51
|
Assessment of Human Exposure (Including Interference to Implantable Devices) to Low-Frequency Electromagnetic Field in Modern Microgrids, Power Systems and Electric Transports. ENERGIES 2021. [DOI: 10.3390/en14206789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electromagnetic field emissions of modern power systems have increased in complexity if the many power conversion forms by means of power electronics and static converters are considered. In addition, the installed electric power has grown in many everyday applications such as wireless charging of vehicles, home integrated photovoltaic systems, high-performance electrified transportation systems, and so on. Attention must then be shifted to include harmonics and commutation components on one side, as well as closer interaction with humans, that concretizes in impact on physiological functions and interference to implantable medical devices and hearing aids. The panorama is complex in that standards and regulations have also increased significantly or underwent extensive revisions in the last 10 years or so. For assessment, the straightforward application of the limits of exposure is hindered by measurement problems (time or frequency domain methods, positioning errors, impact of uncertainty) and complex scenarios of exposure (multiple sources, large field gradient, time-varying emissions). This work considers thus both the clarification of the principles of interaction for each affected system (including humans) and the discussion of the large set of related normative and technical documents, deriving a picture of requirements and constraints. The methods of assessment are discussed in a metrological perspective using a range of examples.
Collapse
|
52
|
Sabel BA, Kresinsky A, Cardenas-Morales L, Haueisen J, Hunold A, Dannhauer M, Antal A. Evaluating Current Density Modeling of Non-Invasive Eye and Brain Electrical Stimulation Using Phosphene Thresholds. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2133-2141. [PMID: 34648453 PMCID: PMC8594910 DOI: 10.1109/tnsre.2021.3120148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Because current flow cannot be measured directly in the intact retina or brain, current density distribution models were developed to estimate it during magnetic or electrical stimulation. A paradigm is now needed to evaluate if current flow modeling can be related to physiologically meaningful signs of true current distribution in the human brain. We used phosphene threshold measurements (PTs) as surrogate markers of current-flow to determine if PTs, evoked by transcranial alternating current stimulation (tACS), can be matched with current density estimates generated by head model-based computer simulations. Healthy, male subjects (n=15) were subjected to three-staged PT measurements comparing six unilateral and one bilateral stimulation electrode montages according to the 10/20 system: Fp2-Suborbital right (So), Fp2-right shoulder (rS), Fp2-Cz, Fp2- O2, So-rS, Cz-F8 and F7-F8. The stimulation frequency was set at 16 Hz. Subjects were asked to report the appearance and localization of phosphenes in their visual field for every montage. Current density models were built using multi-modal imaging data of a standard brain, meshed with isotropic conductivities of different tissues of the head using the SimBio and SCIRun software packages. We observed that lower PTs were associated with higher simulated current levels in the unilateral montages of the model head, and shorter electrode distances to the eye had lower PTs. The lowest mean PT and the lowest variability were found in the F7-F8 montage (95±33 μA). Our results confirm the hypothesis that phosphenes are primarily of retinal origin, and they provide the first in vivo evidence that computer models of current flow using head models are a valid tool to estimate real current flow in the human eye and brain.
Collapse
|
53
|
Geffen A, Bland N, Sale MV. Effects of Slow Oscillatory Transcranial Alternating Current Stimulation on Motor Cortical Excitability Assessed by Transcranial Magnetic Stimulation. Front Hum Neurosci 2021; 15:726604. [PMID: 34588969 PMCID: PMC8473706 DOI: 10.3389/fnhum.2021.726604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Converging evidence suggests that transcranial alternating current stimulation (tACS) may entrain endogenous neural oscillations to match the frequency and phase of the exogenously applied current and this entrainment may outlast the stimulation (although only for a few oscillatory cycles following the cessation of stimulation). However, observing entrainment in the electroencephalograph (EEG) during stimulation is extremely difficult due to the presence of complex tACS artifacts. The present study assessed entrainment to slow oscillatory (SO) tACS by measuring motor cortical excitability across different oscillatory phases during (i.e., online) and outlasting (i.e., offline) stimulation. 30 healthy participants received 60 trials of intermittent SO tACS (0.75 Hz; 16 s on/off interleaved) at an intensity of 2 mA peak-to-peak. Motor cortical excitability was assessed using transcranial magnetic stimulation (TMS) of the hand region of the primary motor cortex (M1HAND) to induce motor evoked potentials (MEPs) in the contralateral thumb. MEPs were acquired at four time-points within each trial – early online, late online, early offline, and late offline – as well as at the start and end of the overall stimulation period (to probe longer-lasting aftereffects of tACS). A significant increase in MEP amplitude was observed from pre- to post-tACS (paired-sample t-test; t29 = 2.64, P = 0.013, d = 0.48) and from the first to the last tACS block (t29 = −2.93, P = 0.02, d = 0.54). However, no phase-dependent modulation of excitability was observed. Therefore, although SO tACS had a facilitatory effect on motor cortical excitability that outlasted stimulation, there was no evidence supporting entrainment of endogenous oscillations as the underlying mechanism.
Collapse
Affiliation(s)
- Asher Geffen
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Nicholas Bland
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Martin V Sale
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
54
|
Fehér KD, Nakataki M, Morishima Y. Phase-Synchronized Transcranial Alternating Current Stimulation-Induced Neural Oscillations Modulate Cortico-Cortical Signaling Efficacy. Brain Connect 2021; 12:443-453. [PMID: 34210152 DOI: 10.1089/brain.2021.0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: Synchronized oscillatory brain activity is considered a basis for flexible neuronal network communication. However, the causal role of inter-regional oscillatory phase relations in modulating signaling efficacy in cortical networks has not been directly demonstrated in humans so far. Aim: The current study addresses the causal role of transcranial alternating current stimulation (tACS)-induced oscillatory cross-network phase relations in modulating signaling efficacy across human cortical networks. Methods: To this end, concurrent tACS, transcranial magnetic stimulation (TMS), and electroencephalography (EEG) were employed to measure the modulation of excitability and signaling efficacy across cortical networks during externally induced neural oscillations. Theta oscillatory activity was introduced through tACS in two nodes of the human frontoparietal network: the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC). Six Hertz tACS was applied to the DLPFC and PPC simultaneously in an in-phase or antiphase manner. In addition, single-pulse TMS was administered over the DLPFC at four different phases of tACS and the propagation of TMS-evoked neuronal activity was measured with EEG. Results: We show that tACS-induced theta oscillations modulate TMS-evoked potentials (TEPs) in a phase-dependent manner, and that the induced oscillatory phase relation across the frontoparietal network affects the propagation of phase-dependent TEPs within as well as beyond the frontoparietal network. Conclusion: We show that the effect of tACS-induced phase relation across the frontoparietal network on signal transmission extends beyond the frontoparietal network. The results support a causal role of inter-nodal oscillatory phase synchrony in routing cortico-cortical information flow.
Collapse
Affiliation(s)
- Kristoffer D Fehér
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Masahito Nakataki
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Yosuke Morishima
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.,Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
55
|
Räty S, Borrmann C, Granata G, Cárdenas-Morales L, Schoenfeld A, Sailer M, Silvennoinen K, Holopainen J, De Rossi F, Antal A, Rossini PM, Tatlisumak T, Sabel BA. Non-invasive electrical brain stimulation for vision restoration after stroke: An exploratory randomized trial (REVIS). Restor Neurol Neurosci 2021; 39:221-235. [PMID: 34219679 PMCID: PMC8461672 DOI: 10.3233/rnn-211198] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Occipital strokes often cause permanent homonymous hemianopia leading to significant disability. In previous studies, non-invasive electrical brain stimulation (NIBS) has improved vision after optic nerve damage and in combination with training after stroke. Objective: We explored different NIBS modalities for rehabilitation of hemianopia after chronic stroke. Methods: In a randomized, double-blinded, sham-controlled, three-armed trial, altogether 56 patients with homonymous hemianopia were recruited. The three experiments were: i) repetitive transorbital alternating current stimulation (rtACS, n = 8) vs. rtACS with prior cathodal transcranial direct current stimulation over the intact visual cortex (tDCS/rtACS, n = 8) vs. sham (n = 8); ii) rtACS (n = 9) vs. sham (n = 9); and iii) tDCS of the visual cortex (n = 7) vs. sham (n = 7). Visual functions were evaluated before and after the intervention, and after eight weeks follow-up. The primary outcome was change in visual field assessed by high-resolution and standard perimetries. The individual modalities were compared within each experimental arm. Results: Primary outcomes in Experiments 1 and 2 were negative. Only significant between-group change was observed in Experiment 3, where tDCS increased visual field of the contralesional eye compared to sham. tDCS/rtACS improved dynamic vision, reading, and visual field of the contralesional eye, but was not superior to other groups. rtACS alone increased foveal sensitivity, but was otherwise ineffective. All trial-related procedures were tolerated well. Conclusions: This exploratory trial showed safety but no main effect of NIBS on vision restoration after stroke. However, tDCS and combined tDCS/rtACS induced improvements in visually guided performance that need to be confirmed in larger-sample trials. NCT01418820 (clinicaltrials.gov)
Collapse
Affiliation(s)
- Silja Räty
- HUS Neurocenter, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Carolin Borrmann
- Institute of Medical Psychology, Otto-v.-Guericke University of Magdeburg Medical Faculty, Magdeburg, Germany
| | - Giuseppe Granata
- Institute of Neurology, Policlinic A. Gemelli Foundation-IRCCS, Rome, Italy
| | - Lizbeth Cárdenas-Morales
- Institute of Medical Psychology, Otto-v.-Guericke University of Magdeburg Medical Faculty, Magdeburg, Germany.,Department of Forensic Psychiatry and Psychotherapy, Ulm University, Ulm, Germany
| | - Ariel Schoenfeld
- Clinic of Neurorehabilitation, Kliniken Schmieder, Heidelberg, Germany
| | - Michael Sailer
- MEDIAN Klinik NRZ Magdeburg, An-Institut für Neurorehabilitation, Otto-von-Guericke University, Magdeburg, Germany
| | - Katri Silvennoinen
- HUS Neurocenter, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Juha Holopainen
- Department of Ophthalmology, Helsinki University Hospital, Helsinki, Finland
| | - Francesca De Rossi
- National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of Low Vision Patients - IAPB, Italian Branch, Rome, Italy
| | - Andrea Antal
- HUS Neurocenter, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Clinic for Neurology, University Medical Center of Göttingen, Germany
| | - Paolo M Rossini
- Department Neuroscience & Neurorehabilitation, IRCCS San Raffaele-Pisana, Rome, Italy
| | - Turgut Tatlisumak
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bernhard A Sabel
- Institute of Medical Psychology, Otto-v.-Guericke University of Magdeburg Medical Faculty, Magdeburg, Germany
| |
Collapse
|
56
|
Schubert C, Dabbagh A, Classen J, Krämer UM, Tzvi E. Alpha oscillations modulate premotor-cerebellar connectivity in motor learning: Insights from transcranial alternating current stimulation. Neuroimage 2021; 241:118410. [PMID: 34303797 DOI: 10.1016/j.neuroimage.2021.118410] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
Alpha oscillations (8-13 Hz) have been suggested to play an important role in dynamic neural processes underlying learning and memory. The goal of this study was to scrutinize the role of alpha oscillations in communication within a cortico-cerebellar network implicated in motor sequence learning. To this end, we conducted two EEG experiments using a serial reaction time task. In the first experiment, we explored changes in alpha power and cross-channel alpha coherence as subjects learned a motor sequence. We found a gradual decrease in spectral alpha power over left premotor cortex (PMC) and sensorimotor cortex (SM1) during learning blocks. In addition, alpha coherence between left PMC/SM1 and left cerebellar crus I was specifically decreased during sequence learning, possibly reflecting a functional decoupling in the broader motor learning network. In the second experiment in a different cohort, we applied 10Hz transcranial alternating current stimulation (tACS), a method shown to entrain local oscillatory activity, to left M1 (lM1) and right cerebellum (rCB) during sequence learning. We observed a tendency for diminished learning following rCB tACS compared to sham, but not following lM1 tACS. Learning-related alpha power following rCB tACS was increased in left PMC, possibly reflecting increase in local inhibitory neural activity. Importantly, learning-specific alpha coherence between left PMC and right cerebellar lobule VIIb was enhanced following rCB tACS. These findings provide strong evidence for a causal role of alpha oscillations in controlling information transfer in a premotor-cerebellar loop during motor sequence learning. Our findings are consistent with a model in which sequence learning may be impaired by enhancing premotor cortical alpha oscillation via external modulation of cerebellar oscillations.
Collapse
Affiliation(s)
- Christine Schubert
- Department of Neurology, University of Leipzig, Liebigstraße 20, Leipzig 04103, Germany
| | - Alhuda Dabbagh
- Department of Neurology, University of Leipzig, Liebigstraße 20, Leipzig 04103, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Liebigstraße 20, Leipzig 04103, Germany
| | - Ulrike M Krämer
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany; Department of Psychology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany; Center for Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Elinor Tzvi
- Department of Neurology, University of Leipzig, Liebigstraße 20, Leipzig 04103, Germany.
| |
Collapse
|
57
|
An Overview of Noninvasive Brain Stimulation: Basic Principles and Clinical Applications. Can J Neurol Sci 2021; 49:479-492. [PMID: 34238393 DOI: 10.1017/cjn.2021.158] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The brain has the innate ability to undergo neuronal plasticity, which refers to changes in its structure and functions in response to continued changes in the environment. Although these concepts are well established in animal slice preparation models, their application to a large number of human subjects could only be achieved using noninvasive brain stimulation (NIBS) techniques. In this review, we discuss the mechanisms of plasticity induction using NIBS techniques including transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), random noise stimulation (RNS), transcranial ultrasound stimulation (TUS), vagus nerve stimulation (VNS), and galvanic vestibular stimulation (GVS). We briefly introduce these techniques, explain the stimulation parameters and potential clinical implications. Although their mechanisms are different, all these NIBS techniques can be used to induce plasticity at the systems level, to examine the neurophysiology of brain circuits and have potential therapeutic use in psychiatric and neurological disorders. TMS is the most established technique for the treatment of brain disorders, and repetitive TMS is an approved treatment for medication-resistant depression. Although the data on the clinical utility of the other modes of stimulation are more limited, the electrical stimulation techniques (tDCS, tACS, RNS, VNS, GVS) have the advantage of lower cost, portability, applicability at home, and can readily be combined with training or rehabilitation. Further research is needed to expand the clinical utility of NIBS and test the combination of different modes of NIBS to optimize neuromodulation induced clinical benefits.
Collapse
|
58
|
Orendáčová M, Kvašňák E. Effects of Transcranial Alternating Current Stimulation and Neurofeedback on Alpha (EEG) Dynamics: A Review. Front Hum Neurosci 2021; 15:628229. [PMID: 34305549 PMCID: PMC8297546 DOI: 10.3389/fnhum.2021.628229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) and neurofeedback (NFB) are two different types of non-invasive neuromodulation techniques, which can modulate brain activity and improve brain functioning. In this review, we compared the current state of knowledge related to the mechanisms of tACS and NFB and their effects on electroencephalogram (EEG) activity (online period/stimulation period) and on aftereffects (offline period/post/stimulation period), including the duration of their persistence and potential behavioral benefits. Since alpha bandwidth has been broadly studied in NFB and in tACS research, the studies of NFB and tACS in modulating alpha bandwidth were selected for comparing the online and offline effects of these two neuromodulation techniques. The factors responsible for variability in the responsiveness of the modulated EEG activity by tACS and NFB were analyzed and compared too. Based on the current literature related to tACS and NFB, it can be concluded that tACS and NFB differ a lot in the mechanisms responsible for their effects on an online EEG activity but they possibly share the common universal mechanisms responsible for the induction of aftereffects in the targeted stimulated EEG band, namely Hebbian and homeostatic plasticity. Many studies of both neuromodulation techniques report the aftereffects connected to the behavioral benefits. The duration of persistence of aftereffects for NFB and tACS is comparable. In relation to the factors influencing responsiveness to tACS and NFB, significantly more types of factors were analyzed in the NFB studies compared to the tACS studies. Several common factors for both tACS and NFB have been already investigated. Based on these outcomes, we propose several new research directions regarding tACS and NFB.
Collapse
Affiliation(s)
- Mária Orendáčová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | | |
Collapse
|
59
|
O’Hare L, Asher JM, Hibbard PB. Migraine Visual Aura and Cortical Spreading Depression-Linking Mathematical Models to Empirical Evidence. Vision (Basel) 2021; 5:30. [PMID: 34200625 PMCID: PMC8293461 DOI: 10.3390/vision5020030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 01/10/2023] Open
Abstract
This review describes the subjective experience of visual aura in migraine, outlines theoretical models of this phenomenon, and explores how these may be linked to neurochemical, electrophysiological, and psychophysical differences in sensory processing that have been reported in migraine with aura. Reaction-diffusion models have been used to model the hallucinations thought to arise from cortical spreading depolarisation and depression in migraine aura. One aim of this review is to make the underlying principles of these models accessible to a general readership. Cortical spreading depolarisation and depression in these models depends on the balance of the diffusion rate between excitation and inhibition and the occurrence of a large spike in activity to initiate spontaneous pattern formation. We review experimental evidence, including recordings of brain activity made during the aura and attack phase, self-reported triggers of migraine, and psychophysical studies of visual processing in migraine with aura, and how these might relate to mechanisms of excitability that make some people susceptible to aura. Increased cortical excitability, increased neural noise, and fluctuations in oscillatory activity across the migraine cycle are all factors that are likely to contribute to the occurrence of migraine aura. There remain many outstanding questions relating to the current limitations of both models and experimental evidence. Nevertheless, reaction-diffusion models, by providing an integrative theoretical framework, support the generation of testable experimental hypotheses to guide future research.
Collapse
Affiliation(s)
- Louise O’Hare
- Division of Psychology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Jordi M. Asher
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Paul B. Hibbard
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| |
Collapse
|
60
|
Yu Q, Wang X, Nie L. Optical recording of brain functions based on voltage-sensitive dyes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
61
|
Bréchet L, Yu W, Biagi MC, Ruffini G, Gagnon M, Manor B, Pascual-Leone A. Patient-Tailored, Home-Based Non-invasive Brain Stimulation for Memory Deficits in Dementia Due to Alzheimer's Disease. Front Neurol 2021; 12:598135. [PMID: 34093384 PMCID: PMC8173168 DOI: 10.3389/fneur.2021.598135] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible, progressive brain disorder that can cause dementia (Alzheimer's disease-related dementia, ADRD) with growing cognitive disability and vast physical, emotional, and financial pressures not only on the patients but also on caregivers and families. Loss of memory is an early and very debilitating symptom in AD patients and a relevant predictor of disease progression. Data from rodents, as well as human studies, suggest that dysregulation of specific brain oscillations, particularly in the hippocampus, is linked to memory deficits. Animal and human studies demonstrate that non-invasive brain stimulation (NIBS) in the form of transcranial alternating current stimulation (tACS) allows to reliably and safely interact with ongoing oscillatory patterns in the brain in specific frequencies. We developed a protocol for patient-tailored home-based tACS with an instruction program to train a caregiver to deliver daily sessions of tACS that can be remotely monitored by the study team. We provide a discussion of the neurobiological rationale to modulate oscillations and a description of the study protocol. Data of two patients with ADRD who have completed this protocol illustrate the feasibility of the approach and provide pilot evidence on the safety of the remotely-monitored, caregiver-administered, home-based tACS intervention. These findings encourage the pursuit of a large, adequately powered, randomized controlled trial of home-based tACS for memory dysfunction in ADRD.
Collapse
Affiliation(s)
- Lucie Bréchet
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Wanting Yu
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
| | | | - Giulio Ruffini
- Neuroelectrics Barcelona, Barcelona, Spain
- Neuroelectrics Corp., Cambridge, MA, United States
| | - Margaret Gagnon
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
| | - Brad Manor
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Guttmann Brain Health Institute, Institut Guttman de Neurorehabilitació, Barcelona, Spain
| |
Collapse
|
62
|
Frohlich F, Riddle J. Conducting double-blind placebo-controlled clinical trials of transcranial alternating current stimulation (tACS). Transl Psychiatry 2021; 11:284. [PMID: 33980854 PMCID: PMC8116328 DOI: 10.1038/s41398-021-01391-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Many psychiatric and neurological illnesses can be conceptualized as oscillopathies defined as pathological changes in brain network oscillations. We previously proposed the application of rational design for the development of non-invasive brain stimulation for the modulation and restoration of cortical oscillations as a network therapeutic. Here, we show how transcranial alternating current stimulation (tACS), which applies a weak sine-wave electric current to the scalp, may serve as a therapeutic platform for the treatment of CNS illnesses. Recently, an initial series of double-blind, placebo-controlled treatment trials of tACS have been published. Here, we first map out the conceptual underpinnings of such trials with focus on target identification, engagement, and validation. Then, we discuss practical aspects that need to be considered for successful trial execution, with particular regards to ensuring successful study blind. Finally, we briefly review the few published double-blind tACS trials and conclude with a proposed roadmap to move the field forward with the goal of moving from pilot trials to convincing efficacy studies of tACS.
Collapse
Affiliation(s)
- Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Justin Riddle
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
63
|
Giustiniani A, Battaglia G, Messina G, Morello H, Guastella S, Iovane A, Oliveri M, Palma A, Proia P. Transcranial Alternating Current Stimulation (tACS) Does Not Affect Sports People's Explosive Power: A Pilot Study. Front Hum Neurosci 2021; 15:640609. [PMID: 33994980 PMCID: PMC8116517 DOI: 10.3389/fnhum.2021.640609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose: This study is aimed to preliminary investigate whether transcranial alternating current stimulation (tACS) could affect explosive power considering genetic background in sport subjects. Methods: Seventeen healthy sports volunteers with at least 3 years of sports activities participated in the experiment. After 2 weeks of familiarization performed without any stimulation, each participant received either 50 Hz-tACS or sham-tACS. Before and after stimulation, subjects performed the following tests: (1) the squat jump with the hands on the hips (SJ); (2) countermovement jump with the hands on the hips (CMJ); (3) countermovement jump with arm swing (CMJ-AS); (4) 15-s Bosco's test; (5) seated backward overhead medicine ball throw (SBOMBT); (6) seated chest pass throw (SCPT) with a 3-kg rubber medicine ball; and (7) hand-grip test. Additionally, saliva samples were collected from each participant. Genotyping analysis was carried out by polymerase chain reaction (PCR). Results: No significant differences were found in sport performance of subjects after 50 Hz-tACS. Additionally, we did not find any influence of genetic background on tACS-related effect on physical performance. These results suggest that tACS at gamma frequency is not able to induce an after-effect modulating sport performance. Further investigations with larger sample size are needed in order to understand the potential role of non-invasive brain stimulation techniques (NIBS) in motor performances. Conclusions: Gamma-tACS applied before the physical performance fails to improve explosive power in sport subjects.
Collapse
Affiliation(s)
- Andreina Giustiniani
- IRCCS San Camillo Hospital, Venice, Italy.,NEUROFARBA Department, University of Florence, Florence, Italy.,Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Battaglia
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Messina
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Hely Morello
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | | | - Angelo Iovane
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Massimiliano Oliveri
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
64
|
Moliadze V, Stenner T, Matern S, Siniatchkin M, Nees F, Hartwigsen G. Online Effects of Beta-tACS Over the Left Prefrontal Cortex on Phonological Decisions. Neuroscience 2021; 463:264-271. [PMID: 33722674 DOI: 10.1016/j.neuroscience.2021.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
The left posterior inferior frontal gyrus in the prefrontal cortex is a key region for phonological aspects of language processing. A previous study has shown that alpha-tACS over the prefrontal cortex applied before task processing facilitated phonological decision-making and increased task-related theta power. However, it is unclear how alpha-tACS affects phonological processing when applied directly during the task. Moreover, the frequency specificity of this effect is also unclear since the majority of neurostimulation studies tested a single frequency only. The present study addressed the question whether and how 10 Hz online tACS affects phonological decisions. To this end, 24 healthy participants received tACS at 10 Hz or 16.18 Hz (control frequency) or sham stimulation over the left prefrontal cortex during task processing in three sessions. As an unexpected finding, 16.18 Hz significantly impaired task accuracy relative to sham stimulation, without affecting response speed. There was no significant difference in phonological task performance between 10 Hz and 16.18 Hz tACS or between 10 Hz and sham stimulation. Our results support the functional relevance of the left prefrontal cortex for phonological decisions and suggest that online beta-tACS may modulate language comprehension.
Collapse
Affiliation(s)
- Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany.
| | - Tristan Stenner
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Sally Matern
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Michael Siniatchkin
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, Medical Center Bethel, Bielefeld, Germany
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
65
|
Lee S, Liu A, McKeown MJ. Current perspectives on galvanic vestibular stimulation in the treatment of Parkinson's disease. Expert Rev Neurother 2021; 21:405-418. [PMID: 33621149 DOI: 10.1080/14737175.2021.1894928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Galvanic vestibular stimulation (GVS) is a noninvasive technique that activates vestibular afferents, influencing activity and oscillations in a broad network of brain regions. Several studies have suggested beneficial effects of GVS on motor symptoms in Parkinson's Disease (PD).Areas covered: A comprehensive overview of the stimulation techniques, potential mechanisms of action, challenges, and future research directions.Expert opinion: This emerging technology is not currently a viable therapy. However, a complementary therapy that is inexpensive, easily disseminated, customizable, and portable is sufficiently enticing that continued research and development is warranted. Future work utilizing biomedical engineering approaches, including concomitant functional neuroimaging, have the potential to significantly increase efficacy. GVS could be explored for other PD symptoms including orthostatic hypotension, dyskinesia, and sleep disorders.
Collapse
Affiliation(s)
- Soojin Lee
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford UK
| | - Aiping Liu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, Canada.,Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
66
|
SSVEP phase synchronies and propagation during repetitive visual stimulation at high frequencies. Sci Rep 2021; 11:4975. [PMID: 33654157 PMCID: PMC7925656 DOI: 10.1038/s41598-021-83795-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Steady-state visual evoked potentials (SSVEPs), the brain response to visual flicker stimulation, have proven beneficial in both research and clinical applications. Despite the practical advantages of stimulation at high frequencies in terms of visual comfort and safety, high frequency-SSVEPs have not received enough attention and little is known about the mechanisms behind their generation and propagation in time and space. In this study, we investigated the origin and propagation of SSVEPs in the gamma frequency band (40-60 Hz) by studying the dynamic properties of EEG in 32 subjects. Using low-resolution brain electromagnetic tomography (sLORETA) we identified the cortical sources involved in SSVEP generation in that frequency range to be in the primary visual cortex, Brodmann areas 17, 18 and 19 with minor contribution from sources in central and frontal sites. We investigated the SSVEP propagation as measured on the scalp in the framework of the existing theories regarding the neurophysiological mechanism through which the SSVEP spreads through the cortex. We found a progressive phase shift from posterior parieto-occipital sites over the cortex with a phase velocity of approx. 8-14 m/s and wavelength of about 21 and 24 cm. The SSVEP spatial properties appear sensitive to input frequency with higher stimulation frequencies showing a faster propagation speed.
Collapse
|
67
|
McKim TH, Dove SJ, Robinson DL, Fröhlich F, Boettiger CA. Addiction history moderates the effect of prefrontal 10-Hz transcranial alternating current stimulation on habitual action selection. J Neurophysiol 2021; 125:768-780. [PMID: 33356905 PMCID: PMC7988748 DOI: 10.1152/jn.00180.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 11/29/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Individuals with substance use disorders (SUDs) transition more quickly from goal-directed to habitual action-selection, but the neural mechanisms underlying this phenomenon remain unclear. Data from animal models suggest that drugs of abuse can modify the neurocircuits that regulate action-selection, enhancing circuits that drive inflexible, habit-based stimulus-response (S-R) action-selection and weakening circuits that drive flexible, goal-directed actions. Here, we tested the effect of bilateral 10-Hz transcranial alternating current stimulation (10Ηz-tACs) of the dorsolateral prefrontal cortex on action-selection in men and women with a SUD history and an age- and sex-matched control group. We tested the hypothesis that true 10Ηz-tACS versus active sham stimulation would reduce perseverative errors after changed response contingencies for well-learned S-R associations, reflecting reduced habit-based action-selection, specifically in the SUD group. We found that 10 Hz-tACS increased perseverative errors in the control group, but in the SUD group, 10 Hz-tACS effects on perseverative errors depended on substance abuse duration: a longer addiction history was associated with a greater reduction of perseverative errors. These results suggest that 10Ηz-tACs altered circuit level dynamics regulating behavioral flexibility, and provide a foundation for future studies to test stimulation site, frequency, and timing specificity. Moreover, these data suggest that chronic substance abuse is associated with altered circuit dynamics that are ameliorated by 10Ηz-tACs. Determining the generalizability of these effects and their duration merits investigation as a direction for novel therapeutic interventions. These findings are timely based on growing interest in transcranial stimulation methods for treating SUDs.NEW & NOTEWORTHY Treating the executive dysfunction associated with addiction is hampered by redundancies in pharmacological regulation of different behavioral control circuits. Thus, nonpharmacological interventions hold promise for addiction treatment. Here, we show that, among people with an addiction history, 10-Hz transcranial alternating current stimulation (10Hz-tACS) of the dorsolateral prefrontal cortex can reduce habitual actions. The fact that 10Hz-tACS can regulate behavioral flexibility suggests its possible utility in reducing harmful habitual actions.
Collapse
Affiliation(s)
- Theresa H McKim
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina
| | - Samantha J Dove
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, North Carolina
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, North Carolina
- Joint UNC-NCSU Department of Biomedical Engineering, Department of Cell Biology and Physiology, Neuroscience Center, and Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| | - Charlotte A Boettiger
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, North Carolina
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
68
|
Saito K, Otsuru N, Yokota H, Inukai Y, Miyaguchi S, Kojima S, Onishi H. α-tACS over the somatosensory cortex enhances tactile spatial discrimination in healthy subjects with low alpha activity. Brain Behav 2021; 11:e02019. [PMID: 33405361 PMCID: PMC7994706 DOI: 10.1002/brb3.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Spontaneous oscillations in the somatosensory cortex, especially of the alpha (8 - 14 Hz) and gamma (60 - 80 Hz) frequencies, affect tactile perception; moreover, these oscillations can be selectively modulated by frequency-matched transcranial alternating current stimulation (tACS) on the basis of ongoing oscillatory brain activity. To examine whether tACS can actually improve tactile perception via alpha and gamma modulation, we measured the effects of 10-Hz and 70-Hz tACS (α- and γ-tACS) on the left somatosensory cortex on right-finger tactile spatial orientation discrimination, and the associations between performance changes and individual alpha and gamma activities. METHODS Fifteen neurologically healthy subjects were recruited into this study. Electroencephalography (EEG) was performed before the first day, to assess the normal alpha- and gamma-activity levels. A grating orientation discrimination task was performed before and during 10-Hz and 70-Hz tACS. RESULTS The 10-Hz tACS protocol decreased the grating orientation discrimination threshold, primarily in subjects with low alpha event-related synchronization (ERS). In contrast, the 70-Hz tACS had no effect on the grating orientation discrimination threshold. CONCLUSIONS This study showed that 10-Hz tACS can improve tactile orientation discrimination in subjects with low alpha activity. Alpha-frequency tACS may help identify the contributions of these oscillations to other neurophysiological and pathological processes.
Collapse
Affiliation(s)
- Kei Saito
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hirotake Yokota
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Miyaguchi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
69
|
De Koninck BP, Guay S, Blais H, De Beaumont L. Parametric study of transcranial alternating current stimulation for brain alpha power modulation. Brain Commun 2021; 3:fcab010. [PMID: 34085039 PMCID: PMC8165484 DOI: 10.1093/braincomms/fcab010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/04/2020] [Accepted: 12/10/2020] [Indexed: 12/02/2022] Open
Abstract
Transcranial alternating current stimulation, a non-invasive brain stimulation technique, has been used to increase alpha (8-12 Hz) power, the latter being associated with various brain functions and states. Heterogeneity among stimulation parameters across studies makes it difficult to implement reliable transcranial alternating current stimulation protocols, explaining the absence of consensus on optimal stimulation parameters to modulate the alpha rhythm. This project documents the differential impact of controlling for key transcranial alternating current stimulation parameters, namely the intensity, the frequency and the stimulation site (anterior versus posterior). Phase 1:20 healthy participants underwent 4 different stimulation conditions. In each experimental condition, stimulation via 2 electrodes was delivered for 20 min. Stimulation conditions were administered at PO7-PO8 or F3-F4 at individual's alpha frequency, or at individual's theta frequency or sham. Stimulation intensity was set according to each participant's comfort following a standardized unpleasantness scale (≤ 40 out of 100) and could not exceed 6 mA. All conditions were counterbalanced. Phase 2: participants who tolerated higher intensity of stimulation (4-6 mA) underwent alpha-frequency stimulation applied over PO7-PO8 at 1 mA to investigate within-subject modulation of stimulation response according to stimulation intensity. Whether set over posterior or anterior cortical sites, alpha-frequency stimulation showed greater increase in alpha power relative to stimulation at theta frequency and sham stimulation. Posterior alpha-frequency stimulation showed a greater increase in alpha power relative to the adjacent frequency bands over frontal and occipito-parietal brain areas. Low intensity (1 mA) posterior alpha stimulation showed a similar increase in alpha power than at high (4-6 mA) intensity when measured immediately after stimulation. However, when tested at 60 min or 120 min, low intensity stimulation was associated with significantly superior alpha power increase relative to high intensity stimulation. This study shows that posterior individual's alpha frequency stimulation at higher intensities is well tolerated but fails to increase stimulation aftereffects recorded within 2 h of stimulation on brain oscillations of the corresponding frequency band. In sharp contrast, stimulating at 1 mA (regardless of phosphene generation or sensory perception) effectively and selectively modulates alpha power within that 2-h time window, thus validating that it as a reliable stimulus intensity for future studies. This study also shows that posterior alpha-frequency stimulation preferentially modulates endogenous brain oscillations of the corresponding frequency band. Moreover, our data suggest that posterior alpha-frequency transcranial alternating current stimulation is a reliable and precise non-invasive brain stimulation technique for persistent modulation of both frontal and occipito-parietal alpha power.
Collapse
Affiliation(s)
- Beatrice P De Koninck
- Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal Research Center (CRHSCM), H4J 1C5, Montreal, Québec, Canada
- Department of Surgery, Université De Montréal, H3T1J4, Montreal, Québec, Canada
| | - Samuel Guay
- Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal Research Center (CRHSCM), H4J 1C5, Montreal, Québec, Canada
- Department of Surgery, Université De Montréal, H3T1J4, Montreal, Québec, Canada
| | - Hélène Blais
- Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal Research Center (CRHSCM), H4J 1C5, Montreal, Québec, Canada
| | - Louis De Beaumont
- Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal Research Center (CRHSCM), H4J 1C5, Montreal, Québec, Canada
- Department of Surgery, Université De Montréal, H3T1J4, Montreal, Québec, Canada
| |
Collapse
|
70
|
Evans ID, Palmisano S, Croft RJ. Retinal and Cortical Contributions to Phosphenes During Transcranial Electrical Current Stimulation. Bioelectromagnetics 2021; 42:146-158. [PMID: 33440463 DOI: 10.1002/bem.22317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/05/2020] [Accepted: 12/19/2020] [Indexed: 11/06/2022]
Abstract
It is generally believed that the phosphenes induced by transcranial electric current stimulation (tECS) are a product of retinal activation, even when electrode placement is directly over the primary visual cortex. However, the origins of these tECS-induced phosphenes have not yet been conclusively determined. In this study, phosphene detection thresholds using an FPz-Oz montage were compared with those from (i) an Oz-Cz montage to determine whether prefrontal regions, such as the retina, contribute to phosphenes and (ii) an FPz-Cz montage to determine whether the visual cortex in the occipital lobe contributes to phosphenes. Twenty-two participants received transcranial current stimulation with each of these montages (as well as a T3-T4 montage included for exploratory purposes) at 6, 10, 16, 20, 24, 28, and 32 Hz. To estimate differences in current density at the retina and occipital lobe across montages, modeling of current density at phosphene thresholds was measured across 20 head models. Consistent with the proposal that tECS-induced phosphenes are generated in the retina, increasing current density near the retina (FPz-Oz relative to Oz-Cz montage) reduced phosphene thresholds. However, increasing current density near the occipital cortex (FPz-Oz relative to FPz-Cz montage) also reduced phosphene thresholds while also requiring less current density at the retina according to the modeling estimates. This suggests that tECS of this occipital cortex also contributed to phosphene perception. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Ian D Evans
- School of Psychology, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
- Australian Center for Electromagnetic Bioeffects Research, Wollongong, Australia
- Center for Population Health Research on Electromagnetic Energy, Monash University, Melbourne, Australia
| | - Stephen Palmisano
- School of Psychology, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Rodney J Croft
- School of Psychology, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
- Australian Center for Electromagnetic Bioeffects Research, Wollongong, Australia
- Center for Population Health Research on Electromagnetic Energy, Monash University, Melbourne, Australia
| |
Collapse
|
71
|
Elyamany O, Leicht G, Herrmann CS, Mulert C. Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry. Eur Arch Psychiatry Clin Neurosci 2021; 271:135-156. [PMID: 33211157 PMCID: PMC7867505 DOI: 10.1007/s00406-020-01209-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
Transcranial alternating current stimulation (tACS) is a unique form of non-invasive brain stimulation. Sinusoidal alternating electric currents are delivered to the scalp to affect mostly cortical neurons. tACS is supposed to modulate brain function and, in turn, cognitive processes by entraining brain oscillations and inducing long-term synaptic plasticity. Therefore, tACS has been investigated in cognitive neuroscience, but only recently, it has been also introduced in psychiatric clinical trials. This review describes current concepts and first findings of applying tACS as a potential therapeutic tool in the field of psychiatry. The current understanding of its mechanisms of action is explained, bridging cellular neuronal activity and the brain network mechanism. Revisiting the relevance of altered brain oscillations found in six major psychiatric disorders, putative targets for the management of mental disorders using tACS are discussed. A systematic literature search on PubMed was conducted to report findings of the clinical studies applying tACS in patients with psychiatric conditions. In conclusion, the initial results may support the feasibility of tACS in clinical psychiatric populations without serious adverse events. Moreover, these results showed the ability of tACS to reset disturbed brain oscillations, and thus to improve behavioural outcomes. In addition to its potential therapeutic role, the reactivity of the brain circuits to tACS could serve as a possible tool to determine the diagnosis, classification or prognosis of psychiatric disorders. Future double-blind randomised controlled trials are necessary to answer currently unresolved questions. They may aim to detect response predictors and control for various confounding factors.
Collapse
Affiliation(s)
- Osama Elyamany
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, 35392, Giessen, Hessen, Germany
- Centre for Mind, Brain and Behaviour (CMBB), University of Marburg and Justus-Liebig University Giessen, Marburg, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Centre for Excellence "Hearing4all," European Medical School, University of Oldenburg, Oldenburg, Lower Saxony, Germany
- Research Centre Neurosensory Science, University of Oldenburg, Oldenburg, Lower Saxony, Germany
| | - Christoph Mulert
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, 35392, Giessen, Hessen, Germany.
- Centre for Mind, Brain and Behaviour (CMBB), University of Marburg and Justus-Liebig University Giessen, Marburg, Germany.
| |
Collapse
|
72
|
Spampinato D, Avci E, Rothwell J, Rocchi L. Frequency-dependent modulation of cerebellar excitability during the application of non-invasive alternating current stimulation. Brain Stimul 2021; 14:277-283. [PMID: 33482375 PMCID: PMC7970622 DOI: 10.1016/j.brs.2021.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
Background it is well-known that the cerebellum is critical for the integrity of motor and cognitive actions. Applying non-invasive brain stimulation techniques over this region results in neurophysiological and behavioural changes, which have been associated with the modulation of cerebellar-cerebral cortex connectivity. Here, we investigated whether online application of cerebellar transcranial alternating current stimulation (tACS) results in changes to this pathway. Methods thirteen healthy individuals participated in two sessions of cerebellar tACS delivered at different frequencies (5Hz and 50Hz). We used transcranial magnetic stimulation to measure cerebellar-motor cortex (M1) inhibition (CBI), short-intracortical inhibition (SICI) and short-afferent inhibition (SAI) before, during and after the application of tACS. Results we found that CBI was specifically strengthened during the application of 5Hz cerebellar tACS. No changes were detected immediately following the application of 5Hz stimulation, nor at any time point with 50Hz stimulation. We also found no changes to M1 intracortical circuits (i.e. SICI) or sensorimotor interaction (i.e. SAI), indicating that the effects of 5Hz tACS over the cerebellum are site-specific. Conclusions cerebellar tACS can modulate cerebellar excitability in a time- and frequency-dependent manner. Additionally, cerebellar tACS does not appear to induce any long-lasting effects (i.e. plasticity), suggesting that stimulation enhances oscillations within the cerebellum only throughout the stimulation period. As such, cerebellar tACS may have significant implications for diseases manifesting with abnormal cerebellar oscillatory activity and also for future behavioural studies. Cerebellar tACS increases the inhibitory tone that the cerebellum exerts over M1 (CBI). CBI changes were found only during the online application of 5Hz tACS and not immediately following stimulation. The effects are specific to the cerebellum, as no changes were found in intracortical measures (e.g. SICI and SAI).
Collapse
Affiliation(s)
- Danny Spampinato
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom; Non-invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00142, Rome, Italy.
| | - Esin Avci
- Department of Sport and Sport Science, Institute of Biology, University of Freiburg, Germany
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom
| |
Collapse
|
73
|
Sanches C, Stengel C, Godard J, Mertz J, Teichmann M, Migliaccio R, Valero-Cabré A. Past, Present, and Future of Non-invasive Brain Stimulation Approaches to Treat Cognitive Impairment in Neurodegenerative Diseases: Time for a Comprehensive Critical Review. Front Aging Neurosci 2021; 12:578339. [PMID: 33551785 PMCID: PMC7854576 DOI: 10.3389/fnagi.2020.578339] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Low birth rates and increasing life expectancy experienced by developed societies have placed an unprecedented pressure on governments and the health system to deal effectively with the human, social and financial burden associated to aging-related diseases. At present, ∼24 million people worldwide suffer from cognitive neurodegenerative diseases, a prevalence that doubles every five years. Pharmacological therapies and cognitive training/rehabilitation have generated temporary hope and, occasionally, proof of mild relief. Nonetheless, these approaches are yet to demonstrate a meaningful therapeutic impact and changes in prognosis. We here review evidence gathered for nearly a decade on non-invasive brain stimulation (NIBS), a less known therapeutic strategy aiming to limit cognitive decline associated with neurodegenerative conditions. Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation, two of the most popular NIBS technologies, use electrical fields generated non-invasively in the brain to long-lastingly enhance the excitability/activity of key brain regions contributing to relevant cognitive processes. The current comprehensive critical review presents proof-of-concept evidence and meaningful cognitive outcomes of NIBS in eight of the most prevalent neurodegenerative pathologies affecting cognition: Alzheimer's Disease, Parkinson's Disease, Dementia with Lewy Bodies, Primary Progressive Aphasias (PPA), behavioral variant of Frontotemporal Dementia, Corticobasal Syndrome, Progressive Supranuclear Palsy, and Posterior Cortical Atrophy. We analyzed a total of 70 internationally published studies: 33 focusing on Alzheimer's disease, 19 on PPA and 18 on the remaining neurodegenerative pathologies. The therapeutic benefit and clinical significance of NIBS remains inconclusive, in particular given the lack of a sufficient number of double-blind placebo-controlled randomized clinical trials using multiday stimulation regimes, the heterogeneity of the protocols, and adequate behavioral and neuroimaging response biomarkers, able to show lasting effects and an impact on prognosis. The field remains promising but, to make further progress, research efforts need to take in account the latest evidence of the anatomical and neurophysiological features underlying cognitive deficits in these patient populations. Moreover, as the development of in vivo biomarkers are ongoing, allowing for an early diagnosis of these neuro-cognitive conditions, one could consider a scenario in which NIBS treatment will be personalized and made part of a cognitive rehabilitation program, or useful as a potential adjunct to drug therapies since the earliest stages of suh diseases. Research should also integrate novel knowledge on the mechanisms and constraints guiding the impact of electrical and magnetic fields on cerebral tissues and brain activity, and incorporate the principles of information-based neurostimulation.
Collapse
Affiliation(s)
- Clara Sanches
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Chloé Stengel
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Juliette Godard
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Justine Mertz
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Marc Teichmann
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Raffaella Migliaccio
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- Laboratory for Cerebral Dynamics Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, United States
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia, Barcelona, Spain
| |
Collapse
|
74
|
Rossi A, Feurra M, Rossi S, Santarnecchi E, Ginanneschi F. Impact of β-range-induced oscillatory activity on human input-output relationship of the corticospinal pathway. Neurol Res 2021; 43:496-502. [PMID: 33441044 DOI: 10.1080/01616412.2020.1870358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: The aim of the study was to show that short-lasting (90 s) transcranial alternating current stimulation (tACS) at 20 Hz delivered over the left primary motor cortex (M1) is able to change the shape of recruitment curve of the corticospinal pathway.Methods: The corticospinal pathway was studied during tACS by means of the relationship between the intensity of transcranial magnetic stimulation (TMS) delivered over the left M1 and corresponding motor evoked potentials (MEPs) recorded from the right first dorsal interosseus muscle (FDI), in nine healthy subjects. In order to extract characteristics of the input-output relationship that have particular physiological relevance, data were fitted to the Boltzmann sigmoidal function by the Levenberg-Marquardt nonlinear, least mean squares algorithm.Results: The β-rhythm tACS influenced the shape and parameters of the input-output relation, so that the initial segment of the conditioned curve (from threshold to 30% of maximum muscle size) diverged, while the subsequent segment converged to overlap the unconditioned control curve.Discussion: β-rhythm tACS conditions only a definite subset of corticospinal elements influencing less than 30% of the entire motoneuronal pool. The fact that β-rhythm tACS mainly affects the most excitable motoneurons could explain the observed antikinetic effect of the tACS at β-rhythm applied in the motor regions.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Medical, Surgery and Neurological Sciences, Brain Investigation and Neuromodulation Lab (Si-bin Lab), University of Siena, Siena, Italy
| | - Matteo Feurra
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University, Higher School of Economics, Moscow, Russia
| | - Simone Rossi
- Department of Medical, Surgery and Neurological Sciences, Brain Investigation and Neuromodulation Lab (Si-bin Lab), University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Department of Medical, Surgery and Neurological Sciences, Brain Investigation and Neuromodulation Lab (Si-bin Lab), University of Siena, Siena, Italy.,Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Federica Ginanneschi
- Department of Medical, Surgery and Neurological Sciences, Brain Investigation and Neuromodulation Lab (Si-bin Lab), University of Siena, Siena, Italy
| |
Collapse
|
75
|
Abstract
The pathophysiological mechanisms that underlie the generation and maintenance of tinnitus are being unraveled progressively. Based on this knowledge, a large variety of different neuromodulatory interventions have been developed and are still being designed, adapting to the progressive mechanistic insights in the pathophysiology of tinnitus. rTMS targeting the temporal, temporoparietal, and the frontal cortex has been the mainstay of non-invasive neuromodulation. Yet, the evidence is still unclear, and therefore systematic meta-analyses are needed for drawing conclusions on the effectiveness of rTMS in chronic tinnitus. Different forms of transcranial electrical stimulation (tDCS, tACS, tRNS), applied over the frontal and temporal cortex, have been investigated in tinnitus patients, also without robust evidence for universal efficacy. Cortex and deep brain stimulation with implanted electrodes have shown benefit, yet there is insufficient data to support their routine clinical use. Recently, bimodal stimulation approaches have revealed promising results and it appears that targeting different sensory modalities in temporally combined manners may be more promising than single target approaches.While most neuromodulatory approaches seem promising, further research is required to help translating the scientific outcomes into routine clinical practice.
Collapse
|
76
|
Romanella SM, Sprugnoli G, Ruffini G, Seyedmadani K, Rossi S, Santarnecchi E. Noninvasive Brain Stimulation & Space Exploration: Opportunities and Challenges. Neurosci Biobehav Rev 2020; 119:294-319. [PMID: 32937115 PMCID: PMC8361862 DOI: 10.1016/j.neubiorev.2020.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/22/2020] [Accepted: 09/03/2020] [Indexed: 01/11/2023]
Abstract
As NASA prepares for longer space missions aiming for the Moon and Mars, astronauts' health and performance are becoming a central concern due to the threats associated with galactic cosmic radiation, unnatural gravity fields, and life in extreme environments. In space, the human brain undergoes functional and structural changes related to fluid shift and changes in intracranial pressure. Behavioral abnormalities, such as cognitive deficits, sleep disruption, and visuomotor difficulties, as well as psychological effects, are also an issue. We discuss opportunities and challenges of noninvasive brain stimulation (NiBS) methods - including transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES) - to support space exploration in several ways. NiBS includes safe and portable techniques already applied in a wide range of cognitive and motor domains, as well as therapeutically. NiBS could be used to enhance in-flight performance, supporting astronauts during pre-flight Earth-based training, as well as to identify biomarkers of post-flight brain changes for optimization of rehabilitation/compensatory strategies. We review these NiBS techniques and their effects on brain physiology, psychology, and cognition.
Collapse
Affiliation(s)
- S M Romanella
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - G Sprugnoli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - G Ruffini
- Neuroelectrics Corporation, Cambridge, MA, USA
| | - K Seyedmadani
- University Space Research Association NASA Johnson Space Center, Houston, TX, USA; Ann and H.J. Smead Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA
| | - S Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - E Santarnecchi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
77
|
Beliaeva V, Polania R. Can low-intensity tACS genuinely entrain neural activity in vivo? Brain Stimul 2020; 13:1796-1799. [DOI: 10.1016/j.brs.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 12/26/2022] Open
|
78
|
van der Plas M, Wang D, Brittain JS, Hanslmayr S. Investigating the role of phase-synchrony during encoding of episodic memories using electrical stimulation. Cortex 2020; 133:37-47. [PMID: 33099074 DOI: 10.1016/j.cortex.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/03/2020] [Accepted: 09/15/2020] [Indexed: 01/15/2023]
Abstract
The multi-sensory nature of episodic memories indicates that communication between a multitude of brain areas is required for their effective creation and recollection. Previous studies have suggested that the effectiveness of memory processes depends on theta synchronization (4 Hz) of sensory areas relevant to the memory. This study aimed to manipulate theta synchronization between different sensory areas in order to further test this hypothesis. We intend to entrain visual cortex with 4 Hz alternating current stimulation (tACS), while simultaneously entraining auditory cortex with 4 Hz amplitude-modulated sounds. By entraining these different sensory areas, which pertain to learned audio-visual memory associations, we expect to find that when theta is synchronized across the different sensory areas, the memory performance would be enhanced compared to when theta is not synchronized across the sensory areas. We found no evidence for such an effect in this study. It is unclear whether this is due to an inability of 4 Hz tACS to entrain the visual cortex reliably, or whether sensory entrainment is not the underlying mechanism required for episodic memory.
Collapse
Affiliation(s)
- Mircea van der Plas
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, United Kingdom
| | - Danying Wang
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, United Kingdom
| | - John-Stuart Brittain
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Simon Hanslmayr
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
79
|
Żebrowska M, Dzwiniel P, Waleszczyk WJ. Removal of the Sinusoidal Transorbital Alternating Current Stimulation Artifact From Simultaneous EEG Recordings: Effects of Simple Moving Average Parameters. Front Neurosci 2020; 14:735. [PMID: 32848538 PMCID: PMC7403449 DOI: 10.3389/fnins.2020.00735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/22/2020] [Indexed: 02/02/2023] Open
Abstract
Alternating current stimulation is a promising method for the study and treatment of various visual neurological dysfunctions as well as progressive understanding of the healthy brain. Unfortunately, due to the current stimulation artifact, problems remain in the context of analysis of the electroencephalography (EEG) signal recorded during ongoing stimulation. To address this problem, we propose the use of a simple moving average subtraction as a method for artifact elimination. This method involves the creation of a template of the stimulation artifact from EEG signal recorded during non-invasive electrical stimulation with a sinusoidal alternating current. The present report describes results of the effects of a simple moving average filtration that varies based on averaging parameters; in particular, we varied the number of sinusoidal periods per segment of the recorded signal and the number of segments used to construct an artifact template. Given the ongoing lack of a mathematical model that allows for the prediction of the “hidden” EEG signal with the alternating current stimulation artifact, we propose performing an earlier simulation that is based on the addition of artificial stimulation artifact to the known EEG signal. This solution allows for the optimization of filtering parameters with detailed knowledge about the accuracy of artifact removal. The algorithm, designed in the MATLAB environment, has been tested on data recorded from two volunteers subjected to sinusoidal transorbital alternating current stimulation. Analysis of the percentage difference between the original and filtered signal in time and frequency domain highlights the advantage of 1-period filtration.
Collapse
Affiliation(s)
- Małgorzata Żebrowska
- Laboratory of Visual Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.,Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
| | - Piotr Dzwiniel
- Laboratory of Visual Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Wioletta Joanna Waleszczyk
- Laboratory of Visual Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
80
|
Perin C, Viganò B, Piscitelli D, Matteo BM, Meroni R, Cerri CG. Non-invasive current stimulation in vision recovery: a review of the literature. Restor Neurol Neurosci 2020; 38:239-250. [PMID: 31884495 PMCID: PMC7504999 DOI: 10.3233/rnn-190948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background: Around 253 million people worldwide suffer from irreversible visual damage. Numerous studies have been carried out in order to unveil the effects of electrical stimulation (ES) as a useful tool for rehabilitation for different visual conditions and pathologies. Objective: This systematic review aimed to 1) examine the current evidence of ES efficacy for the treatment of visual pathologies and 2) define the corresponding degree of the recommendation of different ES techniques. Methods: A systematic review was conducted in MEDLINE and Cochrane Library database to collect documents published between 2000 and 2018. For each study, Level of Evidence of Effectiveness of ES as well as the Class of Quality for the treatment of different visual pathologies were determined. Results: Thirty-eight articles were included. Studies were grouped according to the pathology treated and the type of stimulation administered. The first group included studies treating pre-chiasmatic pathologies (age-related macular degeneration, macular dystrophy, retinal artery occlusion, retinitis pigmentosa, glaucoma, optic nerve damage, and optic neuropathy) using pre-chiasmatic stimulation; the second group included studies treating both pre-chiasmatic pathologies (amblyopia, myopia) and post-chiasmatic pathologies or brain conditions (hemianopsia, brain trauma) by means of post-chiasmatic stimulation. In the first group, repetitive transorbital alternating current stimulation (rtACS) reached level A recommendation, and transcorneal electrical stimulation (tcES) reached level B. In the second group, both high-frequency random noise stimulation (hf-RNS) and transcranial direct current stimulation (tDCS) reached level C recommendation. Conclusions: Study’s findings suggest conclusive evidence for rtACS treatment. For other protocols results are promising but not conclusive since the examined studies assessed different stimulation parameters and endpoints. A comparison of the effects of different combinations of these variables still lacks in the literature. Further studies are needed to optimize existing protocols and determine if different protocols are needed for different diseases.
Collapse
Affiliation(s)
- Cecilia Perin
- Dipartimento di Medicina e Chirurgia (School of Medicine and Surgery), University of Milan-Bicocca, Milan, Italy.,Milan Center for Neuroscience (NeuroMI), University of Milan-Bicocca, Milan, Italy
| | | | - Daniele Piscitelli
- Dipartimento di Medicina e Chirurgia (School of Medicine and Surgery), University of Milan-Bicocca, Milan, Italy.,School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
| | - Barbara Maria Matteo
- Dipartimento di Medicina e Chirurgia (School of Medicine and Surgery), University of Milan-Bicocca, Milan, Italy
| | - Roberto Meroni
- Dipartimento di Medicina e Chirurgia (School of Medicine and Surgery), University of Milan-Bicocca, Milan, Italy.,Milan Center for Neuroscience (NeuroMI), University of Milan-Bicocca, Milan, Italy.,Current Affilation: Department of Physiotherapy, LUNEX International University of Health, Exercise and Sports. Differdange, Luxembourg
| | - Cesare Giuseppe Cerri
- Dipartimento di Medicina e Chirurgia (School of Medicine and Surgery), University of Milan-Bicocca, Milan, Italy.,Milan Center for Neuroscience (NeuroMI), University of Milan-Bicocca, Milan, Italy
| |
Collapse
|
81
|
Effects of Transcranial Electrical Stimulation on Human Auditory Processing and Behavior-A Review. Brain Sci 2020; 10:brainsci10080531. [PMID: 32784358 PMCID: PMC7464917 DOI: 10.3390/brainsci10080531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
Transcranial electrical stimulation (tES) can adjust the membrane potential by applying a weak current on the scalp to change the related nerve activity. In recent years, tES has proven its value in studying the neural processes involved in human behavior. The study of central auditory processes focuses on the analysis of behavioral phenomena, including sound localization, auditory pattern recognition, and auditory discrimination. To our knowledge, studies on the application of tES in the field of hearing and the electrophysiological effects are limited. Therefore, we reviewed the neuromodulatory effect of tES on auditory processing, behavior, and cognitive function and have summarized the physiological effects of tES on the auditory cortex.
Collapse
|
82
|
Kayarian FB, Jannati A, Rotenberg A, Santarnecchi E. Targeting Gamma-Related Pathophysiology in Autism Spectrum Disorder Using Transcranial Electrical Stimulation: Opportunities and Challenges. Autism Res 2020; 13:1051-1071. [PMID: 32468731 PMCID: PMC7387209 DOI: 10.1002/aur.2312] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
A range of scalp electroencephalogram (EEG) abnormalities correlates with the core symptoms of autism spectrum disorder (ASD). Among these are alterations of brain oscillations in the gamma-frequency EEG band in adults and children with ASD, whose origin has been linked to dysfunctions of inhibitory interneuron signaling. While therapeutic interventions aimed to modulate gamma oscillations are being tested for neuropsychiatric disorders such as schizophrenia, Alzheimer's disease, and frontotemporal dementia, the prospects for therapeutic gamma modulation in ASD have not been extensively studied. Accordingly, we discuss gamma-related alterations in the setting of ASD pathophysiology, as well as potential interventions that can enhance gamma oscillations in patients with ASD. Ultimately, we argue that transcranial electrical stimulation modalities capable of entraining gamma oscillations, and thereby potentially modulating inhibitory interneuron circuitry, are promising methods to study and mitigate gamma alterations in ASD. Autism Res 2020, 13: 1051-1071. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Brain functions are mediated by various oscillatory waves of neuronal activity, ranging in amplitude and frequency. In certain neuropsychiatric disorders, such as schizophrenia and Alzheimer's disease, reduced high-frequency oscillations in the "gamma" band have been observed, and therapeutic interventions to enhance such activity are being explored. Here, we review and comment on evidence of reduced gamma activity in ASD, arguing that modalities used in other disorders may benefit individuals with ASD as well.
Collapse
Affiliation(s)
- Fae B. Kayarian
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
83
|
Bergmann TO, Hartwigsen G. Inferring Causality from Noninvasive Brain Stimulation in Cognitive Neuroscience. J Cogn Neurosci 2020; 33:195-225. [PMID: 32530381 DOI: 10.1162/jocn_a_01591] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation or transcranial direct and alternating current stimulation, are advocated as measures to enable causal inference in cognitive neuroscience experiments. Transcending the limitations of purely correlative neuroimaging measures and experimental sensory stimulation, they allow to experimentally manipulate brain activity and study its consequences for perception, cognition, and eventually, behavior. Although this is true in principle, particular caution is advised when interpreting brain stimulation experiments in a causal manner. Research hypotheses are often oversimplified, disregarding the underlying (implicitly assumed) complex chain of causation, namely, that the stimulation technique has to generate an electric field in the brain tissue, which then evokes or modulates neuronal activity both locally in the target region and in connected remote sites of the network, which in consequence affects the cognitive function of interest and eventually results in a change of the behavioral measure. Importantly, every link in this causal chain of effects can be confounded by several factors that have to be experimentally eliminated or controlled to attribute the observed results to their assumed cause. This is complicated by the fact that many of the mediating and confounding variables are not directly observable and dose-response relationships are often nonlinear. We will walk the reader through the chain of causation for a generic cognitive neuroscience NIBS study, discuss possible confounds, and advise appropriate control conditions. If crucial assumptions are explicitly tested (where possible) and confounds are experimentally well controlled, NIBS can indeed reveal cause-effect relationships in cognitive neuroscience studies.
Collapse
Affiliation(s)
| | - Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
84
|
Somer E, Allen J, Brooks JL, Buttrill V, Javadi AH. Theta Phase-dependent Modulation of Perception by Concurrent Transcranial Alternating Current Stimulation and Periodic Visual Stimulation. J Cogn Neurosci 2020; 32:1142-1152. [DOI: 10.1162/jocn_a_01539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Sensory perception can be modulated by the phase of neural oscillations, especially in the theta and alpha ranges. Oscillatory activity in the visual cortex can be entrained by transcranial alternating current stimulation (tACS) as well as periodic visual stimulation (i.e., flicker). Combined tACS and visual flicker stimulation modulates BOLD response, and concurrent 4-Hz auditory click train, and tACS modulate auditory perception in a phase-dependent way. In this study, we investigated whether phase synchrony between concurrent tACS and periodic visual stimulation (i.e., flicker) can modulate performance on a visual matching task. Participants completed a visual matching task on a flickering visual stimulus while receiving either in-phase (0°) or asynchronous (180°, 90°, or 270°) tACS at alpha or theta frequency. Stimulation was applied over either occipital cortex or dorsolateral pFC. Visual performance was significantly better during theta frequency tACS over the visual cortex when it was in-phase (0°) with visual stimulus flicker, compared with antiphase (180°). This effect did not appear with alpha frequency flicker or with dorsolateral pFC stimulation. Furthermore, a control sham group showed no effect. There were no significant performance differences among the asynchronous (180°, 90°, and 270°) phase conditions. Extending previous studies on visual and auditory perception, our results support a crucial role of oscillatory phase in sensory perception and demonstrate a behaviorally relevant combination of visual flicker and tACS. The spatial and frequency specificity of our results have implications for research on the functional organization of perception.
Collapse
Affiliation(s)
| | | | | | | | - Amir-Homayoun Javadi
- University of Kent
- University College London
- Tehran University of Medical Sciences
| |
Collapse
|
85
|
Conscious perception of flickering stimuli in binocular rivalry and continuous flash suppression is not affected by tACS-induced SSR modulation. Conscious Cogn 2020; 82:102953. [PMID: 32450496 DOI: 10.1016/j.concog.2020.102953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/11/2020] [Accepted: 05/08/2020] [Indexed: 11/22/2022]
Abstract
The content of conscious perception is known to correlate with steady-state responses (SSRs), yet their causal relationship remains unclear. Can we manipulate conscious perception by directly interfering with SSRs through transcranial alternating current stimulation (tACS)? Here, we directly addressed this question in three experiments involving binocular rivalry and continuous flash suppression (CFS). Specifically, while participants (N = 24) viewed either binocular rivalry or tried to detect stimuli masked by CFS, we applied sham or real tACS across parieto-occipital cortex at either the same or a different frequency and phase as an SSR eliciting flicker stimulus. We found that tACS did not differentially affect conscious perception in the forms of predominance, CFS detection accuracy, reaction time, or metacognitive sensitivity, confirmed by Bayesian statistics. We conclude that tACS application at frequencies of stimulus-induced SSRs does not have perceptual effects and that SSRs may be epiphenomenal to conscious perception.
Collapse
|
86
|
Kösem A, Bosker HR, Jensen O, Hagoort P, Riecke L. Biasing the Perception of Spoken Words with Transcranial Alternating Current Stimulation. J Cogn Neurosci 2020; 32:1428-1437. [PMID: 32427072 DOI: 10.1162/jocn_a_01579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent neuroimaging evidence suggests that the frequency of entrained oscillations in auditory cortices influences the perceived duration of speech segments, impacting word perception [Kösem, A., Bosker, H. R., Takashima, A., Meyer, A., Jensen, O., & Hagoort, P. Neural entrainment determines the words we hear. Current Biology, 28, 2867-2875, 2018]. We further tested the causal influence of neural entrainment frequency during speech processing, by manipulating entrainment with continuous transcranial alternating current stimulation (tACS) at distinct oscillatory frequencies (3 and 5.5 Hz) above the auditory cortices. Dutch participants listened to speech and were asked to report their percept of a target Dutch word, which contained a vowel with an ambiguous duration. Target words were presented either in isolation (first experiment) or at the end of spoken sentences (second experiment). We predicted that the tACS frequency would influence neural entrainment and therewith how speech is perceptually sampled, leading to a perceptual overestimation or underestimation of the vowel's duration. Whereas results from Experiment 1 did not confirm this prediction, results from Experiment 2 suggested a small effect of tACS frequency on target word perception: Faster tACS leads to more long-vowel word percepts, in line with the previous neuroimaging findings. Importantly, the difference in word perception induced by the different tACS frequencies was significantly larger in Experiment 1 versus Experiment 2, suggesting that the impact of tACS is dependent on the sensory context. tACS may have a stronger effect on spoken word perception when the words are presented in continuous speech as compared to when they are isolated, potentially because prior (stimulus-induced) entrainment of brain oscillations might be a prerequisite for tACS to be effective.
Collapse
Affiliation(s)
- Anne Kösem
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands.,Université Lyon 1
| | - Hans Rutger Bosker
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands
| | | | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
87
|
Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, Bremner JD, Badran BW, Napadow V, Clark VP, Bikson M. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul 2020; 13:717-750. [PMID: 32289703 PMCID: PMC7196013 DOI: 10.1016/j.brs.2020.02.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The cranial nerves are the pathways through which environmental information (sensation) is directly communicated to the brain, leading to perception, and giving rise to higher cognition. Because cranial nerves determine and modulate brain function, invasive and non-invasive cranial nerve electrical stimulation methods have applications in the clinical, behavioral, and cognitive domains. Among other neuromodulation approaches such as peripheral, transcranial and deep brain stimulation, cranial nerve stimulation is unique in allowing axon pathway-specific engagement of brain circuits, including thalamo-cortical networks. In this review we amalgamate relevant knowledge of 1) cranial nerve anatomy and biophysics; 2) evidence of the modulatory effects of cranial nerves on cognition; 3) clinical and behavioral outcomes of cranial nerve stimulation; and 4) biomarkers of nerve target engagement including physiology, electroencephalography, neuroimaging, and behavioral metrics. Existing non-invasive stimulation methods cannot feasibly activate the axons of only individual cranial nerves. Even with invasive stimulation methods, selective targeting of one nerve fiber type requires nuance since each nerve is composed of functionally distinct axon-types that differentially branch and can anastomose onto other nerves. None-the-less, precisely controlling stimulation parameters can aid in affecting distinct sets of axons, thus supporting specific actions on cognition and behavior. To this end, a rubric for reproducible dose-response stimulation parameters is defined here. Given that afferent cranial nerve axons project directly to the brain, targeting structures (e.g. thalamus, cortex) that are critical nodes in higher order brain networks, potent effects on cognition are plausible. We propose an intervention design framework based on driving cranial nerve pathways in targeted brain circuits, which are in turn linked to specific higher cognitive processes. State-of-the-art current flow models that are used to explain and design cranial-nerve-activating stimulation technology require multi-scale detail that includes: gross anatomy; skull foramina and superficial tissue layers; and precise nerve morphology. Detailed simulations also predict that some non-invasive electrical or magnetic stimulation approaches that do not intend to modulate cranial nerves per se, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), may also modulate activity of specific cranial nerves. Much prior cranial nerve stimulation work was conceptually limited to the production of sensory perception, with individual titration of intensity based on the level of perception and tolerability. However, disregarding sensory emulation allows consideration of temporal stimulation patterns (axon recruitment) that modulate the tone of cortical networks independent of sensory cortices, without necessarily titrating perception. For example, leveraging the role of the thalamus as a gatekeeper for information to the cerebral cortex, preventing or enhancing the passage of specific information depending on the behavioral state. We show that properly parameterized computational models at multiple scales are needed to rationally optimize neuromodulation that target sets of cranial nerves, determining which and how specific brain circuitries are modulated, which can in turn influence cognition in a designed manner.
Collapse
Affiliation(s)
- Devin Adair
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| | - Nigel Gebodh
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Helen Borges
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Libby Ho
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard medical school, Boston, MA, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| |
Collapse
|
88
|
Sabel BA, Thut G, Haueisen J, Henrich-Noack P, Herrmann CS, Hunold A, Kammer T, Matteo B, Sergeeva EG, Waleszczyk W, Antal A. Vision modulation, plasticity and restoration using non-invasive brain stimulation – An IFCN-sponsored review. Clin Neurophysiol 2020; 131:887-911. [DOI: 10.1016/j.clinph.2020.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
|
89
|
Martinez-Banaclocha M. Astroglial Isopotentiality and Calcium-Associated Biomagnetic Field Effects on Cortical Neuronal Coupling. Cells 2020; 9:cells9020439. [PMID: 32069981 PMCID: PMC7073214 DOI: 10.3390/cells9020439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
Synaptic neurotransmission is necessary but does not sufficiently explain superior cognitive faculties. Growing evidence has shown that neuron-astroglial chemical crosstalk plays a critical role in the processing of information, computation, and memory. In addition to chemical and electrical communication among neurons and between neurons and astrocytes, other nonsynaptic mechanisms called ephaptic interactions can contribute to the neuronal synchronization from different brain regions involved in the processing of information. New research on brain astrocytes has clearly shown that the membrane potential of these cells remains very stable among neighboring and distant astrocytes due to the marked bioelectric coupling between them through gap junctions. This finding raises the possibility that the neocortical astroglial network exerts a guiding template modulating the excitability and synchronization of trillions of neurons by astroglial Ca2+-associated bioelectromagnetic interactions. We propose that bioelectric and biomagnetic fields of the astroglial network equalize extracellular local field potentials (LFPs) and associated local magnetic field potentials (LMFPs) in the cortical layers of the brain areas involved in the processing of information, contributing to the adequate and coherent integration of external and internal signals. This article reviews the current knowledge of ephaptic interactions in the cerebral cortex and proposes that the isopotentiality of cortical astrocytes is a prerequisite for the maintenance of the bioelectromagnetic crosstalk between neurons and astrocytes in the neocortex.
Collapse
|
90
|
Tychsen L, Thio LL. Concern of Photosensitive Seizures Evoked by 3D Video Displays or Virtual Reality Headsets in Children: Current Perspective. Eye Brain 2020; 12:45-48. [PMID: 32104130 PMCID: PMC7023866 DOI: 10.2147/eb.s233195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/12/2019] [Indexed: 11/23/2022] Open
Abstract
This review assesses the risk of a photic-induced seizure in a child during viewing of 3D (binocular 3 dimensional, stereoscopic) movies or games, either on standard video displays or when wearing a virtual reality (VR) headset. Studies published by pediatric epilepsy experts emphasize the low risk of 3D viewing even for children with known photosensitive epilepsy (PSE). The low incidence of PSE is noteworthy because the number of hours devoted to 2D or 3D screen viewing and/or VR headset use by children worldwide has increased markedly over the last decade. The medical literature does not support the notion that VR headset use poses a risk for PSE.
Collapse
Affiliation(s)
- Lawrence Tychsen
- Department of Ophthalmology and Visual Sciences
- Department of Pediatrics
- Department of Neuroscience
| | - Liu Lin Thio
- Department of Pediatrics
- Department of Neuroscience
- Department of Neurology, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
91
|
Koganemaru S, Mikami Y, Matsuhashi M, Truong DQ, Bikson M, Kansaku K, Mima T. Cerebellar transcranial alternating current stimulation modulates human gait rhythm. Neurosci Res 2019; 156:265-270. [PMID: 31812652 DOI: 10.1016/j.neures.2019.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 01/11/2023]
Abstract
Although specific brain regions are important for regularly patterned limb movements, the rhythm generation system that governs bipedal locomotion in humans is not thoroughly understood. We investigated whether rhythmic transcranial brain stimulation over the cerebellum could alter walking rhythm. Fourteen healthy subjects performed over-ground walking for 10 min during which they were given, in a random order, transcranial alternating current stimulation (tACS) over the left cerebellum at the approximated frequency of their gait cycle, tACS over the skin of the scalp, and during sham stimulation. Cerebellar tACS showed a significant entrainment of gait rhythm compared with the control conditions. When the direction of the tACS currents was symmetrically inverted, some subjects showed entrainment at an approximately 180° inverted phase, suggesting that gait modulation is dependent on current orientation. These findings indicate that tACS over cerebellum can modulate gait generation system in cerebellum and become an innovative approach for the recovery of locomotion in patients with gait disturbances caused by CNS disorders.
Collapse
Affiliation(s)
- Satoko Koganemaru
- Department of Physiology and Biological Information, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan.
| | - Yusuke Mikami
- Human Brain Research Center, Kyoto University School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masao Matsuhashi
- Human Brain Research Center, Kyoto University School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Dennis Q Truong
- Department of Biomedical Engineering, The City College of New York of CUNY, T-403B, 160 Convent Avenue, New York, NY, 10031, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, T-403B, 160 Convent Avenue, New York, NY, 10031, USA
| | - Kenji Kansaku
- Department of Physiology and Biological Information, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Tatsuya Mima
- The Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University 56-1, Tojiin, Kitamachi, Kita-ku, Kyoto, 603-8577, Japan
| |
Collapse
|
92
|
Deng Y, Reinhart RMG, Choi I, Shinn-Cunningham BG. Causal links between parietal alpha activity and spatial auditory attention. eLife 2019; 8:e51184. [PMID: 31782732 PMCID: PMC6904218 DOI: 10.7554/elife.51184] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/28/2019] [Indexed: 11/13/2022] Open
Abstract
Both visual and auditory spatial selective attention result in lateralized alpha (8-14 Hz) oscillatory power in parietal cortex: alpha increases in the hemisphere ipsilateral to attentional focus. Brain stimulation studies suggest a causal relationship between parietal alpha and suppression of the representation of contralateral visual space. However, there is no evidence that parietal alpha controls auditory spatial attention. Here, we performed high definition transcranial alternating current stimulation (HD-tACS) on human subjects performing an auditory task in which they directed attention based on either spatial or nonspatial features. Alpha (10 Hz) but not theta (6 Hz) HD-tACS of right parietal cortex interfered with attending left but not right auditory space. Parietal stimulation had no effect for nonspatial auditory attention. Moreover, performance in post-stimulation trials returned rapidly to baseline. These results demonstrate a causal, frequency-, hemispheric-, and task-specific effect of parietal alpha brain stimulation on top-down control of auditory spatial attention.
Collapse
Affiliation(s)
- Yuqi Deng
- Biomedical EngineeringBoston UniversityBostonUnited States
| | | | - Inyong Choi
- Communication Sciences and DisordersUniversity of IowaIowa CityUnited States
| | - Barbara G Shinn-Cunningham
- Biomedical EngineeringBoston UniversityBostonUnited States
- Neuroscience InstituteCarnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
93
|
Schuhmann T, Kemmerer SK, Duecker F, de Graaf TA, ten Oever S, De Weerd P, Sack AT. Left parietal tACS at alpha frequency induces a shift of visuospatial attention. PLoS One 2019; 14:e0217729. [PMID: 31774818 PMCID: PMC6881009 DOI: 10.1371/journal.pone.0217729] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Voluntary shifts of visuospatial attention are associated with a lateralization of parieto-occipital alpha power (7-13Hz), i.e. higher power in the hemisphere ipsilateral and lower power contralateral to the locus of attention. Recent noninvasive neuromodulation studies demonstrated that alpha power can be experimentally increased using transcranial alternating current stimulation (tACS). OBJECTIVE/HYPOTHESIS We hypothesized that tACS at alpha frequency over the left parietal cortex induces shifts of attention to the left hemifield. However, spatial attention shifts not only occur voluntarily (endogenous/ top-down), but also stimulus-driven (exogenous/ bottom-up). To study the task-specificity of the potential effects of tACS on attentional processes, we administered three conceptually different spatial attention tasks. METHODS 36 healthy volunteers were recruited from an academic environment. In two separate sessions, we applied either high-density tACS at 10Hz, or sham tACS, for 35-40 minutes to their left parietal cortex. We systematically compared performance on endogenous attention, exogenous attention, and stimulus detection tasks. RESULTS In the endogenous attention task, a greater leftward bias in reaction times was induced during left parietal 10Hz tACS as compared to sham. There were no stimulation effects in either the exogenous attention or the stimulus detection task. CONCLUSION The study demonstrates that high-density tACS at 10Hz can be used to modulate visuospatial attention performance. The tACS effect is task-specific, indicating that not all forms of attention are equally susceptible to the stimulation.
Collapse
Affiliation(s)
- Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Selma K. Kemmerer
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Felix Duecker
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Tom A. de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Sanne ten Oever
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Alexander T. Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain + Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
| |
Collapse
|
94
|
Distinct Montages of Slow Oscillatory Transcranial Direct Current Stimulation (so-tDCS) Constitute Different Mechanisms during Quiet Wakefulness. Brain Sci 2019; 9:brainsci9110324. [PMID: 31739576 PMCID: PMC6896026 DOI: 10.3390/brainsci9110324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Slow oscillatory- (so-) tDCS has been applied in many sleep studies aimed to modulate brain rhythms of slow wave sleep and memory consolidation. Yet, so-tDCS may also modify coupled oscillatory networks. Efficacy of weak electric brain stimulation is however variable and dependent upon the brain state at the time of stimulation (subject and/or task-related) as well as on stimulation parameters (e.g., electrode placement and applied current. Anodal so-tDCS was applied during wakefulness with eyes-closed to examine efficacy when deviating from the dominant brain rhythm. Additionally, montages of different electrodes size and applied current strength were used. During a period of quiet wakefulness bilateral frontolateral stimulation (F3, F4; return electrodes at ipsilateral mastoids) was applied to two groups: ‘Group small’ (n = 16, f:8; small electrodes: 0.50 cm2; maximal current per electrode pair: 0.26 mA) and ‘Group Large’ (n = 16, f:8; 35 cm2; 0.35 mA). Anodal so-tDCS (0.75 Hz) was applied in five blocks of 5 min epochs with 1 min stimulation-free epochs between the blocks. A finger sequence tapping task (FSTT) was used to induce comparable cortical activity across sessions and subject groups. So-tDCS resulted in a suppression of alpha power over the parietal cortex. Interestingly, in Group Small alpha suppression occurred over the standard band (8–12 Hz), whereas for Group Large power of individual alpha frequency was suppressed. Group Small also revealed a decrease in FSTT performance at retest after stimulation. It is essential to include concordant measures of behavioral and brain activity to help understand variability and poor reproducibility in oscillatory-tDCS studies.
Collapse
|
95
|
After-effects of 10 Hz tACS over the prefrontal cortex on phonological word decisions. Brain Stimul 2019; 12:1464-1474. [DOI: 10.1016/j.brs.2019.06.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 05/13/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022] Open
|
96
|
Zeng FG, Tran P, Richardson M, Sun S, Xu Y. Human Sensation of Transcranial Electric Stimulation. Sci Rep 2019; 9:15247. [PMID: 31649289 PMCID: PMC6813324 DOI: 10.1038/s41598-019-51792-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023] Open
Abstract
Noninvasive transcranial electric stimulation is increasingly being used as an advantageous therapy alternative that may activate deep tissues while avoiding drug side-effects. However, not only is there limited evidence for activation of deep tissues by transcranial electric stimulation, its evoked human sensation is understudied and often dismissed as a placebo or secondary effect. By systematically characterizing the human sensation evoked by transcranial alternating-current stimulation, we observed not only stimulus frequency and electrode position dependencies specific for auditory and visual sensation but also a broader presence of somatic sensation ranging from touch and vibration to pain and pressure. We found generally monotonic input-output functions at suprathreshold levels, and often multiple types of sensation occurring simultaneously in response to the same electric stimulation. We further used a recording circuit embedded in a cochlear implant to directly and objectively measure the amount of transcranial electric stimulation reaching the auditory nerve, a deep intercranial target located in the densest bone of the skull. We found an optimal configuration using an ear canal electrode and low-frequency (<300 Hz) sinusoids that delivered maximally ~1% of the transcranial current to the auditory nerve, which was sufficient to produce sound sensation even in deafened ears. Our results suggest that frequency resonance due to neuronal intrinsic electric properties need to be explored for targeted deep brain stimulation and novel brain-computer interfaces.
Collapse
Affiliation(s)
- Fan-Gang Zeng
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, California, 92697, USA.
| | - Phillip Tran
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, California, 92697, USA
| | - Matthew Richardson
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, California, 92697, USA
| | - Shuping Sun
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, California, 92697, USA
- Department of Otolaryngology - Head and Neck Surgery, The First Affiliated Hospital, Zhengzhou University, Henan, 450052, China
| | - Yuchen Xu
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, California, 92697, USA
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
97
|
Bland NS, Sale MV. Current challenges: the ups and downs of tACS. Exp Brain Res 2019; 237:3071-3088. [DOI: 10.1007/s00221-019-05666-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
|
98
|
Vernet M, Stengel C, Quentin R, Amengual JL, Valero-Cabré A. Entrainment of local synchrony reveals a causal role for high-beta right frontal oscillations in human visual consciousness. Sci Rep 2019; 9:14510. [PMID: 31601822 PMCID: PMC6787242 DOI: 10.1038/s41598-019-49673-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/09/2019] [Indexed: 11/09/2022] Open
Abstract
Prior evidence supports a critical role of oscillatory activity in visual cognition, but are cerebral oscillations simply correlated or causally linked to our ability to consciously acknowledge the presence of a target in our visual field? Here, EEG signals were recorded on humans performing a visual detection task, while they received brief patterns of rhythmic or random transcranial magnetic stimulation (TMS) delivered to the right Frontal Eye Field (FEF) prior to the onset of a lateralized target. TMS entrained oscillations, i.e., increased high-beta power and phase alignment (the latter to a higher extent for rhythmic high-beta patterns than random patterns) while also boosting visual detection sensitivity. Considering post-hoc only those participants in which rhythmic stimulation enhanced visual detection, the magnitude of high-beta entrainment correlated with left visual performance increases. Our study provides evidence in favor of a causal link between high-beta oscillatory activity in the Frontal Eye Field and visual detection. Furthermore, it supports future applications of brain stimulation to manipulate local synchrony and improve or restore impaired visual behaviors.
Collapse
Affiliation(s)
- Marine Vernet
- Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France.
| | - Chloé Stengel
- Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France
| | - Romain Quentin
- Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France
| | - Julià L Amengual
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229 and Université Claude Bernard, Lyon, France
| | - Antoni Valero-Cabré
- Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France. .,Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University, School of Medicine, Boston, MA, USA. .,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain.
| |
Collapse
|
99
|
State-Dependent Effects of Transcranial Oscillatory Currents on the Motor System during Action Observation. Sci Rep 2019; 9:12858. [PMID: 31492895 PMCID: PMC6731229 DOI: 10.1038/s41598-019-49166-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 08/16/2019] [Indexed: 12/24/2022] Open
Abstract
We applied transcranial alternating current stimulation (tACS) to the primary motor cortex (M1) at different frequencies during an index–thumb pinch-grip observation task. To estimate changes in the corticospinal output, we used the size of motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS) of M1 using an online MRI-guided simultaneous TMS-tACS approach. The results of the beta-tACS confirm a non-selective increase in corticospinal excitability in subjects at rest; an increase was observed for both of the tested hand muscles, the first dorsal interosseous (FDI) and the abductor digiti minimi (ADM). However, during action observation of the pinch-grip movement, the increase of corticospinal excitability was only observed for the prime mover FDI muscle and took place during alpha-tACS, while gamma-tACS affected both the FDI and control muscle (ADM) responses. These phenomena likely reflect the hypothesis that the mu and gamma rhythms specifically index the downstream modulation of primary sensorimotor areas by engaging mirror neuron activity. The current neuromodulation approach confirms that tACS can be used to induce neurophysiologically detectable state-dependent enhancement effects, even in complex motor-cognitive tasks.
Collapse
|
100
|
Haberbosch L, Datta A, Thomas C, Jooß A, Köhn A, Rönnefarth M, Scholz M, Brandt SA, Schmidt S. Safety Aspects, Tolerability and Modeling of Retinofugal Alternating Current Stimulation. Front Neurosci 2019; 13:783. [PMID: 31440126 PMCID: PMC6692662 DOI: 10.3389/fnins.2019.00783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/12/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND While alternating current stimulation (ACS) is gaining relevance as a tool in research and approaching clinical applications, its mechanisms of action remain unclear. A review by Schutter and colleagues argues for a retinal origin of transcranial ACS' neuromodulatory effects. Interestingly, there is an alternative application form of ACS specifically targeting α-oscillations in the visual cortex via periorbital electrodes (retinofugal alternating current stimulation, rACS). To further compare these two methods and investigate retinal effects of ACS, we first aim to establish the safety and tolerability of rACS. OBJECTIVE The goal of our research was to evaluate the safety of rACS via finite-element modeling, theoretical safety limits and subjective report. METHODS 20 healthy subjects were stimulated with rACS as well as photic stimulation and reported adverse events following stimulation. We analyzed stimulation parameters at electrode level as well as distributed metric estimates from an ultra-high spatial resolution magnetic resonance imaging (MRI)-derived finite element human head model and compared them to existing safety limits. RESULTS Topographical modeling revealed the highest current densities in the anterior visual pathway, particularly retina and optic nerve. Stimulation parameters and finite element modeling estimates of rACS were found to be well below existing safety limits. No serious adverse events occurred. CONCLUSION Our findings are in line with existing safety guidelines for retinal and neural damage and establish the tolerability and feasibility of rACS. In comparison to tACS, retinofugal stimulation of the visual cortex provides an anatomically circumscribed model to systematically study the mechanisms of action of ACS.
Collapse
Affiliation(s)
- Linus Haberbosch
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Endocrinology, Diabetes and Metabolism, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Abhishek Datta
- Research and Development, Soterix Medical, New York, NY, United States
| | - Chris Thomas
- Research and Development, Soterix Medical, New York, NY, United States
| | - Andreas Jooß
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Arvid Köhn
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Rönnefarth
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Michael Scholz
- Neural Information Processing Group, Technical University of Berlin, Berlin, Germany
| | - Stephan A. Brandt
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sein Schmidt
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|