51
|
Zelikowsky M, Ding K, Anderson DJ. Neuropeptidergic Control of an Internal Brain State Produced by Prolonged Social Isolation Stress. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:97-103. [PMID: 30948452 DOI: 10.1101/sqb.2018.83.038109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Prolonged periods of social isolation can generate an internal state that exerts profound effects on the brain and behavior. However, the neurobiological underpinnings of protracted social isolation have been relatively understudied. Here, we review recent literature implicating peptide neuromodulators in the establishment and maintenance of such internal states. More specifically, we describe an evolutionarily conserved role for the neuropeptide tachykinin in the control of social isolation-induced aggression and review recent data that elucidate the manner by which Tac2 controls the widespread effects of social isolation on behavior in mice. Last, we discuss potential roles for additional neuromodulators in controlling social isolation and a more general role for Tac2 in the response to other forms of stress.
Collapse
Affiliation(s)
- Moriel Zelikowsky
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Keke Ding
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - David J Anderson
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
- TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
52
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
53
|
Chen W, Xue Y, Scarfe L, Wang D, Zhang Y. Loss of Prune in Circadian Cells Decreases the Amplitude of the Circadian Locomotor Rhythm in Drosophila. Front Cell Neurosci 2019; 13:76. [PMID: 30881291 PMCID: PMC6405476 DOI: 10.3389/fncel.2019.00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/14/2019] [Indexed: 01/10/2023] Open
Abstract
The circadian system, which has a period of about 24 h, is import for organismal health and fitness. The molecular circadian clock consists of feedback loops involving both transcription and translation, and proper function of the circadian system also requires communication among intracellular organelles. As important hubs for signaling in the cell, mitochondria integrate a variety of signals. Mitochondrial dysfunction and disruption of circadian rhythms are observed in neurodegenerative diseases and during aging. However, how mitochondrial dysfunction influences circadian rhythm is largely unknown. Here, we report that Drosophila prune (pn), which localizes to the mitochondrial matrix, most likely affects the function of certain clock neurons.Deletion of pn in flies caused decreased expression of mitochondrial transcription factor TFAM and reductions in levels of mitochondrial DNA, which resulted in mitochondrial dysfunction. Loss of pn decreased the amplitude of circadian rhythms.In addition, we showed that depletion of mtDNA by overexpression of a mitochondrially targeted restriction enzyme mitoXhoI also decreased the robustness of circadian rhythms. Our work demonstrates that pn is important for mitochondrial function thus involved in the regulation of circadian rhythms.
Collapse
Affiliation(s)
- Wenfeng Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, China.,Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Yongbo Xue
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Lisa Scarfe
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Danfeng Wang
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
54
|
Li J, Yu RY, Emran F, Chen BE, Hughes ME. Achilles-Mediated and Sex-Specific Regulation of Circadian mRNA Rhythms in Drosophila. J Biol Rhythms 2019; 34:131-143. [PMID: 30803307 DOI: 10.1177/0748730419830845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The circadian clock is an evolutionarily conserved mechanism that generates the rhythmic expression of downstream genes. The core circadian clock drives the expression of clock-controlled genes, which in turn play critical roles in carrying out many rhythmic physiological processes. Nevertheless, the molecular mechanisms by which clock output genes orchestrate rhythmic signals from the brain to peripheral tissues are largely unknown. Here we explored the role of one rhythmic gene, Achilles, in regulating the rhythmic transcriptome in the fly head. Achilles is a clock-controlled gene in Drosophila that encodes a putative RNA-binding protein. Achilles expression is found in neurons throughout the fly brain using fluorescence in situ hybridization (FISH), and legacy data suggest it is not expressed in core clock neurons. Together, these observations argue against a role for Achilles in regulating the core clock. To assess its impact on circadian mRNA rhythms, we performed RNA sequencing (RNAseq) to compare the rhythmic transcriptomes of control flies and those with diminished Achilles expression in all neurons. Consistent with previous studies, we observe dramatic upregulation of immune response genes upon knock-down of Achilles. Furthermore, many circadian mRNAs lose their rhythmicity in Achilles knock-down flies, suggesting that a subset of the rhythmic transcriptome is regulated either directly or indirectly by Achilles. These Achilles-mediated rhythms are observed in genes involved in immune function and in neuronal signaling, including Prosap, Nemy and Jhl-21. A comparison of RNAseq data from control flies reveals that only 42.7% of clock-controlled genes in the fly brain are rhythmic in both males and females. As mRNA rhythms of core clock genes are largely invariant between the sexes, this observation suggests that sex-specific mechanisms are an important, and heretofore under-appreciated, regulator of the rhythmic transcriptome.
Collapse
Affiliation(s)
- Jiajia Li
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Renee Yin Yu
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec, Canada
| | - Farida Emran
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec, Canada
| | - Brian E Chen
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec, Canada.,Departments of Medicine and Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Michael E Hughes
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
55
|
Chen W, Werdann M, Zhang Y. The auxin-inducible degradation system enables conditional PERIOD protein depletion in the nervous system of Drosophila melanogaster. FEBS J 2018; 285:4378-4393. [PMID: 30321477 DOI: 10.1111/febs.14677] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 01/07/2023]
Abstract
Tools that allow inducible and reversible depletion of target proteins are critical for biological studies. The plant-derived auxin-inducible degradation system (AID) enables the degradation of target proteins tagged with the AID motif. This system has been recently employed in mammalian cells as well as in Caenorhabditis elegans and Drosophila. To test the utility of the AID approach in the nervous system, we used circadian locomotor rhythms as a model and applied the AID method to temporally and spatially degrade PERIOD (PER), a critical pacemaker protein in Drosophila. We found that the period locus can be efficiently tagged with the AID motif by CRISPR/Cas9-based genome editing without disrupting PER function. Moreover, we demonstrated that the AID system could be used to induce rapid and efficient protein degradation in the nervous system as shown by effects on circadian and sleep behaviors. Furthermore, the protein degradation by AID was rapidly reversible after auxin removal. Together, our results show that the AID system provides a powerful tool for behavior studies in Drosophila.
Collapse
Affiliation(s)
- Wenfeng Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, China.,Department of Biology, University of Nevada Reno, NV, USA
| | | | - Yong Zhang
- Department of Biology, University of Nevada Reno, NV, USA
| |
Collapse
|
56
|
Scott Chialvo CH, White BE, Reed LK, Dyer KA. A phylogenetic examination of host use evolution in the quinaria and testacea groups of Drosophila. Mol Phylogenet Evol 2018; 130:233-243. [PMID: 30366088 DOI: 10.1016/j.ympev.2018.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/05/2018] [Accepted: 10/20/2018] [Indexed: 12/26/2022]
Abstract
Adaptive radiations provide an opportunity to examine complex evolutionary processes such as ecological specialization and speciation. While a well-resolved phylogenetic hypothesis is critical to completing such studies, the rapid rates of evolution in these groups can impede phylogenetic studies. Here we study the quinaria and testacea species groups of the immigrans-tripunctata radiation of Drosophila, which represent a recent adaptive radiation and are a developing model system for ecological genetics. We were especially interested in understanding host use evolution in these species. In order to infer a phylogenetic hypothesis for this group we sampled loci from both the nuclear genome and the mitochondrial DNA to develop a dataset of 43 protein-coding loci for these two groups along with their close relatives in the immigrans-tripunctata radiation. We used this dataset to examine their evolutionary relationships along with the evolution of feeding behavior. Our analysis recovers strong support for the monophyly of the testacea but not the quinaria group. Results from our ancestral state reconstruction analysis suggests that the ancestor of the testacea and quinaria groups exhibited mushroom-feeding. Within the quinaria group, we infer that transition to vegetative feeding occurred twice, and that this transition did not coincide with a genome-wide change in the rate of protein evolution.
Collapse
Affiliation(s)
- Clare H Scott Chialvo
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Brooke E White
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Laura K Reed
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kelly A Dyer
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
57
|
Li MT, Cao LH, Xiao N, Tang M, Deng B, Yang T, Yoshii T, Luo DG. Hub-organized parallel circuits of central circadian pacemaker neurons for visual photoentrainment in Drosophila. Nat Commun 2018; 9:4247. [PMID: 30315165 PMCID: PMC6185921 DOI: 10.1038/s41467-018-06506-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/20/2018] [Indexed: 12/20/2022] Open
Abstract
Circadian rhythms are orchestrated by a master clock that emerges from a network of circadian pacemaker neurons. The master clock is synchronized to external light/dark cycles through photoentrainment, but the circuit mechanisms underlying visual photoentrainment remain largely unknown. Here, we report that Drosophila has eye-mediated photoentrainment via a parallel pacemaker neuron organization. Patch-clamp recordings of central circadian pacemaker neurons reveal that light excites most of them independently of one another. We also show that light-responding pacemaker neurons send their dendrites to a neuropil called accessary medulla (aMe), where they make monosynaptic connections with Hofbauer–Buchner eyelet photoreceptors and interneurons that transmit compound-eye signals. Laser ablation of aMe and eye removal both abolish light responses of circadian pacemaker neurons, revealing aMe as a hub to channel eye inputs to central circadian clock. Taken together, we demonstrate that the central clock receives eye inputs via hub-organized parallel circuits in Drosophila. The central circadian clock in Drosophila is made up of ~ 150 anatomically distributed neurons; the circuits underlying photoentrainment is unclear. This study describes ex vivo patch-clamp recording of the eye-mediated light response of all known circadian clock neurons, and shows that they are organized in parallel circuits centered around a hub.
Collapse
Affiliation(s)
- Meng-Tong Li
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,PTN Graduate Program, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Li-Hui Cao
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Na Xiao
- IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Min Tang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,PTN Graduate Program, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Bowen Deng
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Tian Yang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Dong-Gen Luo
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China. .,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China. .,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| |
Collapse
|
58
|
Guo F, Holla M, Díaz MM, Rosbash M. A Circadian Output Circuit Controls Sleep-Wake Arousal in Drosophila. Neuron 2018; 100:624-635.e4. [PMID: 30269992 DOI: 10.1016/j.neuron.2018.09.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/05/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
The Drosophila core circadian circuit contains distinct groups of interacting neurons that give rise to diurnal sleep-wake patterns. Previous work showed that a subset of dorsal neurons 1 (DN1s) are sleep-promoting through their inhibition of activity-promoting circadian pacemakers. Here we show that these anterior-projecting DNs (APDNs) also "exit" the circadian circuitry and communicate with the homeostatic sleep center in higher brain regions to regulate sleep and sleep-wake arousal. These APDNs connect to a small, discrete subset of tubercular-bulbar neurons, which are connected in turn to specific sleep-centric ellipsoid body (EB)-ring neurons of the central complex. Remarkably, activation of the APDNs produces sleep-like oscillations in the EB and affects arousal. The data indicate that this APDN-TuBusup-EB circuit temporally regulates sleep-wake arousal in addition to the previously defined role of the TuBu-EB circuit in vision, navigation, and attention.
Collapse
Affiliation(s)
- Fang Guo
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang province 310058, China; Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA.
| | - Meghana Holla
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Madelen M Díaz
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Michael Rosbash
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
59
|
Somers J, Harper REF, Albert JT. How Many Clocks, How Many Times? On the Sensory Basis and Computational Challenges of Circadian Systems. Front Behav Neurosci 2018; 12:211. [PMID: 30258357 PMCID: PMC6143808 DOI: 10.3389/fnbeh.2018.00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/21/2018] [Indexed: 11/13/2022] Open
Abstract
A vital task for every organism is not only to decide what to do but also when to do it. For this reason, "circadian clocks" have evolved in virtually all forms of life. Conceptually, circadian clocks can be divided into two functional domains; an autonomous oscillator creates a ~24 h self-sustained rhythm and sensory machinery interprets external information to alter the phase of the autonomous oscillation. It is through this simple design that variations in external stimuli (for example, daylight) can alter our sense of time. However, the clock's simplicity ends with its basic concept. In metazoan animals, multiple external and internal stimuli, from light to temperature and even metabolism have been shown to affect clock time. This raises the fundamental question of cue integration: how are the many, and potentially conflicting, sources of information combined to sense a single time of day? Moreover, individual stimuli, are often detected through various sensory pathways. Some sensory cells, such as insect chordotonal neurons, provide the clock with both temperature and mechanical information. Adding confusion to complexity, there seems to be not only one central clock in the animal's brain but numerous additional clocks in the body's periphery. It is currently not clear how (or if) these "peripheral clocks" are synchronized to their central counterparts or if both clocks "tick" independently from one another. In this review article, we would like to leave the comfort zones of conceptual simplicity and assume a more holistic perspective of circadian clock function. Focusing on recent results from Drosophila melanogaster we will discuss some of the sensory, and computational, challenges organisms face when keeping track of time.
Collapse
Affiliation(s)
- Jason Somers
- Ear Institute, University College LondonLondon, United Kingdom
- The Francis Crick InstituteLondon, United Kingdom
| | - Ross E. F. Harper
- Ear Institute, University College LondonLondon, United Kingdom
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College LondonLondon, United Kingdom
| | - Joerg T. Albert
- Ear Institute, University College LondonLondon, United Kingdom
- The Francis Crick InstituteLondon, United Kingdom
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College LondonLondon, United Kingdom
- Department of Cell and Developmental Biology, University College LondonLondon, United Kingdom
| |
Collapse
|
60
|
Zheng Y, Xue Y, Ren X, Liu M, Li X, Jia Y, Niu Y, Ni JQ, Zhang Y, Ji JY. The Lysine Demethylase dKDM2 Is Non-essential for Viability, but Regulates Circadian Rhythms in Drosophila. Front Genet 2018; 9:354. [PMID: 30233643 PMCID: PMC6131532 DOI: 10.3389/fgene.2018.00354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/15/2018] [Indexed: 12/29/2022] Open
Abstract
Post-translational modification of histones, such as histone methylation controlled by specific methyltransferases and demethylases, play critical roles in modulating chromatin dynamics and transcription in eukaryotes. Misregulation of histone methylation can lead to aberrant gene expression, thereby contributing to abnormal development and diseases such as cancer. As such, the mammalian lysine-specific demethylase 2 (KDM2) homologs, KDM2A and KDM2B, are either oncogenic or tumor suppressive depending on specific pathological contexts. However, the role of KDM2 proteins during development remains poorly understood. Unlike vertebrates, Drosophila has only one KDM2 homolog (dKDM2), but its functions in vivo remain elusive due to the complexities of the existing mutant alleles. To address this problem, we have generated two dKdm2 null alleles using the CRISPR/Cas9 technique. These dKdm2 homozygous mutants are fully viable and fertile, with no developmental defects observed under laboratory conditions. However, the dKdm2 null mutant adults display defects in circadian rhythms. Most of the dKdm2 mutants become arrhythmic under constant darkness, while the circadian period of the rhythmic mutant flies is approximately 1 h shorter than the control. Interestingly, lengthened circadian periods are observed when dKDM2 is overexpressed in circadian pacemaker neurons. Taken together, these results demonstrate that dKdm2 is not essential for viability; instead, dKDM2 protein plays important roles in regulating circadian rhythms in Drosophila. Further analyses of the molecular mechanisms of dKDM2 and its orthologs in vertebrates regarding the regulation of circadian rhythms will advance our understanding of the epigenetic regulations of circadian clocks.
Collapse
Affiliation(s)
- Yani Zheng
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, United States
| | - Yongbo Xue
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Xingjie Ren
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing, China
| | - Mengmeng Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, United States
| | - Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, United States
| | - Yu Jia
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing, China
| | - Ye Niu
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Jian-Quan Ni
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing, China
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, United States
| |
Collapse
|
61
|
Klarsfeld A, Birman S, Rouyer F. [Nobel time for the circadian clock - Nobel Prize in Medicine 2017: Jeffrey C. Hall, Michael Rosbash and Michael W. Young]. Med Sci (Paris) 2018; 34:480-484. [PMID: 29900854 DOI: 10.1051/medsci/20183405023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
L’attribution du prix Nobel 2017 de physiologie ou médecine à trois chercheurs américains - Jeffrey C. Hall (né le 3 mai 1945 à New York – University of Maine), Michael Rosbash (né le 7 mars 1944 à Kansas City - Brandeis University, Waltham et Howard Hughes Medical Institute) et Michael W. Young (né le 28 mars 1949 à Miami - Rockefeller University, New York), est difficilement contestable, tant ces chercheurs incarnent depuis près de 35 ans, l’émergence, puis le foisonnement des études moléculaires et cellulaires des rythmes circadiens. Mais ce prix a fait bien plus que trois heureux. Il apporte, en effet, une reconnaissance éclatante à un domaine, la chronobiologie, qui a longtemps fait figure, au mieux pour certains, d’aimable curiosité… La difficulté à identifier les rouages des horloges biologiques qui rythment nos jours et nos nuits, ou même à seulement les imaginer, y a bien sûr contribué. C’est pourquoi les travaux de Hall, Rosbash et Young – récompensés « pour leurs découvertes des mécanismes moléculaires qui contrôlent les rythmes circadiens » – ont revêtu une telle importance, même si la voie leur avait été ouverte un peu plus d’une décennie auparavant. Paradoxalement, le grand public a peut-être admis l’existence de nos horloges internes avant la communauté scientifique, car chacun peut faire l’expérience intime de rythmes journaliers, à commencer par l’alternance veille-sommeil, qui s’imposent à lui !
Collapse
Affiliation(s)
- André Klarsfeld
- Interfaces Cerveau-Machine, Laboratoire plasticité du cerveau, ESPCI Paris, CNRS, université PSL, 10, rue Vauquelin, 75005 Paris, France
| | - Serge Birman
- Gènes circuits rythmes et neuropathologies, Laboratoire plasticité du cerveau, ESPCI Paris, CNRS, université PSL, 10, rue Vauquelin, 75005 Paris, France
| | - François Rouyer
- Institut des neurosciences Paris-Saclay, université Paris-Sud, CNRS, université Paris-Saclay, avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| |
Collapse
|
62
|
Meinertzhagen IA. Of what use is connectomics? A personal perspective on the Drosophila connectome. ACTA ACUST UNITED AC 2018; 221:221/10/jeb164954. [PMID: 29784759 DOI: 10.1242/jeb.164954] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The brain is a network of neurons and its biological output is behaviour. This is an exciting age, with a growing acknowledgement that the comprehensive compilation of synaptic circuits densely reconstructed in the brains of model species is now both technologically feasible and a scientifically enabling possibility in neurobiology, much as 30 years ago genomics was in molecular biology and genetics. Implemented by huge advances in electron microscope technology, especially focused ion beam-scanning electron microscope (FIB-SEM) milling (see Glossary), image capture and alignment, and computer-aided reconstruction of neuron morphologies, enormous progress has been made in the last decade in the detailed knowledge of the actual synaptic circuits formed by real neurons, in various brain regions of the fly Drosophila It is useful to distinguish synaptic pathways that are major, with 100 or more presynaptic contacts, from those that are minor, with fewer than about 10; most neurites are both presynaptic and postsynaptic, and all synaptic sites have multiple postsynaptic dendrites. Work on Drosophila has spearheaded these advances because cell numbers are manageable, and neuron classes are morphologically discrete and genetically identifiable, many confirmed by reporters. Recent advances are destined within the next few years to reveal the complete connectome in an adult fly, paralleling advances in the larval brain that offer the same prospect possibly within an even shorter time frame. The final amendment and validation of segmented bodies by human proof-readers remains the most time-consuming step, however. The value of a complete connectome in Drosophila is that, by targeting to specific neurons transgenes that either silence or activate morphologically identified circuits, and then identifying the resulting behavioural outcome, we can determine the causal mechanism for behaviour from its loss or gain. More importantly, the connectome reveals hitherto unsuspected pathways, leading us to seek novel behaviours for these. Circuit information will eventually be required to understand how differences between brains underlie differences in behaviour, and especially to herald yet more advanced connectomic strategies for the vertebrate brain, with an eventual prospect of understanding cognitive disorders having a connectomic basis. Connectomes also help us to identify common synaptic circuits in different species and thus to reveal an evolutionary progression in candidate pathways.
Collapse
Affiliation(s)
- Ian A Meinertzhagen
- FlyEM Team, Janelia Research Campus of HHMI, 19700 Helix Drive, Ashburn, VA 20147-2408, USA .,Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS, Canada B3H 4R2.,Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, NS, Canada B3H 4R2
| |
Collapse
|
63
|
Giebultowicz JM. Circadian regulation of metabolism and healthspan in Drosophila. Free Radic Biol Med 2018; 119:62-68. [PMID: 29277395 PMCID: PMC5910265 DOI: 10.1016/j.freeradbiomed.2017.12.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 12/25/2022]
Abstract
Circadian clocks generate daily rhythms in gene expression, cellular functions, physiological processes and behavior. The core clock mechanism consists of transcriptional-translational negative feedback loops that turn over with an endogenous circa 24h period. Classical genetic experiments in the fly Drosophila melanogaster played an essential role in identification of clock genes that turned out to be largely conserved between flies and mammals. Like in mammals, circadian clocks in flies generate transcriptional rhythms in a variety of metabolic pathways related to feeding and detoxification. Given that rhythms pervade metabolism and the loss of metabolic homeostasis is involved in aging and disease, there is increasing interest in understanding how the clocks and the rhythms they control change during aging. The importance of circadian clocks for healthy aging is supported by studies reporting that genetic or environmental clock disruptions are associated with reduced healthspan and lifespan. For example, arrhythmia caused by mutations in core clock genes lead to symptoms of accelerated aging in both flies and mammals, including neurodegenerative phenotypes. Despite the wealth of descriptive data, the mechanisms by which functional clocks confer healthspan and lifespan benefits are poorly understood. Studies in Drosophila discussed here are beginning to unravel causative relationships between the circadian system and aging. In particular, recent data suggest that clocks may be involved in inducing rhythmic expression of specific genes late in life in response to age-related increase in oxidative stress. This review will summarize insights into links between circadian system and aging in Drosophila, which were obtained using powerful genetics tools available for this model organism and taking advantage of the short adult lifespan in flies that is measured in days rather than years.
Collapse
|
64
|
Araripe LO, Bezerra JRA, Rivas GBDS, Bruno RV. Locomotor activity in males of Aedes aegypti can shift in response to females' presence. Parasit Vectors 2018; 11:254. [PMID: 29669591 PMCID: PMC5907381 DOI: 10.1186/s13071-018-2635-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The study of physiological and behavioral traits of mosquito vectors has been of growing relevance for the proposition of alternative methods for controlling vector-borne diseases. Despite this, most studies focus on the female's traits, including the behavior of host seeking, the physiology of disease transmission and the site-choice for oviposition. However, understanding the factors that lead to males' reproductive success is of utmost importance, since it can help building new strategies for constraining population growth. Male behavior towards mating varies widely among species and the communication between males and females is the first aspect securing a successful encounter. Here we used an automated monitoring system to study the profile of locomotor activity of Aedes aegypti males in response to female's presence in an adapted confinement tube. We propose a new method to quantify male response to the presence of females, which can be potentially tested as an indicator of the success of one male in recognizing a female for mating. RESULTS Locomotor activity varies in daily cycles regulated by an endogenous clock and synchronized by external factors, such as light and temperature. Our results show the previously described startle response to light, which is displayed as a steep morning activity peak immediately when lights are on. Activity drops during the day and begins to rise again right before evening, happening about 1.5 h earlier in males than in females. Most interestingly, males' activity shows a double peak, and the second peak is very subtle when males are alone and relatively more pronounced when females are present in the confinement tubes. The switch in the peak of activity, measured by the herein suggested Peak Matching Index (PMI), was significantly different between males with and without females. CONCLUSIONS The adapted monitoring system used here allowed us to quantify the response of individual males to nearby females in terms of the extent of the activity peak displacement. In this direction, we created the peak matching index (PMI), a new parameter that we anticipate could be interpreted as the inclination of males to respond to females' presence, and further tested as an indicator of the potential for finding females for mating.
Collapse
Affiliation(s)
- Luciana Ordunha Araripe
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Gustavo Bueno da Silva Rivas
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL USA
| | - Rafaela Vieira Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular/CNPq, Rio de Janeiro, Brazil
| |
Collapse
|
65
|
Hsu IU, Linsley JW, Varineau JE, Shafer OT, Kuwada JY. Dstac is required for normal circadian activity rhythms in Drosophila. Chronobiol Int 2018; 35:1016-1026. [PMID: 29621409 DOI: 10.1080/07420528.2018.1454937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The genetic, molecular and neuronal mechanism underlying circadian activity rhythms is well characterized in the brain of Drosophila. The small ventrolateral neurons (s-LNVs) and pigment dispersing factor (PDF) expressed by them are especially important for regulating circadian locomotion. Here we describe a novel gene, Dstac, which is similar to the stac genes found in vertebrates that encode adaptor proteins, which bind and regulate L-type voltage-gated Ca2+ channels (CaChs). We show that Dstac is coexpressed with PDF by the s-LNVs and regulates circadian activity. Furthermore, the L-type CaCh, Dmca1D, appears to be expressed by the s-LNVs. Since vertebrate Stac3 regulates an L-type CaCh we hypothesize that Dstac regulates Dmca1D in s-LNVs and circadian activity.
Collapse
Affiliation(s)
- I-Uen Hsu
- a Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Jeremy W Linsley
- b Cell and Molecular Biology Program , University of Michigan , Ann Arbor , MI , USA
| | - Jade E Varineau
- a Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Orie T Shafer
- a Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - John Y Kuwada
- a Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA.,b Cell and Molecular Biology Program , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
66
|
Ly S, Pack AI, Naidoo N. The neurobiological basis of sleep: Insights from Drosophila. Neurosci Biobehav Rev 2018; 87:67-86. [PMID: 29391183 PMCID: PMC5845852 DOI: 10.1016/j.neubiorev.2018.01.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Sleep is a biological enigma that has raised numerous questions about the inner workings of the brain. The fundamental question of why our nervous systems have evolved to require sleep remains a topic of ongoing scientific deliberation. This question is largely being addressed by research using animal models of sleep. Drosophila melanogaster, also known as the common fruit fly, exhibits a sleep state that shares common features with many other species. Drosophila sleep studies have unearthed an immense wealth of knowledge about the neuroscience of sleep. Given the breadth of findings published on Drosophila sleep, it is important to consider how all of this information might come together to generate a more holistic understanding of sleep. This review provides a comprehensive summary of the neurobiology of Drosophila sleep and explores the broader insights and implications of how sleep is regulated across species and why it is necessary for the brain.
Collapse
Affiliation(s)
- Sarah Ly
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States.
| | - Allan I Pack
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States; Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, 125 South 31st St., Philadelphia, PA, 19104-3403, United States
| | - Nirinjini Naidoo
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States; Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, 125 South 31st St., Philadelphia, PA, 19104-3403, United States.
| |
Collapse
|
67
|
Noreen S, Pegoraro M, Nouroz F, Tauber E, Kyriacou CP. Interspecific studies of circadian genes period and timeless in Drosophila. Gene 2018; 648:106-114. [PMID: 29353056 PMCID: PMC5818170 DOI: 10.1016/j.gene.2018.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/25/2017] [Accepted: 01/05/2018] [Indexed: 11/24/2022]
Abstract
The level of rescue of clock function in genetically arrhythmic Drosophila melanogaster hosts using interspecific clock gene transformation was used to study the putative intermolecular coevolution between interacting clock proteins. Among them PER and TIM are the two important negative regulators of the circadian clock feedback loop. We transformed either the D. pseudoobscura per or tim transgenes into the corresponding arrhythmic D. melanogaster mutant (per01 or tim01) and observed >50% rhythmicity but the period of activity rhythm was either longer (D. pseudoobscura-per) or shorter than 24 h (D. pseudoobscura-tim) compared to controls. By introducing both transgenes simultaneously into double mutants, we observed that the period of the activity rhythm was rescued by the pair of hemizygous transgenes (~24 h). These flies also showed a more optimal level of temperature compensation for the period. Under LD 12:12 these flies have a D. pseudoobscura like activity profile with the absence of morning anticipation as well as a very prominent earlier evening peak of activity rhythm. These observation are consistent with the view that TIM and PER form a heterospecific coevolved module at least for the circadian period of activity rhythms. However the strength of rhythmicity was reduced by having both transgenes present, so while evidence for a coevolution between PER and TIM is observed for some characters it is not for others.
Collapse
Affiliation(s)
- Shumaila Noreen
- Department of Genetics and Genome Biology, University of Leicester, United Kingdom; Molecular Genetics Lab, Department of Zoology, University of Peshawar, Pakistan.
| | - Mirko Pegoraro
- Department of Genetics and Genome Biology, University of Leicester, United Kingdom
| | - Faisal Nouroz
- Department of Genetics and Genome Biology, University of Leicester, United Kingdom
| | - Eran Tauber
- Department of Genetics and Genome Biology, University of Leicester, United Kingdom; Department of Evolutionary & Environmental Biology, The Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | | |
Collapse
|
68
|
Nässel DR. Substrates for Neuronal Cotransmission With Neuropeptides and Small Molecule Neurotransmitters in Drosophila. Front Cell Neurosci 2018; 12:83. [PMID: 29651236 PMCID: PMC5885757 DOI: 10.3389/fncel.2018.00083] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 01/11/2023] Open
Abstract
It has been known for more than 40 years that individual neurons can produce more than one neurotransmitter and that neuropeptides often are colocalized with small molecule neurotransmitters (SMNs). Over the years much progress has been made in understanding the functional consequences of cotransmission in the nervous system of mammals. There are also some excellent invertebrate models that have revealed roles of coexpressed neuropeptides and SMNs in increasing complexity, flexibility, and dynamics in neuronal signaling. However, for the fly Drosophila there are surprisingly few functional studies on cotransmission, although there is ample evidence for colocalization of neuroactive compounds in neurons of the CNS, based both on traditional techniques and novel single cell transcriptome analysis. With the hope to trigger interest in initiating cotransmission studies, this review summarizes what is known about Drosophila neurons and neuronal circuits where different neuropeptides and SMNs are colocalized. Coexistence of neuroactive substances has been recorded in different neuron types such as neuroendocrine cells, interneurons, sensory cells and motor neurons. Some of the circuits highlighted here are well established in the analysis of learning and memory, circadian clock networks regulating rhythmic activity and sleep, as well as neurons and neuroendocrine cells regulating olfaction, nociception, feeding, metabolic homeostasis, diuretic functions, reproduction, and developmental processes. One emerging trait is the broad role of short neuropeptide F in cotransmission and presynaptic facilitation in a number of different neuronal circuits. This review also discusses the functional relevance of coexisting peptides in the intestine. Based on recent single cell transcriptomics data, it is likely that the neuronal systems discussed in this review are just a fraction of the total set of circuits where cotransmission occurs in Drosophila. Thus, a systematic search for colocalized neuroactive compounds in further neurons in anatomically defined circuits is of interest for the near future.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
69
|
Górska-Andrzejak J, Chwastek EM, Walkowicz L, Witek K. On Variations in the Level of PER in Glial Clocks of Drosophila Optic Lobe and Its Negative Regulation by PDF Signaling. Front Physiol 2018; 9:230. [PMID: 29615925 PMCID: PMC5868474 DOI: 10.3389/fphys.2018.00230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/01/2018] [Indexed: 02/05/2023] Open
Abstract
We show that the level of the core protein of the circadian clock Period (PER) expressed by glial peripheral oscillators depends on their location in the Drosophila optic lobe. It appears to be controlled by the ventral lateral neurons (LNvs) that release the circadian neurotransmitter Pigment Dispersing Factor (PDF). We demonstrate that glial cells of the distal medulla neuropil (dMnGl) that lie in the vicinity of the PDF-releasing terminals of the LNvs possess receptors for PDF (PDFRs) and express PER at significantly higher level than other types of glia. Surprisingly, the amplitude of PER molecular oscillations in dMnGl is increased twofold in PDF-free environment, that is in Pdf0 mutants. The Pdf0 mutants also reveal an increased level of glia-specific protein REPO in dMnGl. The photoreceptors of the compound eye (R-cells) of the PDF-null flies, on the other hand, exhibit de-synchrony of PER molecular oscillations, which manifests itself as increased variability of PER-specific immunofluorescence among the R-cells. Moreover, the daily pattern of expression of the presynaptic protein Bruchpilot (BRP) in the lamina terminals of the R-cells is changed in Pdf0 mutant. Considering that PDFRs are also expressed by the marginal glia of the lamina that surround the R-cell terminals, the LNv pacemakers appear to be the likely modulators of molecular cycling in the peripheral clocks of both the glial cells and the photoreceptors of the compound eye. Consequently, some form of PDF-based coupling of the glial clocks and the photoreceptors of the eye with the central LNv pacemakers must be operational.
Collapse
Affiliation(s)
- Jolanta Górska-Andrzejak
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Elżbieta M Chwastek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Lucyna Walkowicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Kacper Witek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
70
|
Yadlapalli S, Jiang C, Bahle A, Reddy P, Meyhofer E, Shafer OT. Circadian clock neurons constantly monitor environmental temperature to set sleep timing. Nature 2018; 555:98-102. [PMID: 29466329 DOI: 10.1038/nature25740] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/10/2018] [Indexed: 02/08/2023]
Abstract
Circadian clocks coordinate behaviour, physiology and metabolism with Earth's diurnal cycle. These clocks entrain to both light and temperature cycles, and daily environmental temperature oscillations probably contribute to human sleep patterns. However, the neural mechanisms through which circadian clocks monitor environmental temperature and modulate behaviour remain poorly understood. Here we elucidate how the circadian clock neuron network of Drosophila melanogaster processes changes in environmental temperature. In vivo calcium-imaging techniques demonstrate that the posterior dorsal neurons 1 (DN1ps), which are a discrete subset of sleep-promoting clock neurons, constantly monitor modest changes in environmental temperature. We find that these neurons are acutely inhibited by heating and excited by cooling; this is an unexpected result when considering the strong correlation between temperature and light, and the fact that light excites clock neurons. We demonstrate that the DN1ps rely on peripheral thermoreceptors located in the chordotonal organs and the aristae. We also show that the DN1ps and their thermosensory inputs are required for the normal timing of sleep in the presence of naturalistic temperature cycles. These results identify the DN1ps as a major gateway for temperature sensation into the circadian neural network, which continuously integrates temperature changes to coordinate the timing of sleep and activity.
Collapse
Affiliation(s)
- Swathi Yadlapalli
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Chang Jiang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Andrew Bahle
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Pramod Reddy
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Edgar Meyhofer
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Orie T Shafer
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
71
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
72
|
Goda T, Doi M, Umezaki Y, Murai I, Shimatani H, Chu ML, Nguyen VH, Okamura H, Hamada FN. Calcitonin receptors are ancient modulators for rhythms of preferential temperature in insects and body temperature in mammals. Genes Dev 2018; 32:140-155. [PMID: 29440246 PMCID: PMC5830927 DOI: 10.1101/gad.307884.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Goda et al. provide molecular evidence that body temperature rhythm (BTR) is regulated distinctly from locomotor activity rhythms and show that diuretic hormone 31 receptor/calcitonin receptor is an ancient specific mediator of BTR during the active phase in organisms ranging from ectotherms to endotherms. Daily body temperature rhythm (BTR) is essential for maintaining homeostasis. BTR is regulated separately from locomotor activity rhythms, but its molecular basis is largely unknown. While mammals internally regulate BTR, ectotherms, including Drosophila, exhibit temperature preference rhythm (TPR) behavior to regulate BTR. Here, we demonstrate that the diuretic hormone 31 receptor (DH31R) mediates TPR during the active phase in Drosophila. DH31R is expressed in clock cells, and its ligand, DH31, acts on clock cells to regulate TPR during the active phase. Surprisingly, the mouse homolog of DH31R, calcitonin receptor (Calcr), is expressed in the suprachiasmatic nucleus (SCN) and mediates body temperature fluctuations during the active phase in mice. Importantly, DH31R and Calcr are not required for coordinating locomotor activity rhythms. Our results represent the first molecular evidence that BTR is regulated distinctly from locomotor activity rhythms and show that DH31R/Calcr is an ancient specific mediator of BTR during the active phase in organisms ranging from ectotherms to endotherms.
Collapse
Affiliation(s)
- Tadahiro Goda
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yujiro Umezaki
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Iori Murai
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Shimatani
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Michelle L Chu
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Victoria H Nguyen
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumika N Hamada
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229, USA
| |
Collapse
|
73
|
Zhang Z, Cao W, Edery I. The SR protein B52/SRp55 regulates splicing of the period thermosensitive intron and mid-day siesta in Drosophila. Sci Rep 2018; 8:1872. [PMID: 29382842 PMCID: PMC5789894 DOI: 10.1038/s41598-017-18167-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/06/2017] [Indexed: 11/24/2022] Open
Abstract
Similar to many diurnal animals, Drosophila melanogaster exhibits a mid-day siesta that is more robust as temperature increases, an adaptive response that aims to minimize the deleterious effects from exposure to heat. This temperature-dependent plasticity in mid-day sleep levels is partly based on the thermal sensitive splicing of an intron in the 3' untranslated region (UTR) of the circadian clock gene termed period (per). In this study, we evaluated a possible role for the serine/arginine-rich (SR) splicing factors in the regulation of dmpi8 splicing efficiency and mid-day siesta. Using a Drosophila cell culture assay we show that B52/SRp55 increases dmpi8 splicing efficiency, whereas other SR proteins have little to no effect. The magnitude of the stimulatory effect of B52 on dmpi8 splicing efficiency is modulated by natural variation in single nucleotide polymorphisms (SNPs) in the per 3' UTR that correlate with B52 binding levels. Down-regulating B52 expression in clock neurons increases mid-day siesta and reduces dmpi8 splicing efficiency. Our results establish a novel role for SR proteins in sleep and suggest that polymorphisms in the per 3' UTR contribute to natural variation in sleep behavior by modulating the binding efficiencies of SR proteins.
Collapse
Affiliation(s)
- Zhichao Zhang
- Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, NJ, 08854, USA
- Institute of Animal Genetics and Breeding, Sichuan Agriculture University, Huimin Road 211#, Chengdu, Sichuan Province, 611130, P. R. China
| | - Weihuan Cao
- Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, NJ, 08854, USA
- Human Genetics Institute of New Jersey, Nelson Biology Laboratories, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Isaac Edery
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, NJ, 08854, USA.
| |
Collapse
|
74
|
Xue Y, Zhang Y. Emerging roles for microRNA in the regulation of Drosophila circadian clock. BMC Neurosci 2018; 19:1. [PMID: 29338692 PMCID: PMC5769547 DOI: 10.1186/s12868-018-0401-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Background The circadian clock, which operates within an approximately 24-h period, is closely linked to the survival and fitness of almost all living organisms. The circadian clock is generated through a negative transcription-translation feedback loop. microRNAs (miRNAs) are small non-coding RNAs comprised of approximately 22 nucleotides that post-transcriptionally regulate target mRNA by either inducing mRNA degradation or inhibiting translation. Results In recent years, miRNAs have been found to play important roles in the regulation of the circadian clock, especially in Drosophila. In this review, we will use fruit flies as an example, and summarize the progress achieved in the study of miRNA-mediated clock regulation. Three main aspects of the circadian clock, namely, the free-running period, locomotion phase, and circadian amplitude, are discussed in detail in the context of how miRNAs are involved in these regulations. In addition, approaches regarding the discovery of circadian-related miRNAs and their targets are also discussed. Conclusions Research in the last decade suggests that miRNA-mediated post-transcriptional regulation is crucial to the generation and maintenance of a robust circadian clock in animals. In flies, miRNAs are known to modulate circadian rhythmicity and the free-running period, as well as circadian outputs. Further characterization of miRNAs, especially in the circadian input, will be a vital step toward a more comprehensive understanding of the functions underlying miRNA-control of the circadian clock.
Collapse
Affiliation(s)
- Yongbo Xue
- Department of Biology, University of Nevada, Reno, 1664 North Virginia St., Reno, NV, 89557-0315, USA
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, 1664 North Virginia St., Reno, NV, 89557-0315, USA.
| |
Collapse
|
75
|
Huang TH, Niesman P, Arasu D, Lee D, De La Cruz AL, Callejas A, Hong EJ, Lois C. Tracing neuronal circuits in transgenic animals by transneuronal control of transcription ( TRACT). eLife 2017; 6:32027. [PMID: 29231171 PMCID: PMC5777821 DOI: 10.7554/elife.32027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/02/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding the computations that take place in brain circuits requires identifying how neurons in those circuits are connected to one another. We describe a technique called TRACT (TRAnsneuronal Control of Transcription) based on ligand-induced intramembrane proteolysis to reveal monosynaptic connections arising from genetically labeled neurons of interest. In this strategy, neurons expressing an artificial ligand (‘donor’ neurons) bind to and activate a genetically-engineered artificial receptor on their synaptic partners (‘receiver’ neurons). Upon ligand-receptor binding at synapses the receptor is cleaved in its transmembrane domain and releases a protein fragment that activates transcription in the synaptic partners. Using TRACT in Drosophila we have confirmed the connectivity between olfactory receptor neurons and their postsynaptic targets, and have discovered potential new connections between neurons in the circadian circuit. Our results demonstrate that the TRACT method can be used to investigate the connectivity of neuronal circuits in the brain. One of the main obstacles to understanding how the brain works is that we know relatively little about how its nerve cells or neurons are connected to one another. These connections make up the brain’s wiring diagram. Current methods for revealing this wiring all have limitations. The most popular method – serial electron microscopy – can reveal the connections in a small region of the brain in great detail, but it cannot show connections between neurons that are far apart. Huang et al. have now created a genetic system for visualizing these connections. For neurons to communicate, one neuron must produce a signal called a ligand. This ligand can then bind to and activate its partner neuron. Huang et al. modified the DNA of neurons so that every time those cells produced a specific ligand, they also produced a red fluorescent protein. Similar modifications ensured that every time the ligand activated a partner neuron, the activated neuron produced a green fluorescent protein. Viewing the red and green neurons under a microscope enabled Huang et al. to see which cells were communicating with which others. While these experiments took place in fruit flies, the same approach should also work in other laboratory animals, including fish, mice and rats. Once we know the wiring diagram of the brain, the next step is to investigate the role of the various connections. To understand how a computer works, for example, we might change the connections between its circuit components and look at how this affects the computer’s output. With this new method, we can change how neurons communicate with one another in the brain, and then look at the effects on behavior. This should provide insights into the workings of the human brain, and clues to what goes wrong in disorders like schizophrenia and autism.
Collapse
Affiliation(s)
- Ting-Hao Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Peter Niesman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Deepshika Arasu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Donghyung Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Aubrie L De La Cruz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Antuca Callejas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Department of Cell Biology, School of Science, University of Extremadura, Badajoz, Spain
| | - Elizabeth J Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
76
|
Sensory Conflict Disrupts Activity of the Drosophila Circadian Network. Cell Rep 2017; 17:1711-1718. [PMID: 27829142 PMCID: PMC5120367 DOI: 10.1016/j.celrep.2016.10.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/16/2016] [Accepted: 10/11/2016] [Indexed: 11/23/2022] Open
Abstract
Periodic changes in light and temperature synchronize the Drosophila circadian clock, but the question of how the fly brain integrates these two input pathways to set circadian time remains unanswered. We explore multisensory cue combination by testing the resilience of the circadian network to conflicting environmental inputs. We show that misaligned light and temperature cycles can lead to dramatic changes in the daily locomotor activities of wild-type flies during and after exposure to sensory conflict. This altered behavior is associated with a drastic reduction in the amplitude of PERIOD (PER) oscillations in brain clock neurons and desynchronization between light- and temperature-sensitive neuronal subgroups. The behavioral disruption depends heavily on the phase relationship between light and temperature signals. Our results represent a systematic quantification of multisensory integration in the Drosophila circadian system and lend further support to the view of the clock as a network of coupled oscillatory subunits. Conflicting light and temperature cycles lead to abnormal, plateau-like locomotor behavior Plateau-like behavior is accompanied by a collapse of the molecular circadian clock Temperature cues dominate during small light and temperature misalignments Light cues dominate during large light and temperature misalignments
Collapse
|
77
|
A Neural Network Underlying Circadian Entrainment and Photoperiodic Adjustment of Sleep and Activity in Drosophila. J Neurosci 2017; 36:9084-96. [PMID: 27581451 DOI: 10.1523/jneurosci.0992-16.2016] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/09/2016] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED A sensitivity of the circadian clock to light/dark cycles ensures that biological rhythms maintain optimal phase relationships with the external day. In animals, the circadian clock neuron network (CCNN) driving sleep/activity rhythms receives light input from multiple photoreceptors, but how these photoreceptors modulate CCNN components is not well understood. Here we show that the Hofbauer-Buchner eyelets differentially modulate two classes of ventral lateral neurons (LNvs) within the Drosophila CCNN. The eyelets antagonize Cryptochrome (CRY)- and compound-eye-based photoreception in the large LNvs while synergizing CRY-mediated photoreception in the small LNvs. Furthermore, we show that the large LNvs interact with subsets of "evening cells" to adjust the timing of the evening peak of activity in a day length-dependent manner. Our work identifies a peptidergic connection between the large LNvs and a group of evening cells that is critical for the seasonal adjustment of circadian rhythms. SIGNIFICANCE STATEMENT In animals, circadian clocks have evolved to orchestrate the timing of behavior and metabolism. Consistent timing requires the entrainment these clocks to the solar day, a process that is critical for an organism's health. Light cycles are the most important external cue for the entrainment of circadian clocks, and the circadian system uses multiple photoreceptors to link timekeeping to the light/dark cycle. How light information from these photorecptors is integrated into the circadian clock neuron network to support entrainment is not understood. Our results establish that input from the HB eyelets differentially impacts the physiology of neuronal subgroups. This input pathway, together with input from the compound eyes, precisely times the activity of flies under long summer days. Our results provide a mechanistic model of light transduction and integration into the circadian system, identifying new and unexpected network motifs within the circadian clock neuron network.
Collapse
|
78
|
Monyak RE, Emerson D, Schoenfeld BP, Zheng X, Chambers DB, Rosenfelt C, Langer S, Hinchey P, Choi CH, McDonald TV, Bolduc FV, Sehgal A, McBride SM, Jongens TA. Insulin signaling misregulation underlies circadian and cognitive deficits in a Drosophila fragile X model. Mol Psychiatry 2017; 22:1140-1148. [PMID: 27090306 PMCID: PMC5071102 DOI: 10.1038/mp.2016.51] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/01/2016] [Indexed: 12/22/2022]
Abstract
Fragile X syndrome (FXS) is an undertreated neurodevelopmental disorder characterized by low intelligence quotent and a wide range of other symptoms including disordered sleep and autism. Although FXS is the most prevalent inherited cause of intellectual disability, its mechanistic underpinnings are not well understood. Using Drosophila as a model of FXS, we showed that select expression of dfmr1 in the insulin-producing cells (IPCs) of the brain was sufficient to restore normal circadian behavior and to rescue the memory deficits in the fragile X mutant fly. Examination of the insulin signaling (IS) pathway revealed elevated levels of Drosophila insulin-like peptide 2 (Dilp2) in the IPCs and elevated IS in the dfmr1 mutant brain. Consistent with a causal role for elevated IS in dfmr1 mutant phenotypes, the expression of dfmr1 specifically in the IPCs reduced IS, and genetic reduction of the insulin pathway also led to amelioration of circadian and memory defects. Furthermore, we showed that treatment with the FDA-approved drug metformin also rescued memory. Finally, we showed that reduction of IS is required at different time points to rescue circadian behavior and memory. Our results indicate that insulin misregulation underlies the circadian and cognitive phenotypes displayed by the Drosophila fragile X model, and thus reveal a metabolic pathway that can be targeted by new and already approved drugs to treat fragile X patients.
Collapse
Affiliation(s)
- Rachel E. Monyak
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-5158
| | - Danielle Emerson
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-5158
| | - Brian P. Schoenfeld
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-5158,Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Xiangzhong Zheng
- Department of Neuroscience and Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-5158
| | - Daniel B. Chambers
- Department of Pediatric Neurology, Center for Neuroscience, University of Alberta, Edmonton, Canada AB T6G 2H7
| | - Cory Rosenfelt
- Department of Pediatric Neurology, Center for Neuroscience, University of Alberta, Edmonton, Canada AB T6G 2H7
| | - Steven Langer
- Department of Pediatric Neurology, Center for Neuroscience, University of Alberta, Edmonton, Canada AB T6G 2H7
| | - Paul Hinchey
- Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Catherine H. Choi
- Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461,Department of Dermatology, Drexel University College of Medicine, 219 N. Broad Street, Philadelphia, PA, 19107
| | - Thomas V. McDonald
- Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Francois V. Bolduc
- Department of Pediatric Neurology, Center for Neuroscience, University of Alberta, Edmonton, Canada AB T6G 2H7
| | - Amita Sehgal
- Department of Neuroscience and Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-5158
| | - Sean M.J. McBride
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-5158,To whom correspondence should be addressed: and , phone: 215-573-9332, fax: 215-573-9411
| | - Thomas A. Jongens
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-5158,To whom correspondence should be addressed: and , phone: 215-573-9332, fax: 215-573-9411
| |
Collapse
|
79
|
SIK3-HDAC4 signaling regulates Drosophila circadian male sex drive rhythm via modulating the DN1 clock neurons. Proc Natl Acad Sci U S A 2017; 114:E6669-E6677. [PMID: 28743754 PMCID: PMC5558993 DOI: 10.1073/pnas.1620483114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The physiology and behavior of many organisms are subject to daily cycles. In Drosophila melanogaster the daily locomotion patterns of single flies are characterized by bursts of activity at dawn and dusk. Two distinct clusters of clock neurons-morning oscillators (M cells) and evening oscillators (E cells)-are largely responsible for these activity bursts. In contrast, male-female pairs of flies follow a distinct pattern, most notably characterized by an activity trough at dusk followed by a high level of male courtship during the night. This male sex drive rhythm (MSDR) is mediated by the M cells along with DN1 neurons, a cluster of clock neurons located in the dorsal posterior region of the brain. Here we report that males lacking Salt-inducible kinase 3 (SIK3) expression in M cells exhibit a short period of MSDR but a long period of single-fly locomotor rhythm (SLR). Moreover, lack of Sik3 in M cells decreases the amplitude of PERIOD (PER) cycling in DN1 neurons, suggesting that SIK3 non-cell-autonomously regulates DN1 neurons' molecular clock. We also show that Sik3 reduction interferes with circadian nucleocytoplasmic shuttling of Histone deacetylase 4 (HDAC4), a SIK3 phosphorylation target, in clock neurons and that constitutive HDAC4 localization in the nucleus shortens the period of MSDR. Taking these findings together, we conclude that SIK3-HDAC4 signaling in M cells regulates MSDR by regulating the molecular oscillation in DN1 neurons.
Collapse
|
80
|
Drosophila DH31 Neuropeptide and PDF Receptor Regulate Night-Onset Temperature Preference. J Neurosci 2017; 36:11739-11754. [PMID: 27852781 DOI: 10.1523/jneurosci.0964-16.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/24/2016] [Accepted: 09/22/2016] [Indexed: 12/25/2022] Open
Abstract
Body temperature exhibits rhythmic fluctuations over a 24 h period (Refinetti and Menaker, 1992) and decreases during the night, which is associated with sleep initiation (Gilbert et al., 2004; Kräuchi, 2007a,b). However, the underlying mechanism of this temperature decrease is largely unknown. We have previously shown that Drosophila exhibit a daily temperature preference rhythm (TPR), in which their preferred temperatures increase during the daytime and then decrease at the transition from day to night (night-onset) (Kaneko et al., 2012). Because Drosophila are small ectotherms, their body temperature is very close to that of the ambient temperature (Stevenson, 1985), suggesting that their TPR generates their body temperature rhythm. Here, we demonstrate that the neuropeptide diuretic hormone 31 (DH31) and pigment-dispersing factor receptor (PDFR) contribute to regulate the preferred temperature decrease at night-onset. We show that PDFR and tethered-DH31 expression in dorsal neurons 2 (DN2s) restore the preferred temperature decrease at night-onset, suggesting that DH31 acts on PDFR in DN2s. Notably, we previously showed that the molecular clock in DN2s is important for TPR. Although PDF (another ligand of PDFR) is a critical factor for locomotor activity rhythms, Pdf mutants exhibit normal preferred temperature decreases at night-onset. This suggests that DH31-PDFR signaling specifically regulates a preferred temperature decrease at night-onset. Thus, we propose that night-onset TPR and locomotor activity rhythms are differentially controlled not only by clock neurons but also by neuropeptide signaling in the brain. SIGNIFICANCE STATEMENT Body temperature rhythm (BTR) is fundamental for the maintenance of functions essential for homeostasis, such as generating metabolic energy and sleep. One major unsolved question is how body temperature decreases dramatically during the night. Previously, we demonstrated that a BTR-like mechanism, referred to as temperature preference rhythm (TPR), exists in Drosophila Here, we demonstrate that the diuretic hormone 31 (DH31) neuropeptide and pigment-dispersing factor receptor (PDFR) regulate preferred temperature decreases at night-onset via dorsal neurons 2. This is the first in vivo evidence that DH31 could function as a ligand of PDFR. Although both DH31 and PDF are ligands of PDFR, we show that DH31 regulates night-onset TPR, but PDF does not, suggesting that night-onset TPR and locomotor activity rhythms are controlled by different neuropeptides via different clock cells.
Collapse
|
81
|
Abstract
Rhodopsin is the classical light sensor. Although rhodopsin has long been known to be important for image formation in the eye, the requirements for opsins in non-image formation and in extraocular light sensation were revealed much later. Most recent is the demonstration that an opsin in the fruit fly, Drosophila melanogaster, is expressed in pacemaker neurons in the brain and functions in light entrainment of circadian rhythms. However, the biggest surprise is that opsins have light-independent roles, countering more than a century of dogma that they function exclusively as light sensors. Through studies in Drosophila, light-independent roles of opsins have emerged in temperature sensation and hearing. Although these findings have been uncovered in the fruit fly, there are hints that opsins have light-independent roles in a wide array of animals, including mammals. Thus, despite the decades of focus on opsins as light detectors, they represent an important new class of polymodal sensory receptor.
Collapse
Affiliation(s)
- Nicole Y Leung
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106;
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106;
| |
Collapse
|
82
|
Yadlapalli S, Shafer OT. How a brain keeps its cool. eLife 2017; 6:e28109. [PMID: 28556778 PMCID: PMC5449179 DOI: 10.7554/elife.28109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 11/13/2022] Open
Abstract
Temperature-sensing neurons in the Drosophila brain cooperate with the central circadian clock to help regulate body temperature.
Collapse
Affiliation(s)
- Swathi Yadlapalli
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Orie T Shafer
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
83
|
Liang X, Holy TE, Taghert PH. A Series of Suppressive Signals within the Drosophila Circadian Neural Circuit Generates Sequential Daily Outputs. Neuron 2017; 94:1173-1189.e4. [PMID: 28552314 DOI: 10.1016/j.neuron.2017.05.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/11/2017] [Accepted: 05/03/2017] [Indexed: 11/19/2022]
Abstract
We studied the Drosophila circadian neural circuit using whole-brain imaging in vivo. Five major groups of pacemaker neurons display synchronized molecular clocks, yet each exhibits a distinct phase of daily Ca2+ activation. Light and neuropeptide pigment dispersing factor (PDF) from morning cells (s-LNv) together delay the phase of the evening (LNd) group by ∼12 hr; PDF alone delays the phase of the DN3 group by ∼17 hr. Neuropeptide sNPF, released from s-LNv and LNd pacemakers, produces Ca2+ activation in the DN1 group late in the night. The circuit also features negative feedback by PDF to truncate the s-LNv Ca2+ wave and terminate PDF release. Both PDF and sNPF suppress basal Ca2+ levels in target pacemakers with long durations by cell-autonomous actions. Thus, light and neuropeptides act dynamically at distinct hubs of the circuit to produce multiple suppressive events that create the proper tempo and sequence of circadian pacemaker neuronal activities.
Collapse
Affiliation(s)
- Xitong Liang
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Timothy E Holy
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Paul H Taghert
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
84
|
Abstract
Animals are born with a rich repertoire of robust behaviors that are critical for their survival. However, innate behaviors are also highly adaptable to an animal's internal state and external environment. Neuromodulators, including biogenic amines, neuropeptides, and hormones, are released to signal changes in animals' circumstances and serve to reconfigure neural circuits. This circuit flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands, and physiological states. Aided by powerful genetic tools, researchers have made remarkable progress in Drosophila melanogaster to address how a myriad of contextual information influences the input-output relationship of hardwired circuits that support a complex behavioral repertoire. Here we highlight recent advances in understanding neuromodulation of Drosophila innate behaviors, with a special focus on feeding, courtship, aggression, and postmating behaviors.
Collapse
Affiliation(s)
- Susy M Kim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093; ,
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093; ,
| | - Jing W Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093; ,
| |
Collapse
|
85
|
Liao S, Broughton S, Nässel DR. Behavioral Senescence and Aging-Related Changes in Motor Neurons and Brain Neuromodulator Levels Are Ameliorated by Lifespan-Extending Reproductive Dormancy in Drosophila. Front Cell Neurosci 2017; 11:111. [PMID: 28503133 PMCID: PMC5408790 DOI: 10.3389/fncel.2017.00111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/03/2017] [Indexed: 01/04/2023] Open
Abstract
The lifespan of Drosophilamelanogaster can be extended substantially by inducing reproductive dormancy (also known as diapause) by lowered temperature and short days. This increase of longevity is accompanied by lowered metabolism and increased stress tolerance. We ask here whether behavioral senescence is ameliorated during adult dormancy. To study this we kept flies for seven or more weeks in normal rearing conditions or in diapause conditions and compared to 1-week-old flies in different behavioral assays of sleep, negative geotaxis and exploratory walking. We found that the senescence of geotaxis and locomotor behavior seen under normal rearing conditions was negligible in flies kept in dormancy. The normal senescence of rhythmic activity and sleep patterns during the daytime was also reduced by adult dormancy. Investigating the morphology of specific neuromuscular junctions (NMJs), we found that changes normally seen with aging do not take place in dormant flies. To monitor age-associated changes in neuronal circuits regulating activity rhythms, sleep and walking behavior we applied antisera to tyrosine hydroxylase (TH), serotonin and several neuropeptides to examine changes in expression levels and neuron morphology. In most neuron types the levels of stored neuromodulators decreased during normal aging, but not in diapause treated flies. No signs of neurodegeneration were seen in either condition. Our data suggest that age-related changes in motor neurons could be the cause of part of the behavioral senescence and that this is ameliorated by reproductive diapause. Earlier studies established a link between age-associated decreases in neuromodulator levels and behavioral decline that could be rescued by overexpression of neuromodulator. Thus, it is likely that the retained levels of neuromodulators in dormant flies alleviate behavioral senescence.
Collapse
Affiliation(s)
- Sifang Liao
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| | - Susan Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster UniversityLancaster, UK
| | - Dick R Nässel
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| |
Collapse
|
86
|
MicroRNA-92a is a circadian modulator of neuronal excitability in Drosophila. Nat Commun 2017; 8:14707. [PMID: 28276426 PMCID: PMC5347142 DOI: 10.1038/ncomms14707] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/24/2017] [Indexed: 01/01/2023] Open
Abstract
Many biological and behavioural processes of animals are governed by an endogenous circadian clock, which is dependent on transcriptional regulation. Here we address post-transcriptional regulation and the role of miRNAs in Drosophila circadian rhythms. At least six miRNAs show cycling expression levels within the pigment dispersing factor (PDF) cell-pacemaker neurons; only mir-92a peaks during the night. In vivo calcium monitoring, dynamics of PDF projections, ArcLight, GCaMP6 imaging and sleep assays indicate that mir-92a suppresses neuronal excitability. In addition, mir-92a levels within PDF cells respond to light pulses and also affect the phase shift response. Translating ribosome affinity purification (TRAP) and in vitro luciferase reporter assay indicate that mir-92a suppresses expression of sirt2, which is homologous to human sir2 and sirt3. sirt2 RNAi also phenocopies mir-92a overexpression. These experiments indicate that sirt2 is a functional mir-92a target and that mir-92a modulates PDF neuronal excitability via suppressing SIRT2 levels in a rhythmic manner. Accumulating evidence suggests that microRNAs play a role in circadian regulation. Here the authors show that in the Drosophila brain, mir-92a suppresses the excitability of PDF neurons—key circadian pacemaker cells in Drosophila—via inhibiting the translation of its target sirt2.
Collapse
|
87
|
Mendoza-Viveros L, Bouchard-Cannon P, Hegazi S, Cheng AH, Pastore S, Cheng HYM. Molecular modulators of the circadian clock: lessons from flies and mice. Cell Mol Life Sci 2017; 74:1035-1059. [PMID: 27689221 PMCID: PMC11107503 DOI: 10.1007/s00018-016-2378-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/03/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022]
Abstract
Circadian timekeeping is a ubiquitous mechanism that enables organisms to maintain temporal coordination between internal biological processes and time of the local environment. The molecular basis of circadian rhythms lies in a set of transcription-translation feedback loops (TTFLs) that drives the rhythmic transcription of core clock genes, whose level and phase of expression serve as the marker of circadian time. However, it has become increasingly evident that additional regulatory mechanisms impinge upon the TTFLs to govern the properties and behavior of the circadian clock. Such mechanisms include changes in chromatin architecture, interactions with other transcription factor networks, post-transcriptional control by RNA modifications, alternative splicing and microRNAs, and post-translational regulation of subcellular trafficking and protein degradation. In this review, we will summarize the current knowledge of circadian clock regulation-from transcriptional to post-translational-drawing from literature pertaining to the Drosophila and murine circadian systems.
Collapse
Affiliation(s)
- Lucia Mendoza-Viveros
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Pascale Bouchard-Cannon
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Sara Hegazi
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Arthur H Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Stephen Pastore
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
88
|
Achilles is a circadian clock-controlled gene that regulates immune function in Drosophila. Brain Behav Immun 2017; 61:127-136. [PMID: 27856350 PMCID: PMC5316375 DOI: 10.1016/j.bbi.2016.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/02/2016] [Accepted: 11/12/2016] [Indexed: 02/06/2023] Open
Abstract
The circadian clock is a transcriptional/translational feedback loop that drives the rhythmic expression of downstream mRNAs. Termed "clock-controlled genes," these molecular outputs of the circadian clock orchestrate cellular, metabolic, and behavioral rhythms. As part of our on-going work to characterize key upstream regulators of circadian mRNA expression, we have identified a novel clock-controlled gene in Drosophila melanogaster, Achilles (Achl), which is rhythmic at the mRNA level in the brain and which represses expression of antimicrobial peptides in the immune system. Achilles knock-down in neurons dramatically elevates expression of crucial immune response genes, including IM1 (Immune induced molecule 1), Mtk (Metchnikowin), and Drs (Drosomysin). As a result, flies with knocked-down Achilles expression are resistant to bacterial challenges. Meanwhile, no significant change in core clock gene expression and locomotor activity is observed, suggesting that Achilles influences rhythmic mRNA outputs rather than directly regulating the core timekeeping mechanism. Notably, Achilles knock-down in the absence of immune challenge significantly diminishes the fly's overall lifespan, indicating a behavioral or metabolic cost of constitutively activating this pathway. Together, our data demonstrate that (1) Achilles is a novel clock-controlled gene that (2) regulates the immune system, and (3) participates in signaling from neurons to immunological tissues.
Collapse
|
89
|
Fluorescence circadian imaging reveals a PDF-dependent transcriptional regulation of the Drosophila molecular clock. Sci Rep 2017; 7:41560. [PMID: 28134281 PMCID: PMC5278502 DOI: 10.1038/srep41560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/21/2016] [Indexed: 01/17/2023] Open
Abstract
Circadian locomotor behaviour is controlled by a pacemaker circuit composed of clock-containing neurons. To interrogate the mechanistic relationship between the molecular clockwork and network communication critical to the operation of the Drosophila circadian pacemaker circuit, we established new fluorescent circadian reporters that permit single-cell recording of transcriptional and post-transcriptional rhythms in brain explants and cultured neurons. Live-imaging experiments combined with pharmacological and genetic manipulations demonstrate that the neuropeptide pigment-dispersing factor (PDF) amplifies the molecular rhythms via time-of-day- and activity-dependent upregulation of transcription from E-box-containing clock gene promoters within key pacemaker neurons. The effect of PDF on clock gene transcription and the known role of PDF in enhancing PER/TIM stability occur via independent pathways downstream of the PDF receptor, the former through a cAMP-independent mechanism and the latter through a cAMP-PKA dependent mechanism. These results confirm and extend the mechanistic understanding of the role of PDF in controlling the synchrony of the pacemaker neurons. More broadly, our results establish the utility of the new live-imaging tools for the study of molecular-neural interactions important for the operation of the circadian pacemaker circuit.
Collapse
|
90
|
Barber AF, Erion R, Holmes TC, Sehgal A. Circadian and feeding cues integrate to drive rhythms of physiology in Drosophila insulin-producing cells. Genes Dev 2016; 30:2596-2606. [PMID: 27979876 PMCID: PMC5204352 DOI: 10.1101/gad.288258.116] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022]
Abstract
Barber et al. show that Drosophila insulin-producing cells (IPCs) are functionally connected to the central circadian clock circuit via DN1 neurons. Insulin mediates circadian output by regulating the rhythmic expression of a metabolic gene (sxe2) in the fat body. The activity of IPCs and the rhythmic expression of sxe2 are additionally regulated by feeding. Circadian clocks regulate much of behavior and physiology, but the mechanisms by which they do so remain poorly understood. While cyclic gene expression is thought to underlie metabolic rhythms, little is known about cycles in cellular physiology. We found that Drosophila insulin-producing cells (IPCs), which are located in the pars intercerebralis and lack an autonomous circadian clock, are functionally connected to the central circadian clock circuit via DN1 neurons. Insulin mediates circadian output by regulating the rhythmic expression of a metabolic gene (sxe2) in the fat body. Patch clamp electrophysiology reveals that IPCs display circadian clock-regulated daily rhythms in firing event frequency and bursting proportion under light:dark conditions. The activity of IPCs and the rhythmic expression of sxe2 are additionally regulated by feeding, as demonstrated by night feeding-induced changes in IPC firing characteristics and sxe2 levels in the fat body. These findings indicate circuit-level regulation of metabolism by clock cells in Drosophila and support a role for the pars intercerebralis in integrating circadian control of behavior and physiology.
Collapse
Affiliation(s)
- Annika F Barber
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Renske Erion
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Todd C Holmes
- Department of Physiology and Biophysics, University of California at Irvine, Irvine, California 92697, USA
| | - Amita Sehgal
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
91
|
Yao Z, Bennett AJ, Clem JL, Shafer OT. The Drosophila Clock Neuron Network Features Diverse Coupling Modes and Requires Network-wide Coherence for Robust Circadian Rhythms. Cell Rep 2016; 17:2873-2881. [PMID: 27974202 PMCID: PMC5161247 DOI: 10.1016/j.celrep.2016.11.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022] Open
Abstract
In animals, networks of clock neurons containing molecular clocks orchestrate daily rhythms in physiology and behavior. However, how various types of clock neurons communicate and coordinate with one another to produce coherent circadian rhythms is not well understood. Here, we investigate clock neuron coupling in the brain of Drosophila and demonstrate that the fly's various groups of clock neurons display unique and complex coupling relationships to core pacemaker neurons. Furthermore, we find that coordinated free-running rhythms require molecular clock synchrony not only within the well-characterized lateral clock neuron classes but also between lateral clock neurons and dorsal clock neurons. These results uncover unexpected patterns of coupling in the clock neuron network and reveal that robust free-running behavioral rhythms require a coherence of molecular oscillations across most of the fly's clock neuron network.
Collapse
Affiliation(s)
- Zepeng Yao
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amelia J Bennett
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jenna L Clem
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Orie T Shafer
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
92
|
Abstract
Nearly all organisms exhibit time-dependent behavior and physiology across a 24-hour day known as circadian rhythms. These outputs are manifestations of endogenous cyclic gene expression patterns driven by the activity of a core transcription/translation feedback loop. Cyclic gene expression determines highly tissue-specific functional activity regulating such processes as metabolic state, endocrine activity, and neural excitability. Entrainment of these cellular clocks is achieved through exogenous daily inputs, such as light and food. Dysregulation of the transcription/translation feedback loop has been shown to result in a wide range of disorders and diseases driving increased interest in circadian therapies.
Collapse
Affiliation(s)
- Tomas S Andreani
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Taichi Q Itoh
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Evrim Yildirim
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Dae-Sung Hwangbo
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.
| |
Collapse
|
93
|
The Drosophila Receptor Protein Tyrosine Phosphatase LAR Is Required for Development of Circadian Pacemaker Neuron Processes That Support Rhythmic Activity in Constant Darkness But Not during Light/Dark Cycles. J Neurosci 2016; 36:3860-70. [PMID: 27030770 DOI: 10.1523/jneurosci.4523-15.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/22/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED InDrosophila, a transcriptional feedback loop that is activated by CLOCK-CYCLE (CLK-CYC) complexes and repressed by PERIOD-TIMELESS (PER-TIM) complexes keeps circadian time. The timing of CLK-CYC activation and PER-TIM repression is regulated post-translationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Although kinases that control PER, TIM, and CLK levels, activity, and/or subcellular localization have been identified, less is known about phosphatases that control clock protein dephosphorylation. To identify clock-relevant phosphatases, clock-cell-specific RNAi knockdowns ofDrosophilaphosphatases were screened for altered activity rhythms. One phosphatase that was identified, the receptor protein tyrosine phosphatase leukocyte-antigen-related (LAR), abolished activity rhythms in constant darkness (DD) without disrupting the timekeeping mechanism in brain pacemaker neurons. However, expression of the neuropeptide pigment-dispersing factor (PDF), which mediates pacemaker neuron synchrony and output, is eliminated in the dorsal projections from small ventral lateral (sLNv) pacemaker neurons whenLarexpression is knocked down during development, but not in adults. Loss ofLarfunction eliminates sLNvdorsal projections, but PDF expression persists in sLNvand large ventral lateral neuron cell bodies and their remaining projections. In contrast to the defects in lights-on and lights-off anticipatory activity seen in flies that lack PDF,LarRNAi knockdown flies anticipate the lights-on and lights-off transition normally. Our results demonstrate thatLaris required for sLNvdorsal projection development and suggest that PDF expression in LNvcell bodies and their remaining projections mediate anticipation of the lights-on and lights-off transitions during a light/dark cycle. SIGNIFICANCE STATEMENT In animals, circadian clocks drive daily rhythms in physiology, metabolism, and behavior via transcriptional feedback loops. Because key circadian transcriptional activators and repressors are regulated by phosphorylation, we screened for phosphatases that alter activity rhythms when their expression was reduced. One such phosphatase, leukocyte-antigen-related (LAR), abolishes activity rhythms, but does not disrupt feedback loop function. Rather,Lardisrupts clock output by eliminating axonal processes from clock neurons that release pigment-dispersing factor (PDF) neuropeptide into the dorsal brain, but PDF expression persists in their cell bodies and remaining projections. In contrast to flies that lack PDF, flies that lackLaranticipate lights-on and lights-off transitions normally, which suggests that the remaining PDF expression mediates activity during light/dark cycles.
Collapse
|
94
|
Kauranen H, Ala-Honkola O, Kankare M, Hoikkala A. Circadian clock of Drosophila montana is adapted to high variation in summer day lengths and temperatures prevailing at high latitudes. JOURNAL OF INSECT PHYSIOLOGY 2016; 89:9-18. [PMID: 26993661 DOI: 10.1016/j.jinsphys.2016.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
Photoperiodic regulation of the circadian rhythms in insect locomotor activity has been studied in several species, but seasonal entrainment of these rhythms is still poorly understood. We have traced the entrainment of activity rhythm of northern Drosophila montana flies in a climate chamber mimicking the photoperiods and day and night temperatures that the flies encounter in northern Finland during the summer. The experiment was started by transferring freshly emerged females into the chamber in early and late summer conditions to obtain both non-diapausing and diapausing females for the studies. The locomotor activity of the females and daily changes in the expression levels of two core circadian clock genes, timeless and period, in their heads were measured at different times of summer. The study revealed several features in fly rhythmicity that are likely to help the flies to cope with high variation in the day length and temperature typical to northern summers. First, both the non-diapausing and the diapausing females showed evening activity, which decreased towards the short day length as observed in the autumn in nature. Second, timeless and period genes showed concordant daily oscillations and seasonal shifts in their expression level in both types of females. Contrary to Drosophila melanogaster, oscillation profiles of these genes were similar to each other in all conditions, including the extremely long days in early summer and the cool temperatures in late summer, and their peak expression levels were not locked to lights-off transition in any photoperiod. Third, the diapausing females were less active than the non-diapausing ones, in spite of their younger age. Overall, the study showed that D. montana clock functions well under long day conditions, and that both the photoperiod and the daily temperature cycles are important zeitgebers for seasonal changes in the circadian rhythm of this species.
Collapse
Affiliation(s)
- Hannele Kauranen
- University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, Jyväskylä, Finland.
| | - Outi Ala-Honkola
- University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, Jyväskylä, Finland
| | - Maaria Kankare
- University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, Jyväskylä, Finland
| | - Anneli Hoikkala
- University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, Jyväskylä, Finland
| |
Collapse
|
95
|
Roberts L, Leise TL, Welsh DK, Holmes TC. Functional Contributions of Strong and Weak Cellular Oscillators to Synchrony and Light-shifted Phase Dynamics. J Biol Rhythms 2016; 31:337-51. [PMID: 27221103 DOI: 10.1177/0748730416649550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Light is the primary signal that calibrates circadian neural circuits and thus coordinates daily physiological and behavioral rhythms with solar entrainment cues. Drosophila and mammalian circadian circuits consist of diverse populations of cellular oscillators that exhibit a wide range of dynamic light responses, periods, phases, and degrees of synchrony. How heterogeneous circadian circuits can generate robust physiological rhythms while remaining flexible enough to respond to synchronizing stimuli has long remained enigmatic. Cryptochrome is a short-wavelength photoreceptor that is endogenously expressed in approximately half of Drosophila circadian neurons. In a previous study, physiological light response was measured using real-time bioluminescence recordings in Drosophila whole-brain explants, which remain intrinsically light-sensitive. Here we apply analysis of real-time bioluminescence experimental data to show detailed dynamic ensemble representations of whole circadian circuit light entrainment at single neuron resolution. Organotypic whole-brain explants were either maintained in constant darkness (DD) for 6 days or exposed to a phase-advancing light pulse on the second day. We find that stronger circadian oscillators support robust overall circuit rhythmicity in DD, whereas weaker oscillators can be pushed toward transient desynchrony and damped amplitude to facilitate a new state of phase-shifted network synchrony. Additionally, we use mathematical modeling to examine how a network composed of distinct oscillator types can give rise to complex dynamic signatures in DD conditions and in response to simulated light pulses. Simulations suggest that complementary coupling mechanisms and a combination of strong and weak oscillators may enable a robust yet flexible circadian network that promotes both synchrony and entrainment. A more complete understanding of how the properties of oscillators and their signaling mechanisms facilitate their distinct roles in light entrainment may allow us to direct and augment the circadian system to speed recovery from jet lag, shift work, and seasonal affective disorder.
Collapse
Affiliation(s)
- Logan Roberts
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
| | - Tanya L Leise
- Department of Mathematics and Statistics, Amherst College, Amherst, MA
| | - David K Welsh
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, La Jolla, CA Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Todd C Holmes
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
| |
Collapse
|
96
|
mir-276a strengthens Drosophila circadian rhythms by regulating timeless expression. Proc Natl Acad Sci U S A 2016; 113:E2965-72. [PMID: 27162360 DOI: 10.1073/pnas.1605837113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Circadian rhythms in metazoan eukaryotes are controlled by an endogenous molecular clock. It functions in many locations, including subsets of brain neurons (clock neurons) within the central nervous system. Although the molecular clock relies on transcription/translation feedback loops, posttranscriptional regulation also plays an important role. Here, we show that the abundant Drosophila melanogaster microRNA mir-276a regulates molecular and behavioral rhythms by inhibiting expression of the important clock gene timeless (tim). Misregulation of mir-276a in clock neurons alters tim expression and increases arrhythmicity under standard constant darkness (DD) conditions. mir-276a expression itself appears to be light-regulated because its levels oscillate under 24-h light-dark (LD) cycles but not in DD. mir-276a is regulated by the transcription activator Chorion factor 2 in flies and in tissue-culture cells. Evidence from flies mutated using the clustered, regularly interspaced, short palindromic repeats (CRISPR) tool shows that mir-276a inhibits tim expression: Deleting the mir-276a-binding site in the tim 3' UTR causes elevated levels of TIM and ∼50% arrhythmicity. We suggest that this pathway contributes to the more robust rhythms observed under light/dark LD conditions than under DD conditions.
Collapse
|
97
|
Klose M, Duvall L, Li W, Liang X, Ren C, Steinbach JH, Taghert PH. Functional PDF Signaling in the Drosophila Circadian Neural Circuit Is Gated by Ral A-Dependent Modulation. Neuron 2016; 90:781-794. [PMID: 27161526 DOI: 10.1016/j.neuron.2016.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 01/13/2016] [Accepted: 03/20/2016] [Indexed: 12/18/2022]
Abstract
The neuropeptide PDF promotes the normal sequencing of circadian behavioral rhythms in Drosophila, but its signaling mechanisms are not well understood. We report daily rhythmicity in responsiveness to PDF in critical pacemakers called small LNvs. There is a daily change in potency, as great as 10-fold higher, around dawn. The rhythm persists in constant darkness and does not require endogenous ligand (PDF) signaling or rhythmic receptor gene transcription. Furthermore, rhythmic responsiveness reflects the properties of the pacemaker cell type, not the receptor. Dopamine responsiveness also cycles, in phase with that of PDF, in the same pacemakers, but does not cycle in large LNv. The activity of RalA GTPase in s-LNv regulates PDF responsiveness and behavioral locomotor rhythms. Additionally, cell-autonomous PDF signaling reversed the circadian behavioral effects of lowered RalA activity. Thus, RalA activity confers high PDF responsiveness, providing a daily gate around the dawn hours to promote functional PDF signaling.
Collapse
Affiliation(s)
- Markus Klose
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Laura Duvall
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Weihua Li
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Xitong Liang
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Chi Ren
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Joe Henry Steinbach
- Dept. of Anesthesiology, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Paul H Taghert
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| |
Collapse
|
98
|
Mushroom body signaling is required for locomotor activity rhythms in Drosophila. Neurosci Res 2016; 111:25-33. [PMID: 27106579 DOI: 10.1016/j.neures.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 02/01/2023]
Abstract
In the fruitfly Drosophila melanogaster, circadian rhythms of locomotor activity under constant darkness are controlled by pacemaker neurons. To understand how behavioral rhythmicity is generated by the nervous system, it is essential to identify the output circuits from the pacemaker neurons. A recent study of Drosophila has suggested that pacemaker neurons project to mushroom body (MB) neurons, which are considered the memory center in Drosophila. MBs also regulate spontaneous locomotor activity without learning, suggesting that MB neuronal activity regulates behavioral rhythms. However, the importance of MBs in generating behavioral rhythmicity remains controversial because contradicting results have been reported as follows: (1) locomotor activity in MB-ablated flies is substantially rhythmic, but (2) activation of restricted neuronal populations including MB neurons induces arrhythmic locomotor activity. Here, we report that neurotransmission in MBs is required for behavioral rhythmicity. For adult-specific disruption of neurotransmission in MBs, we used the GAL80/GAL4/UAS ternary gene expression system in combination with the temperature-sensitive dynamin mutation shibire(ts1). Blocking of neurotransmission in GAL4-positive neurons including MB neurons induced arrhythmic locomotor activity, whereas this arrhythmicity was rescued by the MB-specific expression of GAL80. Our results indicate that MB signaling plays a key role in locomotor activity rhythms in Drosophila.
Collapse
|
99
|
Cavey M, Collins B, Bertet C, Blau J. Circadian rhythms in neuronal activity propagate through output circuits. Nat Neurosci 2016; 19:587-95. [PMID: 26928065 PMCID: PMC5066395 DOI: 10.1038/nn.4263] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/04/2016] [Indexed: 12/14/2022]
Abstract
Twenty-four hour rhythms in behavior are organized by a network of circadian pacemaker neurons. Rhythmic activity in this network is generated by intrinsic rhythms in clock neuron physiology and communication between clock neurons. However, it is poorly understood how the activity of a small number of pacemaker neurons is translated into rhythmic behavior of the whole animal. To understand this, we screened for signals that could identify circadian output circuits in Drosophila melanogaster. We found that leucokinin neuropeptide (LK) and its receptor (LK-R) were required for normal behavioral rhythms. This LK/LK-R circuit connects pacemaker neurons to brain areas that regulate locomotor activity and sleep. Our experiments revealed that pacemaker neurons impose rhythmic activity and excitability on LK- and LK-R-expressing neurons. We also found pacemaker neuron-dependent activity rhythms in a second circadian output pathway controlled by DH44 neuropeptide-expressing neurons. We conclude that rhythmic clock neuron activity propagates to multiple downstream circuits to orchestrate behavioral rhythms.
Collapse
Affiliation(s)
- Matthieu Cavey
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Center for Genomics & Systems Biology, New York University Abu Dhabi Institute, Abu Dhabi, United Arab Emirates
| | - Ben Collins
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Claire Bertet
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Center for Genomics & Systems Biology, New York University Abu Dhabi Institute, Abu Dhabi, United Arab Emirates
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
100
|
Denno ME, Privman E, Borman RP, Wolin DC, Venton BJ. Quantification of Histamine and Carcinine in Drosophila melanogaster Tissues. ACS Chem Neurosci 2016; 7:407-14. [PMID: 26765065 DOI: 10.1021/acschemneuro.5b00326] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Histamine is a neurotransmitter crucial to the visual processing of Drosophila melanogaster. It is inactivated by metabolism to carcinine, a β-alanyl derivative, and the same enzyme that controls that process also converts dopamine to N-β-alanyl-dopamine. Direct detection of histamine and carcinine has not been reported in single Drosophila brains. Here, we quantify histamine, carcinine, dopamine, and N-β-alanyl-dopamine in Drosophila tissues by capillary electrophoresis coupled to fast-scan cyclic voltammetry (CE-FSCV). Limits of detection were low, 4 ± 1 pg for histamine, 10 ± 4 pg for carcinine, 2.8 ± 0.3 pg for dopamine, and 9 ± 3 pg for N-β-alanyl-dopamine. Tissue content was compared in the brain, eyes, and cuticle from wild-type (Canton S) and mutant (tan(3) and ebony(1)) strains. In tan(3) mutants, the enzyme that produces histamine from carcinine is nonfunctional, whereas in ebony(1) mutants, the enzyme that produces carcinine from histamine is nonfunctional. In all fly strains, the neurotransmitter content was highest in the eyes and there were no strain differences for tissue content in the cuticle. The main finding was that carcinine levels changed significantly in the mutant flies, whereas histamine levels did not. In particular, tan(3) flies had significantly higher carcinine levels in the eyes and brain than Canton S or ebony(1) flies. N-β-Alanyl-dopamine was detected in tan(3) mutants but not in other strains. These results show the utility of CE-FSCV for sensitive detection of histamine and carcinine, which allows a better understanding of their content and metabolism in different types of tissues to be obtained.
Collapse
Affiliation(s)
- Madelaine E. Denno
- Department
of Chemistry, ‡Neuroscience Graduate Program, §Medical Scientist Training Program, ∥Department of Biology, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Eve Privman
- Department
of Chemistry, ‡Neuroscience Graduate Program, §Medical Scientist Training Program, ∥Department of Biology, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ryan P. Borman
- Department
of Chemistry, ‡Neuroscience Graduate Program, §Medical Scientist Training Program, ∥Department of Biology, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Danielle C. Wolin
- Department
of Chemistry, ‡Neuroscience Graduate Program, §Medical Scientist Training Program, ∥Department of Biology, University of Virginia, Charlottesville, Virginia 22904, United States
| | - B. Jill Venton
- Department
of Chemistry, ‡Neuroscience Graduate Program, §Medical Scientist Training Program, ∥Department of Biology, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|