51
|
Kim L, Hoe KL, Yu YM, Yeon JH, Maeng PJ. The fission yeast GATA factor, Gaf1, modulates sexual development via direct down-regulation of ste11+ expression in response to nitrogen starvation. PLoS One 2012; 7:e42409. [PMID: 22900017 PMCID: PMC3416868 DOI: 10.1371/journal.pone.0042409] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/04/2012] [Indexed: 11/26/2022] Open
Abstract
Gaf1 is the first GATA family zinc-finger transcription factor identified in Schizosaccharomyces pombe. Here, we report that Gaf1 functions as a negatively acting transcription factor of ste11+, delaying the entrance of cells exposed to transient nitrogen starvation into the meiotic cycle. gaf1Δ strains exhibited accelerated G1-arrest upon nitrogen starvation. Moreover, gaf1Δ mutation caused increased mating and sporulation frequency under both nitrogen-starved and unstarved conditions, while overexpression of gaf1+ led to a significant impairment of sporulation. By microarray analysis, we found that approximately 63% (116 genes) of the 183 genes up-regulated in unstarved gaf1Δ cells were nitrogen starvation-responsive genes, and furthermore that 25 genes among the genes up-regulated by gaf1Δ mutation are Ste11 targets (e.g., gpa1+, ste4+, spk1+, ste11+, and mei2+). The phenotype caused by gaf1Δ mutation was masked by ste11Δ mutation, indicating that ste11+ is epistatic to gaf1+ with respect to sporulation efficiency, and accordingly that gaf1+ functions upstream of ste11+ in the signaling pathway governing sexual development. gaf1Δ strains showed accelerated ste11+ expression under nitrogen starvation and increased ste11+ expression even under normal conditions. Electrophoretic mobility shift assay analysis demonstrated that Gaf1 specifically binds to the canonical GATA motif (5′-HGATAR-3′) spanning from −371 to −366 in ste11+ promoter. Consequently, Gaf1 provides the prime example for negative regulation of ste11+ transcription through direct binding to a cis-acting motif of its promoter.
Collapse
Affiliation(s)
- Lila Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Kwang-Lae Hoe
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Korea
| | - Yeong Man Yu
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Ji-Hyun Yeon
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Pil Jae Maeng
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
- * E-mail:
| |
Collapse
|
52
|
Miyoshi T, Ito M, Kugou K, Yamada S, Furuichi M, Oda A, Yamada T, Hirota K, Masai H, Ohta K. A central coupler for recombination initiation linking chromosome architecture to S phase checkpoint. Mol Cell 2012; 47:722-33. [PMID: 22841486 DOI: 10.1016/j.molcel.2012.06.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 04/20/2012] [Accepted: 06/12/2012] [Indexed: 01/05/2023]
Abstract
Higher-order chromosome structure is assumed to control various DNA-templated reactions in eukaryotes. Meiotic chromosomes implement developed structures called "axes" and "loops"; both are suggested to tether each other, activating Spo11 to catalyze meiotic DNA double-strand breaks (DSBs) at recombination hotspots. We found that the Schizosaccharomyces pombe Spo11 homolog Rec12 and its partners form two distinct subcomplexes, DSBC (Rec6-Rec12-Rec14) and SFT (Rec7-Rec15-Rec24). Mde2, whose expression is strictly regulated by the replication checkpoint, interacts with Rec15 to stabilize the SFT subcomplex and further binds Rec14 in DSBC. Rec10 provides a docking platform for SFT binding to axes and can partially interact with DSB sites located in loops depending upon Mde2, which is indicative of the formation of multiprotein-based tethered axis-loop complex. These data lead us to propose a mechanism by which Mde2 functions as a recombination initiation mediator to tether axes and loops, in liaison with the meiotic replication checkpoint.
Collapse
Affiliation(s)
- Tomoichiro Miyoshi
- Department of Life Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Function of Cryptococcus neoformans KAR7 (SEC66) in karyogamy during unisexual and opposite-sex mating. EUKARYOTIC CELL 2012; 11:783-94. [PMID: 22544906 DOI: 10.1128/ec.00066-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human basidiomycetous fungal pathogen Cryptococcus neoformans serves as a model fungus to study sexual development and produces infectious propagules, basidiospores, via the sexual cycle. Karyogamy is the process of nuclear fusion and an essential step to complete mating. Therefore, regulation of nuclear fusion is central to understanding sexual development of C. neoformans. However, our knowledge of karyogamy genes was limited. In this study, using a BLAST search with the Saccharomyces cerevisiae KAR genes, we identified five C. neoformans karyogamy gene orthologs: CnKAR2, CnKAR3, CnKAR4, CnKAR7 (or CnSEC66), and CnKAR8. There are no apparent orthologs of the S. cerevisiae genes ScKAR1, ScKAR5, and ScKar9 in C. neoformans. Karyogamy involves the congression of two nuclei followed by nuclear membrane fusion, which results in diploidization. ScKar7 (or ScSec66) is known to be involved in nuclear membrane fusion. In C. neoformans, kar7 mutants display significant defects in hyphal growth and basidiospore chain formation during both a-α opposite and α-α unisexual reproduction. Fluorescent nuclear imaging revealed that during kar7 × kar7 bilateral mutant matings, the nuclei congress but fail to fuse in the basidia. These results demonstrate that the KAR7 gene plays an integral role in both opposite-sex and unisexual mating, indicating that proper control of nuclear dynamics is important. CnKAR2 was found to be essential for viability, and its function in mating is not known. No apparent phenotypes were observed during mating of kar3, kar4, or kar8 mutants, suggesting that the role of these genes may be dispensable for C. neoformans mating, which demonstrates a different evolutionary trajectory for the KAR genes in C. neoformans compared to those in S. cerevisiae.
Collapse
|
54
|
Tsai SP, Su GC, Lin SW, Chung CI, Xue X, Dunlop MH, Akamatsu Y, Jasin M, Sung P, Chi P. Rad51 presynaptic filament stabilization function of the mouse Swi5-Sfr1 heterodimeric complex. Nucleic Acids Res 2012; 40:6558-69. [PMID: 22492707 PMCID: PMC3413116 DOI: 10.1093/nar/gks305] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Homologous recombination (HR) represents a major error-free pathway to eliminate pre-carcinogenic chromosomal lesions. The DNA strand invasion reaction in HR is mediated by a helical filament of the Rad51 recombinase assembled on single-stranded DNA that is derived from the nucleolytic processing of the primary lesion. Recent studies have found that the human and mouse Swi5 and Sfr1 proteins form a complex that influences Rad51-mediated HR in cells. Here, we provide biophysical evidence that the mouse Swi5–Sfr1 complex has a 1:1 stoichiometry. Importantly, the Swi5–Sfr1 complex, but neither Swi5 nor Sfr1 alone, physically interacts with Rad51 and stimulates Rad51-mediated homologous DNA pairing. This stimulatory effect stems from the stabilization of the Rad51–ssDNA presynaptic filament. Moreover, we provide evidence that the RSfp (rodent Sfr1 proline rich) motif in Sfr1 serves as a negative regulatory element. These results thus reveal an evolutionarily conserved function in the Swi5–Sfr1 complex and furnish valuable information as to the regulatory role of the RSfp motif that isspecific to themammalianSfr1 orthologs.
Collapse
Affiliation(s)
- Shang-Pu Tsai
- Institute of Biochemical Sciences, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Alers S, Löffler AS, Wesselborg S, Stork B. The incredible ULKs. Cell Commun Signal 2012; 10:7. [PMID: 22413737 PMCID: PMC3330011 DOI: 10.1186/1478-811x-10-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/13/2012] [Indexed: 01/14/2023] Open
Abstract
Macroautophagy (commonly abbreviated as autophagy) is an evolutionary conserved lysosome-directed vesicular trafficking pathway in eukaryotic cells that mediates the lysosomal degradation of intracellular components. The cytoplasmic cargo is initially enclosed by a specific double membrane vesicle, termed the autophagosome. By this means, autophagy either helps to remove damaged organelles, long-lived proteins and protein aggregates, or serves as a recycling mechanism for molecular building blocks. Autophagy was once invented by unicellular organisms to compensate the fluctuating external supply of nutrients. In higher eukaryotes, it is strongly enhanced under various stress conditions, such as nutrient and growth factor deprivation or DNA damage. The serine/threonine kinase Atg1 was the first identified autophagy-related gene (ATG) product in yeast. The corresponding nematode homolog UNC-51, however, has additional neuronal functions. Vertebrate genomes finally encode five closely related kinases, of which UNC-51-like kinase 1 (Ulk1) and Ulk2 are both involved in the regulation of autophagy and further neuron-specific vesicular trafficking processes. This review will mainly focus on the vertebrate Ulk1/2-Atg13-FIP200 protein complex, its function in autophagy initiation, its evolutionary descent from the yeast Atg1-Atg13-Atg17 complex, as well as the additional non-autophagic functions of its components. Since the rapid nutrient- and stress-dependent cellular responses are mainly mediated by serine/threonine phosphorylation, it will summarize our current knowledge about the relevant upstream signaling pathways and the altering phosphorylation status within this complex during autophagy induction.
Collapse
Affiliation(s)
- Sebastian Alers
- Department of Internal Medicine I, University Hospital of Tübingen, Otfried-Müller-Str, 10, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
56
|
Estreicher A, Lorenz A, Loidl J. Mug20, a novel protein associated with linear elements in fission yeast meiosis. Curr Genet 2012; 58:119-27. [PMID: 22362333 PMCID: PMC3310140 DOI: 10.1007/s00294-012-0369-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/07/2012] [Accepted: 02/10/2012] [Indexed: 11/27/2022]
Abstract
In the fission yeast, Schizosaccharomyces pombe, homologous chromosomes efficiently pair and recombine during meiotic prophase without forming a canonical synaptonemal complex (SC). Instead, it features simpler filamentous structures, the so-called linear elements (LinEs), which bear some resemblance to the axial/lateral element subunits of the SC. LinEs are required for wild-type recombination frequency. Here, we recognized Mug20, the product of a meiotically upregulated gene, as a LinE-associated protein. GFP-tagged Mug20 and anti-Mug20 antibody co-localized completely with Rec10, one of the major constituents of LinEs. In the absence of Mug20, LinEs failed to elongate beyond their initial state of nuclear dots. Foci of recombination protein Rad51 and genetic recombination were reduced. Since meiotic DNA double-strand breaks (DSBs), which initiate recombination, are induced at sites of preformed LinEs, we suggest that reduced recombination is a consequence of incomplete LinE extension. Therefore, we propose that Mug20 is required to extend LinEs from their sites of origin and thereby to increase DSB proficient regions on chromosomes.
Collapse
Affiliation(s)
- Anna Estreicher
- Department of Chromosome Biology, Center for Molecular Biology of the University of Vienna (MFPL), Dr. Bohr Gasse 1, 1030 Vienna, Austria
| | - Alexander Lorenz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Josef Loidl
- Department of Chromosome Biology, Center for Molecular Biology of the University of Vienna (MFPL), Dr. Bohr Gasse 1, 1030 Vienna, Austria
| |
Collapse
|
57
|
Fu C, Jain D, Costa J, Velve-Casquillas G, Tran PT. mmb1p binds mitochondria to dynamic microtubules. Curr Biol 2012; 21:1431-9. [PMID: 21856157 DOI: 10.1016/j.cub.2011.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 06/22/2011] [Accepted: 07/12/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mitochondria form a dynamic tubular network within the cell. Proper mitochondria movement and distribution are critical for their localized function in cell metabolism, growth, and survival. In mammalian cells, mechanisms of mitochondria positioning appear dependent on the microtubule cytoskeleton, with kinesin or dynein motors carrying mitochondria as cargos and distributing them throughout the microtubule network. Interestingly, the timescale of microtubule dynamics occurs in seconds, and the timescale of mitochondria distribution occurs in minutes. How does the cell couple these two time constants? RESULTS Fission yeast also relies on microtubules for mitochondria distribution. We report here a new microtubule-dependent but motor-independent mechanism for proper mitochondria positioning in fission yeast. We identify the protein mmb1p, which binds to mitochondria and microtubules. mmb1p attaches the tubular mitochondria to the microtubule lattice at multiple discrete interaction sites. mmb1 deletion causes mitochondria to aggregate, with the long-term consequence of defective mitochondria distribution and cell death. mmb1p decreases microtubule dynamicity. CONCLUSIONS mmb1p is a new microtubule-mitochondria binding protein. We propose that mmb1p acts to couple long-term mitochondria distribution to short-term microtubule dynamics by attenuating microtubule dynamics, thus enhancing the mitochondria-microtubule interaction time.
Collapse
Affiliation(s)
- Chuanhai Fu
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
58
|
Bitton DA, Grallert A, Scutt PJ, Yates T, Li Y, Bradford JR, Hey Y, Pepper SD, Hagan IM, Miller CJ. Programmed fluctuations in sense/antisense transcript ratios drive sexual differentiation in S. pombe. Mol Syst Biol 2011; 7:559. [PMID: 22186733 PMCID: PMC3738847 DOI: 10.1038/msb.2011.90] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 11/07/2011] [Indexed: 12/31/2022] Open
Abstract
Strand-specific RNA sequencing of S. pombe reveals a highly structured programme of ncRNA expression at over 600 loci. Functional investigations show that this extensive ncRNA landscape controls the complex programme of sexual differentiation in S. pombe. The model eukaryote S. pombe features substantial numbers of ncRNAs many of which are antisense regulatory transcripts (ARTs), ncRNAs expressed on the opposing strand to coding sequences. Individual ARTs are generated during the mitotic cycle, or at discrete stages of sexual differentiation to downregulate the levels of proteins that drive and coordinate sexual differentiation. Antisense transcription occurring from events such as bidirectional transcription is not simply artefactual ‘chatter', it performs a critical role in regulating gene expression.
Regulation of the RNA profile is a principal control driving sexual differentiation in the fission yeast Schizosaccharomyces pombe. Before transcription, RNAi-mediated formation of heterochromatin is used to suppress expression, while post-transcription, regulation is achieved via the active stabilisation or destruction of transcripts, and through at least two distinct types of splicing control (Mata et al, 2002; Shimoseki and Shimoda, 2001; Averbeck et al, 2005; Mata and Bähler, 2006; Xue-Franzen et al, 2006; Moldon et al, 2008; Djupedal et al, 2009; Amorim et al, 2010; Grewal, 2010; Cremona et al, 2011). Around 94% of the S. pombe genome is transcribed (Wilhelm et al, 2008). While many of these transcripts encode proteins (Wood et al, 2002; Bitton et al, 2011), the majority have no known function. We used a strand-specific protocol to sequence total RNA extracts taken from vegetatively growing cells, and at different points during a time course of sexual differentiation. The resulting data redefined existing gene coordinates and identified additional transcribed loci. The frequency of reads at each of these was used to monitor transcript abundance. Transcript levels at 6599 loci changed in at least one sample (G-statistic; False Discovery Rate <5%). 4231 (72.3%), of which 4011 map to protein-coding genes, while 809 loci were antisense to a known gene. Comparisons between haploid and diploid strains identified changes in transcript levels at over 1000 loci. At 354 loci, greater antisense abundance was observed relative to sense, in at least one sample (putative antisense regulatory transcripts—ARTs). Since antisense mechanisms are known to modulate sense transcript expression through a variety of inhibitory mechanisms (Faghihi and Wahlestedt, 2009), we postulated that the waves of antisense expression activated at different stages during meiosis might be regulating protein expression. To ask whether transcription factors that drive sense-transcript levels influenced ART production, we performed RNA-seq of a pat1.114 diploid meiosis in the absence of the transcription factors Atf21 and Atf31 (responsible for late meiotic transcription; Mata et al, 2002). Transcript levels at 185 ncRNA loci showed significant changes in the knockout backgrounds. Although meiotic progression is largely unaffected by removal of Atf21 and Atf31, viability of the resulting spores was significantly diminished, indicating that Atf21- and Atf31-mediated events are critical to efficient sexual differentiation. If changes to relative antisense/sense transcript levels during a particular phase of sexual differentiation were to regulate protein expression, then the continued presence of the antisense at points in the differentiation programme where it would normally be absent should abolish protein function during this phase. We tested this hypothesis at four loci representing the three means of antisense production: convergent gene expression, improper termination and nascent transcription from an independent locus. Induction of the natural antisense transcripts that opposed spo4+, spo6+ and dis1+ (Figures 3 and 7) in trans from a heterologous locus phenocopied a loss of function of the target protein. ART overexpression decreased Dis1 protein levels. Antisense transcription opposing spk1+ originated from improper termination of the sense ups1+ transcript on the opposite strand (Figure 3B, left locus). Expression of either the natural full-length ups1+ transcript or a truncated version, restricted to the portion of ups1+ overlapping spk1+ (Figure 3, orange transcripts) in trans from a heterologous locus phenocopied the spk1.Δ differentiation deficiency. Convergent transcription from a neighbouring gene on the opposing strand is, therefore, an effective mechanism to generate RNAi-mediated (below) silencing in fission yeast. Further analysis of the data revealed, for many loci, substantial changes in UTR length over the course of meiosis, suggesting that UTR dynamics may have an active role in regulating gene expression by controlling the transcriptional overlap between convergent adjacent gene pairs. The RNAi machinery (Grewal, 2010) was required for antisense suppression at each of the dis1, spk1, spo4 and spo6 loci, as antisense to each locus had no impact in ago1.Δ, dcr1.Δ and rdp1.Δ backgrounds. We conclude that RNAi control has a key role in maintaining the fidelity of sexual differentiation in fission yeast. The histone H3 methyl transferase Clr4 was required for antisense control from a heterologous locus. Thus, a significant portion of the impact of ncRNA upon sexual differentiation arises from antisense gene silencing. Importantly, in contrast to the extensively characterised ability of the RNAi machinery to operate in cis at a target locus in S. pombe (Grewal, 2010), each case of gene silencing generated here could be achieved in trans by expression of the antisense transcript from a single heterologous locus elsewhere in the genome. Integration of an antibiotic marker gene immediately downstream of the dis1+ locus instigated antisense control in an orientation-dependent manner. PCR-based gene tagging approaches are widely used to fuse the coding sequences of epitope or protein tags to a gene of interest. Not only do these tagging approaches disrupt normal 3′UTR controls, but the insertion of a heterologous marker gene immediately downstream of an ORF can clearly have a significant impact upon transcriptional control of the resulting fusion protein. Thus, PCR tagging approaches can no longer be viewed as benign manipulations of a locus that only result in the production of a tagged protein product. Repression of Dis1 function by gene deletion or antisense control revealed a key role this conserved microtubule regulator in driving the horsetail nuclear migrations that promote recombination during meiotic prophase. Non-coding transcripts have often been viewed as simple ‘chatter', maintained solely because evolutionary pressures have not been strong enough to force their elimination from the system. Our data show that phenomena such as improper termination and bidirectional transcription are not simply interesting artifacts arising from the complexities of transcription or genome history, but have a critical role in regulating gene expression in the current genome. Given the widespread use of RNAi, it is reasonable to anticipate that future analyses will establish ARTs to have equal importance in other organisms, including vertebrates. These data highlight the need to modify our concept of a gene from that of a spatially distinct locus. This view is becoming increasingly untenable. Not only are the 5′ and 3′ ends of many genes indistinct, but that this lack of a hard and fast boundary is actively used by cells to control the transcription of adjacent and overlapping loci, and thus to regulate critical events in the life of a cell. Strand-specific RNA sequencing of S. pombe revealed a highly structured programme of ncRNA expression at over 600 loci. Waves of antisense transcription accompanied sexual differentiation. A substantial proportion of ncRNA arose from mechanisms previously considered to be largely artefactual, including improper 3′ termination and bidirectional transcription. Constitutive induction of the entire spk1+, spo4+, dis1+ and spo6+ antisense transcripts from an integrated, ectopic, locus disrupted their respective meiotic functions. This ability of antisense transcripts to disrupt gene function when expressed in trans suggests that cis production at native loci during sexual differentiation may also control gene function. Consistently, insertion of a marker gene adjacent to the dis1+ antisense start site mimicked ectopic antisense expression in reducing the levels of this microtubule regulator and abolishing the microtubule-dependent ‘horsetail' stage of meiosis. Antisense production had no impact at any of these loci when the RNA interference (RNAi) machinery was removed. Thus, far from being simply ‘genome chatter', this extensive ncRNA landscape constitutes a fundamental component in the controls that drive the complex programme of sexual differentiation in S. pombe.
Collapse
Affiliation(s)
- Danny A Bitton
- CRUK Applied Computational Biology and Bioinformatics Group, Cancer Research UK, Paterson Institute for Cancer Research, The University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Nakamura-Kubo M, Hirata A, Shimoda C, Nakamura T. The fission yeast pleckstrin homology domain protein Spo7 is essential for initiation of forespore membrane assembly and spore morphogenesis. Mol Biol Cell 2011; 22:3442-55. [PMID: 21775631 PMCID: PMC3172268 DOI: 10.1091/mbc.e11-02-0125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 06/17/2011] [Accepted: 07/14/2011] [Indexed: 11/12/2022] Open
Abstract
Sporulation in fission yeast represents a unique mode of cell division in which a new cell is formed within the cytoplasm of a mother cell. This event is accompanied by formation of the forespore membrane (FSM), which becomes the plasma membrane of spores. At prophase II, the spindle pole body (SPB) forms an outer plaque, from which formation of the FSM is initiated. Several components of the SPB play an indispensable role in SPB modification, and therefore in sporulation. In this paper, we report the identification of a novel SPB component, Spo7, which has a pleckstrin homology (PH) domain. We found that Spo7 was essential for initiation of FSM assembly, but not for SPB modification. Spo7 directly bound to Meu14, a component of the leading edge of the FSM, and was essential for proper localization of Meu14. The PH domain of Spo7 had affinity for phosphatidylinositol 3-phosphate (PI3P). spo7 mutants lacking the PH domain showed aberrant spore morphology, similar to that of meu14 and phosphatidylinositol 3-kinase (pik3) mutants. Our study suggests that Spo7 coordinates formation of the leading edge and initiation of FSM assembly, thereby accomplishing accurate formation of the FSM.
Collapse
Affiliation(s)
- Michiko Nakamura-Kubo
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Aiko Hirata
- Bioimaging Center, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Chikashi Shimoda
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
60
|
Snaith HA, Thompson J, Yates JR, Sawin KE. Characterization of Mug33 reveals complementary roles for actin cable-dependent transport and exocyst regulators in fission yeast exocytosis. J Cell Sci 2011; 124:2187-99. [PMID: 21652630 PMCID: PMC3113670 DOI: 10.1242/jcs.084038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although endocytosis and exocytosis have been extensively studied in budding yeast, there have been relatively few investigations of these complex processes in the fission yeast Schizosaccharomyces pombe. Here we identify and characterize fission yeast Mug33, a novel Tea1-interacting protein, and show that Mug33 is involved in exocytosis. Mug33 is a Sur7/PalI-family transmembrane protein that localizes to the plasma membrane at the cell tips and to cytoplasmic tubulovesicular elements (TVEs). A subset of Mug33 TVEs make long-range movements along actin cables, co-translocating with subunits of the exocyst complex. TVE movement depends on the type V myosin Myo52. Although mug33Δ mutants are viable, with only a mild cell-polarity phenotype, mug33Δ myo52Δ double mutants are synthetically lethal. Combining mug33 Δ with deletion of the formin For3 (for3Δ) leads to synthetic temperature-sensitive growth and strongly reduced levels of exocytosis. Interestingly, mutants in non-essential genes involved in exocyst function behave in a manner similar to mug33Δ when combined with myo52Δ and for3Δ. By contrast, combining mug33Δ with mutants in non-essential exocyst genes has only minor effects on growth. We propose that Mug33 contributes to exocyst function and that actin cable-dependent vesicle transport and exocyst function have complementary roles in promoting efficient exocytosis in fission yeast.
Collapse
Affiliation(s)
- Hilary A Snaith
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Swann Building, Mayfield Road, Edinburgh EH93JR, UK
| | | | | | | |
Collapse
|
61
|
Bonfils S, Rozalén AE, Smith GR, Moreno S, Martín-Castellanos C. Functional interactions of Rec24, the fission yeast ortholog of mouse Mei4, with the meiotic recombination-initiation complex. J Cell Sci 2011; 124:1328-38. [PMID: 21429938 PMCID: PMC3065387 DOI: 10.1242/jcs.079194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2010] [Indexed: 11/20/2022] Open
Abstract
A physical connection between each pair of homologous chromosomes is crucial for reductional chromosome segregation during the first meiotic division and therefore for successful meiosis. Connection is provided by recombination (crossing over) initiated by programmed DNA double-strand breaks (DSBs). Although the topoisomerase-like protein Spo11 makes DSBs and is evolutionarily conserved, how Spo11 (Rec12 in fission yeast) is regulated to form DSBs at the proper time and place is poorly understood. Several additional (accessory) proteins for DSB formation have been inferred in different species from yeast to mice. Here, we show that Rec24 is a bona fide accessory protein in Schizosaccharomyces pombe. Rec24 is required genome-wide for crossing-over and is recruited to meiotic chromosomes during prophase in a Rec12-independent manner forming foci on linear elements (LinEs), structurally related to the synaptonemal complex of other eukaryotes. Stabilization of Rec24 on LinEs depends on another accessory protein, Rec7, with which Rec24 forms complexes in vivo. We propose that Rec24 marks LinE-associated recombination sites, that stabilization of its binding by Rec7 facilitates the loading or activation of Rec12, and that only stabilized complexes containing Rec24 and Rec7 promote DSB formation. Based on the recent report of Rec24 and Rec7 conservation, interaction between Rec24 and Rec7 might be widely conserved in DSB formation.
Collapse
Affiliation(s)
- Sandrine Bonfils
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ana E. Rozalén
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Gerald R. Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sergio Moreno
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Cristina Martín-Castellanos
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
62
|
Edlinger B, Schlögelhofer P. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1545-63. [PMID: 21220780 DOI: 10.1093/jxb/erq421] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is an essential process for sexually reproducing organisms, leading to the formation of specialized generative cells. This review intends to highlight current knowledge of early events during meiosis derived from various model organisms, including plants. It will particularly focus on cis- and trans-requirements of meiotic DNA double strand break (DSB) formation, a hallmark event during meiosis and a prerequisite for recombination of genetic traits. Proteins involved in DSB formation in different organisms, emphasizing the known factors from plants, will be introduced and their functions outlined. Recent technical advances in DSB detection and meiotic recombination analysis will be reviewed, as these new tools now allow analysis of early meiotic recombination in plants with incredible accuracy. To anticipate future directions in plant meiosis research, unpublished results will be included wherever possible.
Collapse
Affiliation(s)
- Bernd Edlinger
- University of Vienna, Max F. Perutz Laboratories, Department of Chromosome Biology, Dr. Bohr-Gasse 1, Vienna, Austria
| | | |
Collapse
|
63
|
Krapp A, Del Rosario EC, Simanis V. The role of Schizosaccharomyces pombe dma1 in spore formation during meiosis. J Cell Sci 2010; 123:3284-93. [PMID: 20826461 DOI: 10.1242/jcs.069112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meiosis is a specialised form of the cell cycle that gives rise to haploid gametes. In Schizosaccharomyces pombe, the products of meiosis are four spores, which are formed by encapsulation of the four meiosis II nuclei within the cytoplasm of the zygote produced by fusion of the mating cells. The S. pombe spindle pole body is remodelled during meiosis II and membrane vesicles are then recruited there to form the forespore membrane, which encapsulates the haploid nucleus to form a prespore. Spore wall material is then deposited, giving rise to the mature spore. The septation initiation network is required to coordinate cytokinesis and mitosis in the vegetative cycle and for spore formation in the meiotic cycle. We have investigated the role of the SIN regulator dma1p in meiosis; we find that although both meiotic divisions occur in the absence of dma1p, asci frequently contain fewer than four spores, which are larger than in wild-type meiosis. Our data indicate that dma1p acts in parallel to the leading-edge proteins and septins to assure proper formation for the forespore membrane. Dma1p also contributes to the temporal regulation of the abundance of the meiosis-specific SIN component mug27p.
Collapse
Affiliation(s)
- Andrea Krapp
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
64
|
Functional conservation of Mei4 for meiotic DNA double-strand break formation from yeasts to mice. Genes Dev 2010; 24:1266-80. [PMID: 20551173 DOI: 10.1101/gad.571710] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Meiotic recombination is initiated by the programmed induction of DNA double-strand breaks (DSBs) catalyzed by the evolutionarily conserved Spo11 protein. Studies in yeast have shown that DSB formation requires several other proteins, the role and conservation of which remain unknown. Here we show that two of these Saccharomyces cerevisiae proteins, Mei4 and Rec114, are evolutionarily conserved in most eukaryotes. Mei4(-/-) mice are deficient in meiotic DSB formation, thus showing the functional conservation of Mei4 in mice. Cytological analyses reveal that, in mice, MEI4 is localized in discrete foci on the axes of meiotic chromosomes that do not overlap with DMC1 and RPA foci. We thus propose that MEI4 acts as a structural component of the DSB machinery that ensures meiotic DSB formation on chromosome axes. We show that mouse MEI4 and REC114 proteins interact directly, and we identify conserved motifs as required for this interaction. Finally, the unexpected, concomitant absence of Mei4 and Rec114, as well as of Mnd1, Hop2, and Dmc1, in some eukaryotic species (particularly Neurospora crassa, Drosophila melanogaster, and Caenorhabditis elegans) suggests the existence of Mei4-Rec114-dependent and Mei4-Rec114-independent mechanisms for DSB formation, and a functional relationship between the chromosome axis and DSB formation.
Collapse
|
65
|
Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M, Yoo HS, Duhig T, Nam M, Palmer G, Han S, Jeffery L, Baek ST, Lee H, Shim YS, Lee M, Kim L, Heo KS, Noh EJ, Lee AR, Jang YJ, Chung KS, Choi SJ, Park JY, Park Y, Kim HM, Park SK, Park HJ, Kang EJ, Kim HB, Kang HS, Park HM, Kim K, Song K, Song KB, Nurse P, Hoe KL. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 2010; 28:617-623. [PMID: 20473289 PMCID: PMC3962850 DOI: 10.1038/nbt.1628] [Citation(s) in RCA: 560] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 03/30/2010] [Indexed: 01/28/2023]
Abstract
We report the construction and analysis of 4,836 heterozygous diploid deletion mutants covering 98.4% of the fission yeast genome providing a tool for studying eukaryotic biology. Comprehensive gene dispensability comparisons with budding yeast--the only other eukaryote for which a comprehensive knockout library exists--revealed that 83% of single-copy orthologs in the two yeasts had conserved dispensability. Gene dispensability differed for certain pathways between the two yeasts, including mitochondrial translation and cell cycle checkpoint control. We show that fission yeast has more essential genes than budding yeast and that essential genes are more likely than nonessential genes to be present in a single copy, to be broadly conserved and to contain introns. Growth fitness analyses determined sets of haploinsufficient and haploproficient genes for fission yeast, and comparisons with budding yeast identified specific ribosomal proteins and RNA polymerase subunits, which may act more generally to regulate eukaryotic cell growth.
Collapse
Affiliation(s)
- Dong-Uk Kim
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Jacqueline Hayles
- Cancer Research UK, The London Research Institute, 44, Lincoln's Inn Fields, LondonWC2A 3PX, UK
| | - Dongsup Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science & Technology (KAIST), Yuseong, Daejeon, Korea
| | - Valerie Wood
- Cancer Research UK, The London Research Institute, 44, Lincoln's Inn Fields, LondonWC2A 3PX, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| | - Han-Oh Park
- Bioneer Corporation, Daedeok, Daejeon, Korea
| | - Misun Won
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Hyang-Sook Yoo
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Trevor Duhig
- Cancer Research UK, The London Research Institute, 44, Lincoln's Inn Fields, LondonWC2A 3PX, UK
| | - Miyoung Nam
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Georgia Palmer
- Cancer Research UK, The London Research Institute, 44, Lincoln's Inn Fields, LondonWC2A 3PX, UK
| | - Sangjo Han
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science & Technology (KAIST), Yuseong, Daejeon, Korea
| | - Linda Jeffery
- Cancer Research UK, The London Research Institute, 44, Lincoln's Inn Fields, LondonWC2A 3PX, UK
| | - Seung-Tae Baek
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Hyemi Lee
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Young Sam Shim
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Minho Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science & Technology (KAIST), Yuseong, Daejeon, Korea
| | - Lila Kim
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Kyung-Sun Heo
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Eun Joo Noh
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Ah-Reum Lee
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Young-Joo Jang
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Kyung-Sook Chung
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Shin-Jung Choi
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Jo-Young Park
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Youngwoo Park
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Hwan Mook Kim
- Bioevaluation Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungcheongbuk-do, Korea
| | - Song-Kyu Park
- Bioevaluation Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungcheongbuk-do, Korea
| | | | | | - Hyong Bai Kim
- Department of Bioinformatics & Biotechnology, Korea University, Jochiwon, Chungnam, Korea
| | - Hyun-Sam Kang
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hee-Moon Park
- Department of Microbiology, Chungnam National University, Yuseong, Daejeon, Korea
| | - Kyunghoon Kim
- Division of Life Sciences, Kangwon National University, Chuncheon, Kangwon-do, Korea
| | - Kiwon Song
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Kyung Bin Song
- Department of Food and Nutrition, Chungnam National University, Yuseong, Daejeon, Korea
| | - Paul Nurse
- Cancer Research UK, The London Research Institute, 44, Lincoln's Inn Fields, LondonWC2A 3PX, UK
- The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA
| | - Kwang-Lae Hoe
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
- Bioevaluation Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungcheongbuk-do, Korea
| |
Collapse
|
66
|
Rumpf C, Cipak L, Novatchkova M, Li Z, Polakova S, Dudas A, Kovacikova I, Miadokova E, Ammerer G, Gregan J. High-throughput knockout screen in Schizosaccharomyces pombe identifies a novel gene required for efficient homolog disjunction during meiosis I. Cell Cycle 2010; 9:1802-8. [PMID: 20404563 DOI: 10.4161/cc.9.9.11526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Meiosis is the process which produces haploid gametes from diploid precursor cells. This reduction of chromosome number is achieved by two successive divisions. Whereas homologs segregate during meiosis I, sister chromatids segregate during meiosis II. To identify novel proteins required for proper segregation of chromosomes during meiosis, we applied a high-throughput knockout technique to delete 87 S. pombe genes whose expression is upregulated during meiosis and analyzed the mutant phenotypes. Using this approach, we identified a new protein, Dil1, which is required to prevent meiosis I homolog non-disjunction. We show that Dil1 acts in the dynein pathway to promote oscillatory nuclear movement during meiosis.
Collapse
Affiliation(s)
- Cornelia Rumpf
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Shigehisa A, Okuzaki D, Kasama T, Tohda H, Hirata A, Nojima H. Mug28, a meiosis-specific protein of Schizosaccharomyces pombe, regulates spore wall formation. Mol Biol Cell 2010; 21:1955-67. [PMID: 20410137 PMCID: PMC2883940 DOI: 10.1091/mbc.e09-12-0997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The meiosis-specific mug28+ gene of Schizosaccharomyces pombe encodes a putative RNA-binding protein. mug28Δ cells generated spores with low viability, due to the aberrant FSM formation. Meu14-GFP in mug28Δ cells showed that the FSM formed extra membranes with buds. We conclude that Mug28 is essential for the proper maturation of the FSM and the spore wall. The meiosis-specific mug28+ gene of Schizosaccharomyces pombe encodes a putative RNA-binding protein with three RNA recognition motifs (RRMs). Live observations of meiotic cells that express Mug28 tagged with green fluorescent protein (GFP) revealed that Mug28 is localized in the cytoplasm, and accumulates around the nucleus from metaphase I to anaphase II. Disruption of mug28+ generated spores with low viability, due to the aberrant formation of the forespore membrane (FSM). Visualization of the FSM in living cells expressing GFP-tagged Psy1, an FSM protein, indicated that mug28Δ cells harbored abnormal FSMs that contained buds, and had a delayed disappearance of Meu14, a leading edge protein. Electron microscopic observation revealed that FSM formation was abnormal in mug28Δ cells, showing bifurcated spore walls that were thicker than the nonbifurcated spore walls of the wild type. Analysis of Mug28 mutants revealed that RRM3, in particular phenylalanin-466, is of primary importance for the proper localization of Mug28, spore viability, and FSM formation. Together, we conclude that Mug28 is essential for the proper maturation of the FSM and the spore wall.
Collapse
Affiliation(s)
- Akira Shigehisa
- Department of Molecular Genetics, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
68
|
Steiner S, Kohli J, Ludin K. Functional interactions among members of the meiotic initiation complex in fission yeast. Curr Genet 2010; 56:237-49. [PMID: 20364342 DOI: 10.1007/s00294-010-0296-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 03/11/2010] [Accepted: 03/11/2010] [Indexed: 12/11/2022]
Abstract
DNA double-strand breaks (DSBs) initiate meiotic recombination in Schizosaccharomyces pombe and in other organisms. The Rec12 protein catalyzes the formation of these DSBs in concert with a multitude of accessory proteins the role of which in this process remains to be discovered. In an all-to-all yeast two-hybrid matrix analysis, we discovered new interactions among putative members of the meiotic recombination initiation complex. We found that Rec7, an axial-element associated protein with homologies to Saccharomyces cerevisiae Rec114, is interacting with Rec24. Rec7 and Rec24 also co-immunoprecipitate in S. pombe during meiosis. An amino acid change in a conserved, C-terminal phenylalanine in Rec7, F325A interrupts the interaction with Rec24. Moreover, rec7F325A shows a recombination deficiency comparable to rec7Delta. Another interaction was detected between Rec12 and Rec14, the orthologs of which in S. cerevisiae Spo11 and Ski8 interact accordingly. Amino acid changes Rec12Q308A and Rec12R309A disrupt the interaction with Rec14, like the according amino acid changes Spo11Q376A and Spo11RE377AA loose the interaction with Ski8. Both amino acid changes in Rec12 reveal a recombination deficient rec12 (-) phenotype. We propose that both Rec7-Rec24 and Rec12-Rec14 form subcomplexes of the meiotic recombination initiation complex.
Collapse
Affiliation(s)
- Silvia Steiner
- Institute of Cell Biology, University of Bern, Switzerland
| | | | | |
Collapse
|
69
|
Latypov V, Rothenberg M, Lorenz A, Octobre G, Csutak O, Lehmann E, Loidl J, Kohli J. Roles of Hop1 and Mek1 in meiotic chromosome pairing and recombination partner choice in Schizosaccharomyces pombe. Mol Cell Biol 2010; 30:1570-81. [PMID: 20123974 PMCID: PMC2838064 DOI: 10.1128/mcb.00919-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/26/2009] [Accepted: 01/19/2010] [Indexed: 11/20/2022] Open
Abstract
Synaptonemal complex (SC) proteins Hop1 and Mek1 have been proposed to promote homologous recombination in meiosis of Saccharomyces cerevisiae by establishment of a barrier against sister chromatid recombination. Therefore, it is interesting to know whether the homologous proteins play a similar role in Schizosaccharomyces pombe. Unequal sister chromatid recombination (USCR) was found to be increased in hop1 and mek1 single and double deletion mutants in assays for intrachromosomal recombination (ICR). Meiotic intergenic (crossover) and intragenic (conversion) recombination between homologous chromosomes was reduced. Double-strand break (DSB) levels were also lowered. Notably, deletion of hop1 restored DSB repair in rad50S meiosis. This may indicate altered DSB repair kinetics in hop1 and mek1 deletion strains. A hypothesis is advanced proposing transient inhibition of DSB processing by Hop1 and Mek1 and thus providing more time for repair by interaction with the homologous chromosome. Loss of Hop1 and Mek1 would then result in faster repair and more interaction with the sister chromatid. Thus, in S. pombe meiosis, where an excess of sister Holliday junction over homologous Holliday junction formation has been demonstrated, Hop1 and Mek1 possibly enhance homolog interactions to ensure wild-type level of crossover formation rather than inhibiting sister chromatid interactions.
Collapse
Affiliation(s)
- Vitaly Latypov
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Maja Rothenberg
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Alexander Lorenz
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Guillaume Octobre
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Ortansa Csutak
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Elisabeth Lehmann
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Josef Loidl
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Jürg Kohli
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
70
|
Cipak L, Spirek M, Novatchkova M, Chen Z, Rumpf C, Lugmayr W, Mechtler K, Ammerer G, Csaszar E, Gregan J. An improved strategy for tandem affinity purification-tagging of Schizosaccharomyces pombe genes. Proteomics 2010; 9:4825-8. [PMID: 19750511 DOI: 10.1002/pmic.200800948] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tandem affinity purification (TAP) is a method that allows rapid purification of native protein complexes. We developed an improved technique to fuse the fission yeast genes with a TAP tag. Our technique is based on tagging constructs that contain regions homologous to the target gene cloned into vectors carrying a TAP tag. We used this technique to design strategies for TAP-tagging of predicted Schizosaccharomyces pombe genes (http://mendel.imp.ac.at/Pombe_tagging/). To validate the approach, we purified the proteins, which associated with two evolutionarily conserved proteins Swi5 and Sfr1 as well as three protein kinases Ksg1, Orb6 and Sid1.
Collapse
Affiliation(s)
- Lubos Cipak
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 2010; 22:132-9. [PMID: 20056399 DOI: 10.1016/j.ceb.2009.12.004] [Citation(s) in RCA: 828] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/07/2009] [Accepted: 12/10/2009] [Indexed: 12/11/2022]
Abstract
The Atg1/ULK complex plays an essential role in the initiation of autophagy: receiving signals of cellular nutrient status, recruiting downstream Atg proteins to the autophagosome formation site, and governing autophagosome formation. Recent studies of mammalian Atg1 homologs (ULK1 and ULK2) have identified several novel interacting proteins, FIP200, mAtg13, and Atg101. FIP200 and Atg101 are not conserved in Saccharomyces cerevisiae, despite the high conservation rates of other downstream Atg proteins between the yeast and mammals. Furthermore, through studies of the Atg1/ULK1 complex, the molecular mechanism by which (m)TORC1 regulates autophagy is now being clarified in detail.
Collapse
Affiliation(s)
- Noboru Mizushima
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| |
Collapse
|
72
|
Abstract
Chromosome cohesion is the term used to describe the cellular process in which sister chromatids are held together from the time of their replication until the time of separation at the metaphase to anaphase transition. In this capacity, chromosome cohesion, especially at centromeric regions, is essential for chromosome segregation. However, cohesion of noncentromeric DNA sequences has been shown to occur during double-strand break (DSB) repair and the transcriptional regulation of genes. Cohesion for the purposes of accurate chromosome segregation, DSB repair, and gene regulation are all achieved through a similar network of proteins, but cohesion for each purpose may be regulated differently. In this review, we focus on recent developments regarding the regulation of this multipurpose network for tying DNA sequences together. In particular, regulation via effectors and posttranslational modifications are reviewed. A picture is emerging in which complex regulatory networks are capable of differential regulation of cohesion in various contexts.
Collapse
Affiliation(s)
- Bo Xiong
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
73
|
De Muyt A, Pereira L, Vezon D, Chelysheva L, Gendrot G, Chambon A, Lainé-Choinard S, Pelletier G, Mercier R, Nogué F, Grelon M. A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana. PLoS Genet 2009; 5:e1000654. [PMID: 19763177 PMCID: PMC2735182 DOI: 10.1371/journal.pgen.1000654] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 08/19/2009] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent) PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes.
Collapse
Affiliation(s)
- Arnaud De Muyt
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Lucie Pereira
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Daniel Vezon
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Liudmila Chelysheva
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Ghislaine Gendrot
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Aurélie Chambon
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Sandrine Lainé-Choinard
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Georges Pelletier
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Raphaël Mercier
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Fabien Nogué
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Mathilde Grelon
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
- * E-mail:
| |
Collapse
|
74
|
Spirek M, Estreicher A, Csaszar E, Wells J, McFarlane RJ, Watts FZ, Loidl J. SUMOylation is required for normal development of linear elements and wild-type meiotic recombination in Schizosaccharomyces pombe. Chromosoma 2009; 119:59-72. [PMID: 19756689 DOI: 10.1007/s00412-009-0241-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 01/20/2023]
Abstract
In the fission yeast, Schizosaccharomyces pombe, synaptonemal complexes (SCs) are not formed during meiotic prophase. However, structures resembling the axial elements of SCs, the so-called linear elements (LinEs) appear. By in situ immunostaining, we found Pmt3 (S. pombe's SUMO protein) transiently along LinEs, suggesting that SUMOylation of some component(s) of LinEs occurs during meiosis. Mutation of the SUMO ligase Pli1 caused aberrant LinE formation and reduced genetic recombination indicating a role for SUMOylation of LinEs for the regulation of meiotic recombination. Western blot analysis of TAP-tagged Rec10 demonstrated that there is a Pli1-dependent posttranslational modification of this protein, which is a major LinE component and a distant homolog of the SC protein Red1. Mass spectrometry (MS) analysis revealed that Rec10 is both phosphorylated and ubiquitylated, but no evidence for SUMOylation of Rec10 was found. These findings indicate that the regulation of LinE and Rec10 function is modulated by Pli1-dependent SUMOylation of LinE protein(s) which directly or indirectly regulates Rec10 modification. On the side, MS analysis confirmed the interaction of Rec10 with the known LinE components Rec25, Rec27, and Hop1 and identified the meiotically upregulated protein Mug20 as a novel putative LinE-associated protein.
Collapse
Affiliation(s)
- Mario Spirek
- Department of Chromosome Biology, Center for Molecular Biology of the University of Vienna (MFPL), Dr. Bohr Gasse 1, 1030, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
The fission yeast Schizosaccharomyces pombe is well-suited for studying meiotic recombination. Methods are described here for culturing S. pombe and for genetic assays ofintragenic recombination (gene conversion), intergenic recombination (crossing-over), and spore viability. Both random spore and tetrad analyses are described.
Collapse
Affiliation(s)
- Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
76
|
Doll E, Molnar M, Cuanoud G, Octobre G, Latypov V, Ludin K, Kohli J. Cohesin and recombination proteins influence the G1-to-S transition in azygotic meiosis in Schizosaccharomyces pombe. Genetics 2008; 180:727-40. [PMID: 18780734 PMCID: PMC2567376 DOI: 10.1534/genetics.108.092619] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/05/2008] [Indexed: 11/18/2022] Open
Abstract
To determine whether recombination and/or sister-chromatid cohesion affect the timing of meiotic prophase events, the horsetail stage and S phase were analyzed in Schizosaccharomyces pombe strains carrying mutations in the cohesin genes rec8 or rec11, the linear element gene rec10, the pairing gene meu13, the double-strand-break formation genes rec6, rec7, rec12, rec14, rec15, and mde2, and the recombination gene dmc1. The double-mutant strains rec8 rec11 and rec8 rec12 were also assayed. Most of the single and both double mutants showed advancement of bulk DNA synthesis, start of nuclear movement (horsetail stage), and meiotic divisions by up to 2 hr. Only mde2 and dmc1 deletion strains showed wild-type timing. Contrasting behavior was observed for rec8 deletions (delayed by 1 hr) compared to a rec8 point mutation (advanced by 1 hr). An hypothesis for the role of cohesin and recombination proteins in the control of the G(1)-to-S transition is proposed. Finally, differences between azygotic meiosis and two other types of fission yeast meiosis (zygotic and pat1-114 meiosis) are discussed with respect to possible control steps in meiotic G(1).
Collapse
Affiliation(s)
- Eveline Doll
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
77
|
Yan H, Ge W, Chew TG, Chow JY, McCollum D, Neiman AM, Balasubramanian MK. The meiosis-specific Sid2p-related protein Slk1p regulates forespore membrane assembly in fission yeast. Mol Biol Cell 2008; 19:3676-90. [PMID: 18562696 DOI: 10.1091/mbc.e07-10-1060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cytokinesis in all organisms involves the creation of membranous barriers that demarcate individual daughter cells. In fission yeast, a signaling module termed the septation initiation network (SIN) plays an essential role in the assembly of new membranes and cell wall during cytokinesis. In this study, we have characterized Slk1p, a protein-kinase related to the SIN component Sid2p. Slk1p is expressed specifically during meiosis and localizes to the spindle pole bodies (SPBs) during meiosis I and II in a SIN-dependent manner. Slk1p also localizes to the forespore membrane during sporulation. Cells lacking Slk1p display defects associated with sporulation, leading frequently to the formation of asci with smaller and/or fewer spores. The ability of slk1 Delta cells to sporulate, albeit inefficiently, is fully abolished upon compromise of function of Sid2p, suggesting that Slk1p and Sid2p play overlapping roles in sporulation. Interestingly, increased expression of the syntaxin Psy1p rescues the sporulation defect of sid2-250 slk1 Delta. Thus, it is likely that Slk1p and Sid2p play a role in forespore membrane assembly by facilitating recruitment of components of the secretory apparatus, such as Psy1p, to allow membrane expansion. These studies thereby provide a novel link between the SIN and vesicle trafficking during cytokinesis.
Collapse
Affiliation(s)
- Hongyan Yan
- Cell Division Laboratory, Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
78
|
Davis L, Rozalén AE, Moreno S, Smith GR, Martín-Castellanos C. Rec25 and Rec27, novel linear-element components, link cohesin to meiotic DNA breakage and recombination. Curr Biol 2008; 18:849-54. [PMID: 18514516 PMCID: PMC3119532 DOI: 10.1016/j.cub.2008.05.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/18/2008] [Accepted: 05/02/2008] [Indexed: 01/12/2023]
Abstract
Meiosis is a specialized nuclear division by which sexually reproducing diploid organisms generate haploid gametes. Recombination between homologous chromosomes facilitates accurate meiotic chromosome segregation and is initiated by DNA double-strand breaks (DSBs) made by the conserved topoisomerase-like protein Spo11 (Rec12 in fission yeast), but DSBs are not evenly distributed across the genome. In Schizosaccharomyces pombe, proteinaceous structures known as linear elements (LinEs) are formed during meiotic prophase. The meiosis-specific cohesin subunits Rec8 and Rec11 are essential for DSB formation in some regions of the genome, as well as for formation of LinEs or the related synaptonemal complex (SC) in other eukaryotes. Proteins required for DSB formation decorate LinEs, and mutants lacking Rec10, a major component of LinEs, are completely defective for recombination. Although recombination may occur in the context of LinEs, it is not well understood how Rec10 is loaded onto chromosomes. We describe two novel components of LinEs in fission yeast, Rec25 and Rec27. Comparisons of rec25Delta, rec27Delta, and rec10Delta mutants suggest multiple pathways to load Rec10. In the major pathway, Rec10 is loaded, together with Rec25 and Rec27, in a Rec8-dependent manner with subsequent region-specific effects on recombination.
Collapse
Affiliation(s)
- Luther Davis
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U.S.A
| | - Ana E. Rozalén
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Sergio Moreno
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Gerald R. Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U.S.A
| | - Cristina Martín-Castellanos
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
79
|
Cromie G, Smith GR. Meiotic Recombination in Schizosaccharomyces pombe: A Paradigm for Genetic and Molecular Analysis. GENOME DYNAMICS AND STABILITY 2008; 3:195. [PMID: 20157622 DOI: 10.1007/7050_2007_025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is especially well-suited for both genetic and biochemical analysis of meiotic recombination. Recent studies have revealed ~50 gene products and two DNA intermediates central to recombination, which we place into a pathway from parental to recombinant DNA. We divide recombination into three stages - chromosome alignment accompanying nuclear "horsetail" movement, formation of DNA breaks, and repair of those breaks - and we discuss the roles of the identified gene products and DNA intermediates in these stages. Although some aspects of recombination are similar to those in the distantly related budding yeast Saccharomyces cerevisiae, other aspects are distinctly different. In particular, many proteins required for recombination in one species have no clear ortholog in the other, and the roles of identified orthologs in regulating recombination often differ. Furthermore, in S. pombe the dominant joint DNA molecule intermediates contain single Holliday junctions, and intersister joint molecules are more frequent than interhomolog types, whereas in S. cerevisiae interhomolog double Holliday junctions predominate. We speculate that meiotic recombination in other organisms shares features of each of these yeasts.
Collapse
Affiliation(s)
- Gareth Cromie
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U. S. A
| | | |
Collapse
|
80
|
Keeney S. Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis. GENOME DYNAMICS AND STABILITY 2008; 2:81-123. [PMID: 21927624 PMCID: PMC3172816 DOI: 10.1007/7050_2007_026] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Meiotic recombination is carried out through a specialized pathway for the formation and repair of DNA double-strand breaks made by the Spo11 protein, a relative of archaeal topoisomerase VI. This review summarizes recent studies that provide insight to the mechanism of DNA cleavage by Spo11, functional interactions of Spo11 with other proteins required for break formation, mechanisms that control the timing of recombination initiation, and evolutionary conservation and divergence of these processes.
Collapse
Affiliation(s)
- Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021 USA,
| |
Collapse
|
81
|
Tomita K, Cooper JP. The telomere bouquet controls the meiotic spindle. Cell 2007; 130:113-26. [PMID: 17632059 DOI: 10.1016/j.cell.2007.05.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 03/07/2007] [Accepted: 05/03/2007] [Indexed: 10/23/2022]
Abstract
Bouquet formation, in which telomeres gather to a small region of the nuclear membrane in early meiosis, has been observed in diverse eukaryotes, but the function of the bouquet has remained a mystery. Here, we demonstrate that the telomere bouquet plays a crucial role in controlling the behavior of the fission yeast microtubule-organizing center (known as the spindle pole body or SPB) and the meiotic spindle. Using mutations that specifically disrupt the bouquet, we analyze chromosome, SPB, and spindle dynamics throughout meiosis. If the bouquet fails to form, the SPB becomes fragmented at meiosis I, leading to monopolar, multiple, and mislocalized spindles. Correct SPB and spindle behavior require not only the SPB recruitment of telomere proteins but also that the proteins are properly bound to telomeric DNA. This discovery illuminates an unanticipated level of communication between chromosomes and the spindle apparatus that may be widely conserved among eukaryotes.
Collapse
Affiliation(s)
- Kazunori Tomita
- Telomere Biology Laboratory, Cancer Research UK, London WC2A 3PX, UK
| | | |
Collapse
|
82
|
Gregan J, Rabitsch PK, Rumpf C, Novatchkova M, Schleiffer A, Nasmyth K. High-throughput knockout screen in fission yeast. Nat Protoc 2007; 1:2457-64. [PMID: 17406492 PMCID: PMC2957175 DOI: 10.1038/nprot.2006.385] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have designed the most efficient strategy to knock out genes in fission yeast Schizosaccharomyces pombe on a large scale. Our technique is based on knockout constructs that contain regions homologous to the target gene cloned into vectors carrying dominant drug-resistance markers. Most of the steps are carried out in a 96-well format, allowing simultaneous deletion of 96 genes in one batch. Based on our knockout technique, we designed a strategy for cloning knockout constructs for all predicted fission yeast genes, which is available in a form of a searchable database http://mendel.imp.ac.at/Pombe_deletion/. We validated this technique in a screen where we identified novel genes required for chromosome segregation during meiosis. Here, we present our protocol with detailed instructions. Using this protocol, one person can knock out 96 S. pombe genes in 8 days.
Collapse
Affiliation(s)
- Juraj Gregan
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, 1030 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
83
|
Abstract
Meiosis is a specialized type of cell division that halves the diploid number of chromosomes, yielding four haploid nuclei. Dramatic changes in chromosomal organization occur within the nucleus at the beginning of meiosis which are followed by the separation of homologous chromosomes at the first meiotic division. This is the case for telomeres that display a meiotic-specific behavior with gathering in a limited sector of the nuclear periphery. This leads to a characteristic polarized chromosomal configuration, called the "bouquet" arrangement. The widespread phenomenon of bouquet formation among eukaryotes has led to the hypothesis that it is functionally linked to the process of interactions between homologous chromosomes that are a unique feature of meiosis and are essential for proper chromosome segregation. Various studies in different model organisms have questioned the role of the telomere bouquet in chromosome pairing and recombination, and very recently in meiotic spindle formation, and have provided some clues about the molecular mechanisms that carry out this specific clustering of telomeres.
Collapse
|
84
|
De Muyt A, Vezon D, Gendrot G, Gallois JL, Stevens R, Grelon M. AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana. EMBO J 2007; 26:4126-37. [PMID: 17762870 PMCID: PMC2230667 DOI: 10.1038/sj.emboj.7601815] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 07/06/2007] [Indexed: 11/08/2022] Open
Abstract
The initiation of meiotic recombination by the formation of DNA double-strand breaks (DSBs) catalysed by the Spo11 protein is strongly evolutionary conserved. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation, but, unlike Spo11, few of these proteins seem to be conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we have isolated a new gene, AtPRD1, whose mutation affects meiosis in Arabidopsis thaliana. In Atprd1 mutants, meiotic recombination rates fall dramatically, early recombination markers (e.g., DMC1 foci) are absent, but meiosis progresses until achiasmatic univalents are formed. Besides, Atprd1 mutants suppress DSB repair defects of a large range of meiotic mutants, showing that AtPRD1 is involved in meiotic recombination and is required for meiotic DSB formation. Furthermore, we showed that AtPRD1 and AtSPO11-1 interact in a yeast two-hybrid assay, suggesting that AtPRD1 could be a partner of AtSPO11-1. Moreover, our study reveals similarity between AtPRD1 and the mammalian protein Mei1, suggesting that AtPRD1 could be a Mei1 functional homologue.
Collapse
Affiliation(s)
- Arnaud De Muyt
- Institut Jean-Pierre Bourgin, INRA de Versailles, Station de Génétique et d'Amélioration des Plantes, Versailles, France
| | - Daniel Vezon
- Institut Jean-Pierre Bourgin, INRA de Versailles, Station de Génétique et d'Amélioration des Plantes, Versailles, France
| | - Ghislaine Gendrot
- Institut Jean-Pierre Bourgin, INRA de Versailles, Station de Génétique et d'Amélioration des Plantes, Versailles, France
| | - Jean-Luc Gallois
- Institut Jean-Pierre Bourgin, INRA de Versailles, Station de Génétique et d'Amélioration des Plantes, Versailles, France
| | - Rebecca Stevens
- Unité de Recherche Génétique et Amélioration des Fruits et Légumes, INRA, Montfavet, France
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, INRA de Versailles, Station de Génétique et d'Amélioration des Plantes, Versailles, France
- Institut Jean-Pierre Bourgin, INRA de Versailles, Station de Génétique et d'Amélioration des Plantes, UR-254, Route de St-Cyr, Versailles, 78026 France. Tel.: +33 1 30 83 33 08; Fax: +33 1 30 83 33 19; E-mail:
| |
Collapse
|
85
|
Sumimoto H, Kamakura S, Ito T. Structure and Function of the PB1 Domain, a Protein Interaction Module Conserved in Animals, Fungi, Amoebas, and Plants. ACTA ACUST UNITED AC 2007; 2007:re6. [PMID: 17726178 DOI: 10.1126/stke.4012007re6] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Proteins containing the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants, participate in diverse biological processes. The PB1 domains adopt a ubiquitin-like beta-grasp fold, containing two alpha helices and a mixed five-stranded beta sheet, and are classified into groups harboring an acidic OPCA motif (type I), the invariant lysine residue on the first beta strand (type II), or both (type I/II). The OPCA motif of a type I PB1 domain forms salt bridges with basic residues, especially the conserved lysine, of a type II PB1 domain, thereby mediating a specific PB1-PB1 heterodimerization, whereas additional contacts contribute to high affinity and specificity of the modular interaction. The canonical PB1 dimerization is required for the formation of complexes between p40(phox) and p67(phox) (for activation of the NADPH oxidase crucial for mammalian host defense), between the scaffold Bem1 and the guanine nucleotide exchange factor Cdc24 (for polarity establishment in yeasts), and between the polarity protein Par6 and atypical protein kinase C (for cell polarization in animal cells), as well as for the interaction between the mitogen-activated protein kinase kinase kinases MEKK2 or MEKK3 and the downstream target mitogen-activated protein kinase kinase MEK5 (for early cardiovascular development in mammals). PB1 domains can also mediate interactions with other protein domains. For example, an intramolecular interaction between the PB1 and PX domains of p40(phox) regulates phagosomal targeting of the microbicidal NADPH oxidase; the PB1 domain of MEK5 is likely responsible for binding to the downstream kinase ERK5, which lacks a PB1 domain; and the scaffold protein Nbr1 associates through a PB1-containing region with titin, a sarcomere protein without a PB1 domain. This Review describes various aspects of PB1 domains at the molecular and cellular levels.
Collapse
Affiliation(s)
- Hideki Sumimoto
- Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.
| | | | | |
Collapse
|
86
|
Haruta N, Akamatsu Y, Tsutsui Y, Kurokawa Y, Murayama Y, Arcangioli B, Iwasaki H. Fission yeast Swi5 protein, a novel DNA recombination mediator. DNA Repair (Amst) 2007; 7:1-9. [PMID: 17716957 DOI: 10.1016/j.dnarep.2007.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 07/09/2007] [Indexed: 11/26/2022]
Abstract
The Schizosaccharomyces pombe Swi5 protein forms two distinct protein complexes, Swi5-Sfr1 and Swi5-Swi2, each of which plays an important role in the related but functionally distinct processes of homologous recombination and mating-type switching, respectively. The Swi5-Sfr1 mediator complex has been shown to associate with the two RecA-like recombinases, Rhp51 (spRad51) and Dmc1, and to stimulate in vitro DNA strand exchange reactions mediated by these proteins. Genetic analysis indicates that Swi5-Sfr1 works independently of another mediator complex, Rhp55-Rhp57, during Rhp51-dependent recombinational repair. In addition, mutations affecting the two mediators generate distinct repair spectra of HO endonuclease-induced DNA double strand breaks, suggesting that these recombination mediators differently regulate recombination outcomes in an independent manner.
Collapse
Affiliation(s)
- Nami Haruta
- International Graduate School of Arts and Sciences, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
87
|
Kasama T, Shigehisa A, Hirata A, Saito TT, Tougan T, Okuzaki D, Nojima H. Spo5/Mug12, a putative meiosis-specific RNA-binding protein, is essential for meiotic progression and forms Mei2 dot-like nuclear foci. EUKARYOTIC CELL 2007; 5:1301-13. [PMID: 16896214 PMCID: PMC1539142 DOI: 10.1128/ec.00099-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here a functional analysis of spo5(+)(mug12(+)) of Schizosaccharomyces pombe, which encodes a putative RNA-binding protein. The disruption of spo5(+) caused abnormal sporulation, generating inviable spores due to failed forespore membrane formation and the absence of a spore wall, as determined by electron microscopy. Spo5 regulates the progression of meiosis I because spo5 mutant cells display normal premeiotic DNA synthesis and the timely initiation of meiosis I but they show a delay in the peaking of cells with two nuclei, abnormal tyrosine 15 dephosphorylation of Cdc2, incomplete degradation of Cdc13, retarded formation and repair of double strand breaks, and a reduced frequency of intragenic recombination. Immunostaining showed that Spo5-green fluorescent protein (GFP) appeared in the cytoplasm at the horsetail phase, peaked around the metaphase I to anaphase I transition, and suddenly disappeared after anaphase II. Images of Spo5-GFP in living cells revealed that Spo5 forms a dot in the nucleus at prophase I that colocalized with the Mei2 dot. Unlike the Mei2 dot, however, the Spo5 dot was observed even in sme2Delta cells. Taken together, we conclude that Spo5 is a novel regulator of meiosis I and that it may function in the vicinity of the Mei2 dot.
Collapse
Affiliation(s)
- Takashi Kasama
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
88
|
Davis L, Smith GR. The meiotic bouquet promotes homolog interactions and restricts ectopic recombination in Schizosaccharomyces pombe. Genetics 2006; 174:167-77. [PMID: 16988108 PMCID: PMC1569800 DOI: 10.1534/genetics.106.059733] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 07/06/2006] [Indexed: 11/18/2022] Open
Abstract
Chromosome architecture undergoes extensive, programmed changes as cells enter meiosis. A highly conserved change is the clustering of telomeres at the nuclear periphery to form the "bouquet" configuration. In the fission yeast Schizosaccharomyces pombe the bouquet and associated nuclear movement facilitate initial interactions between homologs. We show that Bqt2, a meiosis-specific protein required for bouquet formation, is required for wild-type levels of homolog pairing and meiotic allelic recombination. Both gene conversion and crossing over are reduced and exhibit negative interference in bqt2Delta mutants, reflecting reduced homolog pairing. While both the bouquet and nuclear movement promote pairing, only the bouquet restricts ectopic recombination (that between dispersed repetitive DNA). We discuss mechanisms by which the bouquet may prevent deleterious translocations by restricting ectopic recombination.
Collapse
Affiliation(s)
- Luther Davis
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | |
Collapse
|
89
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
90
|
Tang X, Jin Y, Cande WZ. Bqt2p is essential for initiating telomere clustering upon pheromone sensing in fission yeast. ACTA ACUST UNITED AC 2006; 173:845-51. [PMID: 16769823 PMCID: PMC2063910 DOI: 10.1083/jcb.200602152] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The telomere bouquet, i.e., telomere clustering on the nuclear envelope (NE) during meiotic prophase, is thought to promote homologous chromosome pairing. Using a visual screen, we identified bqt2/im295, a mutant that disrupts telomere clustering in fission yeast. Bqt2p is required for linking telomeres to the meiotic spindle pole body (SPB) but not for attachment of telomeres or the SPB to the NE. Bqt2p is expressed upon pheromone sensing and colocalizes thereafter to Sad1p, an SPB protein. This localization only depends on Bqt1p, not on other identified proteins required for telomere clustering. Upon pheromone sensing, generation of Sad1p foci next to telomeres depends on Bqt2p. However, depletion of Bqt2p from the SPB is dispensable for dissolving the telomere bouquet at the end of meiotic prophase. Therefore, telomere bouquet formation requires Bqt2p as a linking component and is finely regulated during meiotic progression.
Collapse
Affiliation(s)
- Xie Tang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
91
|
Abstract
In the early stages of meiosis, all the telomeres in the cell attach to the nuclear envelope and gather near the centrosome. This polarized chromosomal array is known as the bouquet, as the clustered telomeres resemble the gathered stems of a floral arrangement. In this issue of Cell, Chikashige et al. (2006) provide intriguing clues about the molecular details underlying this conserved meiotic event.
Collapse
Affiliation(s)
- Kazunori Tomita
- Telomere Biology Laboratory, Cancer Research UK, London WC2A 3PX, United Kingdom
| | | |
Collapse
|
92
|
Saito TT, Okuzaki D, Nojima H. Mcp5, a meiotic cell cortex protein, is required for nuclear movement mediated by dynein and microtubules in fission yeast. ACTA ACUST UNITED AC 2006; 173:27-33. [PMID: 16585273 PMCID: PMC2063782 DOI: 10.1083/jcb.200512129] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During meiotic prophase I of the fission yeast Schizosaccharomyces pombe, oscillatory nuclear movement occurs. This promotes homologous chromosome pairing and recombination and involves cortical dynein, which plays a pivotal role by generating a pulling force with the help of an unknown dynein anchor. We show that Mcp5, the homologue of the budding yeast dynein anchor Num1, may be this putative dynein anchor. mcp5+ is predominantly expressed during meiotic prophase, and GFP-Mcp5 localizes at the cell cortex. Moreover, the mcp5Δ strain lacks the oscillatory nuclear movement. Accordingly, homologous pairing and recombination rates of the mcp5Δ strain are significantly reduced. Furthermore, the cortical localization of dynein heavy chain 1 appears to be reduced in mcp5Δ cells. Finally, the full function of Mcp5 requires its coiled-coil and pleckstrin homology (PH) domains. Our results suggest that Mcp5 localizes at the cell cortex through its PH domain and functions as a dynein anchor, thereby facilitating nuclear oscillation.
Collapse
Affiliation(s)
- Takamune T Saito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|