51
|
Zhang C, Halsey LE, Szymanski DB. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells. BMC PLANT BIOLOGY 2011; 11:27. [PMID: 21284861 PMCID: PMC3042916 DOI: 10.1186/1471-2229-11-27] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/01/2011] [Indexed: 05/03/2023]
Abstract
BACKGROUND The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. RESULTS We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. CONCLUSIONS Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells.
Collapse
Affiliation(s)
- Chunhua Zhang
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907-2054, USA
| | - Leah E Halsey
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907-2054, USA
| | - Daniel B Szymanski
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907-2054, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2054, USA
| |
Collapse
|
52
|
Sorek N, Gutman O, Bar E, Abu-Abied M, Feng X, Running MP, Lewinsohn E, Ori N, Sadot E, Henis YI, Yalovsky S. Differential effects of prenylation and s-acylation on type I and II ROPS membrane interaction and function. PLANT PHYSIOLOGY 2011; 155:706-20. [PMID: 21139084 PMCID: PMC3032461 DOI: 10.1104/pp.110.166850] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/30/2010] [Indexed: 05/21/2023]
Abstract
Prenylation primarily by geranylgeranylation is required for membrane attachment and function of type I Rho of Plants (ROPs) and Gγ proteins, while type II ROPs are attached to the plasma membrane by S-acylation. Yet, it is not known how prenylation affects ROP membrane interaction dynamics and what are the functional redundancy and specificity of type I and type II ROPs. Here, we have used the expression of ROPs in mammalian cells together with geranylgeranylation and CaaX prenylation-deficient mutants to answer these questions. Our results show that the mechanism of type II ROP S-acylation and membrane attachment is unique to plants and likely responsible for the viability of plants in the absence of CaaX prenylation activity. The prenylation of ROPs determines their steady-state distribution between the plasma membrane and the cytosol but has little effect on membrane interaction dynamics. In addition, the prenyl group type has only minor effects on ROP function. Phenotypic analysis of the CaaX prenylation-deficient pluripetala mutant epidermal cells revealed that type I ROPs affect cell structure primarily on the adaxial side, while type II ROPs are functional and induce a novel cell division phenotype in this genetic background. Taken together, our studies show how prenyl and S-acyl lipid modifications affect ROP subcellular distribution, membrane interaction dynamics, and function.
Collapse
|
53
|
|
54
|
Escobar B, de Cárcer G, Fernández-Miranda G, Cascón A, Bravo-Cordero JJ, Montoya MC, Robledo M, Cañamero M, Malumbres M. Brick1 is an essential regulator of actin cytoskeleton required for embryonic development and cell transformation. Cancer Res 2010; 70:9349-59. [PMID: 20861187 DOI: 10.1158/0008-5472.can-09-4491] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brick1 (Brk1) is the less-studied component of the Wave/Scar pathway involved in the branched nucleation of actin fibers. The clinical relevance of Brk1 is emphasized by correlative data showing that Von Hippel-Lindau (VHL) patients that also lose the BRK1 gene are protected against the development of tumors. This contrasts with recent evidence suggesting that the Wave complex may function as an invasion suppressor in epithelial cancers. Here, we show that the downregulation of Brk1 results in abnormal actin stress fiber formation and vinculin distribution and loss of Arp2/3 and Wave proteins at the cellular protrusions. Brk1 is required for cell proliferation and cell transformation by oncogenes. In addition, Brk1 downregulation results in defective directional migration and invasive growth in renal cell carcinoma cells as well as in other tumor cell types. Finally, genetic ablation of Brk1 results in dramatic defects in embryo compaction and development, suggesting an essential role for this protein in actin dynamics. Thus, genetic loss or inhibition of BRK1 is likely to be protective against tumor development due to proliferation and motility defects in affected cells.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Movement/physiology
- Cell Proliferation
- Cell Transformation, Neoplastic
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Cytoskeletal Proteins/physiology
- Cytoskeleton/metabolism
- Down-Regulation
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Embryonic Development/genetics
- Embryonic Development/physiology
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Knockout
- Mice, SCID
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Beatriz Escobar
- Cell Division and Cancer Group, Confocal Microscopy and Cytometry Unit, Spanish Nacional Cancer Research Center (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Khurana P, Henty JL, Huang S, Staiger AM, Blanchoin L, Staiger CJ. Arabidopsis VILLIN1 and VILLIN3 have overlapping and distinct activities in actin bundle formation and turnover. THE PLANT CELL 2010; 22:2727-48. [PMID: 20807878 PMCID: PMC2947172 DOI: 10.1105/tpc.110.076240] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/29/2010] [Accepted: 08/17/2010] [Indexed: 05/20/2023]
Abstract
Actin filament bundles are higher-order cytoskeletal structures that are crucial for the maintenance of cellular architecture and cell expansion. They are generated from individual actin filaments by the actions of bundling proteins like fimbrins, LIMs, and villins. However, the molecular mechanisms of dynamic bundle formation and turnover are largely unknown. Villins belong to the villin/gelsolin/fragmin superfamily and comprise at least five isovariants in Arabidopsis thaliana. Different combinations of villin isovariants are coexpressed in various tissues and cells. It is not clear whether these isovariants function together and act redundantly or whether they have unique activities. VILLIN1 (VLN1) is a simple filament-bundling protein and is Ca(2+) insensitive. Based on phylogenetic analyses and conservation of Ca(2+) binding sites, we predict that VLN3 is a Ca(2+)-regulated villin capable of severing actin filaments and contributing to bundle turnover. The bundling activity of both isovariants was observed directly with time-lapse imaging and total internal reflection fluorescence (TIRF) microscopy in vitro, and the mechanism mimics the "catch and zipper" action observed in vivo. Using time-lapse TIRF microscopy, we observed and quantified the severing of individual actin filaments by VLN3 at physiological calcium concentrations. Moreover, VLN3 can sever actin filament bundles in the presence of VLN1 when calcium is elevated to micromolar levels. Collectively, these results demonstrate that two villin isovariants have overlapping and distinct activities.
Collapse
Affiliation(s)
- Parul Khurana
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Jessica L. Henty
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Shanjin Huang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Andrew M. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Laurent Blanchoin
- Institut de Recherches en Technologie et Sciences pour le Vivant, Commissariat à l'Energie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, Commissariat à l’Energie Atomique Grenoble, F38054 Grenoble, France
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
- The Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
- Address correspondence to
| |
Collapse
|
56
|
Jörgens CI, Grünewald N, Hülskamp M, Uhrig JF. A role for ABIL3 in plant cell morphogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:925-35. [PMID: 20345606 DOI: 10.1111/j.1365-313x.2010.04210.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Actin nucleation facilitated by the ARP2/3 complex plays a central role in plant cell shape development. The molecular characterization of the distorted class of trichome mutants has recently revealed the SCAR/WAVE complex as an essential upstream activator of ARP2/3 function in plants. The SCAR/WAVE complex is conserved from animals to plants and, generally, is composed of the five subunits SCAR/WAVE, PIR121, NAP125, BRICK and ABI. In plants, four of the five subunits have been shown to participate in trichome and pavement morphogenesis. Plant ABI-like proteins (ABIL), however, which constitute a small four-member protein family in Arabidopsis thaliana, have not been characterized functionally, so far. Here we demonstrate that microRNA knock-down of the ABIL3 gene leads to a distorted trichome phenotype reminiscent of ARP2/3 mutant phenotypes and consistent with a crucial role of the ABIL3 protein in an ARP2/3-activating SCAR/WAVE complex. In contrast to ARP2/3 mutants, however, the ABIL3 knock-down stimulated cell elongation in the root, indicating distinct functions of the ABIL3 protein in different tissues. Furthermore, we provide evidence that ABIL3 associates with microtubules in vivo, opening up the intriguing possibility that ABI-like proteins have a function in linking SCAR/WAVE-dependent actin nucleation with organization of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Cordula I Jörgens
- Botanical Institute III, University of Köln, Gyrhofstr. 15, 50931 Köln, Germany
| | | | | | | |
Collapse
|
57
|
Derivery E, Gautreau A. Generation of branched actin networks: assembly and regulation of the N-WASP and WAVE molecular machines. Bioessays 2010; 32:119-31. [PMID: 20091750 DOI: 10.1002/bies.200900123] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Arp2/3 complex is a molecular machine that generates branched actin networks responsible for membrane remodeling during cell migration, endocytosis, and other morphogenetic events. This machine requires activators, which themselves are multiprotein complexes. This review focuses on recent advances concerning the assembly of stable complexes containing the most-studied activators, N-WASP and WAVE proteins, and the level of regulation that is provided by these complexes. N-WASP is the paradigmatic auto-inhibited protein, which is activated by a conformational opening. Even though this regulation has been successfully reconstituted in vitro with isolated N-WASP, the native dimeric complex with a WIP family protein has unique additional properties. WAVE proteins are part of a pentameric complex, whose basal state and activated state when bound to the Rac GTPase were recently clarified. Moreover, this review attempts to put together diverse observations concerning the WAVE complex in the conceptual frame of an in vivo assembly pathway that has gained support from the recent identification of a precursor.
Collapse
Affiliation(s)
- Emmanuel Derivery
- CNRS UPR3082, Laboratoire d'Enzymologie et de Biochimie Structurales, Bât. 34, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | |
Collapse
|
58
|
Sorek N, Segev O, Gutman O, Bar E, Richter S, Poraty L, Hirsch JA, Henis YI, Lewinsohn E, Jürgens G, Yalovsky S. An S-acylation switch of conserved G domain cysteines is required for polarity signaling by ROP GTPases. Curr Biol 2010; 20:914-20. [PMID: 20451389 DOI: 10.1016/j.cub.2010.03.057] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 11/20/2022]
Abstract
Rho GTPases are master regulators of cell polarity. For their function, Rhos must associate with discrete plasma membrane domains. Rho of Plants (ROPs) or RACs comprise a single family. Prenylation and S-acylation of hypervariable domain cysteines of Ras and Rho GTPases are required for their function; however, lipid modifications in the G domain have never been reported. Reversible S-acylation involves the attachment of palmitate (C16:0) or other saturated lipids to cysteines through a thioester linkage and was implicated in the regulation of signaling. Here we show that transient S-acylation of Arabidopsis AtROP6 takes place on two conserved G domain cysteine residues, C21 and C156. C21 is relatively exposed and is accessible for modification, but C156 is not, implying that its S-acylation involves a conformational change. Fluorescence recovery after photobleaching beam-size analysis shows that S-acylation of AtROP6 regulates its membrane-association dynamics, and detergent-solubilization studies indicate that it regulates AtROP6 association with lipid rafts. Site-specific acylation-deficient AtROP6 mutants can bind and hydrolyze GTP but display compromised effects on polar cell growth, endocytic uptake of the tracer dye FM4-64, and distribution of reactive oxygen species. These data reveal an S-acylation switch that regulates Rho signaling.
Collapse
Affiliation(s)
- Nadav Sorek
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Blanchoin L, Staiger CJ. Plant formins: Diverse isoforms and unique molecular mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:201-6. [PMID: 18977251 DOI: 10.1016/j.bbamcr.2008.09.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/03/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
|
60
|
Derivery E, Lombard B, Loew D, Gautreau A. The Wave complex is intrinsically inactive. ACTA ACUST UNITED AC 2009; 66:777-90. [PMID: 19206172 DOI: 10.1002/cm.20342] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Wave proteins activate the Arp2/3 complex at the leading edge of migrating cells. The resulting actin polymerization powers the projection of the plasma membrane in lamellipodia and membrane ruffles. The Wave proteins are always found associated with partner proteins. The canonical Wave complex is a stable complex containing five subunits. Even though it is well admitted that this complex plays an essential regulatory role on Wave function, the mechanisms by which Wave proteins are regulated within the complex are still elusive. Even the constitutive activity or inactivity of the complex is controversial. The major difficulty of these assays resides in the long and difficult purification of the Wave complex by a combination of several chromatography steps, which gives an overall low yield and increases the chance of Wave complex denaturation. Here we report a greatly simplified approach to purify the human Wave complex using a stable cell line expressing a tagged subunit and affinity chromatography. This protocol provided us with sufficient amount of pure Wave complex for functional assays. These assays unambiguously established that the Wave complex in its native conformation is intrinsically inactive, indicating that, like WASP proteins, Wave proteins have a masked C-terminal Arp2/3 binding site at resting state. As a consequence, the Wave complex has to be recruited and activated at the plasma membrane to project migration structures. Importantly, the approach we describe here for multiprotein complex purification is likely applicable to a wide range of human multiprotein complexes.
Collapse
Affiliation(s)
- Emmanuel Derivery
- Institut Curie, Centre de Recherche, Laboratory of Cell Morphogenesis and Intracellular Signaling, 75248 Paris Cedex 05, France
| | | | | | | |
Collapse
|
61
|
Kotchoni SO, Zakharova T, Mallery EL, Le J, El-Assal SED, Szymanski DB. The association of the Arabidopsis actin-related protein2/3 complex with cell membranes is linked to its assembly status but not its activation. PLANT PHYSIOLOGY 2009; 151:2095-109. [PMID: 19801398 PMCID: PMC2785977 DOI: 10.1104/pp.109.143859] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/28/2009] [Indexed: 05/18/2023]
Abstract
In growing plant cells, the combined activities of the cytoskeleton, endomembrane, and cell wall biosynthetic systems organize the cytoplasm and define the architecture and growth properties of the cell. These biosynthetic machineries efficiently synthesize, deliver, and recycle the raw materials that support cell expansion. The precise roles of the actin cytoskeleton in these processes are unclear. Certainly, bundles of actin filaments position organelles and are a substrate for long-distance intracellular transport, but the functional linkages between dynamic actin filament arrays and the cell growth machinery are poorly understood. The Arabidopsis (Arabidopsis thaliana) "distorted group" mutants have defined protein complexes that appear to generate and convert small GTPase signals into an Actin-Related Protein2/3 (ARP2/3)-dependent actin filament nucleation response. However, direct biochemical knowledge about Arabidopsis ARP2/3 and its cellular distribution is lacking. In this paper, we provide biochemical evidence for a plant ARP2/3. The plant complex utilizes a conserved assembly mechanism. ARPC4 is the most critical core subunit that controls the assembly and steady-state levels of the complex. ARP2/3 in other systems is believed to be mostly a soluble complex that is locally recruited and activated. Unexpectedly, we find that Arabidopsis ARP2/3 interacts strongly with cell membranes. Membrane binding is linked to complex assembly status and not to the extent to which it is activated. Mutant analyses implicate ARP2 as an important subunit for membrane association.
Collapse
|
62
|
Cai X, Xiao T, James SY, Da J, Lin D, Liu Y, Zheng Y, Zou S, Di X, Guo S, Han N, Lu YJ, Cheng S, Gao Y, Zhang K. Metastatic potential of lung squamous cell carcinoma associated with HSPC300 through its interaction with WAVE2. Lung Cancer 2009; 65:299-305. [DOI: 10.1016/j.lungcan.2009.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 05/19/2009] [Accepted: 06/02/2009] [Indexed: 01/22/2023]
|
63
|
Saedler R, Jakoby M, Marin B, Galiana-Jaime E, Hülskamp M. The cell morphogenesis gene SPIRRIG in Arabidopsis encodes a WD/BEACH domain protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:612-21. [PMID: 19392685 DOI: 10.1111/j.1365-313x.2009.03900.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
WD40/BEACH domain proteins have been implicated in membrane trafficking and membrane composition events in Dictyostelium and Drosophila. In this paper, we show that the Arabidopsis SPIRRIG (SPI) gene encodes a WD40/BEACH domain protein. The cellular analysis revealed fragmented vacuoles in root hairs similar to those found in the corresponding Dictyostelium mutants, suggesting a related cellular function. The phenotypic analysis revealed that spi mutants share all phenotypic aspects of mutants in the actin polymerization-regulating ARP2/3 pathway, including distorted trichomes, less lobing of epidermal pavement cells, disconnected epidermal cells on various organs, and shorter root hairs. This complete phenotypic overlap suggests that this WD40/BEACH domain protein and the actin-regulating ARP2/3 pathway are involved in similar growth processes.
Collapse
Affiliation(s)
- Rainer Saedler
- University of Cologne, Botanical Institute, 50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
64
|
Panteris E, Adamakis IDS, Tzioutziou NA. Abundance of actin filaments in the preprophase band and mitotic spindle of brick1 Zea mays mutant. PROTOPLASMA 2009; 236:103-106. [PMID: 19434475 DOI: 10.1007/s00709-009-0049-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 05/04/2009] [Indexed: 05/27/2023]
Abstract
The preprophase band and mitotic spindle of dividing protodermal cells of wild-type Zea mays leaves include few actin filaments. Surprisingly, abundant actin filaments were observed in the above arrays, in dividing protodermal cells in the leaves of the brick1 mutant. The same abundance was observed in the spindle of Taxol-treated brick1 mitotic protodermal cells. Apart from the above difference, the relevant arrays displayed normal microtubule organization in both wild type and mutant cells, as far as can be discerned by immunofluorescence microscopy. Accordingly, the abundance of actin filaments in the preprophase band and spindle of brick1 mitotic cells seems not to influence the structure of the above arrays and might be a non-functional "side-effect" of defective F-actin organization in this mutant.
Collapse
Affiliation(s)
- Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University, Thessaloniki, 541 24, Macedonia, Greece.
| | | | | |
Collapse
|
65
|
Pollitt AY, Insall RH. Loss of Dictyostelium HSPC300 causes a scar-like phenotype and loss of SCAR protein. BMC Cell Biol 2009; 10:13. [PMID: 19228419 PMCID: PMC2652429 DOI: 10.1186/1471-2121-10-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 02/19/2009] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND SCAR/WAVE proteins couple signalling to actin polymerization, and are thus fundamental to the formation of pseudopods and lamellipods. They are controlled as part of a five-membered complex that includes the tiny HSPC300 protein. It is not known why SCAR/WAVE is found in such a large assembly, but in Dictyostelium the four larger subunits have different, clearly delineated functions. RESULTS We have generated Dictyostelium mutants in which the HSPC300 gene is disrupted. As has been seen in other regulatory complex mutants, SCAR is lost in these cells, apparently by a post-translational mechanism, though PIR121 levels do not change. HSPC300 knockouts resemble scar mutants in slow migration, roundness, and lack of large pseudopods. However hspc300-colonies on bacteria are larger and more similar to wild type, suggesting that some SCAR function can survive without HSPC300. We find no evidence for functions of HSPC300 outside the SCAR complex. CONCLUSION HSPC300 is essential for most SCAR complex functions. The phenotype of HSPC300 knockouts is most similar to mutants in scar, not the other members of the SCAR complex, suggesting that HSPC300 acts most directly on SCAR itself.
Collapse
Affiliation(s)
- Alice Y Pollitt
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- School of Medicine, University of Birmingham, Birmingham, B15 2TT, UK
| | - Robert H Insall
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| |
Collapse
|
66
|
Galletta BJ, Cooper JA. Actin and endocytosis: mechanisms and phylogeny. Curr Opin Cell Biol 2009; 21:20-7. [PMID: 19186047 PMCID: PMC2670849 DOI: 10.1016/j.ceb.2009.01.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/05/2009] [Accepted: 01/06/2009] [Indexed: 11/29/2022]
Abstract
The regulated assembly of actin filament networks is a crucial part of endocytosis, with crucial temporal and spatial relationships between proteins of the endocytic and actin assembly machinery. Of particular importance has been a wealth of studies in budding and fission yeast. Cell biology approaches, combined with molecular genetics, have begun to uncover the complexity of the regulation of actin dynamics during the endocytic process. In a wide range of organisms, clathrin-mediated endocytosis appears to be linked to Arp2/3-mediated actin assembly. The conservation of the components, across a wide range eukaryotic species, suggests that the partnership between endocytosis and actin may be evolutionarily ancient.
Collapse
Affiliation(s)
- Brian J Galletta
- Department of Cell Biology, Washington University Medical School, St Louis, MO, USA
| | | |
Collapse
|
67
|
Sinclair A, Schenkel M, Mathur J. Signaling to the Actin Cytoskeleton During Cell Morphogenesis and Patterning. SIGNALING IN PLANTS 2009. [DOI: 10.1007/978-3-540-89228-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
68
|
Patel FB, Bernadskaya YY, Chen E, Jobanputra A, Pooladi Z, Freeman KL, Gally C, Mohler WA, Soto MC. The WAVE/SCAR complex promotes polarized cell movements and actin enrichment in epithelia during C. elegans embryogenesis. Dev Biol 2008; 324:297-309. [PMID: 18938151 PMCID: PMC2629559 DOI: 10.1016/j.ydbio.2008.09.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/04/2008] [Accepted: 09/18/2008] [Indexed: 12/21/2022]
Abstract
The WAVE/SCAR complex promotes actin nucleation through the Arp2/3 complex, in response to Rac signaling. We show that loss of WVE-1/GEX-1, the only C. elegans WAVE/SCAR homolog, by genetic mutation or by RNAi, has the same phenotype as loss of GEX-2/Sra1/p140/PIR121, GEX-3/NAP1/HEM2/KETTE, or ABI-1/ABI, the three other components of the C. elegans WAVE/SCAR complex. We find that the entire WAVE/SCAR complex promotes actin-dependent events at different times and in different tissues during development. During C. elegans embryogenesis loss of CED-10/Rac1, WAVE/SCAR complex components, or Arp2/3 blocks epidermal cell migrations despite correct epidermal cell differentiation. 4D movies show that this failure occurs due to decreased membrane dynamics in specific epidermal cells. Unlike myoblasts in Drosophila, epidermal cell fusions in C. elegans can occur in the absence of WAVE/SCAR or Arp2/3. Instead we find that subcellular enrichment of F-actin in epithelial tissues requires the Rac-WAVE/SCAR-Arp2/3 pathway. Intriguingly, we find that at the same stage of development both F-actin and WAVE/SCAR proteins are enriched apically in one epithelial tissue and basolaterally in another. We propose that temporally and spatially regulated actin nucleation by the Rac-WAVE/SCAR-Arp2/3 pathway is required for epithelial cell organization and movements during morphogenesis.
Collapse
Affiliation(s)
- Falshruti B. Patel
- Department of Pathology and Laboratory Medicine, UMDNJ – Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Yelena Y. Bernadskaya
- Department of Pathology and Laboratory Medicine, UMDNJ – Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Esteban Chen
- Department of Pathology and Laboratory Medicine, UMDNJ – Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Aesha Jobanputra
- Department of Pathology and Laboratory Medicine, UMDNJ – Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Zahra Pooladi
- Department of Pathology and Laboratory Medicine, UMDNJ – Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Kristy L. Freeman
- Department of Genetics and Developmental Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, 263 Farmington Ave., MC-3301, Farmington, CT 06030-3301
| | - Christelle Gally
- IGBMC, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP10142, 67400 Illkirch, France
| | - William A. Mohler
- Department of Genetics and Developmental Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, 263 Farmington Ave., MC-3301, Farmington, CT 06030-3301
| | - Martha C. Soto
- Department of Pathology and Laboratory Medicine, UMDNJ – Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| |
Collapse
|
69
|
Dyachok J, Shao MR, Vaughn K, Bowling A, Facette M, Djakovic S, Clark L, Smith L. Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots. MOLECULAR PLANT 2008; 1:990-1006. [PMID: 19825598 DOI: 10.1093/mp/ssn059] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The ARP2/3 complex, a highly conserved nucleator of F-actin polymerization, and its activator, the SCAR complex, have been shown to play important roles in leaf epidermal cell morphogenesis in Arabidopsis. However, the intracellular site(s) and function(s) of SCAR and ARP2/3 complex-dependent actin polymerization in plant cells remain unclear. We demonstrate that putative SCAR complex subunits BRK1 and SCAR1 are localized to the plasma membrane at sites of cell growth and wall deposition in expanding cells of leaves and roots. BRK1 localization is SCAR-dependent, providing further evidence of an association between these proteins in vivo. Consistent with plasma membrane localization of SCAR complex subunits, cortical F-actin accumulation in root tip cells is reduced in brk1 mutants. Moreover, mutations disrupting the SCAR or ARP2/3 complex reduce the growth rate of roots and their ability to penetrate semi-solid medium, suggesting reduced rigidity. Cell walls of mutant roots exhibit abnormal structure and composition at intercellular junctions where BRK1 and SCAR1 are enriched in the adjacent plasma membrane. Taken together, our results suggest that SCAR and ARP2/3 complex-dependent actin polymerization promotes processes at the plasma membrane that are important for normal growth and wall assembly.
Collapse
Affiliation(s)
- Julia Dyachok
- University of California San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Finka A, Saidi Y, Goloubinoff P, Neuhaus JM, Zrÿd JP, Schaefer DG. The knock-out of ARP3a gene affects F-actin cytoskeleton organization altering cellular tip growth, morphology and development in moss Physcomitrella patens. ACTA ACUST UNITED AC 2008; 65:769-84. [PMID: 18613119 DOI: 10.1002/cm.20298] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The seven subunit Arp2/3 complex is a highly conserved nucleation factor of actin microfilaments. We have isolated the genomic sequence encoding a putative Arp3a protein of the moss Physcomitrella patens. The disruption of this ARP3A gene by allele replacement has generated loss-of-function mutants displaying a complex developmental phenotype. The loss-of function of ARP3A gene results in shortened, almost cubic chloronemal cells displaying affected tip growth and lacking differentiation to caulonemal cells. In moss arp3a mutants, buds differentiate directly from chloronemata to form stunted leafy shoots having differentiated leaves similar to wild type. Yet, rhizoids never differentiate from stem epidermal cells. To characterize the F-actin organization in the arp3a-mutated cells, we disrupted ARP3A gene in the previously described HGT1 strain expressing conditionally the GFP-talin marker. In vivo observation of the F-actin cytoskeleton during P. patens development demonstrated that loss-of-function of Arp3a is associated with the disappearance of specific F-actin cortical structures associated with the establishment of localized cellular growth domains. Finally, we show that constitutive expression of the P. patens Arp3a and its Arabidopsis thaliana orthologs efficiently complement the mutated phenotype indicating a high degree of evolutionary conservation of the Arp3 function in land plants.
Collapse
Affiliation(s)
- Andrija Finka
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
71
|
Xu Z, Kohel RJ, Song G, Cho J, Alabady M, Yu J, Koo P, Chu J, Yu S, Wilkins TA, Zhu Y, Yu JZ. Gene-rich islands for fiber development in the cotton genome. Genomics 2008; 92:173-83. [PMID: 18619771 DOI: 10.1016/j.ygeno.2008.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/31/2008] [Accepted: 05/16/2008] [Indexed: 10/21/2022]
Abstract
Cotton fiber is an economically important seed trichome and the world's leading natural fiber used in the manufacture of textiles. As a step toward elucidating the genomic organization and distribution of gene networks responsible for cotton fiber development, we investigated the distribution of fiber genes in the cotton genome. Results revealed the presence of gene-rich islands for fiber genes with a biased distribution in the tetraploid cotton (Gossypium hirsutum L.) genome that was also linked to discrete fiber developmental stages based on expression profiles. There were 3 fiber gene-rich islands associated with fiber initiation on chromosome 5, 3 islands for the early to middle elongation stage on chromosome 10, 3 islands for the middle to late elongation stage on chromosome 14, and 1 island on chromosome 15 for secondary cell wall deposition, for a total of 10 fiber gene-rich islands. Clustering of functionally related gene clusters in the cotton genome displaying similar transcriptional regulation indicates an organizational hierarchy with significant implications for the genetic enhancement of particular fiber quality traits. The relationship between gene-island distribution and functional expression profiling suggests for the first time the existence of functional coupling gene clusters in the cotton genome.
Collapse
Affiliation(s)
- Zhanyou Xu
- USDA-ARS, Crop Germplasm Research Unit, College Station, TX 77845, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Free Brick1 is a trimeric precursor in the assembly of a functional wave complex. PLoS One 2008; 3:e2462. [PMID: 18560548 PMCID: PMC2413427 DOI: 10.1371/journal.pone.0002462] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 05/14/2008] [Indexed: 11/23/2022] Open
Abstract
Background The Wave complex activates the Arp2/3 complex, inducing actin polymerization in lamellipodia and membrane ruffles. The Wave complex is composed of five subunits, the smallest of which, Brick1/Hspc300 (Brk1), is the least characterized. We previously reported that, unlike the other subunits, Brk1 also exists as a free form. Principal Findings Here we report that this free form of Brk1 is composed of homotrimers. Using a novel assay in which purified free Brk1 is electroporated into HeLa cells, we were able to follow its biochemical fate in cells and to show that free Brk1 becomes incorporated into the Wave complex. Importantly, incorporation of free Brk1 into the Wave complex was blocked upon inhibition of protein synthesis and incorporated Brk1 was found to associate preferentially with neosynthesized subunits. Brk1 depleted HeLa cells were found to bleb, as were Nap1, Wave2 or ARPC2 depleted cells, suggesting that this blebbing phenotype of Brk1 depleted cells is due to an impairment of the Wave complex function rather than a specific function of free Brk1. Blebs of Brk1 depleted cells were emitted at sites where lamellipodia and membrane ruffles were normally emitted. In Brk1 depleted cells, the electroporation of free Brk1 was sufficient to restore Wave complex assembly and to rescue the blebbing phenotype. Conclusion Together these results establish that the free form of Brk1 is an essential precursor in the assembly of a functional Wave complex.
Collapse
|
73
|
Hashimoto Y, Kondo T, Kageyama Y. Lilliputians get into the limelight: novel class of small peptide genes in morphogenesis. Dev Growth Differ 2008; 50 Suppl 1:S269-76. [PMID: 18459982 DOI: 10.1111/j.1440-169x.2008.00994.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Generally, bioactive small peptides are derived from precursors with signal sequences at their N-terminal ends, which undergo modification and proteolysis through a secretory pathway. By contrast, small peptides encoded in short open reading frames (sORF) lack signaling sequences and therefore are released into the cytoplasm, which may result in their having functions distinct from those of secreted peptides. Several small peptides encoded by sORF are involved in the morphogenesis of multicellular organisms. POLARIS, ROTUNDIFOLIA4, and Enod40 are plant peptides that are involved, respectively, in root formation, leaf shape control, and cortical cell division during nodule formation. Brick1/HSPC300 is an evolutionarily conserved component of the actin reorganization complex. polished rice/tarsal-less and mille-pattes encode related small peptides that are required for epithelial morphogenesis in Drosophila and segmentation in Tribolium. There are only a few known examples of small peptides encoded by sORF, and their molecular functions are still largely obscure. Nevertheless, an increasing number of sORF genes is being identified, and further research should reveal their roles in novel molecular mechanisms underlying developmental events.
Collapse
Affiliation(s)
- Yoshiko Hashimoto
- Laboratory of Developmental Genetics, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Myodaiji-Higashiyama, Okazaki 444-8787, Japan
| | | | | |
Collapse
|
74
|
Zhang C, Mallery EL, Schlueter J, Huang S, Fan Y, Brankle S, Staiger CJ, Szymanski DB. Arabidopsis SCARs function interchangeably to meet actin-related protein 2/3 activation thresholds during morphogenesis. THE PLANT CELL 2008; 20:995-1011. [PMID: 18424615 PMCID: PMC2390748 DOI: 10.1105/tpc.107.055350] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 02/26/2008] [Accepted: 03/25/2008] [Indexed: 05/18/2023]
Abstract
During polarized growth and tissue morphogenesis, cells must reorganize their cytoplasm and change shape in response to growth signals. Dynamic polymerization of actin filaments is one cellular component of polarized growth, and the actin-related protein 2/3 (ARP2/3) complex is an important actin filament nucleator in plants. ARP2/3 alone is inactive, and the Arabidopsis thaliana WAVE complex translates Rho-family small GTPase signals into an ARP2/3 activation response. The SCAR subunit of the WAVE complex is the primary activator of ARP2/3, and plant and vertebrate SCARs are encoded by a small gene family. However, it is unclear if SCAR isoforms function interchangeably or if they have unique properties that customize WAVE complex functions. We used the Arabidopsis distorted group mutants and an integrated analysis of SCAR gene and protein functions to address this question directly. Genetic results indicate that each of the four SCARs functions in the context of the WAVE-ARP2/3 pathway and together they define the lone mechanism for ARP2/3 activation. Genetic interactions among the scar mutants and transgene complementation studies show that the activators function interchangeably to meet the threshold for ARP2/3 activation in the cell. Interestingly, double, triple, and quadruple mutant analyses indicate that individual SCAR genes vary in their relative importance depending on the cell type, tissue, or organ that is analyzed. Differences among SCARs in mRNA levels and the biochemical efficiency of ARP2/3 activation may explain the functional contributions of individual genes.
Collapse
Affiliation(s)
- Chunhua Zhang
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907-2054, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Perroud PF, Quatrano RS. BRICK1 is required for apical cell growth in filaments of the moss Physcomitrella patens but not for gametophore morphology. THE PLANT CELL 2008; 20:411-22. [PMID: 18263777 PMCID: PMC2276446 DOI: 10.1105/tpc.107.053256] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 01/11/2008] [Accepted: 01/25/2008] [Indexed: 05/19/2023]
Abstract
When BRK1, a member of the Wave/SCAR complex, is deleted in Physcomitrella patens (Deltabrk1), we report a striking reduction of filament growth resulting in smaller and fewer cells with misplaced cross walls compared with the normal protonemal cells. Using an inducible green fluorescent protein-talin to detect actin in living tissue, a characteristic broad accumulation of actin is observed at the tip of wild-type apical cells, whereas in Deltabrk1, smaller, more distinct foci of actin are present. Insertion of brk1-yfp into Deltabrk1 rescues the mutant phenotype and results in BRK1 being localized only in the tip of apical cells, the exclusive site of cell extension and division in the filament. Like BRK1, ARPC4 and At RABA4d are normally localized at the tip of apical cells and their localization is correlated with rapid tip growth in filaments. However, neither marker accumulates in apical cells of Deltabrk1 filaments. Although the Deltabrk1 phenotypes in protonema are severe, the leafy shoots or gametophores are normally shaped but stunted. These and other results suggest that BRK1 functions directly or indirectly in the selective accumulation/stabilization of actin and other proteins required for polar cell growth of filaments but not for the basic structure of the gametophore.
Collapse
|
76
|
Qurashi A, Sahin HB, Carrera P, Gautreau A, Schenck A, Giangrande A. HSPC300 and its role in neuronal connectivity. Neural Dev 2007; 2:18. [PMID: 17894861 PMCID: PMC2098765 DOI: 10.1186/1749-8104-2-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Accepted: 09/25/2007] [Indexed: 11/12/2022] Open
Abstract
Background The WAVE/SCAR complex, consisting of CYFIP (PIR121 or Sra1), Kette (Nap1), Abi, SCAR (WAVE) and HSPC300, is known to regulate the actin nucleating Arp2/3 complex in a Rac1-dependent manner. While in vitro and in vivo studies have demonstrated that CYFIP, Kette, Abi and SCAR work as subunits of the complex, the role of the small protein HSPC300 remains unclear. Results In the present study, we identify the HSPC300 gene and characterize its interaction with the WAVE/SCAR complex in the Drosophila animal model. On the basis of several lines of evidence, we demonstrate that HSPC300 is an indispensable component of the complex controlling axonal and neuromuscular junction (NMJ) growth. First, the Drosophila HSPC300 expression profile resembles that of other members of the WAVE/SCAR complex. Second, HSPC300 mutation, as well as mutations in the other complex subunits, results in identical axonal and NMJ growth defects. Third, like with other complex subunits, defects in NMJ architecture are rescued by presynaptic expression of the respective wild-type gene. Fourth, HSPC300 genetically interacts with another subunit of the WAVE/SCAR complex. Fifth, HSPC300 physically associates with CYFIP and SCAR. Conclusion Present data provide the first evidence for HSPC300 playing a role in nervous system development and demonstrate in vivo that this small protein works in the context of the WAVE/SCAR complex.
Collapse
Affiliation(s)
- Abrar Qurashi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 10142, 67404 Illkirch, CU de Strasbourg, France
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - H Bahar Sahin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 10142, 67404 Illkirch, CU de Strasbourg, France
| | - Pilar Carrera
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 10142, 67404 Illkirch, CU de Strasbourg, France
- Abteilung für Molekulare Entwicklungsbiologie, Institut für Molekulare Physiologie und Entwicklungsbiologie, Universität Bonn, D-53115 Bonn, Germany
| | - Alexis Gautreau
- Laboratoire de Morphogenèse et Signalisation Cellulaires, UMR 144 CNRS/Institut Curie, 75248 Paris Cedex 05, France
| | - Annette Schenck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 10142, 67404 Illkirch, CU de Strasbourg, France
- Department of Human Genetics (855), Nijmegen Centre for Molecular Life Science, Radboud University Nijmegen Medical Centre, Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 10142, 67404 Illkirch, CU de Strasbourg, France
| |
Collapse
|
77
|
Abstract
Following stimulation, T cells undergo marked changes in actin architecture that are required for productive immune responses. T-cell-receptor-dependent reorganization of the actin cytoskeleton is necessary for the formation of the immunological synapse at the T-cell-antigen-presenting-cell contact site and the distal pole complex at the opposite face of the T cell. Convergence of specific signaling molecules within these two plasma membrane domains facilitates downstream signaling events leading to full T-cell activation. Recent studies have identified many of the relevant actin-regulatory proteins, and significant progress has been made in our understanding of how these proteins choreograph molecular movements associated with T-cell activation. Proteins such as WASp, WAVE2, HS1 and cofilin direct the formation of a cortical actin scaffold at the immune synapse, while actin-binding proteins such as ezrin and moesin direct binding of signaling molecules to actin filaments within the distal pole complex.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, 816D Abramson Research Center, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA
| | | |
Collapse
|
78
|
Uhrig JF, Mutondo M, Zimmermann I, Deeks MJ, Machesky LM, Thomas P, Uhrig S, Rambke C, Hussey PJ, Hülskamp M. The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis. Development 2007; 134:967-77. [PMID: 17267444 DOI: 10.1242/dev.02792] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The actin-nucleating ARP2-ARP3 complex controls cell shape in plants in many different cell types. Its activity is controlled by a multimeric complex containing BRK1 (also known as HSPC300), NAP1, SRA1, ABI and SCAR/WAVE. In this study, we focus on the function of the five putative SCAR homologues in Arabidopsis and we provide biochemical evidence that AtSCAR2 can activate the ARP2-ARP3 complex in vitro. Among the single mutants, mutations in only AtSCAR2 result in a subtle or weak phenotype similar to ARP2, ARP3 and other ;distorted' mutants. Double-mutant analysis revealed a redundancy with AtSCAR4. Systematic application of the yeast two-hybrid system and Bimolecular Fluorescence Complementation (BiFC) revealed a complex protein-interaction network between the ARP2-ARP3 complex and its genetically defined regulators. In addition to protein interactions known in other systems, we identified several new interactions, suggesting that SPIKE1 may be an integral component of the SCAR/WAVE complex and that SCAR proteins in plants might act as direct effectors of ROP GTPases.
Collapse
Affiliation(s)
- Joachim F Uhrig
- University of Köln, Botanical Institute III, Gyrhofstr. 15, 50931 Köln, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Caracino D, Jones C, Compton M, Saxe CL. The N-terminus of Dictyostelium Scar interacts with Abi and HSPC300 and is essential for proper regulation and function. Mol Biol Cell 2007; 18:1609-20. [PMID: 17314411 PMCID: PMC1855017 DOI: 10.1091/mbc.e06-06-0518] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Scar/WAVE proteins, members of the conserved Wiskott-Aldrich syndrome (WAS) family, promote actin polymerization by activating the Arp2/3 complex. A number of proteins, including a complex containing Nap1, PIR121, Abi1/2, and HSPC300, interact with Scar/WAVE, though the role of this complex in regulating Scar function remains unclear. Here we identify a short N-terminal region of Dictyostelium Scar that is necessary and sufficient for interaction with HSPC300 and Abi in vitro. Cells expressing Scar lacking this N-terminal region show abnormalities in F-actin distribution, cell morphology, movement, and cytokinesis. This is true even in the presence of wild-type Scar. The data suggest that the first 96 amino acids of Scar are necessary for participation in a large-molecular-weight protein complex, and that this Scar-containing complex is responsible for the proper localization and regulation of Scar. The presence of mis-regulated or unregulated Scar has significant deleterious effects on cells and may explain the need to keep Scar activity tightly controlled in vivo either by assembly in a complex or by rapid degradation.
Collapse
Affiliation(s)
- Diana Caracino
- *Department of Cell Biology and
- Graduate Program in Microbiology and Molecular Genetics, Emory University School of Medicine, Atlanta, GA 30322; and
| | | | - Mark Compton
- Department of Poultry Science, School of Agriculture, University of Georgia, Athens, GA 30602
| | - Charles L. Saxe
- *Department of Cell Biology and
- Graduate Program in Microbiology and Molecular Genetics, Emory University School of Medicine, Atlanta, GA 30322; and
| |
Collapse
|
80
|
Galbraith DW. DNA Microarray Analyses in Higher Plants. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2006; 10:455-73. [PMID: 17233557 DOI: 10.1089/omi.2006.10.455] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA microarrays were originally devised and described as a convenient technology for the global analysis of plant gene expression. Over the past decade, their use has expanded enormously to cover all kingdoms of living organisms. At the same time, the scope of applications of microarrays has increased beyond expression analyses, with plant genomics playing a leadership role in the on-going development of this technology. As the field has matured, the rate-limiting step has moved from that of the technical process of data generation to that of data analysis. We currently face major problems in dealing with the accumulating datasets, not simply with respect to how to archive, access, and process the huge amounts of data that have been and are being produced, but also in determining the relative quality of the different datasets. A major recognized concern is the appropriate use of statistical design in microarray experiments, without which the datasets are rendered useless. A vigorous area of current research involves the development of novel statistical tools specifically for microarray experiments. This article describes, in a necessarily selective manner, the types of platforms currently employed in microarray research and provides an overview of recent activities using these platforms in plant biology.
Collapse
Affiliation(s)
- David W Galbraith
- Department of Plant Sciences, Bio5 Institute, University of Arizona, Tucson, Arizona 85721, USA.
| |
Collapse
|
81
|
Staiger CJ, Blanchoin L. Actin dynamics: old friends with new stories. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:554-62. [PMID: 17011229 DOI: 10.1016/j.pbi.2006.09.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 09/19/2006] [Indexed: 05/12/2023]
Abstract
Actin dynamics, or the rapid turnover of actin filaments, play a central role in numerous cellular processes. A large and diverse cast of characters, accessory proteins known as actin-binding proteins, modulate actin dynamics. They do this by binding to the monomer pool, interacting with the side and ends of filaments, creating breaks along a filament, and generating new filaments de novo. Recent biochemical and single-filament imaging analyses of several conserved classes of plant actin-binding proteins reveal unusual and unexpected properties. Examples that are highlighted in this review include: an abundant monomer-binding protein that catalyzes nucleotide exchange; a barbed-end capping protein that is dissociated from filament ends by the signaling lipid, phosphatidic acid; a villin-like bundling protein that lacks all Ca(2+)-regulated activities; and a formin family member that is non-processive and is sufficient to generate actin filament bundles. These and other stories motivate a careful description of the properties of plant proteins in vitro as a prelude to greater insight into the molecular mechanism(s) underlying the regulation of actin dynamics in vivo.
Collapse
Affiliation(s)
- Christopher J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064, USA.
| | | |
Collapse
|