51
|
Gingold JA, Fidalgo M, Guallar D, Lau Z, Sun Z, Zhou H, Faiola F, Huang X, Lee DF, Waghray A, Schaniel C, Felsenfeld DP, Lemischka IR, Wang J. A genome-wide RNAi screen identifies opposing functions of Snai1 and Snai2 on the Nanog dependency in reprogramming. Mol Cell 2014; 56:140-52. [PMID: 25240402 PMCID: PMC4184964 DOI: 10.1016/j.molcel.2014.08.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/21/2014] [Accepted: 08/08/2014] [Indexed: 12/30/2022]
Abstract
Nanog facilitates embryonic stem cell self-renewal and induced pluripotent stem cell generation during the final stage of reprogramming. From a genome-wide small interfering RNA screen using a Nanog-GFP reporter line, we discovered opposing effects of Snai1 and Snai2 depletion on Nanog promoter activity. We further discovered mutually repressive expression profiles and opposing functions of Snai1 and Snai2 during Nanog-driven reprogramming. We found that Snai1, but not Snai2, is both a transcriptional target and protein partner of Nanog in reprogramming. Ectopic expression of Snai1 or depletion of Snai2 greatly facilitates Nanog-driven reprogramming. Snai1 (but not Snai2) and Nanog cobind to and transcriptionally activate pluripotency-associated genes including Lin28 and miR-290-295. Ectopic expression of miR-290-295 cluster genes partially rescues reprogramming inefficiency caused by Snai1 depletion. Our study thus uncovers the interplay between Nanog and mesenchymal factors Snai1 and Snai2 in the transcriptional regulation of pluripotency-associated genes and miRNAs during the Nanog-driven reprogramming process.
Collapse
Affiliation(s)
- Julian A Gingold
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miguel Fidalgo
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Guallar
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zerlina Lau
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhen Sun
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hongwei Zhou
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesco Faiola
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dung-Fang Lee
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Avinash Waghray
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christoph Schaniel
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan P Felsenfeld
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ihor R Lemischka
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
52
|
Bar-Nur O, Brumbaugh J, Verheul C, Apostolou E, Pruteanu-Malinici I, Walsh RM, Ramaswamy S, Hochedlinger K. Small molecules facilitate rapid and synchronous iPSC generation. Nat Methods 2014; 11:1170-6. [PMID: 25262205 PMCID: PMC4326224 DOI: 10.1038/nmeth.3142] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/11/2014] [Indexed: 12/28/2022]
Abstract
The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) upon overexpression of OCT4, KLF4, SOX2, and c-MYC (OKSM) provides a powerful system to interrogate basic mechanisms of cell fate change. However, iPSC formation with standard methods is protracted and inefficient, resulting in heterogeneous cell populations. Here we show that exposure of OKSM-expressing cells to both ascorbic acid and a GSK3-beta inhibitor (termed “AGi”) facilitates more synchronous and rapid iPSC formation from a variety of mouse cell types. AGi treatment restored the ability of refractory cell populations to yield iPSC colonies, and it attenuated the activation of developmental regulators commonly observed during the reprogramming process. Moreover, AGi supplementation gave rise to chimera-competent iPSCs after as little as 48 hours of OKSM expression. Our results offer a simple modification to the reprogramming protocol, facilitating iPSC induction at unparalleled efficiencies and enabling dissection of the underlying mechanisms in more homogeneous cell populations.
Collapse
Affiliation(s)
- Ori Bar-Nur
- 1] Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA. [2] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [3] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA. [4] Department of Stem Cell and Regenerative Biology, Cambridge, Massachusetts, USA
| | - Justin Brumbaugh
- 1] Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA. [2] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [3] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA. [4] Department of Stem Cell and Regenerative Biology, Cambridge, Massachusetts, USA
| | - Cassandra Verheul
- 1] Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA. [2] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [3] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA. [4] Department of Stem Cell and Regenerative Biology, Cambridge, Massachusetts, USA
| | - Effie Apostolou
- 1] Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA. [2] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [3] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA. [4] Department of Stem Cell and Regenerative Biology, Cambridge, Massachusetts, USA
| | - Iulian Pruteanu-Malinici
- 1] Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA. [2] Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA. [3] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ryan M Walsh
- 1] Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA. [2] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [3] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA. [4] Department of Stem Cell and Regenerative Biology, Cambridge, Massachusetts, USA
| | - Sridhar Ramaswamy
- 1] Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA. [2] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [3] Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA. [4] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Konrad Hochedlinger
- 1] Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA. [2] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [3] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA. [4] Department of Stem Cell and Regenerative Biology, Cambridge, Massachusetts, USA. [5] Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
53
|
Bella L, Zona S, Nestal de Moraes G, Lam EWF. FOXM1: A key oncofoetal transcription factor in health and disease. Semin Cancer Biol 2014; 29:32-9. [PMID: 25068996 DOI: 10.1016/j.semcancer.2014.07.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/17/2014] [Indexed: 12/25/2022]
Abstract
Forkhead Box M1 (FOXM1) is a bona fide oncofoetal transcription factor, which orchestrates complex temporal and spatial gene expression throughout embryonic and foetal development as well as during adult tissue homeostasis and repair. Controlled FOXM1 expression and activity provides a balanced transcriptional programme to ensure proper growth and maturation during embryogenesis and foetal development as well as to manage appropriate homeostasis and repair of adult tissues. Conversely, deregulated FOXM1 upregulation likely affects cell migration, invasion, angiogenesis, stem cell renewal, DNA damage repair and cellular senescence, which impact tumour initiation, progression, metastasis, angiogenesis and drug resistance. A thorough understanding of the regulation and role of FOXM1 in health and in cancer should contribute to the development of better diagnostics and treatments for cancer as well as congenital disorders and other developmental diseases.
Collapse
Affiliation(s)
- Laura Bella
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Stefania Zona
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Gabriela Nestal de Moraes
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom.
| |
Collapse
|
54
|
Abstract
Deciphering the mechanisms of epigenetic reprogramming provides fundamental insights into cell fate decisions, which in turn reveal strategies to make the reprogramming process increasingly efficient. Here we review recent advances in epigenetic reprogramming to pluripotency with a focus on the principal molecular regulators. We examine the trajectories connecting somatic and pluripotent cells, genetic and chemical methodologies for inducing pluripotency, the role of endogenous master transcription factors in establishing the pluripotent state, and functional interactions between reprogramming factors and epigenetic regulators. Defining the crosstalk among the diverse molecular actors implicated in cellular reprogramming presents a major challenge for future inquiry.
Collapse
Affiliation(s)
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
55
|
Abstract
The nucleus of naïve mouse embryonic stem cells in transition to differentiation expands when the cells are stretched and contracts when they are compressed. What drives this auxetic phenotype is, however, unclear.
Collapse
Affiliation(s)
- Ning Wang
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China, and Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
56
|
Temkin AM, Spyropoulos DD. Induced pluripotent stem cell technology and aquatic animal species. Comp Biochem Physiol C Toxicol Pharmacol 2014; 163:3-13. [PMID: 24548888 DOI: 10.1016/j.cbpc.2014.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 01/04/2023]
Abstract
Aquatic animal species are the overall leaders in the scientific investigation of tough but important global health issues, including environmental toxicants and climate change. Historically, aquatic animal species also stand at the forefront of experimental biology, embryology and stem cell research. Over the past decade, intensive and high-powered investigations principally involving mouse and human cells have brought the generation and study of induced pluripotent stem cells (iPSCs) to a level that facilitates widespread use in a spectrum of species. A review of key features of these investigations is presented here as a primer for the use of iPSC technology to enhance ongoing aquatic animal species studies. iPSC and other cutting edge technologies create the potential to study individuals from "the wild" closer to the level of investigation applied to sophisticated inbred mouse models. A wide variety of surveys and hypothesis-driven investigations can be envisioned using this new capability, including comparisons of organism-specific development and exposure response and the testing of fundamental dogmas established using inbred mice. However, with these new capabilities, also come new criteria for rigorous baseline assessments and testing. Both the methods for inducing pluripotency and the source material can negatively impact iPSC quality and bourgeoning applications. Therefore, more rigorous strategies not required for inbred mouse models will have to be implemented to approach global health issues using individuals from "the wild" for aquatic animal species.
Collapse
Affiliation(s)
- Alexis M Temkin
- Marine Biomedicine and Environmental Science Program, Medical University of South Carolina, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Demetri D Spyropoulos
- Marine Biomedicine and Environmental Science Program, Medical University of South Carolina, Hollings Marine Laboratory, Charleston, SC 29412, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
57
|
Kuijk E, Geijsen N, Cuppen E. Pluripotency in the light of the developmental hourglass. Biol Rev Camb Philos Soc 2014; 90:428-43. [DOI: 10.1111/brv.12117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/10/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Ewart Kuijk
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
| | - Niels Geijsen
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
- Department of Companion Animals; School of Veterinary Medicine, Utrecht University; Utrecht 3584 CM The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
- Center for Molecular Medicine; UMC Utrecht; Universiteitsweg 100 Utrecht 3584 GG The Netherlands
| |
Collapse
|