51
|
Jiang YY, Maier W, Baumeister R, Minevich G, Joachimiak E, Wloga D, Ruan Z, Kannan N, Bocarro S, Bahraini A, Vasudevan KK, Lechtreck K, Orias E, Gaertig J. LF4/MOK and a CDK-related kinase regulate the number and length of cilia in Tetrahymena. PLoS Genet 2019; 15:e1008099. [PMID: 31339880 PMCID: PMC6682161 DOI: 10.1371/journal.pgen.1008099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/05/2019] [Accepted: 06/13/2019] [Indexed: 11/18/2022] Open
Abstract
The length of cilia is controlled by a poorly understood mechanism that involves members of the conserved RCK kinase group, and among them, the LF4/MOK kinases. The multiciliated protist model, Tetrahymena, carries two types of cilia (oral and locomotory) and the length of the locomotory cilia is dependent on their position with the cell. In Tetrahymena, loss of an LF4/MOK ortholog, LF4A, lengthened the locomotory cilia, but also reduced their number. Without LF4A, cilia assembled faster and showed signs of increased intraflagellar transport (IFT). Consistently, overproduced LF4A shortened cilia and downregulated IFT. GFP-tagged LF4A, expressed in the native locus and imaged by total internal reflection microscopy, was enriched at the basal bodies and distributed along the shafts of cilia. Within cilia, most LF4A-GFP particles were immobile and a few either diffused or moved by IFT. We suggest that the distribution of LF4/MOK along the cilium delivers a uniform dose of inhibition to IFT trains that travel from the base to the tip. In a longer cilium, the IFT machinery may experience a higher cumulative dose of inhibition by LF4/MOK. Thus, LF4/MOK activity could be a readout of cilium length that helps to balance the rate of IFT-driven assembly with the rate of disassembly at steady state. We used a forward genetic screen to identify a CDK-related kinase, CDKR1, whose loss-of-function suppressed the shortening of cilia caused by overexpression of LF4A, by reducing its kinase activity. Loss of CDKR1 alone lengthened both the locomotory and oral cilia. CDKR1 resembles other known ciliary CDK-related kinases: LF2 of Chlamydomonas, mammalian CCRK and DYF-18 of C. elegans, in lacking the cyclin-binding motif and acting upstream of RCKs. The new genetic tools we developed here for Tetrahymena have potential for further dissection of the principles of cilia length regulation in multiciliated cells.
Collapse
Affiliation(s)
- Yu-Yang Jiang
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Wolfgang Maier
- Bio 3/Bioinformatics and Molecular Genetics, Faculty of Biology and ZBMZ, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Ralf Baumeister
- Bio 3/Bioinformatics and Molecular Genetics, Faculty of Biology and ZBMZ, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Gregory Minevich
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York, United States of America
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Zheng Ruan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Stephen Bocarro
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Anoosh Bahraini
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Krishna Kumar Vasudevan
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Eduardo Orias
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
52
|
Fu S, Thompson C, Ali A, Wang W, Chapple J, Mitchison H, Beales P, Wann A, Knight M. Mechanical loading inhibits cartilage inflammatory signalling via an HDAC6 and IFT-dependent mechanism regulating primary cilia elongation. Osteoarthritis Cartilage 2019; 27:1064-1074. [PMID: 30922983 PMCID: PMC6593179 DOI: 10.1016/j.joca.2019.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/04/2019] [Accepted: 03/16/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Physiological mechanical loading reduces inflammatory signalling in numerous cell types including articular chondrocytes however the mechanism responsible remains unclear. This study investigates the role of chondrocyte primary cilia and associated intraflagellar transport (IFT) in the mechanical regulation of interleukin-1β (IL-1β) signalling. DESIGN Isolated chondrocytes and cartilage explants were subjected to cyclic mechanical loading in the presence and absence of the cytokine IL-1β. Nitric oxide (NO) and prostaglandin E2 (PGE2) release were used to monitor IL-1β signalling whilst Sulphated glycosaminoglycan (sGAG) release provided measurement of cartilage degradation. Measurements were made of HDAC6 activity and tubulin polymerisation and acetylation. Effects on primary cilia were monitored by confocal and super resolution microscopy. Involvement of IFT was analysed using ORPK cells with hypomorphic mutation of IFT88. RESULTS Mechanical loading suppressed NO and PGE2 release and prevented cartilage degradation. Loading activated HDAC6 and disrupted tubulin acetylation and cilia elongation induced by IL-1β. HDAC6 inhibition with tubacin blocked the anti-inflammatory effects of loading and restored tubulin acetylation and cilia elongation. Hypomorphic mutation of IFT88 reduced IL-1β signalling and abolished the anti-inflammatory effects of loading indicating the mechanism is IFT-dependent. Loading reduced the pool of non-polymerised tubulin which was replicated by taxol which also mimicked the anti-inflammatory effects of mechanical loading and prevented cilia elongation. CONCLUSIONS This study reveals that mechanical loading suppresses inflammatory signalling, partially dependent on IFT, by activation of HDAC6 and post transcriptional modulation of tubulin.
Collapse
Affiliation(s)
- S. Fu
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, UK
| | - C.L. Thompson
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, UK,Address correspondence and reprint requests to: C. L. Thompson, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK. Tel: 44-20-7882-3603.
| | - A. Ali
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, UK
| | - W. Wang
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, UK
| | - J.P. Chapple
- Department of Endocrinology, William Harvey Research Centre, Queen Mary University of London, UK
| | - H.M. Mitchison
- Institute of Child Health, University College of London, UK
| | - P.L. Beales
- Institute of Child Health, University College of London, UK
| | - A.K.T. Wann
- Kennedy Institute of Rheumatology, University of Oxford, UK
| | - M.M. Knight
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, UK
| |
Collapse
|
53
|
Maurya AK, Rogers T, Sengupta P. A CCRK and a MAK Kinase Modulate Cilia Branching and Length via Regulation of Axonemal Microtubule Dynamics in Caenorhabditis elegans. Curr Biol 2019; 29:1286-1300.e4. [PMID: 30955935 PMCID: PMC6482063 DOI: 10.1016/j.cub.2019.02.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/06/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
Abstract
The diverse morphologies of primary cilia are tightly regulated as a function of cell type and cellular state. CCRK- and MAK-related kinases have been implicated in ciliary length control in multiple species, although the underlying mechanisms are not fully understood. Here, we show that in C. elegans, DYF-18/CCRK and DYF-5/MAK act in a cascade to generate the highly arborized cilia morphologies of the AWA olfactory neurons. Loss of kinase function results in dramatically elongated AWA cilia that lack branches. Intraflagellar transport (IFT) motor protein localization, but not velocities, in AWA cilia is altered upon loss of dyf-18. We instead find that axonemal microtubules are decorated by the EBP-2 end-binding protein along their lengths and that the tubulin load is increased and tubulin turnover is reduced in AWA cilia of dyf-18 mutants. Moreover, we show that predicted microtubule-destabilizing mutations in two tubulin subunits, as well as mutations in IFT proteins predicted to disrupt tubulin transport, restore cilia branching and suppress AWA cilia elongation in dyf-18 mutants. Loss of dyf-18 is also sufficient to elongate the truncated rod-like unbranched cilia of the ASH nociceptive neurons in animals carrying a microtubule-destabilizing mutation in a tubulin subunit. We suggest that CCRK and MAK activity tunes cilia length and shape in part via modulation of axonemal microtubule stability, suggesting that similar mechanisms may underlie their roles in ciliary length control in other cell types.
Collapse
Affiliation(s)
- Ashish Kumar Maurya
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | - Travis Rogers
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
54
|
Hendel NL, Thomson M, Marshall WF. Diffusion as a Ruler: Modeling Kinesin Diffusion as a Length Sensor for Intraflagellar Transport. Biophys J 2019; 114:663-674. [PMID: 29414712 PMCID: PMC5985012 DOI: 10.1016/j.bpj.2017.11.3784] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/30/2017] [Accepted: 11/29/2017] [Indexed: 02/01/2023] Open
Abstract
An important question in cell biology is whether cells are able to measure size, either whole cell size or organelle size. Perhaps cells have an internal chemical representation of size that can be used to precisely regulate growth, or perhaps size is just an accident that emerges due to constraint of nutrients. The eukaryotic flagellum is an ideal model for studying size sensing and control because its linear geometry makes it essentially one-dimensional, greatly simplifying mathematical modeling. The assembly of flagella is regulated by intraflagellar transport (IFT), in which kinesin motors carry cargo adaptors for flagellar proteins along the flagellum and then deposit them at the tip, lengthening the flagellum. The rate at which IFT motors are recruited to begin transport into the flagellum is anticorrelated with the flagellar length, implying some kind of communication between the base and the tip and possibly indicating that cells contain some mechanism for measuring flagellar length. Although it is possible to imagine many complex scenarios in which additional signaling molecules sense length and carry feedback signals to the cell body to control IFT, might the already-known components of the IFT system be sufficient to allow length dependence of IFT? Here we investigate a model in which the anterograde kinesin motors unbind after cargo delivery, diffuse back to the base, and are subsequently reused to power entry of new IFT trains into the flagellum. By mathematically modeling and simulating such a system, we are able to show that the diffusion time of the motors can in principle be sufficient to serve as a proxy for length measurement. We found that the diffusion model can not only achieve a stable steady-state length without the addition of any other signaling molecules or pathways, but also is able to produce the anticorrelation between length and IFT recruitment rate that has been observed in quantitative imaging studies.
Collapse
Affiliation(s)
- Nathan L Hendel
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California; Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, California
| | - Matthew Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
55
|
Wang Y, Ren Y, Pan J. Regulation of flagellar assembly and length in
Chlamydomonas
by LF4, a MAPK‐related kinase. FASEB J 2019; 33:6431-6441. [DOI: 10.1096/fj.201802375rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yingrui Wang
- Ministry of Education (MOE) Key Laboratory for Protein ScienceTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua University Beijing China
| | - Yahui Ren
- Ministry of Education (MOE) Key Laboratory for Protein ScienceTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua University Beijing China
| | - Junmin Pan
- Ministry of Education (MOE) Key Laboratory for Protein ScienceTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua University Beijing China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
56
|
Uytingco CR, Williams CL, Xie C, Shively DT, Green WW, Ukhanov K, Zhang L, Nishimura DY, Sheffield VC, Martens JR. BBS4 is required for intraflagellar transport coordination and basal body number in mammalian olfactory cilia. J Cell Sci 2019; 132:jcs222331. [PMID: 30665891 PMCID: PMC6432715 DOI: 10.1242/jcs.222331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
Bardet-Beidl syndrome (BBS) manifests from genetic mutations encoding for one or more BBS proteins. BBS4 loss impacts olfactory ciliation and odor detection, yet the cellular mechanisms remain unclear. Here, we report that Bbs4-/- mice exhibit shorter and fewer olfactory sensory neuron (OSN) cilia despite retaining odorant receptor localization. Within Bbs4-/- OSN cilia, we observed asynchronous rates of IFT-A/B particle movements, indicating miscoordination in IFT complex trafficking. Within the OSN dendritic knob, the basal bodies are dynamic, with incorporation of ectopically expressed centrin-2 and γ-tubulin occurring after nascent ciliogenesis. Importantly, BBS4 loss results in the reduction of basal body numbers separate from cilia loss. Adenoviral expression of BBS4 restored OSN cilia lengths and was sufficient to re-establish odor detection, but failed to rescue ciliary and basal body numbers. Our results yield a model for the plurality of BBS4 functions in OSNs that includes intraciliary and periciliary roles that can explain the loss of cilia and penetrance of ciliopathy phenotypes in olfactory neurons.
Collapse
Affiliation(s)
- Cedric R Uytingco
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Corey L Williams
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Chao Xie
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Dana T Shively
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Warren W Green
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | - Val C Sheffield
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
57
|
Yang TT, Tran MNT, Chong WM, Huang CE, Liao JC. Single-particle tracking localization microscopy reveals nonaxonemal dynamics of intraflagellar transport proteins at the base of mammalian primary cilia. Mol Biol Cell 2019; 30:828-837. [PMID: 30759057 PMCID: PMC6589787 DOI: 10.1091/mbc.e18-10-0654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Primary cilia play a vital role in cellular sensing and signaling. An essential component of ciliogenesis is intraflagellar transport (IFT), which is involved in IFT protein recruitment, axonemal engagement of IFT protein complexes, and so on. The mechanistic understanding of these processes at the ciliary base was largely missing, because it is challenging to observe the motion of IFT proteins in this crowded region using conventional microscopy. Here, we report short-trajectory tracking of IFT proteins at the base of mammalian primary cilia by optimizing single-particle tracking photoactivated localization microscopy for IFT88-mEOS4b in live human retinal pigment epithelial cells. Intriguingly, we found that mobile IFT proteins “switched gears” multiple times from the distal appendages (DAPs) to the ciliary compartment (CC), moving slowly in the DAPs, relatively fast in the proximal transition zone (TZ), slowly again in the distal TZ, and then much faster in the CC. They could travel through the space between the DAPs and the axoneme without following DAP structures. We further revealed that BBS2 and IFT88 were highly populated at the distal TZ, a potential assembly site. Together, our live-cell single-particle tracking revealed region-dependent slowdown of IFT proteins at the ciliary base, shedding light on staged control of ciliary homeostasis.
Collapse
Affiliation(s)
- T Tony Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Minh Nguyet Thi Tran
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Weng Man Chong
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chia-En Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Jung-Chi Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.,Genome and Systems Biology Program, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
58
|
Picariello T, Brown JM, Hou Y, Swank G, Cochran DA, King OD, Lechtreck K, Pazour GJ, Witman GB. A global analysis of IFT-A function reveals specialization for transport of membrane-associated proteins into cilia. J Cell Sci 2019; 132:jcs220749. [PMID: 30659111 PMCID: PMC6382014 DOI: 10.1242/jcs.220749] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/02/2019] [Indexed: 12/28/2022] Open
Abstract
Intraflagellar transport (IFT), which is essential for the formation and function of cilia in most organisms, is the trafficking of IFT trains (i.e. assemblies of IFT particles) that carry cargo within the cilium. Defects in IFT cause several human diseases. IFT trains contain the complexes IFT-A and IFT-B. To dissect the functions of these complexes, we studied a Chlamydomonas mutant that is null for the IFT-A protein IFT140. The mutation had no effect on IFT-B but destabilized IFT-A, preventing flagella assembly. Therefore, IFT-A assembly requires IFT140. Truncated IFT140, which lacks the N-terminal WD repeats of the protein, partially rescued IFT and supported formation of half-length flagella that contained normal levels of IFT-B but greatly reduced amounts of IFT-A. The axonemes of these flagella had normal ultrastructure and, as investigated by SDS-PAGE, normal composition. However, composition of the flagellar 'membrane+matrix' was abnormal. Analysis of the latter fraction by mass spectrometry revealed decreases in small GTPases, lipid-anchored proteins and cell signaling proteins. Thus, IFT-A is specialized for the import of membrane-associated proteins. Abnormal levels of the latter are likely to account for the multiple phenotypes of patients with defects in IFT140.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tyler Picariello
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jason M Brown
- Department of Biology, Salem State University, Salem, MA 01970, USA
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gregory Swank
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Deborah A Cochran
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Oliver D King
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
59
|
Kubo T, Oda T. Chlamydomonas as a tool to study tubulin polyglutamylation. Microscopy (Oxf) 2019; 68:80-91. [PMID: 30364995 DOI: 10.1093/jmicro/dfy044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
The diversity of α- and β-tubulin is facilitated by various post-translational modifications (PTMs), such as acetylation, tyrosination, glycylation, glutamylation, phosphorylation and methylation. These PTMs affect the stability and structure of microtubules as well as the interaction between microtubules and microtubule-associated proteins, including molecular motors. Therefore, it is extremely important to investigate the roles of tubulin PTMs for understanding the cell cycle, cell motility and intracellular trafficking. Tubulin PTMs were first studied in the 1980s, and considerable progress has been made since then; it is likely that additional mechanisms remain yet to be elucidated. Here, we discuss one such modification, tubulin glutamylation, and introduce our research on the eukaryotic flagellum of the unicellular green alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Tomohiro Kubo
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, Shimokato, Chuo, Yamanashi, Japan
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, Shimokato, Chuo, Yamanashi, Japan
| |
Collapse
|
60
|
A Grow-and-Lock Model for the Control of Flagellum Length in Trypanosomes. Curr Biol 2018; 28:3802-3814.e3. [DOI: 10.1016/j.cub.2018.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/06/2018] [Accepted: 10/11/2018] [Indexed: 11/19/2022]
|
61
|
Gunes S, Sengupta P, Henkel R, Alguraigari A, Sinigaglia MM, Kayal M, Joumah A, Agarwal A. Microtubular Dysfunction and Male Infertility. World J Mens Health 2018; 38:9-23. [PMID: 30350487 PMCID: PMC6920067 DOI: 10.5534/wjmh.180066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 01/27/2023] Open
Abstract
Microtubules are the prime component of the cytoskeleton along with microfilaments. Being vital for organelle transport and cellular divisions during spermatogenesis and sperm motility process, microtubules ascertain functional capacity of sperm. Also, microtubule based structures such as axoneme and manchette are crucial for sperm head and tail formation. This review (a) presents a concise, yet detailed structural overview of the microtubules, (b) analyses the role of microtubule structures in various male reproductive functions, and (c) presents the association of microtubular dysfunctions with male infertility. Considering the immense importance of microtubule structures in the formation and maintenance of physiological functions of sperm cells, this review serves as a scientific trigger in stimulating further male infertility research in this direction.
Collapse
Affiliation(s)
- Sezgin Gunes
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MAHSA University, Selangor, Malaysia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Aabed Alguraigari
- Batterjee Medical College, Jeddah, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Mariana Marques Sinigaglia
- University of Sao Paulo, Sao Paulo, Brazil.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Malik Kayal
- Alfaisal University Medical School, Riyadh, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmad Joumah
- Alfaisal University Medical School, Riyadh, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
62
|
Jordan MA, Diener DR, Stepanek L, Pigino G. The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia. Nat Cell Biol 2018; 20:1250-1255. [PMID: 30323187 DOI: 10.1038/s41556-018-0213-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 09/11/2018] [Indexed: 02/03/2023]
Abstract
Movement of cargos along microtubules plays key roles in diverse cellular processes, from signalling to mitosis. In cilia, rapid movement of ciliary components along the microtubules to and from the assembly site is essential for the assembly and disassembly of the structure itself1. This bidirectional transport, known as intraflagellar transport (IFT)2, is driven by the anterograde motor kinesin-23 and the retrograde motor dynein-1b (dynein-2 in mammals)4,5. However, to drive retrograde transport, dynein-1b must first be delivered to the ciliary tip by anterograde IFT6. Although, the presence of opposing motors in bidirectional transport processes often leads to periodic stalling and slowing of cargos7, IFT is highly processive1,2,8. Using cryo-electron tomography, we show that a tug-of-war between kinesin-2 and dynein-1b is prevented by loading dynein-1b onto anterograde IFT trains in an autoinhibited form and by positioning it away from the microtubule track to prevent binding. Once at the ciliary tip, dynein-1b must transition into an active form and engage microtubules to power retrograde trains. These findings provide a striking example of how coordinated structural changes mediate the behaviour of complex cellular machinery.
Collapse
Affiliation(s)
- Mareike A Jordan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Dennis R Diener
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Ludek Stepanek
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.
| |
Collapse
|
63
|
Abstract
The primary cilium is an antenna-like organelle assembled on most types of quiescent and differentiated mammalian cells. This immotile structure is essential for interpreting extracellular signals that regulate growth, development and homeostasis. As such, ciliary defects produce a spectrum of human diseases, termed ciliopathies, and deregulation of this important organelle also plays key roles during tumor formation and progression. Recent studies have begun to clarify the key mechanisms that regulate ciliary assembly and disassembly in both normal and tumor cells, highlighting new possibilities for therapeutic intervention. Here, we review these exciting new findings, discussing the molecular factors involved in cilium formation and removal, the intrinsic and extrinsic control of cilium assembly and disassembly, and the relevance of these processes to mammalian cell growth and disease.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
64
|
Lechtreck KF, Mengoni I, Okivie B, Hilderhoff KB. In vivo analyses of radial spoke transport, assembly, repair and maintenance. Cytoskeleton (Hoboken) 2018; 75:352-362. [PMID: 30070024 DOI: 10.1002/cm.21457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023]
Abstract
Radial spokes (RSs) are multiprotein complexes that regulate dynein activity. In the cell body, RS proteins (RSPs) are present in a 12S precursor, which enters the flagella and converts into the axoneme-bound 20S spokes consisting of a head and stalk. To study RS dynamics in vivo, we expressed fluorescent protein (FP)-tagged versions of the head protein RSP4 and the stalk protein RSP3 to rescue the corresponding Chlamydomonas mutants pf1, lacking spoke heads, and pf14, lacking RSs entirely. RSP3 and RSP4 mostly co-migrated by intraflagellar transport (IFT). The transport was elevated during flagellar assembly and IFT of RSP4-FP depended on RSP3. To study RS assembly independently of ciliogenesis, strains expressing FP-tagged RSPs were mated to untagged cells with, without, or with partial RSs. Tagged RSPs were incorporated in a spotted fashion along wild-type-derived flagella indicating an exchange of RSs. During the repair of pf1-derived axonemes, RSP4-FP is added onto the preexisting spoke stalks with little exchange of RSP3. Thus, RSP3 and RSP4 are transported together but appear to separate inside flagella during the repair of RSs. The 12S RS precursor encompassing both proteins could represent a transport form to ensure stoichiometric delivery of RSPs into flagella by IFT.
Collapse
Affiliation(s)
- Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Ilaria Mengoni
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Batare Okivie
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | | |
Collapse
|
65
|
Dai J, Barbieri F, Mitchell DR, Lechtreck KF. In vivo analysis of outer arm dynein transport reveals cargo-specific intraflagellar transport properties. Mol Biol Cell 2018; 29:2553-2565. [PMID: 30133350 PMCID: PMC6254574 DOI: 10.1091/mbc.e18-05-0291] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Outer dynein arms (ODAs) are multiprotein complexes that drive flagellar beating. Based on genetic and biochemical analyses, ODAs preassemble in the cell body and then move into the flagellum by intraflagellar transport (IFT). To study ODA transport in vivo, we expressed the essential intermediate chain 2 tagged with mNeonGreen (IC2-NG) to rescue the corresponding Chlamydomonas reinhardtii mutant oda6. IC2-NG moved by IFT; the transport was of low processivity and increased in frequency during flagellar growth. As expected, IFT of IC2-NG was diminished in oda16, lacking an ODA-specific IFT adapter, and in ift46 IFT46ΔN lacking the ODA16-interacting portion of IFT46. IFT loading appears to involve ODA16-dependent recruitment of ODAs to basal bodies followed by handover to IFT. Upon unloading from IFT, ODAs rapidly docked to the axoneme. Transient docking still occurred in the docking complex mutant oda3 indicating that the docking complex stabilizes rather than initiates ODA–microtubule interactions. In full-length flagella, ODAs continued to enter and move inside cilia by short-term bidirectional IFT and diffusion and the newly imported complexes frequently replaced axoneme-bound ODAs. We propose that the low processivity of ODA-IFT contributes to flagellar maintenance by ensuring the availability of replacement ODAs along the length of flagella.
Collapse
Affiliation(s)
- Jin Dai
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Francesco Barbieri
- Department of Cellular Biology, University of Georgia, Athens, GA 30602.,Department of Life Science, University of Siena, 53100 Siena, Italy
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
66
|
Roberts AJ. Emerging mechanisms of dynein transport in the cytoplasm versus the cilium. Biochem Soc Trans 2018; 46:967-982. [PMID: 30065109 PMCID: PMC6103457 DOI: 10.1042/bst20170568] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
Two classes of dynein power long-distance cargo transport in different cellular contexts. Cytoplasmic dynein-1 is responsible for the majority of transport toward microtubule minus ends in the cell interior. Dynein-2, also known as intraflagellar transport dynein, moves cargoes along the axoneme of eukaryotic cilia and flagella. Both dyneins operate as large ATP-driven motor complexes, whose dysfunction is associated with a group of human disorders. But how similar are their mechanisms of action and regulation? To examine this question, this review focuses on recent advances in dynein-1 and -2 research, and probes to what extent the emerging principles of dynein-1 transport could apply to or differ from those of the less well-understood dynein-2 mechanoenzyme.
Collapse
Affiliation(s)
- Anthony J Roberts
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, U.K.
| |
Collapse
|
67
|
Liang Y, Zhu X, Wu Q, Pan J. Ciliary Length Sensing Regulates IFT Entry via Changes in FLA8/KIF3B Phosphorylation to Control Ciliary Assembly. Curr Biol 2018; 28:2429-2435.e3. [PMID: 30057303 DOI: 10.1016/j.cub.2018.05.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/22/2018] [Accepted: 05/23/2018] [Indexed: 11/24/2022]
Abstract
The length of cilia is robustly regulated [1]. Previous data suggest that cells possess a sensing system to control ciliary length [2-5]. However, the details of the mechanism are currently not known [6, 7]. Such a system requires a mechanism that responds to ciliary length, and consequently, disruption of that response system should alter ciliary length [1]. The assembly rate of cilium mediated by intraflagellar transport (IFT) gradually decreases as the cilium elongates and eventually is balanced by the constant rate of disassembly, at which point cilium elongation stops [8, 9]. Because the rate of IFT entry into the cilium also decreases as the cilium elongates [10], regulation of IFT entry could provide the mechanism for length control. Previously, we showed that phosphorylation of the FLA8/KIF3B subunit of the anterograde kinesin-II IFT motor blocks IFT entry and flagellar assembly in Chlamydomonas [11]. Here, we show in Chlamydomonas that cellular signaling in response to alteration of flagellar length regulates phosphorylation of FLA8/KIF3B, which restricts IFT entry and, thus, flagellar assembly to control flagellar length. Cellular levels of phosphorylated FLA8 (pFLA8) are tightly linked to flagellar length: FLA8 phosphorylation is reduced in cells with short flagella and elevated in cells with long flagella. Depletion of the phosphatases CrPP1 and CrPP6 increases the level of cellular pFLA8, leading to short flagella due to decreased IFT entry. The results demonstrate that ciliary length control is achieved by a cellular sensing system that controls IFT entry through phosphorylation of the anterograde IFT motor.
Collapse
Affiliation(s)
- Yinwen Liang
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xin Zhu
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Qiong Wu
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China.
| |
Collapse
|
68
|
Chlamydomonas Basal Bodies as Flagella Organizing Centers. Cells 2018; 7:cells7070079. [PMID: 30018231 PMCID: PMC6070942 DOI: 10.3390/cells7070079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
Abstract
During ciliogenesis, centrioles convert to membrane-docked basal bodies, which initiate the formation of cilia/flagella and template the nine doublet microtubules of the flagellar axoneme. The discovery that many human diseases and developmental disorders result from defects in flagella has fueled a strong interest in the analysis of flagellar assembly. Here, we will review the structure, function, and development of basal bodies in the unicellular green alga Chlamydomonas reinhardtii, a widely used model for the analysis of basal bodies and flagella. Intraflagellar transport (IFT), a flagella-specific protein shuttle critical for ciliogenesis, was first described in C. reinhardtii. A focus of this review will be on the role of the basal bodies in organizing the IFT machinery.
Collapse
|
69
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|
70
|
C11orf70 Mutations Disrupting the Intraflagellar Transport-Dependent Assembly of Multiple Axonemal Dyneins Cause Primary Ciliary Dyskinesia. Am J Hum Genet 2018; 102:956-972. [PMID: 29727692 DOI: 10.1016/j.ajhg.2018.03.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/23/2018] [Indexed: 01/05/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetically and phenotypically heterogeneous disorder characterized by destructive respiratory disease and laterality abnormalities due to randomized left-right body asymmetry. PCD is mostly caused by mutations affecting the core axoneme structure of motile cilia that is essential for movement. Genes that cause PCD when mutated include a group that encode proteins essential for the assembly of the ciliary dynein motors and the active transport process that delivers them from their cytoplasmic assembly site into the axoneme. We screened a cohort of affected individuals for disease-causing mutations using a targeted next generation sequencing panel and identified two unrelated families (three affected children) with mutations in the uncharacterized C11orf70 gene (official gene name CFAP300). The affected children share a consistent PCD phenotype from early life with laterality defects and immotile respiratory cilia displaying combined loss of inner and outer dynein arms (IDA+ODA). Phylogenetic analysis shows C11orf70 is highly conserved, distributed across species similarly to proteins involved in the intraflagellar transport (IFT)-dependant assembly of axonemal dyneins. Paramecium C11orf70 RNAi knockdown led to combined loss of ciliary IDA+ODA with reduced cilia beating and swim velocity. Tagged C11orf70 in Paramecium and Chlamydomonas localizes mainly in the cytoplasm with a small amount in the ciliary component. IFT139/TTC21B (IFT-A protein) and FLA10 (IFT kinesin) depletion experiments show that its transport within cilia is IFT dependent. During ciliogenesis, C11orf70 accumulates at the ciliary tips in a similar distribution to the IFT-B protein IFT46. In summary, C11orf70 is essential for assembly of dynein arms and C11orf70 mutations cause defective cilia motility and PCD.
Collapse
|
71
|
Hong SR, Wang CL, Huang YS, Chang YC, Chang YC, Pusapati GV, Lin CY, Hsu N, Cheng HC, Chiang YC, Huang WE, Shaner NC, Rohatgi R, Inoue T, Lin YC. Spatiotemporal manipulation of ciliary glutamylation reveals its roles in intraciliary trafficking and Hedgehog signaling. Nat Commun 2018; 9:1732. [PMID: 29712905 PMCID: PMC5928066 DOI: 10.1038/s41467-018-03952-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 03/22/2018] [Indexed: 12/22/2022] Open
Abstract
Tubulin post-translational modifications (PTMs) occur spatiotemporally throughout cells and are suggested to be involved in a wide range of cellular activities. However, the complexity and dynamic distribution of tubulin PTMs within cells have hindered the understanding of their physiological roles in specific subcellular compartments. Here, we develop a method to rapidly deplete tubulin glutamylation inside the primary cilia, a microtubule-based sensory organelle protruding on the cell surface, by targeting an engineered deglutamylase to the cilia in minutes. This rapid deglutamylation quickly leads to altered ciliary functions such as kinesin-2-mediated anterograde intraflagellar transport and Hedgehog signaling, along with no apparent crosstalk to other PTMs such as acetylation and detyrosination. Our study offers a feasible approach to spatiotemporally manipulate tubulin PTMs in living cells. Future expansion of the repertoire of actuators that regulate PTMs may facilitate a comprehensive understanding of how diverse tubulin PTMs encode ciliary as well as cellular functions. Tubulin post-translational modifications (PTMs) occur spatiotemporally throughout cells, therefore assessing the physiological roles in specific subcellular compartments has been challenging. Here the authors develop a method to rapidly deplete tubulin glutamylation inside the primary cilia by targeting an engineered deglutamylase to the axoneme.
Collapse
Affiliation(s)
- Shi-Rong Hong
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Cuei-Ling Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yao-Shen Huang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chen Chang
- Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ya-Chu Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ganesh V Pusapati
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Chun-Yu Lin
- Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ning Hsu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsiao-Chi Cheng
- Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yueh-Chen Chiang
- Interdisciplinary Program of Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wei-En Huang
- Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Nathan C Shaner
- Department of Photobiology and Bioimaging, The Scintillon Institute, San Diego, 92121, CA, USA
| | - Rajat Rohatgi
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, 21205, MD, USA.
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
72
|
Hunter EL, Lechtreck K, Fu G, Hwang J, Lin H, Gokhale A, Alford LM, Lewis B, Yamamoto R, Kamiya R, Yang F, Nicastro D, Dutcher SK, Wirschell M, Sale WS. The IDA3 adapter, required for intraflagellar transport of I1 dynein, is regulated by ciliary length. Mol Biol Cell 2018; 29:886-896. [PMID: 29467251 PMCID: PMC5896928 DOI: 10.1091/mbc.e17-12-0729] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 11/18/2022] Open
Abstract
We determined how the ciliary motor I1 dynein is transported. A specialized adapter, IDA3, facilitates I1 dynein attachment to the ciliary transporter called intraflagellar transport (IFT). Loading of IDA3 and I1 dynein on IFT is regulated by ciliary length.
Collapse
Affiliation(s)
- Emily L. Hunter
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Juyeon Hwang
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Huawen Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Lea M. Alford
- Department of Biology, Oglethorpe University, Atlanta, GA 30319
| | - Brian Lewis
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Ryosuke Yamamoto
- Department of Biological Sciences, Osaka University, Osaka 560-0043, Japan
| | - Ritsu Kamiya
- Department of Biological Sciences, Chuo University, Tokyo 112-8551, Japan
| | - Fan Yang
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Maureen Wirschell
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| | | |
Collapse
|
73
|
Dummer A, Rol N, Szulcek R, Kurakula K, Pan X, Visser BI, Bogaard HJ, DeRuiter MC, Goumans MJ, Hierck BP. Endothelial dysfunction in pulmonary arterial hypertension: loss of cilia length regulation upon cytokine stimulation. Pulm Circ 2018; 8:2045894018764629. [PMID: 29480152 PMCID: PMC5858634 DOI: 10.1177/2045894018764629] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a syndrome characterized by progressive lung vascular remodelling, endothelial cell (EC) dysfunction, and excessive inflammation. The primary cilium is a sensory antenna that integrates signalling and fine tunes EC responses to various stimuli. Yet, cilia function in the context of deregulated immunity in PAH remains obscure. We hypothesized that cilia function is impaired in ECs from patients with PAH due to their inflammatory status and tested whether cilia length changes in response to cytokines. Primary human pulmonary and mouse embryonic EC were exposed to pro- (TNFα, IL1β, and IFNγ) and/or anti-inflammatory (IL-10) cytokines and cilia length was quantified. Chronic treatment with all tested inflammatory cytokines led to a significant elongation of cilia in both control human and mouse EC (by ∼1 µm, P < 0.001). This structural response was PKA/PKC dependent. Intriguingly, withdrawal of the inflammatory stimulus did not reduce cilia length. IL-10, on the other hand, blocked and reversed the pro-inflammatory cytokine-induced cilia elongation in healthy ECs, but did not influence basal length. Conversely, primary cilia of ECs from PAH patients were significantly longer under basal conditions compared to controls (1.86 ± 0.02 vs. 2.43 ± 0.08 µm, P = 0.002). These cilia did not elongate further upon pro-inflammatory stimulation and anti-inflammatory treatment did not impact cilia length. The missing length modulation was specific to cytokine stimulation, as application of fluid shear stress led to increased cilia length in the PAH endothelium. We identified loss of cilia length regulation upon cytokine stimulation as part of the endothelial dysfunction in PAH.
Collapse
Affiliation(s)
- Anneloes Dummer
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nina Rol
- Department of Pulmonary Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert Szulcek
- Department of Pulmonary Medicine, VU University Medical Center, Amsterdam, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kondababu Kurakula
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiaoke Pan
- Department of Pulmonary Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Benjamin I. Visser
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Marco C. DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Beerend P. Hierck
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
74
|
Muthaiyan Shanmugam M, Bhan P, Huang HY, Hsieh J, Hua TE, Wu GH, Punjabi H, Lee Aplícano VD, Chen CW, Wagner OI. Cilium Length and Intraflagellar Transport Regulation by Kinases PKG-1 and GCK-2 in Caenorhabditis elegans Sensory Neurons. Mol Cell Biol 2018; 38:e00612-17. [PMID: 29378827 PMCID: PMC5854826 DOI: 10.1128/mcb.00612-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 12/31/2022] Open
Abstract
To understand how ciliopathies such as polycystic kidney disease or Bardet-Biedl syndrome develop, we need to understand the basic molecular mechanisms underlying cilium development. Cilium growth depends on the presence of functional intraflagellar transport (IFT) machinery, and we hypothesized that various kinases and phosphatases might be involved in this regulatory process. A candidate screen revealed two kinases, PKG-1 (a cGMP-dependent protein kinase) and GCK-2 (a mitogen-activated protein kinase kinase kinase kinase 3 [MAP4K3] kinase involved in mTOR signaling), significantly affecting dye filling, chemotaxis, cilium morphology, and IFT component distribution. PKG-1 and GCK-2 show similar expression patterns in Caenorhabditis elegans cilia and colocalize with investigated IFT machinery components. In pkg-1 mutants, a high level of accumulation of kinesin-2 OSM-3 in distal segments was observed in conjunction with an overall reduction of anterograde and retrograde IFT particle A transport, likely as a function of reduced tubulin acetylation. In contrast, in gck-2 mutants, both kinesin-2 motility and IFT particle A motility were significantly elevated in the middle segments, in conjunction with increased tubulin acetylation, possibly the cause of longer cilium growth. Observed effects in mutants can be also seen in manipulating upstream and downstream effectors of the respective cGMP and mTOR pathways. Importantly, transmission electron microscopy (TEM) analysis revealed no structural changes in cilia of pkg-1 and gck-2 mutants.
Collapse
Affiliation(s)
- Muniesh Muthaiyan Shanmugam
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Prerana Bhan
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Hsin-Yi Huang
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Jung Hsieh
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Tzu-En Hua
- Electron Microscopy Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Gong-Her Wu
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Helly Punjabi
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Víctor Daniel Lee Aplícano
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Chih-Wei Chen
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Oliver Ingvar Wagner
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| |
Collapse
|
75
|
Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, Hoyng CB, Roepman R, Klevering BJ. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 2018; 66:157-186. [PMID: 29597005 DOI: 10.1016/j.preteyeres.2018.03.005] [Citation(s) in RCA: 604] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. RP is a leading cause of visual disability, with a worldwide prevalence of 1:4000. Although the majority of RP cases are non-syndromic, 20-30% of patients with RP also have an associated non-ocular condition. RP typically manifests with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors; central vision loss occurs later in life due to cone dysfunction. Photoreceptor function measured with an electroretinogram is markedly reduced or even absent. Optical coherence tomography (OCT) and fundus autofluorescence (FAF) imaging show a progressive loss of outer retinal layers and altered lipofuscin distribution in a characteristic pattern. Over the past three decades, a vast number of disease-causing variants in more than 80 genes have been associated with non-syndromic RP. The wide heterogeneity of RP makes it challenging to describe the clinical findings and pathogenesis. In this review, we provide a comprehensive overview of the clinical characteristics of RP specific to genetically defined patient subsets. We supply a unique atlas with color fundus photographs of most RP subtypes, and we discuss the relevant considerations with respect to differential diagnoses. In addition, we discuss the genes involved in the pathogenesis of RP, as well as the retinal processes that are affected by pathogenic mutations in these genes. Finally, we review management strategies for patients with RP, including counseling, visual rehabilitation, and current and emerging therapeutic options.
Collapse
Affiliation(s)
- Sanne K Verbakel
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ramon A C van Huet
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands; Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Jeroen Klevering
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
76
|
The Bardet-Biedl syndrome protein complex is an adapter expanding the cargo range of intraflagellar transport trains for ciliary export. Proc Natl Acad Sci U S A 2018; 115:E934-E943. [PMID: 29339469 DOI: 10.1073/pnas.1713226115] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a ciliopathy resulting from defects in the BBSome, a conserved protein complex. BBSome mutations affect ciliary membrane composition, impairing cilia-based signaling. The mechanism by which the BBSome regulates ciliary membrane content remains unknown. Chlamydomonas bbs mutants lack phototaxis and accumulate phospholipase D (PLD) in the ciliary membrane. Single particle imaging revealed that PLD comigrates with BBS4 by intraflagellar transport (IFT) while IFT of PLD is abolished in bbs mutants. BBSome deficiency did not alter the rate of PLD entry into cilia. Membrane association and the N-terminal 58 residues of PLD are sufficient and necessary for BBSome-dependent transport and ciliary export. The replacement of PLD's ciliary export sequence (CES) caused PLD to accumulate in cilia of cells with intact BBSomes and IFT. The buildup of PLD inside cilia impaired phototaxis, revealing that PLD is a negative regulator of phototactic behavior. We conclude that the BBSome is a cargo adapter ensuring ciliary export of PLD on IFT trains to regulate phototaxis.
Collapse
|
77
|
Zhang W, Taylor SP, Ennis HA, Forlenza KN, Duran I, Li B, Sanchez JAO, Nevarez L, Nickerson DA, Bamshad M, Lachman RS, Krakow D, Cohn DH. Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum Mutat 2018; 39:152-166. [PMID: 29068549 PMCID: PMC6198324 DOI: 10.1002/humu.23362] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 01/26/2023]
Abstract
Defects in the biosynthesis and/or function of primary cilia cause a spectrum of disorders collectively referred to as ciliopathies. A subset of these disorders is distinguished by profound abnormalities of the skeleton that include a long narrow chest with markedly short ribs, extremely short limbs, and polydactyly. These include the perinatal lethal short-rib polydactyly syndromes (SRPS) and the less severe asphyxiating thoracic dystrophy (ATD), Ellis-van Creveld (EVC) syndrome, and cranioectodermal dysplasia (CED) phenotypes. To identify new genes and define the spectrum of mutations in the skeletal ciliopathies, we analyzed 152 unrelated families with SRPS, ATD, and EVC. Causal variants were discovered in 14 genes in 120 families, including one newly associated gene and two genes previously associated with other ciliopathies. These three genes encode components of three different ciliary complexes; FUZ, which encodes a planar cell polarity complex molecule; TRAF3IP1, which encodes an anterograde ciliary transport protein; and LBR, which encodes a nuclear membrane protein with sterol reductase activity. The results established the molecular basis of SRPS type IV, in which mutations were identified in four different ciliary genes. The data provide systematic insight regarding the genotypes associated with a large cohort of these genetically heterogeneous phenotypes and identified new ciliary components required for normal skeletal development.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California
| | - S Paige Taylor
- Department of Human Genetics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California
| | - Hayley A Ennis
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California
| | - Kimberly N Forlenza
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California
| | - Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Malaga, Malaga, Spain
| | - Bing Li
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California
| | - Jorge A Ortiz Sanchez
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California
| | - Lisette Nevarez
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, Washington
| | - Michael Bamshad
- Department of Genome Sciences, University of Washington, Seattle, Washington
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Ralph S Lachman
- International Skeletal Dysplasia Registry at UCLA, Los Angeles, California
| | - Deborah Krakow
- Department of Human Genetics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California
- International Skeletal Dysplasia Registry at UCLA, Los Angeles, California
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California
| | - Daniel H Cohn
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California
- International Skeletal Dysplasia Registry at UCLA, Los Angeles, California
| |
Collapse
|
78
|
Vincensini L, Blisnick T, Bertiaux E, Hutchinson S, Georgikou C, Ooi CP, Bastin P. Flagellar incorporation of proteins follows at least two different routes in trypanosomes. Biol Cell 2017; 110:33-47. [DOI: 10.1111/boc.201700052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Laetitia Vincensini
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Thierry Blisnick
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Eloïse Bertiaux
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Sebastian Hutchinson
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Christina Georgikou
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Cher-Pheng Ooi
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| |
Collapse
|
79
|
Bower R, Tritschler D, Mills KV, Heuser T, Nicastro D, Porter ME. DRC2/CCDC65 is a central hub for assembly of the nexin-dynein regulatory complex and other regulators of ciliary and flagellar motility. Mol Biol Cell 2017; 29:137-153. [PMID: 29167384 PMCID: PMC5909927 DOI: 10.1091/mbc.e17-08-0510] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 02/01/2023] Open
Abstract
DRC2 is a subunit of the nexin–dynein regulatory complex linked to primary ciliary dyskinesia. Little is known about the impact of drc2 mutations on axoneme composition and structure. We used proteomic and structural approaches to reveal that DRC2 coassembles with DRC1 to attach the N-DRC to the A-tubule and mediate interactions with other regulatory structures. The nexin–dynein regulatory complex (N-DRC) plays a central role in the regulation of ciliary and flagellar motility. In most species, the N-DRC contains at least 11 subunits, but the specific function of each subunit is unknown. Mutations in three subunits (DRC1, DRC2/CCDC65, DRC4/GAS8) have been linked to defects in ciliary motility in humans and lead to a ciliopathy known as primary ciliary dyskinesia (PCD). Here we characterize the biochemical, structural, and motility phenotypes of two mutations in the DRC2 gene of Chlamydomonas. Using high-resolution proteomic and structural approaches, we find that the C-terminal region of DRC2 is critical for the coassembly of DRC2 and DRC1 to form the base plate of N-DRC and its attachment to the outer doublet microtubule. Loss of DRC2 in drc2 mutants disrupts the assembly of several other N-DRC subunits and also destabilizes the assembly of several closely associated structures such as the inner dynein arms, the radial spokes, and the calmodulin- and spoke-associated complex. Our study provides new insights into the range of ciliary defects that can lead to PCD.
Collapse
Affiliation(s)
- Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Kristyn VanderWaal Mills
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Thomas Heuser
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454.,Vienna Biocenter Core Facilities, 1030 Vienna, Austria
| | - Daniela Nicastro
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454.,Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
80
|
Luo W, Ruba A, Takao D, Zweifel LP, Lim RYH, Verhey KJ, Yang W. Axonemal Lumen Dominates Cytosolic Protein Diffusion inside the Primary Cilium. Sci Rep 2017; 7:15793. [PMID: 29150645 PMCID: PMC5693955 DOI: 10.1038/s41598-017-16103-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/03/2017] [Indexed: 12/02/2022] Open
Abstract
Transport of membrane and cytosolic proteins in primary cilia is thought to depend on intraflagellar transport (IFT) and diffusion. However, the relative contribution and spatial routes of each transport mechanism are largely unknown. Although challenging to decipher, the details of these routes are essential for our understanding of protein transport in primary cilia, a critically affected process in many genetic diseases. By using a high-speed virtual 3D super-resolution microscopy, we have mapped the 3D spatial locations of transport routes for various cytosolic proteins in the 250-nm-wide shaft of live primary cilia with a spatiotemporal resolution of 2 ms and <16 nm. Our data reveal two spatially distinguishable transport routes for cytosolic proteins: an IFT-dependent path along the axoneme, and a passive-diffusion route in the axonemal lumen that escaped previous studies. While all cytosolic proteins tested primarily utilize the IFT path in the anterograde direction, differences are observed in the retrograde direction where IFT20 only utilizes IFT, and approximately half of KIF17 and one third of α–tubulin utilizes diffusion besides IFT.
Collapse
Affiliation(s)
- Wangxi Luo
- Department of Biology, Temple University, Philadelphia, Pennsylvania, 19122, USA
| | - Andrew Ruba
- Department of Biology, Temple University, Philadelphia, Pennsylvania, 19122, USA
| | - Daisuke Takao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ludovit P Zweifel
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, 19122, USA.
| |
Collapse
|
81
|
Chien A, Shih SM, Bower R, Tritschler D, Porter ME, Yildiz A. Dynamics of the IFT machinery at the ciliary tip. eLife 2017; 6:28606. [PMID: 28930071 PMCID: PMC5662288 DOI: 10.7554/elife.28606] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022] Open
Abstract
Intraflagellar transport (IFT) is essential for the elongation and maintenance of eukaryotic cilia and flagella. Due to the traffic jam of multiple trains at the ciliary tip, how IFT trains are remodeled in these turnaround zones cannot be determined by conventional imaging. Using PhotoGate, we visualized the full range of movement of single IFT trains and motors in Chlamydomonas flagella. Anterograde trains split apart and IFT complexes mix with each other at the tip to assemble retrograde trains. Dynein-1b is carried to the tip by kinesin-II as inactive cargo on anterograde trains. Unlike dynein-1b, kinesin-II detaches from IFT trains at the tip and diffuses in flagella. As the flagellum grows longer, diffusion delays return of kinesin-II to the basal body, depleting kinesin-II available for anterograde transport. Our results suggest that dissociation of kinesin-II from IFT trains serves as a negative feedback mechanism that facilitates flagellar length control in Chlamydomonas.
Collapse
Affiliation(s)
- Alexander Chien
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Sheng Min Shih
- Physics Department, University of California, Berkeley, Berkeley, United States
| | - Raqual Bower
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Douglas Tritschler
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States.,Physics Department, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
82
|
Ishikawa H, Marshall WF. Testing the time-of-flight model for flagellar length sensing. Mol Biol Cell 2017; 28:3447-3456. [PMID: 28931591 PMCID: PMC5687043 DOI: 10.1091/mbc.e17-06-0384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 11/23/2022] Open
Abstract
A combination of quantitative imaging, modeling, and genetics has been used to test a proposed mechanism for measuring the size of an organelle. One way to measure distance is to send a clock out on a train and measure the elapsed time when the train returns. We tested a molecular version of this model as a possible regulator of intraflagellar transport by altering the return speed of the transport machinery and probing the effect on a known length-dependent process. Cilia and flagella are microtubule-based organelles that protrude from the surface of most cells, are important to the sensing of extracellular signals, and make a driving force for fluid flow. Maintenance of flagellar length requires an active transport process known as intraflagellar transport (IFT). Recent studies reveal that the amount of IFT injection negatively correlates with the length of flagella. These observations suggest that a length-dependent feedback regulates IFT. However, it is unknown how cells recognize the length of flagella and control IFT. Several theoretical models try to explain this feedback system. We focused on one of the models, the “time-of-flight” model, which measures the length of flagella on the basis of the travel time of IFT protein in the flagellar compartment. We tested the time-of-flight model using Chlamydomonas dynein mutant cells, which show slower retrograde transport speed. The amount of IFT injection in dynein mutant cells was higher than that in control cells. This observation does not support the prediction of the time-of-flight model and suggests that Chlamydomonas uses another length-control feedback system rather than that described by the time-of-flight model.
Collapse
Affiliation(s)
- Hiroaki Ishikawa
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
83
|
Prevo B, Scholey JM, Peterman EJG. Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J 2017; 284:2905-2931. [PMID: 28342295 PMCID: PMC5603355 DOI: 10.1111/febs.14068] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/20/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Intraflagellar transport (IFT) is a form of motor-dependent cargo transport that is essential for the assembly, maintenance, and length control of cilia, which play critical roles in motility, sensory reception, and signal transduction in virtually all eukaryotic cells. During IFT, anterograde kinesin-2 and retrograde IFT dynein motors drive the bidirectional transport of IFT trains that deliver cargo, for example, axoneme precursors such as tubulins as well as molecules of the signal transduction machinery, to their site of assembly within the cilium. Following its discovery in Chlamydomonas, IFT has emerged as a powerful model system for studying general principles of motor-dependent cargo transport and we now appreciate the diversity that exists in the mechanism of IFT within cilia of different cell types. The absence of heterotrimeric kinesin-2 function, for example, causes a complete loss of both IFT and cilia in Chlamydomonas, but following its loss in Caenorhabditis elegans, where its primary function is loading the IFT machinery into cilia, homodimeric kinesin-2-driven IFT persists and assembles a full-length cilium. Generally, heterotrimeric kinesin-2 and IFT dynein motors are thought to play widespread roles as core IFT motors, whereas homodimeric kinesin-2 motors are accessory motors that mediate different functions in a broad range of cilia, in some cases contributing to axoneme assembly or the delivery of signaling molecules but in many other cases their ciliary functions, if any, remain unknown. In this review, we focus on mechanisms of motor action, motor cooperation, and motor-dependent cargo delivery during IFT.
Collapse
Affiliation(s)
- Bram Prevo
- Department of Cellular & Molecular Medicine, University of California San Diego, CA, USA
- Ludwig Institute for Cancer Research, San Diego, CA, USA
| | - Jonathan M Scholey
- Department of Molecular & Cell Biology, University of California Davis, CA, USA
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
84
|
Hou Y, Witman GB. The N-terminus of IFT46 mediates intraflagellar transport of outer arm dynein and its cargo-adaptor ODA16. Mol Biol Cell 2017; 28:2420-2433. [PMID: 28701346 PMCID: PMC5576905 DOI: 10.1091/mbc.e17-03-0172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 01/23/2023] Open
Abstract
A transposon event, resulting in partial suppression of a Chlamydomonas IFT46 null mutant, allowed the function of the N-terminus of IFT46 in flagellar assembly to be explored. The IFT46 N-terminus is not required for IFT complex assembly but is required for transport of outer arm dynein and its adaptor, ODA16, into the flagellum. Cilia are assembled via intraflagellar transport (IFT). The IFT machinery is composed of motors and multisubunit particles, termed IFT-A and IFT-B, that carry cargo into the cilium. Knowledge of how the IFT subunits interact with their cargo is of critical importance for understanding how the unique ciliary domain is established. We previously reported a Chlamydomonas mutant, ift46-1, that fails to express the IFT-B protein IFT46, has greatly reduced levels of other IFT-B proteins, and assembles only very short flagella. A spontaneous suppression of ift46-1 restored IFT-B levels and enabled growth of longer flagella, but the flagella lacked outer dynein arms. Here we show that the suppression is due to insertion of the transposon MRC1 into the ift46-1 allele, causing the expression of a fusion protein including the IFT46 C-terminal 240 amino acids. The IFT46 C-terminus can assemble into and stabilize IFT-B but does not support transport of outer arm dynein into flagella. ODA16, a cargo adaptor specific for outer arm dynein, also fails to be imported into the flagella in the absence of the IFT46 N-terminus. We conclude that the IFT46 N-terminus, ODA16, and outer arm dynein interact for IFT of the latter.
Collapse
Affiliation(s)
- Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
85
|
Kanie T, Abbott KL, Mooney NA, Plowey ED, Demeter J, Jackson PK. The CEP19-RABL2 GTPase Complex Binds IFT-B to Initiate Intraflagellar Transport at the Ciliary Base. Dev Cell 2017. [PMID: 28625565 DOI: 10.1016/j.devcel.2017.05.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Highly conserved intraflagellar transport (IFT) protein complexes direct both the assembly of primary cilia and the trafficking of signaling molecules. IFT complexes initially accumulate at the base of the cilium and periodically enter the cilium, suggesting an as-yet-unidentified mechanism that triggers ciliary entry of IFT complexes. Using affinity-purification and mass spectrometry of interactors of the centrosomal and ciliopathy protein, CEP19, we identify CEP350, FOP, and the RABL2B GTPase as proteins organizing the first known mechanism directing ciliary entry of IFT complexes. We discover that CEP19 is recruited to the ciliary base by the centriolar CEP350/FOP complex and then specifically captures GTP-bound RABL2B, which is activated via its intrinsic nucleotide exchange. Activated RABL2B then captures and releases its single effector, the intraflagellar transport B holocomplex, from the large pool of pre-docked IFT-B complexes, and thus initiates ciliary entry of IFT.
Collapse
Affiliation(s)
- Tomoharu Kanie
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Keene Louis Abbott
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nancie Ann Mooney
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Edward Douglas Plowey
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter Kent Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
86
|
Wingfield JL, Mengoni I, Bomberger H, Jiang YY, Walsh JD, Brown JM, Picariello T, Cochran DA, Zhu B, Pan J, Eggenschwiler J, Gaertig J, Witman GB, Kner P, Lechtreck K. IFT trains in different stages of assembly queue at the ciliary base for consecutive release into the cilium. eLife 2017; 6. [PMID: 28562242 PMCID: PMC5451262 DOI: 10.7554/elife.26609] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 12/13/2022] Open
Abstract
Intraflagellar transport (IFT) trains, multimegadalton assemblies of IFT proteins and motors, traffic proteins in cilia. To study how trains assemble, we employed fluorescence protein-tagged IFT proteins in Chlamydomonas reinhardtii. IFT-A and motor proteins are recruited from the cell body to the basal body pool, assembled into trains, move through the cilium, and disperse back into the cell body. In contrast to this ‘open’ system, IFT-B proteins from retrograde trains reenter the pool and a portion is reused directly in anterograde trains indicating a ‘semi-open’ system. Similar IFT systems were also observed in Tetrahymena thermophila and IMCD3 cells. FRAP analysis indicated that IFT proteins and motors of a given train are sequentially recruited to the basal bodies. IFT dynein and tubulin cargoes are loaded briefly before the trains depart. We conclude that the pool contains IFT trains in multiple stages of assembly queuing for successive release into the cilium upon completion. DOI:http://dx.doi.org/10.7554/eLife.26609.001
Collapse
Affiliation(s)
- Jenna L Wingfield
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Ilaria Mengoni
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Heather Bomberger
- Department of Cellular Biology, University of Georgia, Athens, United States.,College of Engineering, University of Georgia, Athens, United States
| | - Yu-Yang Jiang
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Jonathon D Walsh
- Department of Genetics, University of Georgia, Athens, United States
| | - Jason M Brown
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, United States.,Department of Biology, Salem State University, Salem, United States
| | - Tyler Picariello
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, United States
| | - Deborah A Cochran
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, United States
| | - Bing Zhu
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, United States
| | - Peter Kner
- College of Engineering, University of Georgia, Athens, United States
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, United States
| |
Collapse
|
87
|
Lechtreck KF, Van De Weghe JC, Harris JA, Liu P. Protein transport in growing and steady-state cilia. Traffic 2017; 18:277-286. [PMID: 28248449 DOI: 10.1111/tra.12474] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 12/18/2022]
Abstract
Cilia and eukaryotic flagella are threadlike cell extensions with motile and sensory functions. Their assembly requires intraflagellar transport (IFT), a bidirectional motor-driven transport of protein carriers along the axonemal microtubules. IFT moves ample amounts of structural proteins including tubulin into growing cilia likely explaining its critical role for assembly. IFT continues in non-growing cilia contributing to a variety of processes ranging from axonemal maintenance and the export of non-ciliary proteins to cell locomotion and ciliary signaling. Here, we discuss recent data on cues regulating the type, amount and timing of cargo transported by IFT. A regulation of IFT-cargo interactions is critical to establish, maintain and adjust ciliary length, protein composition and function.
Collapse
Affiliation(s)
- Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | | | | | - Peiwei Liu
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
88
|
Taschner M, Mourão A, Awasthi M, Basquin J, Lorentzen E. Structural basis of outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and the intraflagellar transport protein IFT46. J Biol Chem 2017; 292:7462-7473. [PMID: 28298440 DOI: 10.1074/jbc.m117.780155] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/03/2017] [Indexed: 11/06/2022] Open
Abstract
Motile cilia are found on unicellular organisms such as the green alga Chlamydomonas reinhardtii, on sperm cells, and on cells that line the trachea and fallopian tubes in mammals. The motility of cilia relies on a number of large protein complexes including the force-generating outer dynein arms (ODAs). The transport of ODAs into cilia has been previously shown to require the transport adaptor ODA16, as well as the intraflagellar transport (IFT) protein IFT46, but the molecular mechanism by which ODAs are recognized and transported into motile cilia is still unclear. Here, we determined the high-resolution crystal structure of C. reinhardtii ODA16 (CrODA16) and mapped the binding to IFT46 and ODAs. The CrODA16 structure revealed a small 80-residue N-terminal domain and a C-terminal 8-bladed β-propeller domain that are both required for the association with the N-terminal 147 residues of IFT46. The dissociation constant of the IFT46-ODA16 complex was 200 nm, demonstrating that CrODA16 associates with the IFT complex with an affinity comparable with that of the individual IFT subunits. Furthermore, we show, using ODAs extracted from the axonemes of C. reinhardtii, that the C-terminal β-propeller but not the N-terminal domain of CrODA16 is required for the interaction with ODAs. These data allowed us to present an architectural model for ODA16-mediated IFT of ODAs.
Collapse
Affiliation(s)
- Michael Taschner
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - André Mourão
- the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Mayanka Awasthi
- the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Jerome Basquin
- the Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark,
| |
Collapse
|
89
|
Ishikawa H, Marshall WF. Intraflagellar Transport and Ciliary Dynamics. Cold Spring Harb Perspect Biol 2017; 9:9/3/a021998. [PMID: 28249960 DOI: 10.1101/cshperspect.a021998] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cilia and flagella are microtubule-based organelles whose assembly requires a motile process, known as intraflagellar transport (IFT), to bring tubulin and other components to the distal tip of the growing structure. The IFT system uses a multiprotein complex with components that appear to be specialized for the transport of different sets of cargo proteins. The mechanisms by which cargo is selected for ciliary import and transport by IFT remain an area of active research. The complex dynamics of cilia and flagella are under constant regulation to ensure proper length control, and this regulation appears to involve regulation at the stage of IFT injection into the flagellum, as well as regulation of flagellar disassembly and, possibly, of cargo binding. Cilia and flagella thus represent a convenient model system to study how multiple motile and signaling pathways cooperate to control the assembly and dynamics of a complex cellular structure.
Collapse
Affiliation(s)
- Hiroaki Ishikawa
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
90
|
Loreng TD, Smith EF. The Central Apparatus of Cilia and Eukaryotic Flagella. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028118. [PMID: 27770014 DOI: 10.1101/cshperspect.a028118] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The motile cilium is a complex organelle that is typically comprised of a 9+2 microtubule skeleton; nine doublet microtubules surrounding a pair of central singlet microtubules. Like the doublet microtubules, the central microtubules form a scaffold for the assembly of protein complexes forming an intricate network of interconnected projections. The central microtubules and associated structures are collectively referred to as the central apparatus (CA). Studies using a variety of experimental approaches and model organisms have led to the discovery of a number of highly conserved protein complexes, unprecedented high-resolution views of projection structure, and new insights into regulation of dynein-driven microtubule sliding. Here, we review recent progress in defining mechanisms for the assembly and function of the CA and include possible implications for the importance of the CA in human health.
Collapse
Affiliation(s)
- Thomas D Loreng
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
91
|
Jiang X, Hernandez D, Hernandez C, Ding Z, Nan B, Aufderheide K, Qin H. IFT57 stabilizes assembled intraflagellar transport complex and mediates transport of motility-related flagellar cargo. J Cell Sci 2017; 130:879-891. [DOI: 10.1242/jcs.199117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/11/2017] [Indexed: 11/20/2022] Open
Abstract
Intraflagellar Transport (IFT) is essential for flagella/cilia assembly and maintenance. Recent biochemical studies have shown that IFT-B is comprised of two subcomplexes, IFT-B1 and IFT-B2. The IFT-B2 subunit IFT57 lies at the interface between IFT-B1 and IFT-B2. Here, using a Chlamydomonas mutant for IFT57, we tested whether IFT57 is critical for IFT-B complex assembly by bridging IFT-B1 and IFT-B2 together. In the ift57-1 mutant, IFT57 and other IFT-B proteins were greatly reduced at the whole-cell level. Strikingly, in the protease free flagellar compartment, while the level of IFT57 was reduced, other IFT particle proteins were not concomitantly reduced but present at the wild-type level. The IFT movement of the IFT57-deficient-IFT particles was also unchanged. Moreover, IFT57 depletion disrupted the flagellar waveform, leading to cell swimming defects. Analysis of the mutant flagellar protein composition showed that certain axonemal proteins were altered. Taken together, these findings suggest that IFT57 does not play an essential structural role in the IFT particle complex but rather functions to prevent it from degradation. Additionally, IFT57 is involved in transporting specific motility-related proteins.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Daniel Hernandez
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Catherine Hernandez
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Zhaolan Ding
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Karl Aufderheide
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Hongmin Qin
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| |
Collapse
|
92
|
The trafficking of bacterial type rhodopsins into the Chlamydomonas eyespot and flagella is IFT mediated. Sci Rep 2016; 6:34646. [PMID: 27694882 PMCID: PMC5046144 DOI: 10.1038/srep34646] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/14/2016] [Indexed: 11/08/2022] Open
Abstract
The bacterial type rhodopsins are present in all the three domains of life. In contrast to the animal type rhodopsin that performs mainly sensory functions in higher eukaryotes, the bacterial type rhodopsin could function as ion channel, pumps and as sensory proteins. The functioning of rhodopsin in higher eukaryotes requires the transport of rhodopsin from its site of synthesis to the ciliated outer segment of the photoreceptive cells. However, the trafficking of bacterial type rhodopsin from its site of synthesis to the position of action is not characterized. Here we present the first report for the existence of an IFT-interactome mediated trafficking of the bacterial type rhodopsins into eyespot and flagella of the Chlamydomonas. We show that there is a light-dependent, dynamic localization of rhodopsins between flagella and eyespot of Chlamydomonas. The involvement of IFT components in the rhodopsin trafficking was elucidated by the use of conditional IFT mutants. We found that rhodopsin can be co-immunoprecipitated with the components of IFT machinery and with other protein components required for the IFT-cargo complex formation. These findings show that light-regulated localization of rhodopsin is not restricted to animals thereby suggesting that rhodopsin trafficking is an IFT dependent ancient process.
Collapse
|
93
|
Mourão A, Christensen ST, Lorentzen E. The intraflagellar transport machinery in ciliary signaling. Curr Opin Struct Biol 2016; 41:98-108. [PMID: 27393972 DOI: 10.1016/j.sbi.2016.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/07/2016] [Indexed: 01/12/2023]
Abstract
Cilia and flagella on eukaryotic cells are slender microtubule-based projections surrounded by a membrane with a unique lipid and protein composition. It is now appreciated that cilia in addition to their established roles in motility also constitute hubs for cellular signaling by sensing external environmental cues necessary for organ development and maintenance of human health. Pathways reported to rely on the cilium organelle include Hedgehog, TGF-β, Wnt, PDGFRα, integrin and DNA damage repair signaling. An emerging theme in ciliary signaling is the requirement for active transport of signaling components into and out of the cilium proper. Here, we review the current state-of-the-art regarding the importance of intraflagellar transport and BBSome multi-subunit complexes in ciliary signaling.
Collapse
Affiliation(s)
- André Mourão
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark.
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
94
|
Fort C, Bonnefoy S, Kohl L, Bastin P. Intraflagellar transport is required for the maintenance of the trypanosome flagellum composition but not its length. J Cell Sci 2016; 129:3026-41. [PMID: 27343245 DOI: 10.1242/jcs.188227] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/14/2016] [Indexed: 01/10/2023] Open
Abstract
Intraflagellar transport (IFT) is required for construction of most cilia and flagella. Here, we used electron microscopy, immunofluorescence and live video microscopy to show that IFT is absent or arrested in the mature flagellum of Trypanosoma brucei upon RNA interference (RNAi)-mediated knockdown of IFT88 and IFT140, respectively. Flagella assembled prior to RNAi did not shorten, showing that IFT is not essential for the maintenance of flagella length. Although the ultrastructure of the axoneme was not visibly affected, flagellar beating was strongly reduced and the distribution of several flagellar components was drastically modified. The R subunit of the protein kinase A was no longer concentrated in the flagellum but was largely found in the cell body whereas the kinesin 9B motor was accumulating at the distal tip of the flagellum. In contrast, the distal tip protein FLAM8 was dispersed along the flagellum. This reveals that IFT also functions in maintaining the distribution of some flagellar proteins after construction of the organelle is completed.
Collapse
Affiliation(s)
- Cécile Fort
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, Paris 75015, France Université Pierre et Marie Curie Paris 6, Cellule Pasteur-UPMC, 25 rue du docteur Roux, Paris 75015, France
| | - Serge Bonnefoy
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, Paris 75015, France
| | - Linda Kohl
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS; CP52, 61 rue Buffon, Paris 75005, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, Paris 75015, France
| |
Collapse
|
95
|
Reck J, Schauer AM, VanderWaal Mills K, Bower R, Tritschler D, Perrone CA, Porter ME. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas. Mol Biol Cell 2016; 27:2404-22. [PMID: 27251063 PMCID: PMC4966982 DOI: 10.1091/mbc.e16-03-0191] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/26/2016] [Indexed: 12/28/2022] Open
Abstract
The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms.
Collapse
Affiliation(s)
- Jaimee Reck
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 R&D Systems, Minneapolis, MN 55413
| | - Alexandria M Schauer
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Kristyn VanderWaal Mills
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Anoka Technical College, Anoka, MN 55303
| | - Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Catherine A Perrone
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Medtronic, Minneapolis, MN 55432
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
96
|
Ludington WB, Ishikawa H, Serebrenik YV, Ritter A, Hernandez-Lopez RA, Gunzenhauser J, Kannegaard E, Marshall WF. A systematic comparison of mathematical models for inherent measurement of ciliary length: how a cell can measure length and volume. Biophys J 2016; 108:1361-1379. [PMID: 25809250 DOI: 10.1016/j.bpj.2014.12.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 10/23/2022] Open
Abstract
Cells control organelle size with great precision and accuracy to maintain optimal physiology, but the mechanisms by which they do so are largely unknown. Cilia and flagella are simple organelles in which a single measurement, length, can represent size. Maintenance of flagellar length requires an active transport process known as intraflagellar transport, and previous measurements suggest that a length-dependent feedback regulates intraflagellar transport. But the question remains: how is a length-dependent signal produced to regulate intraflagellar transport appropriately? Several conceptual models have been suggested, but testing these models quantitatively requires that they be cast in mathematical form. Here, we derive a set of mathematical models that represent the main broad classes of hypothetical size-control mechanisms currently under consideration. We use these models to predict the relation between length and intraflagellar transport, and then compare the predicted relations for each model with experimental data. We find that three models-an initial bolus formation model, an ion current model, and a diffusion-based model-show particularly good agreement with available experimental data. The initial bolus and ion current models give mathematically equivalent predictions for length control, but fluorescence recovery after photobleaching experiments rule out the initial bolus model, suggesting that either the ion current model or a diffusion-based model is more likely correct. The general biophysical principles of the ion current and diffusion-based models presented here to measure cilia and flagellar length can be generalized to measure any membrane-bound organelle volume, such as the nucleus and endoplasmic reticulum.
Collapse
Affiliation(s)
- William B Ludington
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, California
| | - Hiroaki Ishikawa
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, California
| | - Yevgeniy V Serebrenik
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, California
| | - Alex Ritter
- Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | - Julia Gunzenhauser
- Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Elisa Kannegaard
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, California
| | - Wallace F Marshall
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
97
|
Vannuccini E, Paccagnini E, Cantele F, Gentile M, Dini D, Fino F, Diener D, Mencarelli C, Lupetti P. Two classes of short intraflagellar transport train with different 3D structures are present in Chlamydomonas flagella. J Cell Sci 2016; 129:2064-74. [PMID: 27044756 DOI: 10.1242/jcs.183244] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/30/2016] [Indexed: 12/18/2022] Open
Abstract
Intraflagellar transport (IFT) is responsible for the bidirectional trafficking of molecular components required for the elongation and maintenance of eukaryotic cilia and flagella. Cargo is transported by IFT 'trains', linear rows of multiprotein particles moved by molecular motors along the axonemal doublets. We have previously described two structurally distinct categories of 'long' and 'short' trains. Here, we analyse the relative number of these trains throughout flagellar regeneration and show that long trains are most abundant at the beginning of flagellar growth whereas short trains gradually increase in number as flagella elongate. These observations are incompatible with the previous hypothesis that short trains are derived solely from the reorganization of long trains at the flagellar tip. We demonstrate with electron tomography the existence of two distinct ultrastructural organizations for the short trains, we name these 'narrow' and 'wide', and provide the first 3D model of the narrow short trains. These trains are characterized by tri-lobed units, which repeat longitudinally every 16 nm and contact protofilament 7 of the B-tubule. Functional implications of the new structural evidence are discussed.
Collapse
Affiliation(s)
- Elisa Vannuccini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Eugenio Paccagnini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Francesca Cantele
- Dipartimento di Chimica, Università degli Studi di Milano, Via Camillo Golgi 19, 20133 Milan, Italy
| | - Mariangela Gentile
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Daniele Dini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Federica Fino
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Dennis Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06520, USA
| | - Caterina Mencarelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
98
|
Taschner M, Weber K, Mourão A, Vetter M, Awasthi M, Stiegler M, Bhogaraju S, Lorentzen E. Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex. EMBO J 2016; 35:773-90. [PMID: 26912722 PMCID: PMC4818760 DOI: 10.15252/embj.201593164] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/21/2016] [Indexed: 12/31/2022] Open
Abstract
Intraflagellar transport (IFT) relies on the IFT complex and is required for ciliogenesis. The IFT‐B complex consists of 9–10 stably associated core subunits and six “peripheral” subunits that were shown to dissociate from the core structure at moderate salt concentration. We purified the six “peripheral” IFT‐B subunits of Chlamydomonas reinhardtii as recombinant proteins and show that they form a stable complex independently of the IFT‐B core. We suggest a nomenclature of IFT‐B1 (core) and IFT‐B2 (peripheral) for the two IFT‐B subcomplexes. We demonstrate that IFT88, together with the N‐terminal domain of IFT52, is necessary to bridge the interaction between IFT‐B1 and B2. The crystal structure of IFT52N reveals highly conserved residues critical for IFT‐B1/IFT‐B2 complex formation. Furthermore, we show that of the three IFT‐B2 subunits containing a calponin homology (CH) domain (IFT38, 54, and 57), only IFT54 binds αβ‐tubulin as a potential IFT cargo, whereas the CH domains of IFT38 and IFT57 mediate the interaction with IFT80 and IFT172, respectively. Crystal structures of IFT54 CH domains reveal that tubulin binding is mediated by basic surface‐exposed residues.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Kristina Weber
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - André Mourão
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Melanie Vetter
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Mayanka Awasthi
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Marc Stiegler
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Sagar Bhogaraju
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
99
|
Thompson CL, Wiles A, Poole CA, Knight MM. Lithium chloride modulates chondrocyte primary cilia and inhibits Hedgehog signaling. FASEB J 2016; 30:716-26. [PMID: 26499268 DOI: 10.1096/fj.15-274944] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2024]
Abstract
Lithium chloride (LiCl) exhibits significant therapeutic potential as a treatment for osteoarthritis. Hedgehog signaling is activated in osteoarthritis, where it promotes chondrocyte hypertrophy and cartilage matrix catabolism. Hedgehog signaling requires the primary cilium such that maintenance of this compartment is essential for pathway activity. Here we report that LiCl (50 mM) inhibits Hedgehog signaling in bovine articular chondrocytes such that the induction of GLI1 and PTCH1 expression is reduced by 71 and 55%, respectively. Pathway inhibition is associated with a 97% increase in primary cilia length from 2.09 ± 0.7 μm in untreated cells to 4.06 ± 0.9 μm in LiCl-treated cells. We show that cilia elongation disrupts trafficking within the axoneme with a 38% reduction in Arl13b ciliary localization at the distal region of the cilium, consistent with the role of Arl13b in modulating Hedgehog signaling. In addition, we demonstrate similar increases in cilia length in human chondrocytes in vitro and after administration of dietary lithium to Wistar rats in vivo. Our data provide new insights into the effects of LiCl on chondrocyte primary cilia and Hedgehog signaling and shows for the first time that pharmaceutical targeting of the primary cilium may have therapeutic benefits in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Clare L Thompson
- *Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; and Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Anna Wiles
- *Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; and Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - C Anthony Poole
- *Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; and Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Martin M Knight
- *Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; and Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
100
|
Abstract
The assembly of cilia and eukaryotic flagella (interchangeable terms) requires the import of numerous proteins from the cell body into the growing organelle. Proteins move into and inside cilia by diffusion and by motor-based intraflagellar transport (IFT). Many aspects of ciliary protein transport such as the distribution of unloading sites and the frequency of transport can be analyzed using direct in vivo imaging of fluorescently tagged proteins. Here, we will describe how to use total internal reflection fluorescence microcopy (TIRFM) to analyze protein transport in the flagella of the unicellular alga Chlamydomonas reinhardtii, a widely used model for cilia and cilia-related disease.
Collapse
|