Marburg and Gießen, Marburg, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany.,Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Alexander Drzezga
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-2), Jülich, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital of Marburg, Marburg, Germany.,Center for Mind, Brain, and Behavior-CMBB, Universities of Marburg and Gießen, Marburg, Germany
| |
Collapse
|
53
|
Ebneabbasi A, Mahdipour M, Nejati V, Li M, Liebe T, Colic L, Leutritz AL, Vogel M, Zarei M, Walter M, Tahmasian M. Emotion processing and regulation in major depressive disorder: A 7T resting-state fMRI study. Hum Brain Mapp 2021; 42:797-810. [PMID: 33151031 PMCID: PMC7814754 DOI: 10.1002/hbm.25263] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/18/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022] Open
Abstract
Dysfunctions in bottom-up emotion processing (EP), as well as top-down emotion regulation (ER) are prominent features in pathophysiology of major depressive disorder (MDD). Nonetheless, it is not clear whether EP- and ER-related areas are regionally and/or connectively disturbed in MDD. In addition, it is yet to be known how EP- and ER-related areas are interactively linked to regulatory behavior, and whether this interaction is disrupted in MDD. In our study, regional amplitude of low frequency fluctuations (ALFF) and whole-brain functional connectivity (FC) of meta-analytic-driven EP- and ER-related areas were compared between 32 healthy controls (HC) and 20 MDD patients. Then, we aimed to investigate whether the EP-related areas can predict the ER-related areas and regulatory behavior in both groups. Finally, the brain-behavior correlations between the EP- and ER-related areas and depression severity were assessed. We found that: (a) affective areas are regionally and/or connectively disturbed in MDD; (b) EP-ER interaction seems to be disrupted in MDD; overburden of emotional reactivity in amygdala may inversely affect cognitive control processes in prefrontal cortices, which leads to diminished regulatory actions. (c) Depression severity is correlated with FC of affective areas. Our findings shed new lights on the neural underpinning of affective dysfunctions in depression.
Collapse
Affiliation(s)
- Amir Ebneabbasi
- Institute of Medical Science and TechnologyShahid Beheshti UniversityTehranIran
- Department of Psychology, Faculty of Psychology and Educational SciencesShahid Beheshti UniversityTehranIran
| | - Mostafa Mahdipour
- Institute of Medical Science and TechnologyShahid Beheshti UniversityTehranIran
| | - Vahid Nejati
- Department of Psychology, Faculty of Psychology and Educational SciencesShahid Beheshti UniversityTehranIran
| | - Meng Li
- Clinical Affective Neuroimaging LaboratoryOtto von Guericke UniversityMagdeburgGermany
- Department of Psychiatry and PsychotherapyJena University HospitalJenaGermany
| | - Thomas Liebe
- Clinical Affective Neuroimaging LaboratoryOtto von Guericke UniversityMagdeburgGermany
| | - Lejla Colic
- Clinical Affective Neuroimaging LaboratoryOtto von Guericke UniversityMagdeburgGermany
| | - Anna Linda Leutritz
- Clinical Affective Neuroimaging LaboratoryOtto von Guericke UniversityMagdeburgGermany
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyUniversity Hospital, University of WürzburgWürzburgGermany
| | - Matthias Vogel
- Clinical Affective Neuroimaging LaboratoryOtto von Guericke UniversityMagdeburgGermany
- University Clinic for Psychosomatic Medicine and PsychotherapyMagdeburgGermany
| | - Mojtaba Zarei
- Institute of Medical Science and TechnologyShahid Beheshti UniversityTehranIran
| | - Martin Walter
- Clinical Affective Neuroimaging LaboratoryOtto von Guericke UniversityMagdeburgGermany
- Department of Psychiatry and PsychotherapyJena University HospitalJenaGermany
- Leibniz Institute for NeurobiologyMagdeburgGermany
| | - Masoud Tahmasian
- Institute of Medical Science and TechnologyShahid Beheshti UniversityTehranIran
| |
Collapse
|
54
|
Xing Y, Fu S, Li M, Ma X, Liu M, Liu X, Huang Y, Xu G, Jiao Y, Wu H, Jiang G, Tian J. Regional Neural Activity Changes in Parkinson's Disease-Associated Mild Cognitive Impairment and Cognitively Normal Patients. Neuropsychiatr Dis Treat 2021; 17:2697-2706. [PMID: 34429605 PMCID: PMC8380131 DOI: 10.2147/ndt.s323127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/27/2021] [Indexed: 01/21/2023] Open
Abstract
PURPOSE The aim of this study was to compare regional homogeneity (ReHo) changes in Parkinson's disease mild cognitive impairment (PD-MCI) patients with respect to normal controls (NC) and those with cognitively normal PD (PD-CN). Further, the study investigated the relationship between ReHo changes in PD patients and neuropsychological variation. PATIENTS AND METHODS Thirty PD-MCI, 19 PD-CN, and 21 NC subjects were enrolled. Resting state functional magnetic resonance imaging data of all subjects were collected, and regional brain activity was measured for ReHo. Analysis of covariance for ReHo was determined between the PD-MCI, PD-CN, and NC groups. Spearman rank correlations were assessed using the ReHo maps and data from the neuropsychological tests. RESULTS In comparison with NC, PD-CN patients showed significantly higher ReHo values in the right middle frontal gyrus (MFG) and lower ReHo values in the left supramarginal gyrus, bilateral inferior parietal lobule (IPL), and the right postcentral gyrus (PCG). In comparison with PD-CN patients, PD-MCI patients displayed significantly higher ReHo values in the right PCG, left middle occipital gyrus (MOG) and IPL. No significant correlation between ReHo indices and the neuropsychological scales was observed. CONCLUSION Our finding revealed that decreases in ReHo in the default mode network (DMN) may appear before PD-related cognitive impairment. In order to preserve executive attention capacity, ReHo in the right MFG in PD patients lacking cognition impairment increased for compensation. PD-MCI showed increased ReHo in the left MOG, which might have been caused by visual and visual-spatial dysfunction, and increased ReHo in the left IPL, which might reflect network disturbance and induce cognition deficits.
Collapse
Affiliation(s)
- Yilan Xing
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China.,Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Shishun Fu
- Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Meng Li
- Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Xiaofen Ma
- Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Mengchen Liu
- Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Xintong Liu
- Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yan Huang
- Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Guang Xu
- Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yonggang Jiao
- Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Hong Wu
- Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Guihua Jiang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China.,Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Junzhang Tian
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China.,Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| |
Collapse
|
55
|
Sun HH, Pan PL, Hu JB, Chen J, Wang XY, Liu CF. Alterations of regional homogeneity in Parkinson's disease with "pure" apathy: A resting-state fMRI study. J Affect Disord 2020; 274:792-798. [PMID: 32664016 DOI: 10.1016/j.jad.2020.05.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/19/2020] [Accepted: 05/27/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Apathy is a prevalent and debilitating neuropsychiatric syndrome in Parkinson's disease (PD). However, its neural mechanisms are still unclear. METHODS Forty-six de novo, drug-naïve, non-demented PD patients without depressive or anxious symptoms, of whom 26 were apathetic (PD-A) and 20 were not (PD-NA) according to the Apathy Scale (AS), and 23 matched healthy control (HC) subjects were enrolled in this study. The regional homogeneity (ReHo) approach based on resting-state functional MRI on a 3-T MR system was used to investigate apathy related local brain activity. RESULTS Compared with both patients with PD-NA and HC subjects, patients with PD-A showed significantly lower ReHo values in the dorsal anterior cingulate cortex (ACC) and right caudate. Both the PD-A and PD-NA groups also demonstrated lower ReHo values in the right putamen compared to the HC group. Further correlation analyses revealed that AS scores were negatively correlated with the ReHo values in the dorsal ACC and right caudate in the pooled patients with PD. LIMITATIONS The present results are preliminary due to the small sample size in the study. CONCLUSIONS This study used ReHo for the first time to characterize "pure" apathy related regional spontaneous brain function within the frontostriatal circuits in PD. Our findings suggest that abnormal brain activity in the dorsal ACC and caudate may involve the pathological mechanisms of apathy in PD.
Collapse
Affiliation(s)
- Hai-Hua Sun
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - Ping-Lei Pan
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - Jian-Bin Hu
- Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - Jing Chen
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue-Yang Wang
- Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Neuroscience, Soochow University, Suzhou, China.
| |
Collapse
|
56
|
Filippi M, Sarasso E, Piramide N, Stojkovic T, Stankovic I, Basaia S, Fontana A, Tomic A, Markovic V, Stefanova E, Kostic VS, Agosta F. Progressive brain atrophy and clinical evolution in Parkinson's disease. NEUROIMAGE-CLINICAL 2020; 28:102374. [PMID: 32805678 PMCID: PMC7453060 DOI: 10.1016/j.nicl.2020.102374] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Cortical and subcortical atrophy is accelerated early after the onset of PD. Brain atrophy in PD progressed with cognitive, non-motor and mood deficits. Structural MRI may be useful for predicting disease progression in PD.
Clinical manifestations and evolution are very heterogeneous among individuals with Parkinson’s disease (PD). The aims of this study were to investigate the pattern of progressive brain atrophy in PD according to disease stage and to elucidate to what extent cortical thinning and subcortical atrophy are related to clinical motor and non-motor evolution. 154 patients at different PD stages were assessed over time using motor, non-motor and structural MRI evaluations for a maximum of 4 years. Cluster analysis defined clinical subtypes. Cortical thinning and subcortical atrophy were assessed at baseline in patients relative to 60 healthy controls. Longitudinal trends of brain atrophy progression were compared between PD clusters. The contribution of brain atrophy in predicting motor, non-motor, cognitive and mood deterioration was explored. Two main PD clusters were defined: mild (N = 87) and moderate-to-severe (N = 67). Two mild subtypes were further identified: mild motor-predominant (N = 43) and mild-diffuse (N = 44), with the latter group being older and having more severe non-motor and cognitive symptoms. The initial pattern of brain atrophy was more severe in patients with moderate-to-severe PD. Over time, mild-diffuse PD patients had the greatest brain atrophy accumulation in the cortex and the left hippocampus, while less distributed atrophy progression was observed in moderate-to-severe and mild motor-predominant patients. Baseline and 1-year cortical thinning was associated with long-term progression of motor, cognitive, non-motor and mood symptoms. Cortical and subcortical atrophy is accelerated early after the onset of PD and becomes prominent in later stages of disease according to the development of cognitive, non-motor and mood dysfunctions. Structural MRI may be useful for monitoring and predicting disease progression in PD.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology and Neurophysiology Units, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Noemi Piramide
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Tanja Stojkovic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Iva Stankovic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Silvia Basaia
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Fontana
- Unit of Biostatistics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Aleksandra Tomic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladana Markovic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Elka Stefanova
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir S Kostic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
57
|
Wolters AF, Heijmans M, Michielse S, Leentjens AFG, Postma AA, Jansen JFA, Ivanov D, Duits AA, Temel Y, Kuijf ML. The TRACK-PD study: protocol of a longitudinal ultra-high field imaging study in Parkinson's disease. BMC Neurol 2020; 20:292. [PMID: 32758176 PMCID: PMC7409458 DOI: 10.1186/s12883-020-01874-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The diagnosis of Parkinson's Disease (PD) remains a challenge and is currently based on the assessment of clinical symptoms. PD is also a heterogeneous disease with great variability in symptoms, disease course, and response to therapy. There is a general need for a better understanding of this heterogeneity and the interlinked long-term changes in brain function and structure in PD. Over the past years there is increasing interest in the value of new paradigms in Magnetic Resonance Imaging (MRI) and the potential of ultra-high field strength imaging in the diagnostic work-up of PD. With this multimodal 7 T MRI study, our objectives are: 1) To identify distinctive MRI characteristics in PD patients and to create a diagnostic tool based on these differences. 2) To correlate MRI characteristics to clinical phenotype, genetics and progression of symptoms. 3) To detect future imaging biomarkers for disease progression that could be valuable for the evaluation of new therapies. METHODS The TRACK-PD study is a longitudinal observational study in a cohort of 130 recently diagnosed (≤ 3 years after diagnosis) PD patients and 60 age-matched healthy controls (HC). A 7 T MRI of the brain will be performed at baseline and repeated after 2 and 4 years. Complete assessment of motor, cognitive, neuropsychiatric and autonomic symptoms will be performed at baseline and follow-up visits with wearable sensors, validated questionnaires and rating scales. At baseline a blood DNA sample will also be collected. DISCUSSION This is the first longitudinal, observational, 7 T MRI study in PD patients. With this study, an important contribution can be made to the improvement of the current diagnostic process in PD. Moreover, this study will be able to provide valuable information related to the different clinical phenotypes of PD and their correlating MRI characteristics. The long-term aim of this study is to better understand PD and develop new biomarkers for disease progression which may help new therapy development. Eventually, this may lead to predictive models for individual PD patients and towards personalized medicine in the future. TRIAL REGISTRATION Dutch Trial Register, NL7558 . Registered March 11, 2019.
Collapse
Affiliation(s)
- A F Wolters
- Department of Neurology, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - M Heijmans
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - S Michielse
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - A F G Leentjens
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Psychiatry, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - A A Postma
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - J F A Jansen
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - D Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - A A Duits
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Medical Psychology, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Y Temel
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - M L Kuijf
- Department of Neurology, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
58
|
Tessitore A, Cirillo M, De Micco R. Functional Connectivity Signatures of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 9:637-652. [PMID: 31450512 PMCID: PMC6839494 DOI: 10.3233/jpd-191592] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Resting-state functional magnetic resonance imaging (RS-fMRI) studies have been extensively applied to analyze the pathophysiology of neurodegenerative disorders such as Parkinson’s disease (PD). In the present narrative review, we attempt to summarize the most recent RS-fMRI findings highlighting the role of brain networks re-organization and adaptation in the course of PD. We also discuss limitations and potential definition of early functional connectivity signatures to track and predict future PD progression. Understanding the neural correlates and potential predisposing factors of clinical progression and complication will be crucial to guide novel clinical trials and to foster preventive strategies.
Collapse
Affiliation(s)
- Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
59
|
Lang S, Ismail Z, Kibreab M, Kathol I, Sarna J, Monchi O. Common and unique connectivity at the interface of motor, neuropsychiatric, and cognitive symptoms in Parkinson's disease: A commonality analysis. Hum Brain Mapp 2020; 41:3749-3764. [PMID: 32476230 PMCID: PMC7416059 DOI: 10.1002/hbm.25084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023] Open
Abstract
Parkinson's disease (PD) is characterized by overlapping motor, neuropsychiatric, and cognitive symptoms. Worse performance in one domain is associated with worse performance in the other domains. Commonality analysis (CA) is a method of variance partitioning in multiple regression, used to separate the specific and common influence of collinear predictors. We apply, for the first time, CA to the functional connectome to investigate the unique and common neural connectivity underlying the interface of the symptom domains in 74 non-demented PD subjects. Edges were modeled as a function of global motor, cognitive, and neuropsychiatric scores. CA was performed, yielding measures of the unique and common contribution of the symptom domains. Bootstrap confidence intervals were used to determine the precision of the estimates and to directly compare each commonality coefficient. The overall model identified a network with the caudate nucleus as a hub. Neuropsychiatric impairment accounted for connectivity in the caudate-dorsal anterior cingulate and caudate-right dorsolateral prefrontal-right inferior parietal circuits, while caudate-medial prefrontal connectivity reflected a unique effect of both neuropsychiatric and cognitive impairment. Caudate-precuneus connectivity was explained by both unique and shared influence of neuropsychiatric and cognitive symptoms. Lastly, posterior cortical connectivity reflected an interplay of the unique and common effects of each symptom domain. We show that CA can determine the amount of variance in the connectome that is unique and shared amongst motor, neuropsychiatric, and cognitive symptoms in PD, thereby improving our ability to interpret the data while gaining novel insight into networks at the interface of these symptom domains.
Collapse
Affiliation(s)
- Stefan Lang
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Zahinoor Ismail
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada.,Mathison Center for Brain and Mental Health Research, University of Calgary, Calgary, Alberta, Canada
| | - Mekale Kibreab
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Iris Kathol
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Justyna Sarna
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Oury Monchi
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
60
|
Klobušiaková P, Mareček R, Fousek J, Výtvarová E, Rektorová I. Connectivity Between Brain Networks Dynamically Reflects Cognitive Status of Parkinson's Disease: A Longitudinal Study. J Alzheimers Dis 2020; 67:971-984. [PMID: 30776007 PMCID: PMC6398554 DOI: 10.3233/jad-180834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cognitive impairment in Parkinson's disease (PD) is associated with altered connectivity of the resting state networks (RSNs). Longitudinal studies in well cognitively characterized PD subgroups are missing. OBJECTIVES To assess changes of the whole-brain connectivity and between-network connectivity (BNC) of large-scale functional networks related to cognition in well characterized PD patients using a longitudinal study design and various analytical methods. METHODS We explored the whole-brain connectivity and BNC of the frontoparietal control network (FPCN) and the default mode, dorsal attention, and visual networks in PD with normal cognition (PD-NC, n = 17) and mild cognitive impairment (PD-MCI, n = 22) as compared to 51 healthy controls (HC). We applied regions of interest-based, partial least squares, and graph theory based network analyses. The differences among groups were analyzed at baseline and at the one-year follow-up visit (37 HC, 23 PD all). RESULTS The BNC of the FPCN and other RSNs was reduced, and the whole-brain analysis revealed increased characteristic path length and decreased average node strength, clustering coefficient, and global efficiency in PD-NC compared to HC. Values of all measures in PD-MCI were between that of HC and PD-NC. After one year, the BNC was further increased in the PD-all group; no changes were detected in HC. No cognitive domain z-scores deteriorated in either group. CONCLUSION As compared to HC, PD-NC patients display a less efficient transfer of information globally and reduced BNC of the visual and frontoparietal control network. The BNC increases with time and MCI status, reflecting compensatory efforts.
Collapse
Affiliation(s)
- Patrícia Klobušiaková
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radek Mareček
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic.,First Department of Neurology, St. Anne's University Hospital and School of Medicine, Masaryk University, Brno, Czech Republic.,Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic
| | - Jan Fousek
- Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic.,Institute of Computer Science, Masaryk University (MU), Brno, Czech Republic
| | - Eva Výtvarová
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic.,Faculty of Informatics, Masaryk University (MU), Brno, Czech Republic
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic.,First Department of Neurology, St. Anne's University Hospital and School of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
61
|
Ioakeimidis V, Haenschel C, Yarrow K, Kyriakopoulos M, Dima D. A Meta-analysis of Structural and Functional Brain Abnormalities in Early-Onset Schizophrenia. ACTA ACUST UNITED AC 2020. [DOI: 10.1093/schizbullopen/sgaa016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abstract
Early-onset schizophrenia (EOS) patients demonstrate brain changes that are similar to severe cases of adult-onset schizophrenia. Neuroimaging research in EOS is limited due to the rarity of the disorder. The present meta-analysis aims to consolidate MRI and functional MRI findings in EOS. Seven voxel-based morphometry (VBM) and 8 functional MRI studies met the inclusion criteria, reporting whole-brain analyses of EOS vs healthy controls. Activation likelihood estimation (ALE) was conducted to identify aberrant anatomical or functional clusters across the included studies. Separate ALE analyses were performed, first for all task-dependent studies (Cognition ALE) and then only for working memory ones (WM ALE). The VBM ALE revealed no significant clusters for gray matter volume reductions in EOS. Significant hypoactivations peaking in the right anterior cingulate cortex (rACC) and the right temporoparietal junction (rTPJ) were detected in the Cognition ALE. In the WM ALE, consistent hypoactivations were found in the left precuneus (lPreC), the right inferior parietal lobule (rIPL) and the rTPJ. These hypoactivated areas show strong associations with language, memory, attention, spatial, and social cognition. The functional co-activated networks of each suprathreshold ALE cluster, identified using the BrainMap database, revealed a core co-activation network with similar topography to the salience network. Our results add support to posterior parietal, ACC and rTPJ dysfunction in EOS, areas implicated in the cognitive impairments characterizing EOS. The salience network lies at the core of these cognitive processes, co-activating with the hypoactivating regions, and thus highlighting the importance of salience dysfunction in EOS.
Collapse
Affiliation(s)
- Vasileios Ioakeimidis
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
| | - Corinna Haenschel
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
| | - Kielan Yarrow
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
| | - Marinos Kyriakopoulos
- National and Specialist Acorn Lodge Inpatient Children Unit, South London & Maudsley NHS Trust, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
62
|
Ruppert MC, Greuel A, Tahmasian M, Schwartz F, Stürmer S, Maier F, Hammes J, Tittgemeyer M, Timmermann L, van Eimeren T, Drzezga A, Eggers C. Network degeneration in Parkinson’s disease: multimodal imaging of nigro-striato-cortical dysfunction. Brain 2020; 143:944-959. [DOI: 10.1093/brain/awaa019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/21/2019] [Accepted: 12/11/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
The spreading hypothesis of neurodegeneration assumes an expansion of neural pathologies along existing neural pathways. Multimodal neuroimaging studies have demonstrated distinct topographic patterns of cerebral pathologies in neurodegeneration. For Parkinson’s disease the hypothesis so far rests largely on histopathological evidence of α-synuclein spreading in a characteristic pattern and progressive nigrostriatal dopamine depletion. Functional consequences of nigrostriatal dysfunction on cortical activity remain to be elucidated. Our goal was to investigate multimodal imaging correlates of degenerative processes in Parkinson’s disease by assessing dopamine depletion and its potential effect on striatocortical connectivity networks and cortical metabolism in relation to parkinsonian symptoms. We combined 18F-DOPA-PET, 18F-fluorodeoxyglucose (FDG)-PET and resting state functional MRI to multimodally characterize network alterations in Parkinson’s disease. Forty-two patients with mild-to-moderate stage Parkinson’s disease and 14 age-matched healthy control subjects underwent a multimodal imaging protocol and comprehensive clinical examination. A voxel-wise group comparison of 18F-DOPA uptake identified the exact location and extent of putaminal dopamine depletion in patients. Resulting clusters were defined as seeds for a seed-to-voxel functional connectivity analysis. 18F-FDG metabolism was compared between groups at a whole-brain level and uptake values were extracted from regions with reduced putaminal connectivity. To unravel associations between dopaminergic activity, striatocortical connectivity, glucose metabolism and symptom severity, correlations between normalized uptake values, seed-to-cluster β-values and clinical parameters were tested while controlling for age and dopaminergic medication. Aside from cortical hypometabolism, 18F-FDG-PET data for the first time revealed a hypometabolic midbrain cluster in patients with Parkinson’s disease that comprised caudal parts of the bilateral substantia nigra pars compacta. Putaminal dopamine synthesis capacity was significantly reduced in the bilateral posterior putamen and correlated with ipsilateral nigral 18F-FDG uptake. Resting state functional MRI data indicated significantly reduced functional connectivity between the dopamine depleted putaminal seed and cortical areas primarily belonging to the sensorimotor network in patients with Parkinson’s disease. In the inferior parietal cortex, hypoconnectivity in patients was significantly correlated with lower metabolism (left P = 0.021, right P = 0.018). Of note, unilateral network alterations quantified with different modalities corresponded with contralateral motor impairments. In conclusion, our results support the hypothesis that degeneration of nigrostriatal fibres functionally impairs distinct striatocortical connections, disturbing the efficient interplay between motor processing areas and impairing motor control in patients with Parkinson’s disease. The present study is the first to reveal trimodal evidence for network-dependent degeneration in Parkinson’s disease by outlining the impact of functional nigrostriatal pathway impairment on striatocortical functional connectivity networks and cortical metabolism.
Collapse
Affiliation(s)
- Marina C Ruppert
- Department of Neurology, University Hospital of Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| | - Andrea Greuel
- Department of Neurology, University Hospital of Marburg, Germany
| | - Masoud Tahmasian
- Institue of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Frank Schwartz
- Department of Neurology, Hospital of the Brothers of Mercy, Trier, Germany
| | - Sophie Stürmer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Neurology, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
| | - Franziska Maier
- Department of Psychiatry, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Jochen Hammes
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| | - Thilo van Eimeren
- Department of Neurology, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Germany
| | - Alexander Drzezga
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-2), Research Center Jülich, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital of Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| |
Collapse
|
63
|
Kaut O, Mielacher C, Hurlemann R, Wüllner U. Resting-state fMRI reveals increased functional connectivity in the cerebellum but decreased functional connectivity of the caudate nucleus in Parkinson’s disease. Neurol Res 2020; 42:62-67. [DOI: 10.1080/01616412.2019.1709141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Oliver Kaut
- Department of Neurology, University Clinic Bonn, Bonn, Germany
| | - Clemens Mielacher
- Division of Medical Psychology, University Clinic Bonn, Bonn, Germany
| | - René Hurlemann
- Division of Medical Psychology, University Clinic Bonn, Bonn, Germany
| | - Ullrich Wüllner
- Department of Neurology, University Clinic Bonn, Bonn, Germany
- Department of Clinical Studies, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
64
|
Tahmasian M, Sepehry AA, Samea F, Khodadadifar T, Soltaninejad Z, Javaheripour N, Khazaie H, Zarei M, Eickhoff SB, Eickhoff CR. Practical recommendations to conduct a neuroimaging meta-analysis for neuropsychiatric disorders. Hum Brain Mapp 2019; 40:5142-5154. [PMID: 31379049 PMCID: PMC6865620 DOI: 10.1002/hbm.24746] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 02/04/2023] Open
Abstract
Over the past decades, neuroimaging has become widely used to investigate structural and functional brain abnormality in neuropsychiatric disorders. The results of individual neuroimaging studies, however, are frequently inconsistent due to small and heterogeneous samples, analytical flexibility, and publication bias toward positive findings. To consolidate the emergent findings toward clinically useful insight, meta-analyses have been developed to integrate the results of studies and identify areas that are consistently involved in pathophysiology of particular neuropsychiatric disorders. However, it should be considered that the results of meta-analyses could also be divergent due to heterogeneity in search strategy, selection criteria, imaging modalities, behavioral tasks, number of experiments, data organization methods, and statistical analysis with different multiple comparison thresholds. Following an introduction to the problem and the concepts of quantitative summaries of neuroimaging findings, we propose practical recommendations for clinicians and researchers for conducting transparent and methodologically sound neuroimaging meta-analyses. This should help to consolidate the search for convergent regional brain abnormality in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Masoud Tahmasian
- Institute of Medical Science and TechnologyShahid Beheshti UniversityTehranIran
| | - Amir A. Sepehry
- Clinical and Counselling Psychology ProgramAdler UniversityVancouverBritish ColumbiaCanada
| | - Fateme Samea
- Institute of Cognitive and Brain SciencesShahid Beheshti UniversityTehranIran
| | - Tina Khodadadifar
- School of Cognitive SciencesInstitute for Research in Fundamental SciencesTehranIran
| | - Zahra Soltaninejad
- Institute of Cognitive and Brain SciencesShahid Beheshti UniversityTehranIran
| | | | - Habibolah Khazaie
- Sleep Disorders Research CenterKermanshah University of Medical SciencesKermanshahIran
| | - Mojtaba Zarei
- Institute of Medical Science and TechnologyShahid Beheshti UniversityTehranIran
| | - Simon B. Eickhoff
- Institute for Systems Neuroscience, Medical FacultyHeinrich‐Heine University DüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐1, INM‐7)Research Center JülichJülichGermany
| | - Claudia R. Eickhoff
- Institute of Neuroscience and Medicine (INM‐1, INM‐7)Research Center JülichJülichGermany
- Institute of Clinical Neuroscience and Medical PsychologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
65
|
Gómez-Gastiasoro A, Peña J, Ibarretxe-Bilbao N, Lucas-Jiménez O, Díez-Cirarda M, Rilo O, Montoya-Murillo G, Zubiaurre-Elorza L, Ojeda N. A Neuropsychological Rehabilitation Program for Cognitive Impairment in Psychiatric and Neurological Conditions: A Review That Supports Its Efficacy. Behav Neurol 2019; 2019:4647134. [PMID: 31772682 PMCID: PMC6854258 DOI: 10.1155/2019/4647134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/05/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022] Open
Abstract
Neuropsychological rehabilitation has been the focus of much scientific research over the past decades due to its efficacy in different pathologies. Advances in the neuropsychology field have led to improvements and changes in neuropsychological interventions, which in turn have given rise to different approaches and rehabilitation programs. REHACOP is an integrative neuropsychological rehabilitation program designed by specialist neuropsychologists. With an integrated bottom-up and top-down approach, REHACOP includes neurocognition, social cognition, and daily living tasks hierarchically organized on an increasing level of difficulty. Task arrangement is addressed to maximize improvements and transfer effects into participant's daily living. To date, REHACOP has been implemented on different clinical samples such as patients with schizophrenia, multiple sclerosis (MS), and Parkinson's disease (PD). This manuscript presents the efficacy data of REHACOP across these three populations and discusses it in the context of the available literature. Overall, the magnitude of improvements obtained by means of REHACOP ranged from medium to high across samples. These changes were not restricted to specific neurocognitive domains since participants attending the REHACOP program also showed changes in social cognition and daily functioning variables by means of both direct and transfer effects. Results regarding REHACOP's efficacy in psychiatric and neurological conditions have contributed to expanding the existing evidence about the use of structured neuropsychological rehabilitation. In addition, the results obtained after its implementation highlighted the need and importance of designing and implementing integrative neuropsychological rehabilitation programs that are focused not only on cognition per se but also on participants' performance in daily living.
Collapse
Affiliation(s)
- Ainara Gómez-Gastiasoro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Olaia Lucas-Jiménez
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - María Díez-Cirarda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Oiane Rilo
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Genoveva Montoya-Murillo
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| |
Collapse
|
66
|
Alterations in grey matter density and functional connectivity in trigeminal neuropathic pain and trigeminal neuralgia: A systematic review and meta-analysis. NEUROIMAGE-CLINICAL 2019; 24:102039. [PMID: 31698316 PMCID: PMC6978224 DOI: 10.1016/j.nicl.2019.102039] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
Abstract
Activation likelihood estimation (ALE) shows to be a verified method to meta-analyze heterogeneous imaging results. From a broad variety of key regions, structural and functional changes were repeatedly found in the thalamus, the cingulate cortex and the middle frontal gyrus in TN/TNP patients. Future research should focus on these regions of interest in order to improve diagnostic imaging in TN/TNP.
Background Various studies reported changes in grey matter volumes and modifications in functional connectivity of cortical and subcortical structures in patients suffering from trigeminal neuralgia (TN) and trigeminal neuropathic pain (TNP). This study meta-analyzed the concordant structural and functional changes in foci and provide further understanding of the anatomy and biology of TN/TNP. Methods Relevant articles on magnetic resonance imaging (MRI) and functional MRI in TN/TNP, published before August 2018, were searched for on PubMed and Embase. Following exclusion of unsuitable studies, a meta-analysis was performed using activation likelihood estimation (ALE). Results In total, 322 paper were identified, 11 of which could be included based on the predefined inclusion and exclusion criteria. Eight papers, totaling 279 subjects, discussing structural changes and four papers, totaling 102 subjects, discussing functional changes were included (i.e., one paper investigated both structural and functional alterations). ALE analysis showed that in TN/TNP, grey matter decreases are found in the thalamus, (anterior) cingulate gyrus, bilateral striatum, the superior-, middle- and transverse temporal gyrus, subcallosal gyrus, the bilateral insular cortex, the pre- and postcental gyrus, the middle frontal gyrus bilaterally and the anterior cerebellar lobe. Grey matter increases were seen in the periaqueductal grey (PAG). Increased resting state functional organization was found within the bilateral middle- and superior frontal gyri, the (posterior) cingulate cortex and the thalamus/pulvinar. Conclusions Structural and functional changes meta-analyzed in this paper may contribute to elucidating the central pathophysiological mechanisms involved in TN/TNP. These results may be used as biomarkers to predict the response to medication and, ideally, in the future to offer personalized treatments.
Collapse
|
67
|
Chung WY, Liu SY, Gao JC, Jiang YJ, Zhang J, Qu SS, Zhang JP, Tan XL, Chen JQ, Wang SX. Modulatory effect of International Standard Scalp Acupuncture on brain activation in the elderly as revealed by resting-state fMRI. Neural Regen Res 2019; 14:2126-2131. [PMID: 31397351 PMCID: PMC6788231 DOI: 10.4103/1673-5374.262590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The specific mechanisms by which acupuncture affects the central nervous system are unclear. In the International Standard Scalp Acupuncture system, acupuncture needles are applied at the middle line of the vertex, anterior parietal-temporal oblique line, and the posterior parietal-temporal oblique line. We conducted a single-arm prospective clinical trial in which seven healthy elderly volunteers (three men and four women; 50–70 years old) received International Standard Scalp Acupuncture at MS5 (the mid-sagittal line between Baihui (DU20) and Qianding (DU21)), the left MS6 (line joining Sishencong (EX-HN1) and Xuanli (GB6)), and the left MS7 (line joining DU20 and Qubin (GB7)). After acupuncture, resting-state functional magnetic resonance imaging demonstrated changes in the fractional amplitude of low frequency fluctuations and regional homogeneity in various areas, showing remarkable enhancement of regional homogeneity in the bilateral anterior cingulate, left medial frontal gyrus, supramarginal gyrus, right middle frontal gyrus, and inferior frontal gyrus. Functional connectivity based on a seed region at the right middle frontal gyrus (42, 51, 9) decreased at the bilateral medial superior frontal gyrus. Our data preliminarily indicates that the international standard scalp acupuncture in healthy elderly participants specifcally enhances the correlation between the brain regions involved in cognition and implementation of the brain network regulation system and the surrounding adjacent brain regions. The study was approved by the Ethics Committee of the China-Japan Union Hospital at Jilin University, China, on July 18, 2016 (approval No. 2016ks043).
Collapse
Affiliation(s)
- Wai-Yeung Chung
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province; School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Song-Yan Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jing-Chun Gao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yi-Jing Jiang
- Department of Rehabilitation Medicine, Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Jing Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shan-Shan Qu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ji-Ping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiao-Long Tan
- Department of Medical Image, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jun-Qi Chen
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Sheng-Xu Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
68
|
Javaheripour N, Shahdipour N, Noori K, Zarei M, Camilleri JA, Laird AR, Fox PT, Eickhoff SB, Eickhoff CR, Rosenzweig I, Khazaie H, Tahmasian M. Functional brain alterations in acute sleep deprivation: An activation likelihood estimation meta-analysis. Sleep Med Rev 2019; 46:64-73. [PMID: 31063939 PMCID: PMC7279069 DOI: 10.1016/j.smrv.2019.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/26/2022]
Abstract
Sleep deprivation (SD) is a common problem in modern societies, which leads to cognitive dysfunctions including attention lapses, impaired working memory, hindering decision making, impaired emotional processing, and motor vehicle accidents. Numerous neuroimaging studies have investigated the neural correlates of SD, but these studies have reported inconsistent results. Thus, we aimed to identify convergent patterns of abnormal brain functions due to acute SD. Based on the preferred reporting for systematic reviews and meta-analyses statement, we searched the PubMed database and performed reference tracking and finally retrieved 31 eligible functional neuroimaging studies. Then, we applied activation estimation likelihood meta-analysis and found reduced activity mainly in the right intraparietal sulcus and superior parietal lobule. The functional decoding analysis using the BrainMap database indicated that this region is mostly related to visuospatial perception, memory and reasoning. The significant co-activation of this region using the BrainMap database were found in the left superior parietal lobule, intraparietal sulcus, bilateral occipital cortex, left fusiform gyrus and thalamus. This region also connected with the superior parietal lobule, intraparietal sulcus, insula, inferior frontal gyrus, precentral, occipital and cerebellum through resting-state functional connectivity in healthy subjects. Taken together, our findings highlight the role of superior parietal cortex in SD.
Collapse
Affiliation(s)
- Nooshin Javaheripour
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Niloofar Shahdipour
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khadijeh Noori
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Julia A Camilleri
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; South Texas Veterans Healthcare System University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1; INM-7), Research Center Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-1; INM-7), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Ivana Rosenzweig
- Sleep Disorders Centre, Guy's and St Thomas' Hospital, GSTT NHS, London, UK; Sleep and Brain Plasticity Centre, Department of Neuroimaging, IOPPN, King's College London, London, UK
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
69
|
Connectomics and molecular imaging in neurodegeneration. Eur J Nucl Med Mol Imaging 2019; 46:2819-2830. [PMID: 31292699 DOI: 10.1007/s00259-019-04394-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
Our understanding on human neurodegenerative disease was previously limited to clinical data and inferences about the underlying pathology based on histopathological examination. Animal models and in vitro experiments have provided evidence for a cell-autonomous and a non-cell-autonomous mechanism for the accumulation of neuropathology. Combining modern neuroimaging tools to identify distinct neural networks (connectomics) with target-specific positron emission tomography (PET) tracers is an emerging and vibrant field of research with the potential to examine the contributions of cell-autonomous and non-cell-autonomous mechanisms to the spread of pathology. The evidence provided here suggests that both cell-autonomous and non-cell-autonomous processes relate to the observed in vivo characteristics of protein pathology and neurodegeneration across the disease spectrum. We propose a synergistic model of cell-autonomous and non-cell-autonomous accounts that integrates the most critical factors (i.e., protein strain, susceptible cell feature and connectome) contributing to the development of neuronal dysfunction and in turn produces the observed clinical phenotypes. We believe that a timely and longitudinal pursuit of such research programs will greatly advance our understanding of the complex mechanisms driving human neurodegenerative diseases.
Collapse
|
70
|
Schwartz F, Tahmasian M, Maier F, Rochhausen L, Schnorrenberg KL, Samea F, Seemiller J, Zarei M, Sorg C, Drzezga A, Timmermann L, Meyer TD, van Eimeren T, Eggers C. Overlapping and distinct neural metabolic patterns related to impulsivity and hypomania in Parkinson's disease. Brain Imaging Behav 2019; 13:241-254. [PMID: 29322397 DOI: 10.1007/s11682-017-9812-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Impulsivity and hypomania are common non-motor features in Parkinson's disease (PD). The aim of this study was to find the overlapping and distinct neural correlates of these symptoms in PD. Symptoms of impulsivity and hypomania were assessed in 24 PD patients using the Barratt Impulsiveness Scale (BIS-11) and Self-Report Manic Inventory (SRMI), respectively. In addition, fluorodeoxyglucose positron emission tomography (FDG-PET) imaging for each individual was performed. We conducted two separate multiple regression analyses for BIS-11 and SRMI scores with FDG-PET data to identify the brain regions that are associated with both impulsivity and hypomania scores, as well as those exclusive to each symptom. Then, seed-based functional connectivity analyses on healthy subjects identified the areas connected to each of the exclusive regions and the overlapping region, used as seeds. We observed a positive association between BIS-11 and SRMI scores and neural metabolism only in the prefrontal areas. Conjunction analysis revealed an overlapping region in the middle frontal gyrus. Regions exclusive to impulsivity were found in the medial part of the right superior frontal gyrus and regions exclusive to hypomania were in the right superior frontal gyrus, right precentral gyrus and right paracentral lobule. Connectivity patterns of seeds exclusively related to impulsivity were different from those for hypomania in healthy brains. These results provide evidence of both overlapping and distinct regions linked with impulsivity and hypomania scores in PD. The exclusive regions for each characteristic are connected to specific intrinsic functional networks.
Collapse
Affiliation(s)
- Frank Schwartz
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran.
| | - Franziska Maier
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Luisa Rochhausen
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | | | - Fateme Samea
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | | | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Christian Sorg
- Departments of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center (TUM-NIC), Technische Universität München, Munich, Germany.,Department of Psychiatry, Technische Universität München, Munich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Thomas D Meyer
- McGovern Medical School, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Thilo van Eimeren
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Department of Neurology, University Hospital Marburg, Marburg, Germany
| |
Collapse
|
71
|
Giehl K, Tahmasian M, Eickhoff SB, van Eimeren T. Imaging executive functions in Parkinson's disease: An activation likelihood estimation meta-analysis. Parkinsonism Relat Disord 2019; 63:137-142. [DOI: 10.1016/j.parkreldis.2019.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/29/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
|
72
|
Maidan I, Jacob Y, Giladi N, Hausdorff JM, Mirelman A. Altered organization of the dorsal attention network is associated with freezing of gait in Parkinson's disease. Parkinsonism Relat Disord 2019; 63:77-82. [DOI: 10.1016/j.parkreldis.2019.02.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 01/29/2023]
|
73
|
Nackaerts E, D'Cruz N, Dijkstra BW, Gilat M, Kramer T, Nieuwboer A. Towards understanding neural network signatures of motor skill learning in Parkinson's disease and healthy aging. Br J Radiol 2019; 92:20190071. [PMID: 30982328 DOI: 10.1259/bjr.20190071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the past decade, neurorehabilitation has been shown to be an effective therapeutic supplement for patients with Parkinson's disease (PD). However, patients still experience severe problems with the consolidation of learned motor skills. Knowledge on the neural correlates underlying this process is thus essential to optimize rehabilitation for PD. This review investigates the existing studies on neural network connectivity changes in relation to motor learning in healthy aging and PD and critically evaluates the imaging methods used from a methodological point of view. The results indicate that despite neurodegeneration there is still potential to modify connectivity within and between motor and cognitive networks in response to motor training, although these alterations largely bypass the most affected regions in PD. However, so far training-related changes are inferred and possible relationships are not substantiated by brain-behavior correlations. Furthermore, the studies included suffer from many methodological drawbacks. This review also highlights the potential for using neural network measures as predictors for the response to rehabilitation, mainly based on work in young healthy adults. We speculate that future approaches, including graph theory and multimodal neuroimaging, may be more sensitive than brain activation patterns and model-based connectivity maps to capture the effects of motor learning. Overall, this review suggests that methodological developments in neuroimaging will eventually provide more detailed knowledge on how neural networks are modified by training, thereby paving the way for optimized neurorehabilitation for patients.
Collapse
Affiliation(s)
| | - Nicholas D'Cruz
- 1Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Bauke W Dijkstra
- 1Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Moran Gilat
- 1Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Kramer
- 1Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Alice Nieuwboer
- 1Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
74
|
Samea F, Soluki S, Nejati V, Zarei M, Cortese S, Eickhoff SB, Tahmasian M, Eickhoff CR. Brain alterations in children/adolescents with ADHD revisited: A neuroimaging meta-analysis of 96 structural and functional studies. Neurosci Biobehav Rev 2019; 100:1-8. [PMID: 30790635 PMCID: PMC7966818 DOI: 10.1016/j.neubiorev.2019.02.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/21/2019] [Accepted: 02/16/2019] [Indexed: 01/06/2023]
Abstract
The findings of neuroimaging studies in children/adolescents with ADHD, and even those of previous meta-analyses, are divergent. Here, Activation Likelihood Estimation meta-analysis, following the current best-practice guidelines, was conducted. We searched multiple databases and traced the references up to June 2018. Then, we extracted the reported coordinates reflecting group comparison between ADHD and healthy subjects from 96 eligible studies, containing 1914 unique participants. The analysis of pooled structural and functional, sub-analyses restricted to modality, and in-/decreased contrast did not yield any significant findings. However, further sub-analyses in the task-fMRI experiments (neutral stimuli only) led to aberrant activity in the left pallidum/putamen and decreased activity (male subjects only) in the left inferior frontal gyrus. The overall findings indicate a lack of regional convergence in children/adolescents with ADHD, which might be due to heterogeneous clinical populations, various experimental design, preprocessing, statistical procedures in individual publications. Our results highlight the need for further high-powered investigations, but may also indicate ADHD pathophysiology might rest in network interactions rather than just regional abnormality.
Collapse
Affiliation(s)
- Fateme Samea
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Solmaz Soluki
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Vahid Nejati
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran; Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Samuele Cortese
- Center for Innovation in Mental Health, Academic Unit of Psychology, University of Southampton, Southampton, UK; Faculty of Medicine, Clinical and Experimental Sciences (CNS and Psychiatry), University of Southampton, Southampton, UK; Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK; Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, USA
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1, INM-7), Research Center Jülich, Jülich, Germany
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran.
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
75
|
Mueller K, Jech R, Ballarini T, Holiga Š, Růžička F, Piecha FA, Möller HE, Vymazal J, Růžička E, Schroeter ML. Modulatory Effects of Levodopa on Cerebellar Connectivity in Parkinson's Disease. CEREBELLUM (LONDON, ENGLAND) 2019; 18:212-224. [PMID: 30298443 PMCID: PMC6443641 DOI: 10.1007/s12311-018-0981-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Levodopa has been the mainstay of symptomatic therapy for Parkinson's disease (PD) for the last five decades. However, it is associated with the development of motor fluctuations and dyskinesia, in particular after several years of treatment. The aim of this study was to shed light on the acute brain functional reorganization in response to a single levodopa dose. Functional magnetic resonance imaging (fMRI) was performed after an overnight withdrawal of dopaminergic treatment and 1 h after a single dose of 250 mg levodopa in a group of 24 PD patients. Eigenvector centrality was calculated in both treatment states using resting-state fMRI. This offers a new data-driven and parameter-free approach, similar to Google's PageRank algorithm, revealing brain connectivity alterations due to the effect of levodopa treatment. In all PD patients, levodopa treatment led to an improvement of clinical symptoms as measured with the Unified Parkinson's Disease Rating Scale motor score (UPDRS-III). This therapeutic effect was accompanied with a major connectivity increase between cerebellar brain regions and subcortical areas of the motor system such as the thalamus, putamen, globus pallidus, and brainstem. The degree of interconnectedness of cerebellar regions correlated with the improvement of clinical symptoms due to the administration of levodopa. We observed significant functional cerebellar connectivity reorganization immediately after a single levodopa dose in PD patients. Enhanced general connectivity (eigenvector centrality) was associated with better motor performance as assessed by UPDRS-III score. This underlines the importance of considering cerebellar networks as therapeutic targets in PD.
Collapse
Affiliation(s)
- Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Robert Jech
- Department of Neurology - Center for interventional therapy of movement disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic.
| | - Tommaso Ballarini
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Štefan Holiga
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Filip Růžička
- Department of Neurology - Center for interventional therapy of movement disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Fabian A Piecha
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Josef Vymazal
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology - Center for interventional therapy of movement disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
76
|
Xu S, He XW, Zhao R, Chen W, Qin Z, Zhang J, Ban S, Li GF, Shi YH, Hu Y, Zhuang MT, Liu YS, Shen XL, Li J, Liu JR, Du X. Cerebellar functional abnormalities in early stage drug-naïve and medicated Parkinson's disease. J Neurol 2019; 266:1578-1587. [PMID: 30923933 DOI: 10.1007/s00415-019-09294-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological degenerative disorder characterized by impaired motor function and non-motor dysfunctions. While recent studies have highlighted the role of the cerebellum in PD, our understanding of its role in PD remains limited. In the present study, we used resting-state fMRI to evaluate dysfunctions within the cerebellum in PD patients treated with medication and drug-naïve PD patients. We applied amplitude of low-frequency fluctuation (ALFF) and degree centrality (DC) analysis methods. Thirty-one patients with early stage PD (22 drug-naïve and 9 medicated patients) and 31 gender- and age-matched healthy controls were recruited in this study. ALFFs increased in the left cerebellar areas (lobules VI/VIIb/CruI/CruII and the dentate gyrus) and right cerebellar areas (lobules VI/VIIb/VIIIa/CruI/CruII and the dentate gyrus) of all PD patients and in the left and right cerebellar areas (lobules VI/VIIb/CruI and the dentate gyrus) of drug-naive PD patients but were not significantly changed in medicated PD patients. DC increased in the right cerebellar areas of all PD patients and medicated PD patients. All PD patients and all drug-naive PD patients showed significantly weaker functional connectivity (FC) between the left cerebellum and the left medial frontal gyrus. However, FC was significantly stronger between the right cerebellum and the left precentral and right middle occipital gyri in the medicated PD patients than in controls. Furthermore, a correlation analyses revealed that ALFF z scores in the left cerebellum (lobule VI) and right cerebellum (lobule VI/CruI and dentate gyrus) were negatively correlated with Mini-Mental State Examination (MMSE) scores in all PD patients and drug-naive patients. These results indicate that the cerebellum plays an important role in PD, mainly by exerting a compensatory effect in early stage PD. Additionally, antiparkinsonian medication would modified PD-induced changes in local neural activity and FC in PD patients. The results of this study offer novel insights into the roles of the cerebellum in early stage drug-naïve PD.
Collapse
Affiliation(s)
- Shuai Xu
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, People's Republic of China
| | - Xin-Wei He
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Rong Zhao
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Wei Chen
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Zhaoxia Qin
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, People's Republic of China
| | - Jilei Zhang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, People's Republic of China
| | - Shiyu Ban
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, People's Republic of China
| | - Ge-Fei Li
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yan-Hui Shi
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yue Hu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Mei-Ting Zhuang
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Yi-Sheng Liu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Xiao-Lei Shen
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, People's Republic of China
| | - Jian-Ren Liu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China. .,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| | - Xiaoxia Du
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, People's Republic of China.
| |
Collapse
|
77
|
Weil RS, Winston JS, Leyland L, Pappa K, Mahmood RB, Morris HR, Rees G. Neural correlates of early cognitive dysfunction in Parkinson's disease. Ann Clin Transl Neurol 2019; 6:902-912. [PMID: 31139688 PMCID: PMC6529983 DOI: 10.1002/acn3.767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Dementia is a common and feared aspect of Parkinson's disease but there are no robust predictors of cognitive outcome. Visuoperceptual deficits are linked to risk of dementia in Parkinson's disease but whether they predict cognitive change is not known, and the neural substrates of visuoperceptual dysfunction in Parkinson's have not yet been identified. METHODS We compared patients with Parkinson's disease and unaffected controls who underwent BOLD fMRI while performing our previously validated visuoperceptual task and tested how functional connectivity between task-specific regions and the rest of the brain differed between patients who performed well and poorly in the task. RESULTS We show that task performance at baseline predicts change in cognition in Parkinson's disease after 1 year. Our task-based fMRI study showed that the performance in this task is associated with activity in the posterior cingulate cortex/precuneus. We found that functional connectivity between this region and dorsomedial prefrontal cortex was reduced in poor performers compared with good performers of this task. INTERPRETATION Our findings suggest that functional connectivity is reduced between posterior and anterior hubs of the default mode network in Parkinson's patients who are likely to progress to worsening cognitive dysfunction. Our work implicates posterior default mode nodes and their connections as key brain regions in early stages of dementia in Parkinson's disease.
Collapse
Affiliation(s)
- Rimona S. Weil
- Dementia Research CentreUCLLondonUnited Kingdom,Wellcome Centre for Human NeuroimagingUCLLondonUnited Kingdom
| | - Joel S. Winston
- Wellcome Centre for Human NeuroimagingUCLLondonUnited Kingdom,National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | | | - Katerina Pappa
- Institute of Cognitive NeuroscienceUCLLondonUnited Kingdom
| | | | - Huw R. Morris
- Department of Clinical and Motor NeuroscienceUCL Queen Square Institute of NeurologyLondonUnited Kingdom,Movement Disorders CentreUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Geraint Rees
- Wellcome Centre for Human NeuroimagingUCLLondonUnited Kingdom,Institute of Cognitive NeuroscienceUCLLondonUnited Kingdom
| |
Collapse
|
78
|
Nagano-Saito A, Bellec P, Hanganu A, Jobert S, Mejia-Constain B, Degroot C, Lafontaine AL, Lissemore JI, Smart K, Benkelfat C, Monchi O. Why Is Aging a Risk Factor for Cognitive Impairment in Parkinson's Disease?-A Resting State fMRI Study. Front Neurol 2019; 10:267. [PMID: 30967835 PMCID: PMC6438889 DOI: 10.3389/fneur.2019.00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/27/2019] [Indexed: 01/12/2023] Open
Abstract
Using resting-state functional MRI (rsfMRI) data of younger and older healthy volunteers and patients with Parkinson's disease (PD) with and without mild cognitive impairment (MCI) and applying two different analytic approaches, we investigated the effects of age, pathology, and cognition on brain connectivity. When comparing rsfMRI connectivity strength of PD patients and older healthy volunteers, reduction between multiple brain regions in PD patients with MCI (PD-MCI) compared with PD patients without MCI (PD-non-MCI) was observed. This group difference was not affected by the number and location of clusters but was reduced when age was included as a covariate. Next, we applied a graph-theory method with a cost-threshold approach to the rsfMRI data from patients with PD with and without MCI as well as groups of younger and older healthy volunteers. We observed decreased hub function (measured by degree and betweenness centrality) mainly in the medial prefrontal cortex (mPFC) in older healthy volunteers compared with younger healthy volunteers. We also found increased hub function in the posterior medial structure (precuneus and the cingulate cortex) in PD-non-MCI patients compared with older healthy volunteers and PD-MCI patients. Hub function in these posterior medial structures was positively correlated with cognitive function in all PD patients. Together these data suggest that overlapping patterns of hub modifications could mediate the effect of age as a risk factor for cognitive decline in PD, including age-related reduction of hub function in the mPFC, and recruitment availability of the posterior medial structure, possibly to compensate for impaired basal ganglia function.
Collapse
Affiliation(s)
- Atsuko Nagano-Saito
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.,Department of Neurology & Neurosurgery, and Psychiatry, McGill University, Montreal, QC, Canada
| | - Pierre Bellec
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.,Université de Montréal, Montreal, QC, Canada
| | - Alexandru Hanganu
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.,Université de Montréal, Montreal, QC, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, AB, Canada.,Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Stevan Jobert
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Béatriz Mejia-Constain
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Clotilde Degroot
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.,Department of Neurology & Neurosurgery, and Psychiatry, McGill University, Montreal, QC, Canada
| | - Anne-Louise Lafontaine
- Department of Neurology & Neurosurgery, and Psychiatry, McGill University, Montreal, QC, Canada.,Movement Disorders Unit, McGill University Health Center, Montreal, QC, Canada.,Department of Neurology, Montreal Neurological Hospital, Montreal, QC, Canada.,Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Jennifer I Lissemore
- Department of Neurology & Neurosurgery, and Psychiatry, McGill University, Montreal, QC, Canada
| | - Kelly Smart
- Department of Neurology & Neurosurgery, and Psychiatry, McGill University, Montreal, QC, Canada
| | - Chawki Benkelfat
- Department of Neurology & Neurosurgery, and Psychiatry, McGill University, Montreal, QC, Canada
| | - Oury Monchi
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.,Department of Neurology & Neurosurgery, and Psychiatry, McGill University, Montreal, QC, Canada.,Université de Montréal, Montreal, QC, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, AB, Canada.,Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, AB, Canada.,Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
79
|
Filippi M, Sarasso E, Agosta F. Resting-state Functional MRI in Parkinsonian Syndromes. Mov Disord Clin Pract 2019; 6:104-117. [PMID: 30838308 DOI: 10.1002/mdc3.12730] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 01/18/2023] Open
Abstract
Background Functional MRI (fMRI) has been widely used to study abnormal patterns of functional connectivity at rest in patients with movement disorders such as idiopathic Parkinson's disease (PD) and atypical parkinsonisms. Methods This manuscript provides an educational review of the current use of resting-state fMRI in the field of parkinsonian syndromes. Results Resting-state fMRI studies have improved the current knowledge about the mechanisms underlying motor and non-motor symptom development and progression in movement disorders. Even if its inclusion in clinical practice is still far away, resting-state fMRI has the potential to be a promising biomarker for early disease detection and prediction. It may also aid in differential diagnosis and monitoring brain responses to therapeutic agents and neurorehabilitation strategies in different movement disorders. Conclusions There is urgent need to identify and validate prodromal biomarkers in PD patients, to perform further studies assessing both overlapping and disease-specific fMRI abnormalities among parkinsonian syndromes, and to continue technical advances to fully realize the potential of fMRI as a tool to monitor the efficacy of chronic therapies.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy.,Laboratory of Movement Analysis San Raffaele Scientific Institute Milan Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy
| |
Collapse
|
80
|
Zhurakovskaya E, Leikas J, Pirttimäki T, Casas Mon F, Gynther M, Aliev R, Rantamäki T, Tanila H, Forsberg MM, Gröhn O, Paasonen J, Jalkanen AJ. Sleep-State Dependent Alterations in Brain Functional Connectivity under Urethane Anesthesia in a Rat Model of Early-Stage Parkinson's Disease. eNeuro 2019; 6:ENEURO.0456-18.2019. [PMID: 30838323 PMCID: PMC6399428 DOI: 10.1523/eneuro.0456-18.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the gradual degeneration of dopaminergic neurons in the substantia nigra, leading to striatal dopamine depletion. A partial unilateral striatal 6-hydroxydopamine (6-OHDA) lesion causes 40-60% dopamine depletion in the lesioned rat striatum, modeling the early stage of PD. In this study, we explored the connectivity between the brain regions in partially 6-OHDA lesioned male Wistar rats under urethane anesthesia using functional magnetic resonance imaging (fMRI) at 5 weeks after the 6-OHDA infusion. Under urethane anesthesia, the brain fluctuates between the two states, resembling rapid eye movement (REM) and non-REM sleep states. We observed clear urethane-induced sleep-like states in 8/19 lesioned animals and 8/18 control animals. 6-OHDA lesioned animals exhibited significantly lower functional connectivity between the brain regions. However, we observed these differences only during the REM-like sleep state, suggesting the involvement of the nigrostriatal dopaminergic pathway in REM sleep regulation. Corticocortical and corticostriatal connections were decreased in both hemispheres, reflecting the global effect of the lesion. Overall, this study describes a promising model to study PD-related sleep disorders in rats using fMRI.
Collapse
Affiliation(s)
- Ekaterina Zhurakovskaya
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Juuso Leikas
- School of Pharmacy, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Tiina Pirttimäki
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Francesc Casas Mon
- School of Pharmacy, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Mikko Gynther
- School of Pharmacy, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Rubin Aliev
- Moscow Institute of Physics and Technology, 117303, Moscow, Russia
- Institute of Theoretical and Experimental Biophysics, 142292, Puschino, Russia
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Division of Pharmacology and Pharmacotherapeutics, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00790, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Markus M. Forsberg
- School of Pharmacy, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Jaakko Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Aaro J. Jalkanen
- School of Pharmacy, University of Eastern Finland, Kuopio, FI-70211, Finland
| |
Collapse
|
81
|
Ghasemi M, Foroutannia A. Disruption of the Brain Resting State Networks in Parkinsonism. ACTA ACUST UNITED AC 2019. [DOI: 10.29252/shefa.7.1.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
82
|
Tahmasian M, Noori K, Samea F, Zarei M, Spiegelhalder K, Eickhoff SB, Van Someren E, Khazaie H, Eickhoff CR. A lack of consistent brain alterations in insomnia disorder: An activation likelihood estimation meta-analysis. Sleep Med Rev 2018; 42:111-118. [PMID: 30093361 PMCID: PMC7965842 DOI: 10.1016/j.smrv.2018.07.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
Abstract
Insomnia disorder is a prevalent sleep disorder, which affects about 10% of general population. However, its neural mechanisms are poorly understood. Recently, several structural and functional neuroimaging studies have been conducted in patients with insomnia disorder, but these studies have yielded diverse findings. Here, we aimed to identify consistent patterns of abnormal brain alterations in insomnia disorder by performing a quantitative coordinate-based meta-analysis. Following the preferred reporting for systematic reviews and meta-analyses statement, we searched PubMed database and used reference tracking and finally retrieved 19 eligible studies (six task-based functional magnetic resonance imaging, eight resting-state functional magnetic resonance imaging, three voxel-based morphometry, and two positron emission tomography). We extracted peak coordinates from these studies and tested for convergence using the activation likelihood estimation method. Using this method, we found no significant convergent evidence for combination of structural atrophy and functional disturbances across previous studies (p = 0.914). Inconsistencies across these studies might be related to heterogonous clinical populations, the explorative nature of these studies in combination with small sample sizes, different experimental designs, and various preprocessing and statistical approaches. Future neuroimaging studies on insomnia disorder should include larger well-characterized samples, as well as standard imaging and analysis protocols.
Collapse
Affiliation(s)
- Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Khadijeh Noori
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fateme Samea
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1; INM-7), Research Center Jülich, Jülich, Germany
| | - Eus Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 Amsterdam BA, The Netherlands; Department of Psychiatry and Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University and Medical Center, De Boelelaan 1187, 1081 Amsterdam HV, The Netherlands
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-1; INM-7), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
83
|
Wang J, Zhang JR, Zang YF, Wu T. Consistent decreased activity in the putamen in Parkinson's disease: a meta-analysis and an independent validation of resting-state fMRI. Gigascience 2018; 7:5039703. [PMID: 29917066 PMCID: PMC6025187 DOI: 10.1093/gigascience/giy071] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
Background Resting-state functional magnetic resonance imaging (RS-fMRI) has frequently been used to investigate local spontaneous brain activity in Parkinson's disease (PD) in a whole-brain, voxel-wise manner. To quantitatively integrate these studies, we conducted a coordinate-based (CB) meta-analysis using the signed differential mapping method on 15 studies that used amplitude of low-frequency fluctuation (ALFF) and 11 studies that used regional homogeneity (ReHo). All ALFF and ReHo studies compared PD patients with healthy controls. We also performed a validation RS-fMRI study of ALFF and ReHo in a frequency-dependent manner for a novel dataset consisting of 49 PD and 49 healthy controls. Findings Decreased ALFF was found in the left putamen in PD by meta-analysis. This finding was replicated in our independent validation dataset in the 0.027-0.073 Hz band but not in the conventional frequency band of 0.01-0.08 Hz. Conclusions Findings from the current study suggested that decreased ALFF in the putamen of PD patients is the most consistent finding. RS-fMRI is a promising technique for the precise localization of abnormal spontaneous activity in PD. However, more frequency-dependent studies using the same analytical methods are needed to replicate these results. Trial registration: NCT NCT03439163. Registered 20 February 2018, retrospectively registered.
Collapse
Affiliation(s)
- Jue Wang
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Institute of Geriatrics, No. 45, Changchun Rd, Xicheng District, 100053, Beijing, P. R. China.,Institutes of Psychological Sciences, Hangzhou Normal University, No. 2318, Yuhangtang Rd, Yuhang District, 311121, Hangzhou, P. R. China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, No. 2318, Yuhangtang Rd, Yuhang District, 311121, Hangzhou, P. R. China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, No. 2318, Yuhangtang Rd, Yuhang District, 311121, Hangzhou, P. R. China
| | - Jia-Rong Zhang
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Institute of Geriatrics, No. 45, Changchun Rd, Xicheng District, 100053, Beijing, P. R. China.,Clinical Center for Parkinson's Disease, Capital Medical University, No. 10, Youanmenwaixi Rd, Fengtai District, 100069, Beijing, P. R. China
| | - Yu-Feng Zang
- Institutes of Psychological Sciences, Hangzhou Normal University, No. 2318, Yuhangtang Rd, Yuhang District, 311121, Hangzhou, P. R. China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, No. 2318, Yuhangtang Rd, Yuhang District, 311121, Hangzhou, P. R. China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, No. 2318, Yuhangtang Rd, Yuhang District, 311121, Hangzhou, P. R. China
| | - Tao Wu
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Institute of Geriatrics, No. 45, Changchun Rd, Xicheng District, 100053, Beijing, P. R. China.,Clinical Center for Parkinson's Disease, Capital Medical University, No. 10, Youanmenwaixi Rd, Fengtai District, 100069, Beijing, P. R. China.,Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, No. 45, Changchun Rd, Xicheng District, 100053, Beijing, P. R. China.,National Clinical Research Center for Geriatric Disorders, No. 45, Changchun Rd, Xicheng District, 100053, Beijing, P. R. China.,Parkinson Disease Imaging Consortium of China (PDICC), No. 45, Changchun Rd, Xicheng District, 100053, Beijing, P. R. China
| |
Collapse
|
84
|
Albrecht F, Ballarini T, Neumann J, Schroeter ML. FDG-PET hypometabolism is more sensitive than MRI atrophy in Parkinson's disease: A whole-brain multimodal imaging meta-analysis. Neuroimage Clin 2018; 21:101594. [PMID: 30514656 PMCID: PMC6413303 DOI: 10.1016/j.nicl.2018.11.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/01/2018] [Accepted: 11/10/2018] [Indexed: 11/25/2022]
Abstract
Recently, revised diagnostic criteria for Parkinson's disease (PD) were introduced (Postuma et al., 2015). Yet, except for well-established dopaminergic imaging, validated imaging biomarkers for PD are still missing, though they could improve diagnostic accuracy. We conducted systematic meta-analyses to identify PD-specific markers in whole-brain structural magnetic resonance imaging (MRI), [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) and diffusion tensor imaging (DTI) studies. Overall, 74 studies were identified including 2323 patients and 1767 healthy controls. Studies were first grouped according to imaging modalities (MRI 50; PET 14; DTI 10) and then into subcohorts based on clinical phenotypes. To ensure reliable results, we combined established meta-analytical algorithms - anatomical likelihood estimation and seed-based D mapping - and cross-validated them in a conjunction analysis. Glucose hypometabolism was found using FDG-PET extensively in bilateral inferior parietal cortex and left caudate nucleus with both meta-analytic methods. This hypometabolism pattern was confirmed in subcohort analyses and related to cognitive deficits (inferior parietal cortex) and motor symptoms (caudate nucleus). Structural MRI showed only small focal gray matter atrophy in the middle occipital gyrus that was not confirmed in subcohort analyses. DTI revealed fractional anisotropy reductions in the cingulate bundle near the orbital and anterior cingulate gyri in PD. Our results suggest that FDG-PET reliably identifies consistent functional brain abnormalities in PD, whereas structural MRI and DTI show only focal alterations and rather inconsistent results. In conclusion, FDG-PET hypometabolism outperforms structural MRI in PD, although both imaging methods do not offer disease-specific imaging biomarkers for PD.
Collapse
Affiliation(s)
- Franziska Albrecht
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Tommaso Ballarini
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Jane Neumann
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany; Department of Medical Engineering and Biotechnology, University of Applied Science, Jena, Germany.
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic of Cognitive Neurology, University of Leipzig & FTLD Consortium Germany, Leipzig, Germany.
| |
Collapse
|
85
|
Abstract
Even before the success of combined positron emission tomography and computed tomography (PET/CT), the neuroimaging community was conceiving the idea to integrate the positron emission tomography (PET), with very high molecular quantitative data but low spatial resolution, and magnetic resonance imaging (MRI), with high spatial resolution. Several technical limitations have delayed the use of a hybrid scanner in neuroimaging studies, including the full integration of the PET detector ring within the MRI system, the optimization of data acquisition, and the implementation of reliable methods for PET attenuation, motion correction, and joint image reconstruction. To be valid and useful in clinical and research settings, this instrument should be able to simultaneously acquire PET and MRI, and generate quantitative parametric PET images comparable to PET-CT. While post hoc co-registration of combined PET and MRI data acquired separately became the most reliable technique for the generation of "fused" PET-MRI images, only hybrid PET-MRI approach allows merging these measurements naturally and correlating them in a temporal manner. Furthermore, hybrid PET-MRI represents the most accurate tool to investigate in vivo the interplay between molecular and functional aspects of brain pathophysiology. Hybrid PET-MRI technology is still in the early stages in the movement disorders field, due to the limited availability of scanners with integrated optimized methodological models. This technology is ideally suited to investigate interactions between resting-state functional/arterial spin labeling MRI and [18F]FDG PET glucose metabolism in the evaluation of the brain "hubs" particularly vulnerable to neurodegeneration, areas with a high degree of connectivity and associated with an efficient synaptic neurotransmission. In Parkinson's disease, hybrid PET-MRI is also the ideal instrument to deeper explore the relationship between resting-state functional MRI and dopamine release at [11C]raclopride PET challenge, in the identification of early drug-naïve Parkinson's disease patients at higher risk of motor complications and in the evaluation of the efficacy of novel neuroprotective treatment able to restore at the same time the altered resting state and the release of dopamine. In this chapter, we discuss the key methodological aspects of hybrid PET-MRI; the evidence in movement disorders of the key resting-state functional and perfusion MRI; [18F]FDG PET and [11C]raclopride PET challenge studies; the potential advantages of using hybrid PET-MRI to investigate the pathophysiology of movement disorders and neurodegenerative diseases. Future directions of hybrid PET-MRI will be discussed alongside with up-to-date technological innovations on hybrid systems.
Collapse
|
86
|
Strafella AP, Bohnen NI, Pavese N, Vaillancourt DE, van Eimeren T, Politis M, Tessitore A, Ghadery C, Lewis S. Imaging Markers of Progression in Parkinson's Disease. Mov Disord Clin Pract 2018; 5:586-596. [PMID: 30637278 DOI: 10.1002/mdc3.12673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Background Parkinson's disease (PD) is the second-most common neurodegenerative disorder after Alzheimer's disease; however, to date, there is no approved treatment that stops or slows down disease progression. Over the past decades, neuroimaging studies, including molecular imaging and MRI are trying to provide insights into the mechanisms underlying PD. Methods This work utilized a literature review. Results It is now becoming clear that these imaging modalities can provide biomarkers that can objectively detect brain changes related to PD and monitor these changes as the disease progresses, and these biomarkers are required to establish a breakthrough in neuroprotective or disease-modifying therapeutics. Conclusions Here, we provide a review of recent observations deriving from PET, single-positron emission tomography, and MRI studies exploring PD and other parkinsonian disorders.
Collapse
Affiliation(s)
- Antonio P Strafella
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN University of Toronto Toronto Ontario Canada.,Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, UHN University of Toronto Toronto Ontario Canada.,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
| | - Nico I Bohnen
- Department of Radiology & Neurology University of Michigan Ann Arbor Michigan USA.,Veterans Administration Ann Arbor Healthcare System Ann Arbor Michigan USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research University of Michigan Ann Arbor Michigan USA
| | - Nicola Pavese
- Newcastle Magnetic Resonance Centre & Positron Emission Tomography Centre Newcastle University, Campus for Ageing & Vitality Newcastle upon Tyne United Kingdom
| | - David E Vaillancourt
- Applied Physiology and Kinesiology, Biomedical Engineering, and Neurology University of Florida Gainesville Florida USA
| | - Thilo van Eimeren
- Department of Nuclear Medicine and Department of Neurology University of Cologne Cologne Germany.,Institute for Cognitive Neuroscience, Jülich Research Centre Jülich Germany.,German Center for Neurodegenerative Diseases (DZNE) Bonn-Cologne Bonn Germany
| | - Marios Politis
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London London United Kingdom
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences-MRI Research Center SUN-FISM University of Campania "Luigi Vanvitelli" Naples Italy
| | - Christine Ghadery
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN University of Toronto Toronto Ontario Canada.,Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, UHN University of Toronto Toronto Ontario Canada.,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
| | - Simon Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre University of Sydney Sydney NSW Australia
| | | |
Collapse
|
87
|
Ballarini T, Růžička F, Bezdicek O, Růžička E, Roth J, Villringer A, Vymazal J, Mueller K, Schroeter ML, Jech R. Unraveling connectivity changes due to dopaminergic therapy in chronically treated Parkinson's disease patients. Sci Rep 2018; 8:14328. [PMID: 30254336 PMCID: PMC6156510 DOI: 10.1038/s41598-018-31988-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/30/2018] [Indexed: 11/14/2022] Open
Abstract
The effects of dopaminergic therapy for Parkinson’s disease (PD) on the brain functional architecture are still unclear. We investigated this topic in 31 PD patients (disease duration: 11.2 ± (SD) 3.6 years) who underwent clinical and MRI assessments under chronic dopaminergic treatment (duration: 8.3 ± (SD) 4.4 years) and after its withdrawal. Thirty healthy controls were also included. Functional and morphological changes were studied, respectively, with eigenvector centrality mapping and seed-based connectivity, and voxel-based morphometry. Patients off medication, compared to controls, showed increased connectivity in cortical sensorimotor areas extending to the cerebello-thalamo-cortical pathway and parietal and frontal brain structures. Dopaminergic therapy normalized this increased connectivity. Notably, patients showed decreased interconnectedness in the medicated compared to the unmedicated condition, encompassing putamen, precuneus, supplementary motor and sensorimotor areas bilaterally. Similarly, lower connectivity was found comparing medicated patients to controls, overlapping with the within-group comparison in the putamen. Seed-based analyses revealed that dopaminergic therapy reduced connectivity in motor and default mode networks. Lower connectivity in the putamen correlated with longer disease duration, medication dose, and motor symptom improvement. Notably, atrophy and connectivity changes were topographically dissociated. After chronic treatment, dopaminergic therapy decreases connectivity of key motor and default mode network structures that are abnormally elevated in PD off condition.
Collapse
Affiliation(s)
- Tommaso Ballarini
- Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Filip Růžička
- Department of Neurology, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| | - Ondrej Bezdicek
- Department of Neurology, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| | - Arno Villringer
- Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University Clinic, Leipzig, Germany
| | - Josef Vymazal
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
| | - Karsten Mueller
- Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matthias L Schroeter
- Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University Clinic, Leipzig, Germany.,FTLD Consortium, Ulm, Germany
| | - Robert Jech
- Department of Neurology, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic.
| |
Collapse
|
88
|
Manes JL, Tjaden K, Parrish T, Simuni T, Roberts A, Greenlee JD, Corcos DM, Kurani AS. Altered resting-state functional connectivity of the putamen and internal globus pallidus is related to speech impairment in Parkinson's disease. Brain Behav 2018; 8:e01073. [PMID: 30047249 PMCID: PMC6160640 DOI: 10.1002/brb3.1073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/19/2018] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Speech impairment in Parkinson's disease (PD) is pervasive, with life-impacting consequences. Yet, little is known about how functional connections between the basal ganglia and cortex relate to PD speech impairment (PDSI). Whole-brain resting-state connectivity analyses of basal ganglia nuclei can expand the understanding of PDSI pathophysiology. METHODS Resting-state data from 89 right-handed subjects were downloaded from the Parkinson's Progression Markers Initiative database. Subjects included 12 older healthy controls ("OHC"), 42 PD patients without speech impairment ("PDN"), and 35 PD subjects with speech impairment ("PDSI"). Subjects were assigned to PDN and PDSI groups based on the Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III speech item scores ("0" vs. "1-4"). Whole-brain functional connectivity was calculated for four basal ganglia seeds in each hemisphere: putamen, caudate, external globus pallidus (GPe), and internal globus pallidus (GPi). For each seed region, group-averaged connectivity maps were compared among OHC, PDN, and PDSI groups using a multivariate ANCOVA controlling for the effects of age and sex. Subsequent planned pairwise t-tests were performed to determine differences between the three groups using a voxel-wise threshold of p < 0.001 and cluster-extent threshold of 272 mm3 (FWE<0.05). RESULTS In comparison with OHCs, both PDN and PDSI groups demonstrated significant differences in cortical connectivity with bilateral putamen, bilateral GPe, and right caudate. Compared to the PDN group, the PDSI subjects demonstrated significant differences in cortical connectivity with left putamen and left GPi. PDSI subjects had lower connectivity between the left putamen and left superior temporal gyrus compared to PDN. In addition, PDSI subjects had greater connectivity between left GPi and three cortical regions: left dorsal premotor/laryngeal motor cortex, left angular gyrus, and right angular gyrus. CONCLUSIONS The present findings suggest that speech impairment in PD is associated with altered cortical connectivity with left putamen and left GPi.
Collapse
Affiliation(s)
- Jordan L. Manes
- Department of Physical Therapy and Human Movement SciencesNorthwestern UniversityChicagoIllinois
| | - Kris Tjaden
- Department of Communication Disorders and SciencesUniversity at BuffaloBuffaloNew York
| | - Todd Parrish
- Department of RadiologyNorthwestern UniversityChicagoIllinois
| | - Tanya Simuni
- Ken and Ruth Davee Department of NeurologyNorthwestern UniversityChicagoIllinois
- The Parkinson's Disease and Movement Disorders ClinicNorthwestern UniversityChicagoIllinois
| | - Angela Roberts
- Roxelyn and Richard Pepper Department of Communication Sciences and DisordersNorthwestern UniversityEvanstonIllinois
| | | | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement SciencesNorthwestern UniversityChicagoIllinois
| | - Ajay S. Kurani
- Department of RadiologyNorthwestern UniversityChicagoIllinois
| |
Collapse
|
89
|
Resting-state connectivity after visuo-motor skill learning is inversely associated with offline consolidation in Parkinson's disease and healthy controls. Cortex 2018; 106:237-247. [DOI: 10.1016/j.cortex.2018.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/02/2018] [Accepted: 06/08/2018] [Indexed: 01/22/2023]
|
90
|
Tahmasian M, Zarei M, Noori K, Khazaie H, Samea F, Spiegelhalder K, Eickhoff SB, Van Someren E, Eickhoff CR. Reply to Hua Liu, HaiCun Shi and PingLei Pan: Coordinate based meta-analyses in a medium sized literature: Considerations, limitations and road ahead. Sleep Med Rev 2018; 42:236-238. [PMID: 30244921 DOI: 10.1016/j.smrv.2018.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Khadijeh Noori
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Fateme Samea
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1; INM-7), Research Center Jülich, Jülich, Germany
| | - Eus Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 Amsterdam, BA, the Netherlands; Departments of Psychiatry and Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, Vrije Universiteit, Amsterdam UMC, De Boelelaan 1187, 1081 Amsterdam, HV, the Netherlands
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-1; INM-7), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
91
|
Filippi M, Elisabetta S, Piramide N, Agosta F. Functional MRI in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:439-467. [PMID: 30314606 DOI: 10.1016/bs.irn.2018.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional MRI (fMRI) has been widely used to study abnormal patterns of brain connectivity at rest and activation during a variety of tasks in patients with idiopathic Parkinson's disease (PD). fMRI studies in PD have led to a better understanding of many aspects of the disease including both motor and non-motor symptoms. Although its translation into clinical practice is still at an early stage, fMRI measures hold promise for multiple clinical applications in PD, including the early detection, predicting future change in clinical status, and as a marker of alterations in brain physiology related to neurotherapeutic agents and neurorehabilitative strategies.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | - Sarasso Elisabetta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy; Laboratory of Movement Analysis, San Raffaele Scientific Institute, Milan, Italy
| | - Noemi Piramide
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
92
|
Ji GJ, Hu P, Liu TT, Li Y, Chen X, Zhu C, Tian Y, Chen X, Wang K. Functional Connectivity of the Corticobasal Ganglia-Thalamocortical Network in Parkinson Disease: A Systematic Review and Meta-Analysis with Cross-Validation. Radiology 2018; 287:973-982. [PMID: 29514016 DOI: 10.1148/radiol.2018172183] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Purpose To quantitatively summarize the functional connectivity (FC) feature of the corticobasal ganglia-thalamocortical (CBTC) network in patients with Parkinson disease (PD) by means of a meta-analysis with cross-validation. Materials and Methods For this prospective study, a systematic literature search in the PubMed and EMBASE databases was performed for resting-state functional magnetic resonance (MR) imaging studies of PD published between January 2000 and May 2017. Then, a coordinate-based meta-analysis was conducted by Effect Size-Signed Differential Mapping. A cross-validation analysis was performed by using an independent resting-state functional MR imaging data set that contained 25 patients with PD and 19 age-, sex-, and education-matched healthy control participants. Two-sample t test was performed on FC maps between PD and control groups. Results Thirty studies with 854 patients with PD and 831 control participants were included in this meta-analysis. The main meta-analysis found increased FC in the left pre- and postcentral gyrus in patients with PD compared with healthy control participants (z = 2.6; P < .001). The abnormality of the postcentral gyrus was further confirmed by subgroup meta-analyses on medication-naive (n = 25; z = 2.2; P < .001) and medication-off (n = 11; z = 1.5; P < .001) experiments, which suggested that the finding was unaffected by medication. The abnormality of the postcentral gyrus was cross-validated by the independent data set (t = 5.0; P < .05), which suggested a high reproducibility and generalizability. Conclusion This meta-analysis emphasizes the left postcentral gyrus as a critical region in PD, which may become a potential target for clinical intervention. © RSNA, 2018 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Gong-Jun Ji
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| | - Panpan Hu
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| | - Ting-Ting Liu
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| | - Ying Li
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| | - Xingui Chen
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| | - Chunyan Zhu
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| | - Yanghua Tian
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| | - Xianwen Chen
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| | - Kai Wang
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| |
Collapse
|
93
|
Peterson AC, Li CSR. Noradrenergic Dysfunction in Alzheimer's and Parkinson's Diseases-An Overview of Imaging Studies. Front Aging Neurosci 2018; 10:127. [PMID: 29765316 PMCID: PMC5938376 DOI: 10.3389/fnagi.2018.00127] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Noradrenergic dysfunction contributes to cognitive impairment in Alzheimer's Disease (AD) and Parkinson's Disease (PD). Conventional therapeutic strategies seek to enhance cholinergic and dopaminergic neurotransmission in AD and PD, respectively, and few studies have examined noradrenergic dysfunction as a target for medication development. We review the literature of noradrenergic dysfunction in AD and PD with a focus on human imaging studies that implicate the locus coeruleus (LC) circuit. The LC sends noradrenergic projections diffusely throughout the cerebral cortex and plays a critical role in attention, learning, working memory, and cognitive control. The LC undergoes considerable degeneration in both AD and PD. Advances in magnetic resonance imaging have facilitated greater understanding of how structural and functional alteration of the LC may contribute to cognitive decline in AD and PD. We discuss the potential roles of the noradrenergic system in the pathogenesis of AD and PD with an emphasis on postmortem anatomical studies, structural MRI studies, and functional MRI studies, where we highlight changes in LC connectivity with the default mode network (DMN). LC degeneration may accompany deficient capacity in suppressing DMN activity and increasing saliency and task control network activities to meet behavioral challenges. We finish by proposing potential and new directions of research to address noradrenergic dysfunction in AD and PD.
Collapse
Affiliation(s)
- Andrew C Peterson
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, United States.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
94
|
Prell T. Structural and Functional Brain Patterns of Non-Motor Syndromes in Parkinson's Disease. Front Neurol 2018; 9:138. [PMID: 29593637 PMCID: PMC5858029 DOI: 10.3389/fneur.2018.00138] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/26/2018] [Indexed: 11/26/2022] Open
Abstract
Parkinson’s disease (PD) is a common, progressive and multisystem neurodegenerative disorder characterized by motor and non-motor symptoms. Advanced magnetic resonance imaging, positron emission tomography, and functional magnetic resonance imaging can render the view toward understanding the neural basis of these non-motor syndromes, as they help to understand the underlying pathophysiological abnormalities. This review provides an up-to-date description of structural and functional brain alterations in patients with PD with cognitive deficits, visual hallucinations, fatigue, impulsive behavior disorders, sleep disorders, and pain.
Collapse
Affiliation(s)
- Tino Prell
- Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
95
|
Zhuang X, Walsh RR, Sreenivasan K, Yang Z, Mishra V, Cordes D. Incorporating spatial constraint in co-activation pattern analysis to explore the dynamics of resting-state networks: An application to Parkinson's disease. Neuroimage 2018; 172:64-84. [PMID: 29355770 DOI: 10.1016/j.neuroimage.2018.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/23/2017] [Accepted: 01/10/2018] [Indexed: 12/28/2022] Open
Abstract
The dynamics of the brain's intrinsic networks have been recently studied using co-activation pattern (CAP) analysis. The CAP method relies on few model assumptions and CAP-based measurements provide quantitative information of network temporal dynamics. One limitation of existing CAP-related methods is that the computed CAPs share considerable spatial overlap that may or may not be functionally distinct relative to specific network dynamics. To more accurately describe network dynamics with spatially distinct CAPs, and to compare network dynamics between different populations, a novel data-driven CAP group analysis method is proposed in this study. In the proposed method, a dominant-CAP (d-CAP) set is synthesized across CAPs from multiple clustering runs for each group with the constraint of low spatial similarities among d-CAPs. Alternating d-CAPs with less overlapping spatial patterns can better capture overall network dynamics. The number of d-CAPs, the temporal fraction and spatial consistency of each d-CAP, and the subject-specific switching probability among all d-CAPs are then calculated for each group and used to compare network dynamics between groups. The spatial dissimilarities among d-CAPs computed with the proposed method were first demonstrated using simulated data. High consistency between simulated ground-truth and computed d-CAPs was achieved, and detailed comparisons between the proposed method and existing CAP-based methods were conducted using simulated data. In an effort to physiologically validate the proposed technique and investigate network dynamics in a relevant brain network disorder, the proposed method was then applied to data from the Parkinson's Progression Markers Initiative (PPMI) database to compare the network dynamics in Parkinson's disease (PD) and normal control (NC) groups. Fewer d-CAPs, skewed distribution of temporal fractions of d-CAPs, and reduced switching probabilities among final d-CAPs were found in most networks in the PD group, as compared to the NC group. Furthermore, an overall negative association between switching probability among d-CAPs and disease severity was observed in most networks in the PD group as well. These results expand upon previous findings from in vivo electrophysiological recording studies in PD. Importantly, this novel analysis also demonstrates that changes in network dynamics can be measured using resting-state fMRI data from subjects with early stage PD.
Collapse
Affiliation(s)
- Xiaowei Zhuang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - Ryan R Walsh
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | - Zhengshi Yang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - Virendra Mishra
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
96
|
Ng B, Varoquaux G, Poline JB, Thirion B, Greicius MD, Poston KL. Distinct alterations in Parkinson's medication-state and disease-state connectivity. Neuroimage Clin 2017; 16:575-585. [PMID: 28971008 PMCID: PMC5608603 DOI: 10.1016/j.nicl.2017.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 01/05/2023]
Abstract
Altered brain connectivity has been described in people with Parkinson's disease and in response to dopaminergic medications. However, it is unclear whether dopaminergic medications primarily 'normalize' disease related connectivity changes or if they induce unique alterations in brain connectivity. Further, it is unclear how these disease- and medication-associated changes in brain connectivity relate differently to specific motor manifestations of disease, such as bradykinesia/rigidity and tremor. In this study, we applied a novel covariance projection approach in combination with a bootstrapped permutation test to resting state functional MRI data from 57 Parkinson's disease and 20 healthy control participants to determine the Parkinson's medication-state and disease-state connectivity changes associated with different motor manifestations of disease. First, we identified brain connections that best classified Parkinson's disease ON versus OFF dopamine and Parkinson's disease versus healthy controls, achieving 96.9 ± 5.9% and 72.7 ± 12.4% classification accuracy, respectively. Second, we investigated the connections that significantly contribute to the classifications. We found that the connections greater in Parkinson's disease OFF compared to ON dopamine are primarily between motor (cerebellum and putamen) and posterior cortical regions, such as the posterior cingulate cortex. By contrast, connections that are greater in ON compared to OFF dopamine are between the right and left medial prefrontal cortex. We also identified the connections that are greater in healthy control compared to Parkinson's disease and found the most significant connections are associated with primary motor regions, such as the striatum and the supplementary motor area. Notably, these are different connections than those identified in Parkinson's disease OFF compared to ON. Third, we determined which of the Parkinson's medication-state and disease-state connections are associated with the severity of different motor symptoms. We found two connections correlate with both bradykinesia/rigidity severity and tremor severity, whereas four connections correlate with only bradykinesia/rigidity severity, and five connections correlate with only tremor severity. Connections that correlate with only tremor severity are anchored by the cerebellum and the supplemental motor area, but only those connections that include the supplemental motor area predict dopaminergic improvement in tremor. Our results suggest that dopaminergic medications do not simply 'normalize' abnormal brain connectivity associated with Parkinson's disease, but rather dopamine drives distinct connectivity changes, only some of which are associated with improved motor symptoms. In addition, the dissociation between of connections related to severity of bradykinesia/rigidity versus tremor highlights the distinct abnormalities in brain circuitry underlying these specific motor symptoms.
Collapse
Affiliation(s)
- Bernard Ng
- Mostafavi Lab, Department of Statistics, University of British Columbia, Vancouver, BC, Canada
- Parietal team, INRIA Saclay, Gif-sur-Yvette, France
- Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | | | | | | | - Michael D. Greicius
- Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Kathleen L. Poston
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|