51
|
Duveau F, Félix MA. Role of pleiotropy in the evolution of a cryptic developmental variation in Caenorhabditis elegans. PLoS Biol 2012; 10:e1001230. [PMID: 22235190 PMCID: PMC3250502 DOI: 10.1371/journal.pbio.1001230] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 11/18/2011] [Indexed: 12/20/2022] Open
Abstract
Using vulval phenotypes in Caenorhabditis elegans, the authors show that cryptic genetic variation can evolve through selection for pleiotropic effects that alter fitness, and identify a cryptic variant that has conferred enhanced fitness on domesticated worms under laboratory conditions. Robust biological systems are expected to accumulate cryptic genetic variation that does not affect the system output in standard conditions yet may play an evolutionary role once phenotypically expressed under a strong perturbation. Genetic variation that is cryptic relative to a robust trait may accumulate neutrally as it does not change the phenotype, yet it could also evolve under selection if it affects traits related to fitness in addition to its cryptic effect. Cryptic variation affecting the vulval intercellular signaling network was previously uncovered among wild isolates of Caenorhabditis elegans. Using a quantitative genetic approach, we identify a non-synonymous polymorphism of the previously uncharacterized nath-10 gene that affects the vulval phenotype when the system is sensitized with different mutations, but not in wild-type strains. nath-10 is an essential protein acetyltransferase gene and the homolog of human NAT10. The nath-10 polymorphism also presents non-cryptic effects on life history traits. The nath-10 allele carried by the N2 reference strain leads to a subtle increase in the egg laying rate and in the total number of sperm, a trait affecting the trade-off between fertility and minimal generation time in hermaphrodite individuals. We show that this allele appeared during early laboratory culture of N2, which allowed us to test whether it may have evolved under selection in this novel environment. The derived allele indeed strongly outcompetes the ancestral allele in laboratory conditions. In conclusion, we identified the molecular nature of a cryptic genetic variation and characterized its evolutionary history. These results show that cryptic genetic variation does not necessarily accumulate neutrally at the whole-organism level, but may evolve through selection for pleiotropic effects that alter fitness. In addition, cultivation in the laboratory has led to adaptive evolution of the reference strain N2 to the laboratory environment, which may modify other phenotypes of interest. Robustness is a property of biological systems that ensures the production of reproducible phenotypes in spite of underlying environmental, stochastic, and genetic variability. A consequence of robustness is that potentially functional genetic variation is free to accumulate in natural populations because it is buffered at the phenotypic level. Even if this so-called “cryptic” genetic variation has no obvious effects under standard conditions, it may become phenotypically expressed upon major genetic or environmental perturbations. Here we used the model organism Caenorhabditis elegans to identify genetic variations involved in the cryptic evolution of vulval cell fate induction between wild strains. We found that a mutation in the essential nath-10 gene not only contributes to cryptic genetic variation in the vulval system, but also affects key life history traits that are expected to be under a strong selective pressure (brood size, age at sexual maturity, sperm number and rate of progeny production). Indeed, an allele of nath-10 that emerged during the laboratory domestication of C. elegans about 50 years ago confers a strong competitive advantage over the ancestral allele under laboratory conditions. A genetic variation that is cryptic for a robust trait can therefore affect more sensitive phenotypes and thus evolve under selection.
Collapse
|
52
|
Pénigault JB, Félix MA. Evolution of a system sensitive to stochastic noise: P3.p cell fate in Caenorhabditis. Dev Biol 2011; 357:419-27. [PMID: 21693113 DOI: 10.1016/j.ydbio.2011.05.675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/06/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022]
Abstract
The C. elegans cell lineage is overall invariant. One rare instance of variability concerns P3.p, the most anterior vulva precursor cell, which may either fuse with the epidermis without dividing, or remain competent to form vulval tissue and divide. Here we examine the evolutionary properties of this stochastic variation in P3.p fate. In the Caenorhabditis genus, high P3.p competence is ancestral and reduction in P3.p competence and division frequency occurred in C. sp. 14 and in a clade of nine species. Within this clade, the frequency of P3.p division further varies within and among species, being intermediate in C. elegans and low in C. briggsae. P3.p fate frequency is sensitive to random mutation accumulation, suggesting that this trait may evolve rapidly because of its sensitivity to mutational impact. P3.p fate depends on LIN-39/Hox5 expression and we find that the peak of LIN-39/Hox5 protein level is displaced posteriorly in C. briggsae compared to C. elegans. However, P3.p fate specification is most sensitive to the dose of EGL-20 and CWN-1, two Wnts that are secreted in a long-range gradient from the posterior end of C. elegans larvae (accompanying article). A half-dose of either of these Wnts is sufficient to affect division frequency in C. elegans N2 to levels similar to those in C. briggsae. Symmetrically, we show that an increase in Wnt dose rescues anterior competence in C. briggsae. We propose that evolutionary variation in the concentration or interpretation of the long-range Wnt gradient may be involved in the rapid evolution of P3.p fate in Caenorhabditis.
Collapse
Affiliation(s)
- Jean-Baptiste Pénigault
- Institut Jacques Monod, CNRS-University Paris-Diderot, 15 rue Hélène Brion, 75205 Paris cedex 13, France
| | | |
Collapse
|
53
|
Hoyos E, Kim K, Milloz J, Barkoulas M, Pénigault JB, Munro E, Félix MA. Quantitative variation in autocrine signaling and pathway crosstalk in the Caenorhabditis vulval network. Curr Biol 2011; 21:527-38. [PMID: 21458263 DOI: 10.1016/j.cub.2011.02.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/08/2011] [Accepted: 02/23/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Biological networks experience quantitative change in response to environmental and evolutionary variation. Computational modeling allows exploration of network parameter space corresponding to such variations. The intercellular signaling network underlying Caenorhabditis vulval development specifies three fates in a row of six precursor cells, yielding a quasi-invariant 3°3°2°1°2°3° cell fate pattern. Two seemingly conflicting verbal models of vulval precursor cell fate specification have been proposed: sequential induction by the EGF-MAP kinase and Notch pathways, or morphogen-based induction by the former. RESULTS To study the mechanistic and evolutionary system properties of this network, we combine experimental studies with computational modeling, using a model that keeps the network architecture constant but varies parameters. We first show that the Delta autocrine loop can play an essential role in 2° fate specification. With this autocrine loop, the same network topology can be quantitatively tuned to use in the six-cell-row morphogen-based or sequential patterning mechanisms, which may act singly, cooperatively, or redundantly. Moreover, different quantitative tunings of this same network can explain vulval patterning observed experimentally in C. elegans, C. briggsae, C. remanei, and C. brenneri. We experimentally validate model predictions, such as interspecific differences in isolated vulval precursor cell behavior and in spatial regulation of Notch activity. CONCLUSIONS Our study illustrates how quantitative variation in the same network comprises developmental patterning modes that were previously considered qualitatively distinct and also accounts for evolution among closely related species.
Collapse
Affiliation(s)
- Erika Hoyos
- Center for Cell Dynamics, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Félix MA, Ashe A, Piffaretti J, Wu G, Nuez I, Bélicard T, Jiang Y, Zhao G, Franz CJ, Goldstein LD, Sanroman M, Miska EA, Wang D. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol 2011; 9:e1000586. [PMID: 21283608 PMCID: PMC3026760 DOI: 10.1371/journal.pbio.1000586] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/10/2010] [Indexed: 01/01/2023] Open
Abstract
An ideal model system to study antiviral immunity and host-pathogen co-evolution would combine a genetically tractable small animal with a virus capable of naturally infecting the host organism. The use of C. elegans as a model to define host-viral interactions has been limited by the lack of viruses known to infect nematodes. From wild isolates of C. elegans and C. briggsae with unusual morphological phenotypes in intestinal cells, we identified two novel RNA viruses distantly related to known nodaviruses, one infecting specifically C. elegans (Orsay virus), the other C. briggsae (Santeuil virus). Bleaching of embryos cured infected cultures demonstrating that the viruses are neither stably integrated in the host genome nor transmitted vertically. 0.2 µm filtrates of the infected cultures could infect cured animals. Infected animals continuously maintained viral infection for 6 mo (∼50 generations), demonstrating that natural cycles of horizontal virus transmission were faithfully recapitulated in laboratory culture. In addition to infecting the natural C. elegans isolate, Orsay virus readily infected laboratory C. elegans mutants defective in RNAi and yielded higher levels of viral RNA and infection symptoms as compared to infection of the corresponding wild-type N2 strain. These results demonstrated a clear role for RNAi in the defense against this virus. Furthermore, different wild C. elegans isolates displayed differential susceptibility to infection by Orsay virus, thereby affording genetic approaches to defining antiviral loci. This discovery establishes a bona fide viral infection system to explore the natural ecology of nematodes, host-pathogen co-evolution, the evolution of small RNA responses, and innate antiviral mechanisms.
Collapse
Affiliation(s)
- Marie-Anne Félix
- Institut Jacques Monod, CNRS-University of Paris-Diderot, Paris, France
| | - Alyson Ashe
- Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Guang Wu
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States of America
| | - Isabelle Nuez
- Institut Jacques Monod, CNRS-University of Paris-Diderot, Paris, France
| | - Tony Bélicard
- Institut Jacques Monod, CNRS-University of Paris-Diderot, Paris, France
| | - Yanfang Jiang
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States of America
| | - Guoyan Zhao
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States of America
| | - Carl J. Franz
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States of America
| | | | - Mabel Sanroman
- Institut Jacques Monod, CNRS-University of Paris-Diderot, Paris, France
| | - Eric A. Miska
- Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - David Wang
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
55
|
Raman K, Wagner A. Evolvability and robustness in a complex signalling circuit. MOLECULAR BIOSYSTEMS 2011; 7:1081-92. [PMID: 21225054 DOI: 10.1039/c0mb00165a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biological systems at various levels of organisation exhibit robustness, as well as phenotypic variability or evolvability, the ability to evolve novel phenotypes. We still know very little about the relationship between robustness and phenotypic variability at levels of organisation beyond individual macromolecules, and especially for signalling circuits. Here, we examine multiple alternate topologies of the Saccharomyces cerevisiae target-of-rapamycin (TOR) signalling circuit, in order to understand the circuit's robustness and phenotypic variability. We consider each of the topological variants a genotype, a set of alternative interactions between TOR circuit components. Two genotypes are neighbours in genotype space if they can be reached from each other by a single small genetic change. Each genotype (topology) has a signalling phenotype, which we define via the concentration trajectories of key signalling molecules. We find that the circuits we study can produce almost 300 different phenotypes. The number of genotypes with a given phenotype varies very widely among these phenotypes. Some phenotypes have few associated genotypes. Others have many genotypes that form genotype networks extending far through genotype space. A minority of phenotypes accounts for the vast majority of genotypes. Importantly, we find that these phenotypes tend to have large genotype networks, greater robustness and a greater ability to produce novel phenotypes. Thus, over a broad range of phenotypic robustness, robustness facilitates phenotypic variability in our study system. Our observations show parallels to studies on macromolecules, suggesting that similar principles might govern robustness and phenotypic variability in biological systems. Our approach points a way towards mapping genotype spaces in complex circuitry, and it exposes some challenges such mapping faces.
Collapse
Affiliation(s)
- Karthik Raman
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
56
|
Woodruff GC, Eke O, Baird SE, Félix MA, Haag ES. Insights into species divergence and the evolution of hermaphroditism from fertile interspecies hybrids of Caenorhabditis nematodes. Genetics 2010; 186:997-1012. [PMID: 20823339 PMCID: PMC2975280 DOI: 10.1534/genetics.110.120550] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/27/2010] [Indexed: 11/18/2022] Open
Abstract
The architecture of both phenotypic variation and reproductive isolation are important problems in evolutionary genetics. The nematode genus Caenorhabditis includes both gonochoristic (male/female) and androdioecious (male/hermaprodite) species. However, the natural genetic variants distinguishing reproductive mode remain unknown, and nothing is known about the genetic basis of postzygotic isolation in the genus. Here we describe the hybrid genetics of the first Caenorhabditis species pair capable of producing fertile hybrid progeny, the gonochoristic Caenorhabditis sp. 9 and the androdioecious C. briggsae. Though many interspecies F(1) arrest during embryogenesis, a viable subset develops into fertile females and sterile males. Reciprocal parental crosses reveal asymmetry in male-specific viability, female fertility, and backcross viability. Selfing and spermatogenesis are extremely rare in XX F(1), and almost all hybrid self-progeny are inviable. Consistent with this, F(1) females do not express male-specific molecular germline markers. We also investigated three approaches to producing hybrid hermaphrodites. A dominant mutagenesis screen for self-fertile F(1) hybrids was unsuccessful. Polyploid F(1) hybrids with increased C. briggsae genomic material did show elevated rates of selfing, but selfed progeny were mostly inviable. Finally, the use of backcrosses to render the hybrid genome partial homozygous for C. briggsae alleles did not increase the incidence of selfing or spermatogenesis relative to the F(1) generation. These hybrid animals were genotyped at 23 loci, and significant segregation distortion (biased against C. briggsae) was detected at 13 loci. This, combined with an absence of productive hybrid selfing, prevents formulation of simple hypotheses about the genetic architecture of hermaphroditism. In the near future, this hybrid system will likely be fruitful for understanding the genetics of reproductive isolation in Caenorhabditis.
Collapse
Affiliation(s)
- Gavin C. Woodruff
- Department of Biology, University of Maryland, College Park, Maryland 20742, Department of Biological Sciences, Wright State University, Dayton, Ohio 45435 and Institut Jacques Monod, 75205 Paris Cedex 13, France
| | - Onyinyechi Eke
- Department of Biology, University of Maryland, College Park, Maryland 20742, Department of Biological Sciences, Wright State University, Dayton, Ohio 45435 and Institut Jacques Monod, 75205 Paris Cedex 13, France
| | - Scott E. Baird
- Department of Biology, University of Maryland, College Park, Maryland 20742, Department of Biological Sciences, Wright State University, Dayton, Ohio 45435 and Institut Jacques Monod, 75205 Paris Cedex 13, France
| | - Marie-Anne Félix
- Department of Biology, University of Maryland, College Park, Maryland 20742, Department of Biological Sciences, Wright State University, Dayton, Ohio 45435 and Institut Jacques Monod, 75205 Paris Cedex 13, France
| | - Eric S. Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742, Department of Biological Sciences, Wright State University, Dayton, Ohio 45435 and Institut Jacques Monod, 75205 Paris Cedex 13, France
| |
Collapse
|
57
|
Johnston RJ, Desplan C. Stochastic mechanisms of cell fate specification that yield random or robust outcomes. Annu Rev Cell Dev Biol 2010; 26:689-719. [PMID: 20590453 DOI: 10.1146/annurev-cellbio-100109-104113] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although cell fate specification is tightly controlled to yield highly reproducible results and avoid extreme variation, developmental programs often incorporate stochastic mechanisms to diversify cell types. Stochastic specification phenomena are observed in a wide range of species and an assorted set of developmental contexts. In bacteria, stochastic mechanisms are utilized to generate transient subpopulations capable of surviving adverse environmental conditions. In vertebrate, insect, and worm nervous systems, stochastic fate choices are used to increase the repertoire of sensory and motor neuron subtypes. Random fate choices are also integrated into developmental programs controlling organogenesis. Although stochastic decisions can be maintained to produce a mosaic of fates within a population of cells, they can also be compensated for or directed to yield robust and reproducible outcomes.
Collapse
|
58
|
Abstract
Cell specification requires that particular subsets of cells adopt unique expression patterns that ultimately define the fates of their descendants. In C. elegans, cell fate specification involves the combinatorial action of multiple signals that produce activation of a small number of "blastomere specification" factors. These initiate expression of gene regulatory networks that drive development forward, leading to activation of "tissue specification" factors. In this review, the C. elegans embryo is considered as a model system for studies of cell specification. The techniques used to study cell fate in this species, and the themes that have emerged, are described.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA.
| |
Collapse
|
59
|
Cryptic variation between species and the basis of hybrid performance. PLoS Biol 2010; 8:e1000429. [PMID: 20652019 PMCID: PMC2907293 DOI: 10.1371/journal.pbio.1000429] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 06/09/2010] [Indexed: 01/29/2023] Open
Abstract
Studies on natural variation in gene expression and its phenotypic effects provide fresh insights into the origins of vigour and sterility in species hybrids. Crosses between closely related species give two contrasting results. One result is that species hybrids may be inferior to their parents, for example, being less fertile [1]. The other is that F1 hybrids may display superior performance (heterosis), for example with increased vigour [2]. Although various hypotheses have been proposed to account for these two aspects of hybridisation, their biological basis is still poorly understood [3]. To gain further insights into this issue, we analysed the role that variation in gene expression may play. We took a conserved trait, flower asymmetry in Antirrhinum, and determined the extent to which the underlying regulatory genes varied in expression among closely related species. We show that expression of both genes analysed, CYC and RAD, varies significantly between species because of cis-acting differences. By making a quantitative genotype-phenotype map, using a range of mutant alleles, we demonstrate that the species lie on a plateau in gene expression-morphology space, so that the variation has no detectable phenotypic effect. However, phenotypic differences can be revealed by shifting genotypes off the plateau through genetic crosses. Our results can be readily explained if genomes are free to evolve within an effectively neutral zone in gene expression space. The consequences of this drift will be negligible for individual loci, but when multiple loci across the genome are considered, we show that the variation may have significant effects on phenotype and fitness, causing a significant drift load. By considering these consequences for various gene-expression–fitness landscapes, we conclude that F1 hybrids might be expected to show increased performance with regard to conserved traits, such as basic physiology, but reduced performance with regard to others. Thus, our study provides a new way of explaining how various aspects of hybrid performance may arise through natural variation in gene activity. A major conundrum in biology is why hybrids between species display two opposing features. On the one hand, hybrids are often more vigorous or productive than their parents, a phenomenon called hybrid vigor or hybrid superiority. On the other hand they often show reduced vigour and fertility, known as hybrid inferiority. Various theories have been proposed to account for these two aspects of hybrid performance, yet we still lack a coherent account of how these conflicting characteristics arise. To address this issue, we looked at the role that variation in gene expression between parental species may play. By measuring this variation and its effect on phenotype, we show that expression for specific genes may be free to vary during evolution within particular bounds. Although such variation may have little phenotypic effect when each locus is considered individually, the collective effect of variation across multiple genes may become highly significant. Using arguments from theoretical population genetics we show how these effects might lead to both hybrid superiority and inferiority, providing fresh insights into the age-old problem of hybrid performance.
Collapse
|
60
|
Conserved mechanism of Wnt signaling function in the specification of vulval precursor fates in C. elegans and C. briggsae. Dev Biol 2010; 346:128-39. [PMID: 20624381 DOI: 10.1016/j.ydbio.2010.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/17/2010] [Accepted: 07/01/2010] [Indexed: 01/29/2023]
Abstract
The C. elegans hermaphrodite vulva serves as a paradigm for understanding how signaling pathways control organ formation. Previous studies have shown that Wnt signaling plays important roles in vulval development. To understand the function and evolution of Wnt signaling in Caenorhabditis nematodes we focused on C. briggsae, a species that is substantially divergent from C. elegans in terms of the evolutionary time scale yet shares almost identical morphology. We isolated mutants in C. briggsae that display multiple pseudo-vulvae resulting from ectopic VPC induction. We cloned one of these loci and found that it encodes an Axin homolog, Cbr-PRY-1. Our genetic studies revealed that Cbr-pry-1 functions upstream of the canonical Wnt pathway components Cbr-bar-1 (beta-catenin) and Cbr-pop-1(tcf/lef) as well as the Hox target Cbr-lin-39 (Dfd/Scr). We further characterized the pry-1 vulval phenotype in C. briggsae and C. elegans using 8 cell fate markers, cell ablation, and genetic interaction approaches. Our results show that ectopically induced VPCs in pry-1 mutants adopt 2° fates independently of the gonad-derived inductive and LIN-12/Notch-mediated lateral signaling pathways. We also found that Cbr-pry-1 mutants frequently show a failure of P7.p induction. A similar, albeit low penetrant, defect is also observed in C. elegans pry-1 mutants. The genetic analysis of the P7.p induction defect revealed that it was caused by altered regulation of lin-12 and its transcriptional target lip-1 (MAP kinase phosphatase). Thus, our results provide evidence for LIN-12/Notch-dependent and independent roles of Wnt signaling in promoting 2 degrees VPC fates in both nematode species.
Collapse
|
61
|
Chandler CH. Cryptic intraspecific variation in sex determination in Caenorhabditis elegans revealed by mutations. Heredity (Edinb) 2010; 105:473-82. [PMID: 20502478 DOI: 10.1038/hdy.2010.62] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sex determination mechanisms (SDMs) show striking diversity and appear to evolve rapidly. Although interspecific comparisons and studies of ongoing major transitions in sex determination (such as the establishment of new sex chromosomes) have shed light on how SDMs evolve, comparatively little attention has been paid to intraspecific variation with less drastic effects. In this study, I used mutant strains carrying a temperature-sensitive sex determination mutation, along with a second null mutation, in different wild genetic backgrounds to uncover hidden variation in the SDM of the model nematode Caenorhabditis elegans. I then used quantitative trait locus (QTL) mapping to begin to investigate its genetic basis. I identified several QTLs, and although this variation apparently involved genotype-by-temperature interactions, QTL effects were generally consistent across temperatures. These QTLs collectively and individually explained a relatively large fraction of the variance in tail morphology (a sexually dimorphic trait), and two QTLs contained no genes known to be involved in somatic sex determination. These results show the existence of within-species variation in sex determination in this species, and underscore the potential for microevolutionary change in this important developmental pathway.
Collapse
Affiliation(s)
- C H Chandler
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
62
|
Braendle C, Baer CF, Félix MA. Bias and evolution of the mutationally accessible phenotypic space in a developmental system. PLoS Genet 2010; 6:e1000877. [PMID: 20300655 PMCID: PMC2837400 DOI: 10.1371/journal.pgen.1000877] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 02/08/2010] [Indexed: 11/19/2022] Open
Abstract
Genetic and developmental architecture may bias the mutationally available phenotypic spectrum. Although such asymmetries in the introduction of variation may influence possible evolutionary trajectories, we lack quantitative characterization of biases in mutationally inducible phenotypic variation, their genotype-dependence, and their underlying molecular and developmental causes. Here we quantify the mutationally accessible phenotypic spectrum of the vulval developmental system using mutation accumulation (MA) lines derived from four wild isolates of the nematodes Caenorhabditis elegans and C. briggsae. The results confirm that on average, spontaneous mutations degrade developmental precision, with MA lines showing a low, yet consistently increased, proportion of developmental defects and variants. This result indicates strong purifying selection acting to maintain an invariant vulval phenotype. Both developmental system and genotype significantly bias the spectrum of mutationally inducible phenotypic variants. First, irrespective of genotype, there is a developmental bias, such that certain phenotypic variants are commonly induced by MA, while others are very rarely or never induced. Second, we found that both the degree and spectrum of mutationally accessible phenotypic variation are genotype-dependent. Overall, C. briggsae MA lines exhibited a two-fold higher decline in precision than the C. elegans MA lines. Moreover, the propensity to generate specific developmental variants depended on the genetic background. We show that such genotype-specific developmental biases are likely due to cryptic quantitative variation in activities of underlying molecular cascades. This analysis allowed us to identify the mutationally most sensitive elements of the vulval developmental system, which may indicate axes of potential evolutionary variation. Consistent with this scenario, we found that evolutionary trends in the vulval system concern the phenotypic characters that are most easily affected by mutation. This study provides an empirical assessment of developmental bias and the evolution of mutationally accessible phenotypes and supports the notion that such bias may influence the directions of evolutionary change.
Collapse
|
63
|
New tools for investigating the comparative biology of Caenorhabditis briggsae and C. elegans. Genetics 2009; 184:853-63. [PMID: 20008572 DOI: 10.1534/genetics.109.110270] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparative studies of Caenorhabditis briggsae and C. elegans have provided insights into gene function and developmental control in both organisms. C. elegans is a well developed model organism with a variety of molecular and genetic tools to study gene functions. In contrast, there are only very limited tools available for its closest relative, C. briggsae. To take advantage of the full potential of this comparative approach, we have developed several genetic and molecular tools to facilitate functional analysis in C. briggsae. First, we designed and implemented an SNP-based oligonucleotide microarray for rapid mapping of genetic mutants in C. briggsae. Second, we generated a mutagenized frozen library to permit the isolation of targeted deletions and used the library to recover a deletion mutant of cbr-unc-119 for use as a transgenic marker. Third, we used the cbr-unc-119 mutant in ballistic transformation and generated fluorescently labeled strains that allow automated lineaging and cellular resolution expression analysis. Finally, we demonstrated the potential of automated lineaging by profiling expression of egl-5, hlh-1, and pha-4 at cellular resolution and by detailed phenotyping of the perturbations on the Wnt signaling pathway. These additions to the experimental toolkit for C. briggsae should greatly increase its utility in comparative studies with C. elegans. With the emerging sequence of nematode species more closely related to C. briggsae, these tools may open novel avenues of experimentation in C. briggsae itself.
Collapse
|
64
|
The other side of phenotypic plasticity: a developmental system that generates an invariant phenotype despite environmental variation. J Biosci 2009; 34:543-51. [DOI: 10.1007/s12038-009-0073-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
65
|
Abstract
Our understanding of how evolution acts on biological networks remains patchy, as is our knowledge of how that action is best identified, modelled and understood. Starting with network structure and the evolution of protein-protein interaction networks, we briefly survey the ways in which network evolution is being addressed in the fields of systems biology, development and ecology. The approaches highlighted demonstrate a movement away from a focus on network topology towards a more integrated view, placing biological properties centre-stage. We argue that there remains great potential in a closer synergy between evolutionary biology and biological network analysis, although that may require the development of novel approaches and even different analogies for biological networks themselves.
Collapse
Affiliation(s)
- Christopher G Knight
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Manchester, UK.
| | | |
Collapse
|
66
|
Delattre M, Félix MA. The evolutionary context of robust and redundant cell biological mechanisms. Bioessays 2009; 31:537-45. [DOI: 10.1002/bies.200800215] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
67
|
Click A, Savaliya CH, Kienle S, Herrmann M, Pires-daSilva A. Natural variation of outcrossing in the hermaphroditic nematode Pristionchus pacificus. BMC Evol Biol 2009; 9:75. [PMID: 19379507 PMCID: PMC2676249 DOI: 10.1186/1471-2148-9-75] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 04/20/2009] [Indexed: 01/09/2023] Open
Abstract
Background Evolution of selfing can be associated with an increase in fixation of deleterious mutations, which in certain conditions can lead to species extinction. In nematodes, a few species evolved self-fertilization independently, making them excellent model systems to study the evolutionary consequences of this type of mating system. Results Here we determine various parameters that influence outcrossing in the hermaphroditic nematode Pristionchus pacificus and compare them to the better known Caenorhabditis elegans. These nematode species are distinct in terms of genetic diversity, which could be explained by differences in outcrossing rates. We find that, similarly to C. elegans, P. pacificus males are generated at low frequencies from self-fertilizing hermaphrodites and are relatively poor mating partners. Furthermore, crosses between different isolates reveal that hybrids have lower brood sizes than the pure strains, which is a sign of outbreeding depression. In contrast to C. elegans, P. pacificus has lower brood sizes and the male X-bearing sperm is able to outcompete the X-nullo sperm. Conclusion The results indicate that there is no evidence of any selection acting very strongly on P. pacificus males.
Collapse
Affiliation(s)
- Arielle Click
- Biology Department, University of Texas at Arlington, Arlington, Texas 76019, USA.
| | | | | | | | | |
Collapse
|
68
|
Giurumescu CA, Sternberg PW, Asthagiri AR. Predicting phenotypic diversity and the underlying quantitative molecular transitions. PLoS Comput Biol 2009; 5:e1000354. [PMID: 19360093 PMCID: PMC2661366 DOI: 10.1371/journal.pcbi.1000354] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 03/10/2009] [Indexed: 11/19/2022] Open
Abstract
During development, signaling networks control the formation of multicellular
patterns. To what extent quantitative fluctuations in these complex networks may
affect multicellular phenotype remains unclear. Here, we describe a
computational approach to predict and analyze the phenotypic diversity that is
accessible to a developmental signaling network. Applying this framework to
vulval development in C. elegans, we demonstrate that
quantitative changes in the regulatory network can render ∼500
multicellular phenotypes. This phenotypic capacity is an order-of-magnitude
below the theoretical upper limit for this system but yet is large enough to
demonstrate that the system is not restricted to a select few outcomes. Using
metrics to gauge the robustness of these phenotypes to parameter perturbations,
we identify a select subset of novel phenotypes that are the most promising for
experimental validation. In addition, our model calculations provide a layout of
these phenotypes in network parameter space. Analyzing this landscape of
multicellular phenotypes yielded two significant insights. First, we show that
experimentally well-established mutant phenotypes may be rendered using
non-canonical network perturbations. Second, we show that the predicted
multicellular patterns include not only those observed in C.
elegans, but also those occurring exclusively in other species of the
Caenorhabditis genus. This result demonstrates that
quantitative diversification of a common regulatory network is indeed
demonstrably sufficient to generate the phenotypic differences observed across
three major species within the Caenorhabditis genus. Using our
computational framework, we systematically identify the quantitative changes
that may have occurred in the regulatory network during the evolution of these
species. Our model predictions show that significant phenotypic diversity may be
sampled through quantitative variations in the regulatory network without
overhauling the core network architecture. Furthermore, by comparing the
predicted landscape of phenotypes to multicellular patterns that have been
experimentally observed across multiple species, we systematically trace the
quantitative regulatory changes that may have occurred during the evolution of
the Caenorhabditis genus. The diversity of metazoan life forms that we experience today arose as
multicellular systems continually sampled new phenotypes that withstood ever
changing selective pressures. This phenotypic diversification is driven by
variations in the underlying regulatory network that instructs cells to form
multicellular patterns and structures. Here, we computationally construct the
phenotypic diversity that may be accessible through quantitative tuning of the
regulatory network that drives multicellular patterning during C.
elegans vulval development. We show that significant phenotypic
diversity may be sampled through quantitative variations without overhauling the
core regulatory network architecture. Furthermore, by comparing the predicted
landscape of phenotypes to multicellular patterns that have been experimentally
observed across multiple species, we systematically deduce the quantitative
molecular changes that may have transpired during the evolution of the
Caenorhabditis genus.
Collapse
Affiliation(s)
- Claudiu A. Giurumescu
- Division of Chemistry and Chemical Engineering, California Institute of
Technology, Pasadena, California, United States of America
| | - Paul W. Sternberg
- Division of Biology, California Institute of Technology, Pasadena,
California, United States of America
| | - Anand R. Asthagiri
- Division of Chemistry and Chemical Engineering, California Institute of
Technology, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
69
|
Braendle C, Félix MA. Plasticity and errors of a robust developmental system in different environments. Dev Cell 2009; 15:714-24. [PMID: 19000836 DOI: 10.1016/j.devcel.2008.09.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/14/2008] [Accepted: 09/25/2008] [Indexed: 11/27/2022]
Abstract
Many developmental processes generate invariant phenotypes in a wide range of ecological conditions. Such robustness to environmental variation is a fundamental biological property, yet its extent, limits, and adaptive significance have rarely been assessed empirically. Here we tested how environmental variation affects vulval formation in Caenorhabditis nematodes. In different environments, a correct vulval pattern develops with high precision, but rare deviant patterns reveal the system's limits and how its mechanisms respond to environmental challenges. Key features of the apparent robustness are functional redundancy among vulval precursor cells and tolerance to quantitative variation in Ras, Notch, and Wnt pathway activities. The observed environmental responses and precision of vulval patterning vary within and between Caenorhabditis species. These results highlight the complex response of developmental systems to the environment and illustrate how a robust and invariant phenotype may result through cellular and molecular processes that are highly plastic--across environments and evolution.
Collapse
Affiliation(s)
- Christian Braendle
- Institut Jacques Monod, CNRS-University Denis Diderot-Paris 7-UPMC, Tour 43, 2 place Jussieu, 75251 Paris cedex 05, France.
| | | |
Collapse
|
70
|
Abstract
A joint meeting of the Japanese and French societies for Developmental Biology, entitled `Frontiers in Developmental Biology', was recently held in Giens, France. The organizers, Patrick Lemaire and Shinichi Aizawa, showcased some of the rapid progress in the field that has been made possible through the use of modern large-scale network analyses, and of an increasingly sophisticated array of tools and ideas from microscopy, mathematics and computer science.
Collapse
Affiliation(s)
| | - Edwin Munro
- Center for Cell Dynamics, Friday Harbor Labs, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA
| |
Collapse
|
71
|
Genomic consequences of background effects on scalloped mutant expressivity in the wing of Drosophila melanogaster. Genetics 2008; 181:1065-76. [PMID: 19064709 DOI: 10.1534/genetics.108.096453] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genetic background effects contribute to the phenotypic consequences of mutations and are pervasive across all domains of life that have been examined, yet little is known about how they modify genetic systems. In part this is due to the lack of tractable model systems that have been explicitly developed to study the genetic and evolutionary consequences of background effects. In this study we demonstrate that phenotypic expressivity of the scalloped(E3) (sd(E3)) mutation of Drosophila melanogaster is background dependent and is the result of at least one major modifier segregating between two standard lab wild-type strains. We provide evidence that at least one of the modifiers is linked to the vestigial region and demonstrate that the background effects modify the spatial distribution of known sd target genes in a genotype-dependent manner. In addition, microarrays were used to examine the consequences of genetic background effects on the global transcriptome. Expression differences between wild-type strains were found to be as large as or larger than the effects of mutations with substantial phenotypic effects, and expression differences between wild type and mutant varied significantly between genetic backgrounds. Significantly, we demonstrate that the epistatic interaction between sd(E3) and an optomotor blind mutation is background dependent. The results are discussed within the context of developing a complex but more realistic view of the consequences of genetic background effects with respect to mutational analysis and studies of epistasis and cryptic genetic variation segregating in natural populations.
Collapse
|
72
|
Abstract
The efficiency of RNA interference varies between different organisms, even among nematodes. A recent report of successful RNA interference in the nematode Panagrolaimus superbus in BMC Molecular Biology has implications for the comparative study of the functional genomics of nematode species, and prompts reflections on the choice of Caenorhabditis elegans as a model organism.
Collapse
Affiliation(s)
- Marie-Anne Félix
- Institut Jacques Monod, CNRS - Universities of Paris 7 and 6, Tour 43, 2 place Jussieu, 75251 Paris cedex 05, France.
| |
Collapse
|
73
|
Milloz J, Duveau F, Nuez I, Félix MA. Intraspecific evolution of the intercellular signaling network underlying a robust developmental system. Genes Dev 2008; 22:3064-75. [PMID: 18981482 PMCID: PMC2577794 DOI: 10.1101/gad.495308] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 08/29/2008] [Indexed: 11/25/2022]
Abstract
Many biological systems produce an invariant output when faced with stochastic or environmental variation. This robustness of system output to variation affecting the underlying process may allow for "cryptic" genetic evolution within the system without change in output. We studied variation of cell fate patterning of Caenorhabditis elegans vulva precursors, a developmental system that relies on a simple intercellular signaling network and yields an invariant output of cell fates and lineages among C. elegans wild isolates. We first investigated the system's genetic variation in C. elegans by means of genetic tools and cell ablation to break down its buffering mechanisms. We uncovered distinct architectures of quantitative variation along the Ras signaling cascade, including compensatory variation, and differences in cell sensitivity to induction along the anteroposterior axis. In the unperturbed system, we further found variation between isolates in spatio-temporal dynamics of Ras pathway activity, which can explain the phenotypic differences revealed upon perturbation. Finally, the variation mostly affects the signaling pathways in a tissue-specific manner. We thus demonstrate and characterize microevolution of a developmental signaling network. In addition, our results suggest that the vulva genetic screens would have yielded a different mutation spectrum, especially for Wnt pathway mutations, had they been performed in another C. elegans genetic background.
Collapse
Affiliation(s)
- Josselin Milloz
- Institut Jacques Monod, CNRS-University Denis Diderot-Paris 7-UPMC, 75251 Paris cedex 05, France
| | - Fabien Duveau
- Institut Jacques Monod, CNRS-University Denis Diderot-Paris 7-UPMC, 75251 Paris cedex 05, France
| | - Isabelle Nuez
- Institut Jacques Monod, CNRS-University Denis Diderot-Paris 7-UPMC, 75251 Paris cedex 05, France
| | - Marie-Anne Félix
- Institut Jacques Monod, CNRS-University Denis Diderot-Paris 7-UPMC, 75251 Paris cedex 05, France
| |
Collapse
|
74
|
Lin KTH, Broitman-Maduro G, Hung WWK, Cervantes S, Maduro MF. Knockdown of SKN-1 and the Wnt effector TCF/POP-1 reveals differences in endomesoderm specification in C. briggsae as compared with C. elegans. Dev Biol 2008; 325:296-306. [PMID: 18977344 DOI: 10.1016/j.ydbio.2008.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/29/2008] [Accepted: 10/01/2008] [Indexed: 02/04/2023]
Abstract
In the nematode, C. elegans, the bZIP/homeodomain transcription factor SKN-1 and the Wnt effector TCF/POP-1 are central to the maternal specification of the endomesoderm prior to gastrulation. The 8-cell stage blastomere MS is primarily a mesodermal precursor, giving rise to cells of the pharynx and body muscle among others, while its sister E clonally generates the entire endoderm (gut). In C. elegans, loss of SKN-1 results in the absence of MS-derived tissues all of the time, and loss of gut most of the time, while loss of POP-1 results in a mis-specification of MS as an E-like cell, resulting in ectopic gut. We show that in C. briggsae, RNAi of skn-1 results in a stronger E defect but no apparent MS defect, while RNAi of pop-1 results in loss of gut and an apparent E to MS transformation, the opposite of the pop-1 knockdown phenotype seen in C. elegans. The difference in pop-1(-) phenotypes correlates with changes in how the endogenous endoderm-specifying end genes are regulated by POP-1 in the two species. Our results suggest that integration of Wnt-dependent and Wnt-independent cell fate specification pathways within the Caenorhabditis genus can occur in different ways.
Collapse
Affiliation(s)
- Katy Tan-Hui Lin
- Department of Biology, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
75
|
Marri S, Gupta BP. Dissection of lin-11 enhancer regions in Caenorhabditis elegans and other nematodes. Dev Biol 2008; 325:402-11. [PMID: 18950616 DOI: 10.1016/j.ydbio.2008.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 09/16/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
The Caenorhabditis elegans LIM homeobox gene lin-11 plays crucial roles in the morphogenesis of the reproductive system and differentiation of several neurons. The expression of lin-11 in different tissues is regulated by enhancer regions located upstream as well as within lin-11 introns. These regions are functionally separable suggesting that multiple regulatory inputs operate to control the spatiotemporal pattern of lin-11 expression. To further dissect apart the nature of lin-11 regulation we focused on three Caenorhabditis species C. briggsae, C. remanei, and C. brenneri that are substantially diverged from C. elegans but share almost identical vulval morphology. We show that, in these species, the 5' region of lin-11 possesses conserved sequences to activate lin-11 expression in the reproductive system. Analysis of the in vivo role of these sequences in C. elegans has led to the identification of three functionally distinct enhancers for the vulva, VC neurons, and uterine pi lineage cells. We found that the pi enhancer is regulated by FOS homolog FOS-1 and LIN-12/Notch pathway effectors, LAG-1 (Su(H)/CBF1 family) and EGL-43 (EVI1 family). These results indicate that multiple factors cooperate to regulate pi-specific expression of lin-11 and together with other findings suggest that the mechanism of lin-11 regulation by LIN-12/Notch signaling is evolutionarily conserved in Caenorhabditis species. Our work demonstrates that 4-way comparison is a powerful tool to study conserved mechanisms of gene regulation in C. elegans and other nematodes.
Collapse
Affiliation(s)
- Sujatha Marri
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | | |
Collapse
|
76
|
Barkoulas M, Hay A, Kougioumoutzi E, Tsiantis M. A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat Genet 2008; 40:1136-41. [PMID: 19165928 DOI: 10.1038/ng.189] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
77
|
Structure and evolution of the C. elegans embryonic endomesoderm network. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:250-60. [PMID: 18778800 DOI: 10.1016/j.bbagrm.2008.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 07/29/2008] [Indexed: 12/19/2022]
Abstract
The specification of the Caenorhabditis elegans endomesoderm has been the subject of study for more than 15 years. Specification of the 4-cell stage endomesoderm precursor, EMS, occurs as a result of the activation of a transcription factor cascade that starts with SKN-1, coupled with input from the Wnt/beta-catenin asymmetry pathway through the nuclear effector POP-1. As development proceeds, transiently-expressed cell fate factors are succeeded by stable, tissue/organ-specific regulators. The pathway is complex and uses motifs found in all transcriptional networks. Here, the regulators that function in the C. elegans endomesoderm network are described. An examination of the motifs in the network suggests how they may have evolved from simpler gene interactions. Flexibility in the network is evident from the multitude of parallel functions that have been identified and from apparent changes in parts of the corresponding network in Caenorhabditis briggsae. Overall, the complexities of C. elegans endomesoderm specification build a picture of a network that is robust, complex, and still evolving.
Collapse
|
78
|
Shannon AJ, Tyson T, Dix I, Boyd J, Burnell AM. Systemic RNAi mediated gene silencing in the anhydrobiotic nematode Panagrolaimus superbus. BMC Mol Biol 2008; 9:58. [PMID: 18565215 PMCID: PMC2453295 DOI: 10.1186/1471-2199-9-58] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 06/19/2008] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Gene silencing by RNA interference (RNAi) is a powerful tool for functional genomics. Although RNAi was first described in Caenorhabditis elegans, several nematode species are unable to mount an RNAi response when exposed to exogenous double stranded RNA (dsRNA). These include the satellite model organisms Pristionchus pacificus and Oscheius tipulae. Available data also suggest that the RNAi pathway targeting exogenous dsRNA may not be fully functional in some animal parasitic nematodes. The genus Panagrolaimus contains bacterial feeding nematodes which occupy a diversity of niches ranging from polar, temperate and semi-arid soils to terrestrial mosses. Thus many Panagrolaimus species are adapted to tolerate freezing and desiccation and are excellent systems to study the molecular basis of environmental stress tolerance. We investigated whether Panagrolaimus is susceptible to RNAi to determine whether this nematode could be used in large scale RNAi studies in functional genomics. RESULTS We studied two species: Panagrolaimus sp. PS1159 and Panagrolaimus superbus. Both nematode species displayed embryonic lethal RNAi phenotypes following ingestion of Escherichia coli expressing dsRNA for the C. elegans embryonic lethal genes Ce-lmn-1 and Ce-ran-4. Embryonic lethal RNAi phenotypes were also obtained in both species upon ingestion of dsRNA for the Panagrolaimus genes ef1b and rps-2. Single nematode RT-PCR showed that a significant reduction in mRNA transcript levels occurred for the target ef1b and rps-2 genes in RNAi treated Panagrolaimus sp. 1159 nematodes. Visible RNAi phenotypes were also observed when P. superbus was exposed to dsRNA for structural genes encoding contractile proteins. All RNAi phenotypes were highly penetrant, particularly in P. superbus. CONCLUSION This demonstration that Panagrolaimus is amenable to RNAi by feeding will allow the development of high throughput methods of RNAi screening for P. superbus. This greatly enhances the utility of this nematode as a model system for the study of the molecular biology of anhydrobiosis and cryobiosis and as a possible satellite model nematode for comparative and functional genomics. Our data also identify another nematode infraorder which is amenable to RNAi and provide additional information on the diversity of RNAi phenotypes in nematodes.
Collapse
Affiliation(s)
- Adam J Shannon
- Biology Department, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Trevor Tyson
- Biology Department, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Ilona Dix
- Biology Department, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Jacqueline Boyd
- Biology Department, National University of Ireland, Maynooth, Co. Kildare, Ireland
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham Rd., Southwell, NG25 0QF, UK
| | - Ann M Burnell
- Biology Department, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
79
|
Kammenga JE, Phillips PC, De Bono M, Doroszuk A. Beyond induced mutants: using worms to study natural variation in genetic pathways. Trends Genet 2008; 24:178-85. [PMID: 18325626 DOI: 10.1016/j.tig.2008.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 01/04/2008] [Accepted: 01/04/2008] [Indexed: 01/30/2023]
Abstract
Induced mutants in the nematode Caenorhabditis elegans are used to study genetic pathways of processes ranging from aging to behavior. The effects of such mutations are usually analyzed in a single wildtype background: N2. However, studies in other species demonstrate that the phenotype(s) of induced mutations can vary widely depending on the genetic background. Moreover, induced mutations in one genetic background do not reveal the allelic effects that segregate in natural populations and contribute to phenotypic variation. Because other wildtype Caenorhabditis spp., including C. elegans, are now available, we review how current mapping resources and methodologies within and between species support the use of Caenorhabditis spp. for studying genetic variation, with a focus on pathways associated with human disease.
Collapse
Affiliation(s)
- Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
80
|
|
81
|
Changing of the cell division axes drives vulva evolution in nematodes. Dev Biol 2008; 313:142-54. [DOI: 10.1016/j.ydbio.2007.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/20/2007] [Accepted: 10/07/2007] [Indexed: 02/06/2023]
|
82
|
Trends, Stasis, and Drift in the Evolution of Nematode Vulva Development. Curr Biol 2007; 17:1925-37. [DOI: 10.1016/j.cub.2007.10.061] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/19/2007] [Accepted: 10/22/2007] [Indexed: 11/22/2022]
|
83
|
Lott SE, Kreitman M, Palsson A, Alekseeva E, Ludwig MZ. Canalization of segmentation and its evolution in Drosophila. Proc Natl Acad Sci U S A 2007; 104:10926-31. [PMID: 17569783 PMCID: PMC1891814 DOI: 10.1073/pnas.0701359104] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Indexed: 01/07/2023] Open
Abstract
Segmentation in Drosophila embryogenesis occurs through a hierarchical cascade of regulatory gene expression driven by the establishment of a diffusion-mediated morphogen gradient. Here, we investigate the response of this pattern formation process to genetic variation and evolution in egg size. Specifically, we ask whether spatial localization of gap genes Kruppel (Kr) and giant (gt) and the pair-rule gene even-skipped (eve) during cellularization is robust to genetic variation in embryo length in three Drosophila melanogaster isolines and two closely related species. We identified two wild-derived strains of D. melanogaster whose eggs differ by approximately 25% in length when reared under identical conditions. These two lines, a D. melanogaster laboratory stock (w1118), and offspring from crosses between the lines all exhibit precise scaling in the placement of gap and pair-rule gene expression along the anterior-posterior axis in relation to embryo length. Genetic analysis indicates that this scaling is maternally controlled. Maternal regulation of scaling must be required for consistent localization of segmentation gene expression because embryo size, a genetically variable and adaptive trait, is maternally inherited. We also investigated spatial scaling between these D. melanogaster lines and single lines of Drosophila sechellia and Drosophila simulans, the latter two differing by approximately 25% in egg length. In contrast to the robust scaling we observed within species, localization of gene expression relative to embryo length differs significantly between the three species. Thus, the developmental mechanism that assures robust scaling within a species does not prevent rapid evolution between species.
Collapse
Affiliation(s)
- Susan E Lott
- Committee on Genetics, Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
84
|
Abstract
Developmental mechanisms can evolve even when the trait they produce does not, and the nematode vulva has become a model organ for detecting such "developmental system drift". A new study reveals what may be the very earliest stages of this process by experimentally modifying key vulval signaling pathways in different species of Caenorhabditis, and carefully quantifying the results.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
85
|
Goymer P. Different means to the same end. Nat Rev Genet 2007. [DOI: 10.1038/nrg2068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
86
|
Braendle C, Milloz J, Félix MA. Mechanisms and evolution of environmental responses in Caenorhabditis elegans. Curr Top Dev Biol 2007; 80:171-207. [PMID: 17950375 DOI: 10.1016/s0070-2153(07)80005-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We review mechanistic and evolutionary aspects of interactions between the model organism Caenorhabditis elegans and its environment. In particular, we focus on environmental effects affecting developmental mechanisms. We describe natural and laboratory environments of C. elegans and provide an overview of the different environmental responses of this organism. We then show how two developmental processes respond to changes in the environment. First, we discuss the development of alternative juvenile stages, the dauer and non-dauer larva. This example illustrates how development responds to variation in the environment to generate complex phenotypic variation. Second, we discuss the development of the C. elegans vulva. This example illustrates how development responds to variation in the environment while generating an invariant final phenotype.
Collapse
Affiliation(s)
- Christian Braendle
- Institut Jacques Monod, CNRS-Universities of Paris 6/7, Tour 43 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|