51
|
Pan X, Dutta D, Lu S, Bellen HJ. Sphingolipids in neurodegenerative diseases. Front Neurosci 2023; 17:1137893. [PMID: 36875645 PMCID: PMC9978793 DOI: 10.3389/fnins.2023.1137893] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Neurodegenerative Diseases (NDDs) are a group of disorders that cause progressive deficits of neuronal function. Recent evidence argues that sphingolipid metabolism is affected in a surprisingly broad set of NDDs. These include some lysosomal storage diseases (LSDs), hereditary sensory and autonomous neuropathy (HSAN), hereditary spastic paraplegia (HSP), infantile neuroaxonal dystrophy (INAD), Friedreich's ataxia (FRDA), as well as some forms of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Many of these diseases have been modeled in Drosophila melanogaster and are associated with elevated levels of ceramides. Similar changes have also been reported in vertebrate cells and mouse models. Here, we summarize studies using fly models and/or patient samples which demonstrate the nature of the defects in sphingolipid metabolism, the organelles that are implicated, the cell types that are initially affected, and potential therapeutics for these diseases.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
52
|
Ladle DR, Hippenmeyer S. Loss of ETV1/ER81 in motor neurons leads to reduced monosynaptic inputs from proprioceptive sensory neurons. J Neurophysiol 2023; 129:501-512. [PMID: 36695533 DOI: 10.1152/jn.00172.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Presynaptic inputs determine the pattern of activation of postsynaptic neurons in a neural circuit. Molecular and genetic pathways that regulate the selective formation of subsets of presynaptic inputs are largely unknown, despite significant understanding of the general process of synaptogenesis. In this study, we have begun to identify such factors using the spinal monosynaptic stretch reflex circuit as a model system. In this neuronal circuit, Ia proprioceptive afferents establish monosynaptic connections with spinal motor neurons that project to the same muscle (termed homonymous connections) or muscles with related or synergistic function. However, monosynaptic connections are not formed with motor neurons innervating muscles with antagonistic functions. The ETS transcription factor ER81 (also known as ETV1) is expressed by all proprioceptive afferents, but only a small set of motor neuron pools in the lumbar spinal cord of the mouse. Here we use conditional mouse genetic techniques to eliminate Er81 expression selectively from motor neurons. We find that ablation of Er81 in motor neurons reduces synaptic inputs from proprioceptive afferents conveying information from homonymous and synergistic muscles, with no change observed in the connectivity pattern from antagonistic proprioceptive afferents. In summary, these findings suggest a role for ER81 in defined motor neuron pools to control the assembly of specific presynaptic inputs and thereby influence the profile of activation of these motor neurons.
Collapse
Affiliation(s)
- David R Ladle
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
53
|
Taszakowski A, Masłowski A, Daane KM, Brożek J. Closer view of antennal sensory organs of two Leptoglossus species (Insecta, Hemiptera, Coreidae). Sci Rep 2023; 13:617. [PMID: 36635483 PMCID: PMC9837090 DOI: 10.1038/s41598-023-27837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Detailed description of antennal sensory organs of Leptoglossus occidentalis Heidemann, 1910 (Insecta: Hemiptera: Heteroptera: Coreidae) and a comparison with L. zonatus (Dallas, 1852) are presented. A novel approach that combines the advantages of field emission scanning electron microscopy (FE-SEM) and atomic force microscope (AFM) was used to detail micromorphological structures. A simplified classification system for sensilla that eliminates the subjective aspects of morphology, such as their shape, is proposed. Fourteen sensory organs have been classified into three main groups: (a) aporous sensilla with a flexible socket, (b) porous sensilla with a flexible socket and (c) porous sensilla with an inflexible socket. A large variety of sensory organs (nine types) with olfactory functions are described. The antennal sensory organs have been recognized as one of the factors responsible for the evolutionary success of Leptoglossus spp. and their status as important pests and invasive species.
Collapse
Affiliation(s)
- Artur Taszakowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Adrian Masłowski
- grid.11866.380000 0001 2259 4135Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Kent M. Daane
- grid.47840.3f0000 0001 2181 7878Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA 94720-3114 USA
| | - Jolanta Brożek
- grid.11866.380000 0001 2259 4135Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
54
|
Chakilam S, Gaidys R, Brożek J. Ultrastructure of a Mechanoreceptor of the Trichoid Sensilla of the Insect Nabis rugosus: Stimulus-Transmitting and Bio-Sensory Architecture. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010097. [PMID: 36671669 PMCID: PMC9855149 DOI: 10.3390/bioengineering10010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
This paper presents the ultrastructure morphology of Nabis rugosus trichoid sensilla using SEM and TEM data, along with a two-dimensional model of the trichoid sensilla developed in Amira software. The SEM images show the shape and scattering of the trichoid mechanosensilla over the N. rugosus flagellomere. The TEM images present the ultrastructural components, in which the hair rises from the socket via the joint membrane. The dendrite sheath is connected at the base of the hair shaft, surrounded by the lymph space and the socket septum. This dendrite sheath contains a tubular body with microtubules separated by the membrane (M) and granules (Gs). This study presents a model and simulation of the trichoid sensilla sensing mechanism, in which the hair deflects due to the application of external loading above it and presses the dendrite sheath attached to the hair base. The dendrite sheath is displaced by the applied force, transforming the transversal loading into a longitudinal deformation of the microtubules. Due to this longitudinal deformation, electric potential develops in the microtubule's core, and information is delivered to the brain through the axon. The sensilla's pivot point or point of rotation is presented, along with the relationship between the hair shaft length, the pivot point, and the electric potential distribution in the microtubules. This study's results can be used to develop ultra-sensitive, bioinspired sensors based on these ultrastructural components and their biomechanical studies.
Collapse
Affiliation(s)
- Shashikanth Chakilam
- Department of Mechanical Engineering, Kaunas University of Technology, LT-51424 Kaunas, Lithuania
- Correspondence:
| | - Rimvydas Gaidys
- Department of Mechanical Engineering, Kaunas University of Technology, LT-51424 Kaunas, Lithuania
| | - Jolanta Brożek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, The University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
55
|
Wang H, Wang H, Zhao J, Hu C, Peng J, Yue S. A Time-Delay Feedback Neural Network for Discriminating Small, Fast-Moving Targets in Complex Dynamic Environments. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:316-330. [PMID: 34264832 DOI: 10.1109/tnnls.2021.3094205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Discriminating small moving objects within complex visual environments is a significant challenge for autonomous micro-robots that are generally limited in computational power. By exploiting their highly evolved visual systems, flying insects can effectively detect mates and track prey during rapid pursuits, even though the small targets equate to only a few pixels in their visual field. The high degree of sensitivity to small target movement is supported by a class of specialized neurons called small target motion detectors (STMDs). Existing STMD-based computational models normally comprise four sequentially arranged neural layers interconnected via feedforward loops to extract information on small target motion from raw visual inputs. However, feedback, another important regulatory circuit for motion perception, has not been investigated in the STMD pathway and its functional roles for small target motion detection are not clear. In this article, we propose an STMD-based neural network with feedback connection (feedback STMD), where the network output is temporally delayed, then fed back to the lower layers to mediate neural responses. We compare the properties of the model with and without the time-delay feedback loop and find that it shows a preference for high-velocity objects. Extensive experiments suggest that the feedback STMD achieves superior detection performance for fast-moving small targets, while significantly suppressing background false positive movements which display lower velocities. The proposed feedback model provides an effective solution in robotic visual systems for detecting fast-moving small targets that are always salient and potentially threatening.
Collapse
|
56
|
Barreto YC, Oliveira RS, Borges BT, Rosa ME, Zanatta AP, de Almeida CGM, Vinadé L, Carlini CR, Belo CAD. The neurotoxic mechanism of Jack Bean Urease in insects involves the interplay between octopaminergic and dopaminergic pathways. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105290. [PMID: 36549826 DOI: 10.1016/j.pestbp.2022.105290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
In the last decades, the entomotoxicity of JBU and its derived peptides became an object of study, due mainly to the ubiquitous interaction of these compounds with different species of insects and their potential as natural insecticides. In this work, we investigated the neurotoxic effects of JBU in Nauphoeta cinerea cockroaches by dissecting pharmacologically the monoaminergic pathways involved. Selective pharmacological modulators for monoaminergic pathways in in vivo and ex vivo experimental models were employed. Thus, the analysis of N. cinerea neurolocomotory behavior demonstrated that JBU (1.5 and 3 μg/g) induces a significant decrease in the exploratory activity. In these assays, pretreatment of animals with phentolamine, SCH23390 or reserpine, interfered significantly with the response of JBU. Using in vivo abductor metathoracic preparations JBU (1.5 μg/g) induced progressive neuromuscular blockade, in 120 min recordings. In this set of experiments, the previous treatment of the animals with phentolamine, SCH23390 or reserpine, completely inhibited JBU-induced neuromuscular blockade. The recordings of spontaneous compound neural action potentials in N. cinerea legs showed that JBU, only in the smallest dose, significantly decreased the number of potentials in 60 min recordings. When the animals were pretreated with phentolamine, SCH23390, or reserpine, but not with mianserin, there was a significant prevention of the JBU-inhibitory responses on the action potentials firing. Meanwhile, the treatment of the animals with mianserin did not affect JBU's inhibitory activity. The data presented in this work strongly suggest that the neurotoxic response of JBU in N. cinerea involves a cross talking between OCTOPAMIN-ergic and DOPAMIN-ergic nerve systems, but not the SEROTONIN-ergic neurotransmission. Further molecular biology studies with expression of insect receptors associated with voltage clamp techniques will help to discriminate the selectivity of JBU over the monoaminergic transmission.
Collapse
Affiliation(s)
- Yuri Correia Barreto
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Raquel Soares Oliveira
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Bruna Trindade Borges
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Maria Eduarda Rosa
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Ana Paula Zanatta
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Carlos Gabriel Moreira de Almeida
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde (PPGMCS), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lúcia Vinadé
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Celia Regina Carlini
- Brain Institute of Rio Grande do Sul (INSCER), Pontifícia Universidade Católica do Rio Grande de Sul, Porto Alegre, RS, Brazil
| | - Cháriston André Dal Belo
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTox), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil; Departamento Multidisciplinar, Escola Paulista de Política, Economia e Negócios (EPPEN), Universidade Federal de São Paulo (UNIFESP), Rua Angélica, 100, Jardim das Flores, 06110295, Osasco, SP, Brazil.
| |
Collapse
|
57
|
Rohde BB, Cooperband MF, Canlas I, Mankin RW. Evidence of Receptivity to Vibroacoustic Stimuli in the Spotted Lanternfly Lycorma delicatula (Hemiptera: Fulgoridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:2116-2120. [PMID: 36305621 DOI: 10.1093/jee/toac167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The spotted lanternfly Lycorma delicatula White (Hemiptera: Fulgoridae) is a polyphagous insect pest that invaded the United States in 2014, in Berks County, Pennsylvania. It has since spread to several northeastern states and poses a significant threat to northeastern grape production. Most studied species of Hemiptera are known to communicate intraspecifically using some form of substrate-borne vibrational signals, although such behavior has not yet been reported in L. delicatula. This report demonstrates that adult and fourth-instar L. delicatula were attracted towards broadcasts of 60-Hz vibroacoustic stimuli directed to a laboratory arena and test substrate, which suggests that both adults and fourth instar nymphs can perceive and respond to vibrational stimuli.
Collapse
Affiliation(s)
- Barukh B Rohde
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, USA
| | - Miriam F Cooperband
- Forest Pest Methods Laboratory, USDA-APHIS-PPQ-S&T, 1398 West Truck Road, Buzzards Bay, MA, USA
| | - Isaiah Canlas
- Forest Pest Methods Laboratory, USDA-APHIS-PPQ-S&T, 1398 West Truck Road, Buzzards Bay, MA, USA
| | - Richard W Mankin
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL, USA
| |
Collapse
|
58
|
Qiao X, Zhang X, Zhou Z, Guo L, Wu W, Ma S, Zhang X, Montell C, Huang J. An insecticide target in mechanoreceptor neurons. SCIENCE ADVANCES 2022; 8:eabq3132. [PMID: 36417522 PMCID: PMC9683716 DOI: 10.1126/sciadv.abq3132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/05/2022] [Indexed: 06/15/2023]
Abstract
Hundreds of neurotoxic insecticides are currently in use. However, only a few direct targets have been identified. Here, using Drosophila and the insecticide flonicamid, we identified nicotinamidase (Naam) as a previous unidentified molecular target for an insecticide. Naam is expressed in chordotonal stretch-receptor neurons, and inhibition of Naam by a metabolite of flonicamid, TFNA-AM (4-trifluoromethylnicotinamide), induces accumulation of substrate nicotinamide and greatly inhibits negative geotaxis. Engineered flies harboring a point mutation in the active site show insecticide resistance and defects in gravity sensing. Bees are resistant to flonicamid because of a gene duplication, resulting in the generation of a TFNA-AM-insensitive Naam. Our results, in combination with the absence of genes encoding Naam in vertebrate genomes, suggest that TFNA-AM and potential species-specific Naam inhibitors could be developed as novel insecticides, anthelmintics, and antimicrobials for agriculture and human health.
Collapse
Affiliation(s)
- Xiaomu Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyu Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhendong Zhou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Guo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiping Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Suhan Ma
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jia Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
59
|
Mohan P, Sinu PA. Is direct bodyguard manipulation a parasitoid-induced stress sleep? A new perspective. Biol Lett 2022; 18:20220280. [PMID: 36448293 PMCID: PMC9709512 DOI: 10.1098/rsbl.2022.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
Bodyguard manipulation is a behavioural manipulation in which the host's behaviour is altered to protect the inducer's offspring from imminent biotic threats. The behaviour of a post-parasitoid-egressed host resembles a quiescence state with a characteristic reduction in motor activities like feeding, locomotion, respiration, and metabolic rate. Yet, they respond aggressively through a defensive response when disturbed, which ensures better fitness for the parasitoid's offspring. The behavioural changes in the parasitized host appear after the parasitoid egression. Several hypotheses have been proposed to elucidate how the parasitized host's behaviour is manipulated for the fitness benefits of the inducers, but the exact mechanism is still unknown. We review evidence to explain the behavioural changes and their mechanism in the parasitized hosts. The evidence suggests that parasitoid pre-pupal egression may drive the host to stress-induced sleep. The elevated octopamine concentration also reflects the stress response in the host. Given the theoretical links between the behavioural and the physiological changes in the post-parasitoid-egressed host and stress-induced sleep of other invertebrates, we suggest that behavioural studies combined with functional genomics, proteomics, and histological analyses might give a better understanding of bodyguard manipulation.
Collapse
Affiliation(s)
- Prabitha Mohan
- Department of Zoology, Central University of Kerala, Kasaragod, Kerala, India
- Zoological Survey of India, Chennai, Tamilnadu, India
| | - Palatty Allesh Sinu
- Department of Zoology, Central University of Kerala, Kasaragod, Kerala, India
| |
Collapse
|
60
|
Liu C, Zhang W. Molecular basis of somatosensation in insects. Curr Opin Neurobiol 2022; 76:102592. [DOI: 10.1016/j.conb.2022.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
|
61
|
Sansom TM, Oberst S, Richter A, Lai JCS, Saadatfar M, Nowotny M, Evans TA. Low radiodensity μCT scans to reveal detailed morphology of the termite leg and its subgenual organ. ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 70:101191. [PMID: 35816830 DOI: 10.1016/j.asd.2022.101191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Termites sense tiny substrate-borne vibrations through subgenual organs (SGOs) located within their legs' tibiae. Little is known about the SGOs' structure and physical properties. We applied high-resolution (voxel size 0.45 μm) micro-computed tomography (μCT) to Australian termites, Coptotermes lacteus and Nasutitermes exitiosus (Hill) to test two staining techniques. We compared the effectiveness of a single stain of Lugol's iodine solution (LS) to LS followed by Phosphotungstic acid (PTA) solutions (1% and 2%). We then present results of a soldier of Nasutitermes exitiosus combining μCT with LS + 2%PTS stains and scanning electron microscopy to exemplify the visualisation of their SGOs. The termite's SGO due to its approximately oval shape was shown to have a maximum diameter of 60 μm and a minimum of 48 μm, covering 60 ± 4% of the leg's cross-section and 90.4 ± 5% of the residual haemolymph channel. Additionally, the leg and residual haemolymph channel cross-sectional area decreased around the SGO by 33% and 73%, respectively. We hypothesise that this change in cross-sectional area amplifies the vibrations for the SGO. Since SGOs are directly connected to the cuticle, their mechanical properties and the geometric details identified here may enable new approaches to determine how termites sense micro-vibrations.
Collapse
Affiliation(s)
- Travers M Sansom
- University of Technology Sydney, Centre for Audio, Acoustics and Vibration, Sydney, NSW, 2007, Australia.
| | - Sebastian Oberst
- University of Technology Sydney, Centre for Audio, Acoustics and Vibration, Sydney, NSW, 2007, Australia; School of Engineering and IT, University of New South Wales Canberra, Northcott Dr, Campbell ACT, 2612, Australia.
| | - Adrian Richter
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany
| | - Joseph C S Lai
- School of Engineering and IT, University of New South Wales Canberra, Northcott Dr, Campbell ACT, 2612, Australia
| | - Mohammad Saadatfar
- School of Civil Engineering, The University of Sydney, 2006, Sydney, Australia
| | - Manuela Nowotny
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany
| | - Theodore A Evans
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| |
Collapse
|
62
|
Günzel Y, Schmitz J, Dürr V. Locomotor resilience through load-dependent modulation of muscle co-contraction. J Exp Biol 2022; 225:276888. [PMID: 36039914 DOI: 10.1242/jeb.244361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Terrestrial locomotor behavior in variable environments requires resilience to sudden changes in substrate properties. For example, walking animals can adjust to substantial changes in slope and corresponding changes in load distribution among legs. In insects, slope-dependent adjustments have mainly been examined under steady-state conditions, whereas the transition dynamics have been largely neglected. In a previous study, we showed that steady-state adjustments of stick insects to ±45° slopes involve substantial changes in joint torques and muscle activity with only minor changes in leg kinematics. Here, we take a close look at the time course of these adjustments as stick insects compensate for various kinds of disturbances to load distribution. In particular, we test whether the transition from one steady state to another involves distinct transition steps or follows a graded process. To resolve this, we combined simultaneous recordings of whole-body kinematics and hind leg muscle activity to elucidate how freely walking Carausius morosus negotiated a step-change in substrate slope. Step-by-step adjustments reveal that muscle activity changed in a graded manner as a function of body pitch relative to gravity. We further show analogous transient adjustment of muscle activity in response to destabilizing lift-off events of neighboring legs and the disappearance of antagonist co-activation during crawling episodes. Given these three examples of load-dependent regulation of antagonist muscle co-contraction, we conclude that stick insects respond to both transient and sustained changes in load distribution by regulating joint stiffness rather than through distinct transition steps.
Collapse
Affiliation(s)
- Yannick Günzel
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld 33615, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld 33615, Germany
| |
Collapse
|
63
|
Gebehart C, Hooper SL, Büschges A. Non-linear multimodal integration in a distributed premotor network controls proprioceptive reflex gain in the insect leg. Curr Biol 2022; 32:3847-3854.e3. [PMID: 35896118 DOI: 10.1016/j.cub.2022.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/30/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
Producing context-appropriate motor acts requires integrating multiple sensory modalities. Presynaptic inhibition of proprioceptive afferent neurons1-4 and afferents of different modalities targeting the same motor neurons (MNs)5-7 underlies some of this integration. However, in most systems, an interneuronal network is interposed between sensory afferents and MNs. How these networks contribute to this integration, particularly at single-neuron resolution, is little understood. Context-specific integration of load and movement sensory inputs occurs in the stick insect locomotory system,6,8-12 and both inputs feed into a network of premotor nonspiking interneurons (NSIs).8 We analyzed how load altered movement signal processing in the stick insect femur-tibia (FTi) joint control system by tracing the interaction of FTi movement13-15 (femoral chordotonal organ [fCO]) and load13,15,16 (tibial campaniform sensilla [CS]) signals through the NSI network to the slow extensor tibiae (SETi) MN, the extensor MN primarily active in non-walking animals.17-19 On the afferent level, load reduced movement signal gain by presynaptic inhibition. In the NSI network, graded responses to movement and load inputs summed nonlinearly, increasing the gain of NSIs opposing movement-induced reflexes and thus decreasing the SETi and extensor tibiae muscle movement reflex responses. Gain modulation was movement-parameter specific and required presynaptic inhibition. These data suggest that gain changes in distributed premotor networks, specifically the relative weighting of antagonistic pathways, could be a general mechanism by which multiple sensory modalities are integrated to generate context-appropriate motor activity.
Collapse
Affiliation(s)
- Corinna Gebehart
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany.
| | - Scott L Hooper
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany; Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
64
|
Lazar AA, Turkcan MK, Zhou Y. A Programmable Ontology Encompassing the Functional Logic of the Drosophila Brain. Front Neuroinform 2022; 16:853098. [PMID: 35795870 PMCID: PMC9252271 DOI: 10.3389/fninf.2022.853098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The Drosophila brain has only a fraction of the number of neurons of higher organisms such as mice and humans. Yet the sheer complexity of its neural circuits recently revealed by large connectomics datasets suggests that computationally modeling the function of fruit fly brain circuits at this scale poses significant challenges. To address these challenges, we present here a programmable ontology that expands the scope of the current Drosophila brain anatomy ontologies to encompass the functional logic of the fly brain. The programmable ontology provides a language not only for modeling circuit motifs but also for programmatically exploring their functional logic. To achieve this goal, we tightly integrated the programmable ontology with the workflow of the interactive FlyBrainLab computing platform. As part of the programmable ontology, we developed NeuroNLP++, a web application that supports free-form English queries for constructing functional brain circuits fully anchored on the available connectome/synaptome datasets, and the published worldwide literature. In addition, we present a methodology for including a model of the space of odorants into the programmable ontology, and for modeling olfactory sensory circuits of the antenna of the fruit fly brain that detect odorant sources. Furthermore, we describe a methodology for modeling the functional logic of the antennal lobe circuit consisting of a massive number of local feedback loops, a characteristic feature observed across Drosophila brain regions. Finally, using a circuit library, we demonstrate the power of our methodology for interactively exploring the functional logic of the massive number of feedback loops in the antennal lobe.
Collapse
|
65
|
Larabee FJ, Gibson JC, Rivera MD, Anderson PSL, Suarez AV. Muscle fatigue in the latch-mediated spring actuated mandibles of trap-jaw ants. Integr Comp Biol 2022; 62:icac091. [PMID: 35689666 DOI: 10.1093/icb/icac091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Muscle fatigue can reduce performance potentially affecting an organism's fitness. However, some aspects of fatigue could be overcome by employing a latch-mediated spring actuated system (LaMSA) where muscle activity is decoupled from movement. We estimated the effects of muscle fatigue on different aspects of mandible performance in six species of ants, two whose mandibles are directly actuated by muscles and four that have LaMSA "trap-jaw" mandibles. We found evidence that the LaMSA system of trap-jaw ants may prevent some aspects of performance from declining with repeated use, including duration, acceleration and peak velocity. However, inter-strike interval increased with repeated strikes suggesting that muscle fatigue still comes into play during the spring loading phase. In contrast, one species with directly actuated mandibles showed a decline in bite force over time. These results have implications for design principles aimed at minimizing the effects of fatigue on performance in spring and motor actuated systems.
Collapse
Affiliation(s)
- Fredrick J Larabee
- Department of Evolution, Ecology and Behavior
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 1000 Constitution Ave., Washington DC
| | - Josh C Gibson
- Department of Entomology
- Beckman Institute for Advanced Science and Technology. University of Illinois Urbana Champaign. 515 Morrill Hall. 505 S. Goodwin Ave., Urbana, IL. 61801
| | | | - Philip S L Anderson
- Department of Evolution, Ecology and Behavior
- Beckman Institute for Advanced Science and Technology. University of Illinois Urbana Champaign. 515 Morrill Hall. 505 S. Goodwin Ave., Urbana, IL. 61801
| | - Andrew V Suarez
- Department of Evolution, Ecology and Behavior
- Department of Entomology
- Program in Ecology, Evolution and Conservation Biology
- Beckman Institute for Advanced Science and Technology. University of Illinois Urbana Champaign. 515 Morrill Hall. 505 S. Goodwin Ave., Urbana, IL. 61801
| |
Collapse
|
66
|
Wang Y, Othayoth R, Li C. Cockroaches adjust body and appendages to traverse cluttered large obstacles. J Exp Biol 2022; 225:275496. [PMID: 35502788 DOI: 10.1242/jeb.243605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/25/2022] [Indexed: 11/20/2022]
Abstract
To traverse complex terrain, animals often transition between locomotor modes. It is well-known that locomotor transitions can be induced by switching in neural control circuits or driven by a need to minimize metabolic energetic cost. Recent work discovered that locomotor transitions in complex 3-D terrain cluttered with large obstacles can emerge from physical interaction with the environment controlled by the nervous system. For example, to traverse cluttered, stiff grass-like beams, the discoid cockroach often transitions from using a strenuous pitch mode pushing across to using a less strenuous roll mode rolling into and through the gaps, and this transition requires overcoming a potential energy barrier. Previous robotic physical modeling demonstrated that kinetic energy fluctuation of body oscillation from self-propulsion can help overcome the barrier and facilitate this transition. However, the animal was observed to transition even when the barrier still exceeded kinetic energy fluctuation. Here, we further studied whether and how the cockroach makes active adjustments to facilitate this transition to traverse cluttered beams. The animal repeatedly flexed its head and abdomen, reduced hind leg sprawl, and depressed one hind leg and elevated the other during the pitch-to-roll transition, which were absent when running on a flat ground. Using a refined potential energy landscape with additional degrees of freedom to model these adjustments, we found that head flexion did not substantially reduce the transition barrier, whereas leg sprawl reduction did so dramatically. We speculate that head flexion is for sensing the terrain to guide the transition via sensory feedback control.
Collapse
Affiliation(s)
- Yaqing Wang
- Department of Mechanical Engineering, Johns Hopkins University, USA
| | - Ratan Othayoth
- Department of Mechanical Engineering, Johns Hopkins University, USA
| | - Chen Li
- Department of Mechanical Engineering, Johns Hopkins University, USA
| |
Collapse
|
67
|
Agrawal S, Tuthill JC. The two-body problem: Proprioception and motor control across the metamorphic divide. Curr Opin Neurobiol 2022; 74:102546. [PMID: 35512562 DOI: 10.1016/j.conb.2022.102546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/11/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022]
Abstract
Like a rocket being propelled into space, evolution has engineered flies to launch into adulthood via multiple stages. Flies develop and deploy two distinct bodies, linked by the transformative process of metamorphosis. The fly larva is a soft hydraulic tube that can crawl to find food and avoid predators. The adult fly has a stiff exoskeleton with articulated limbs that enable long-distance navigation and rich social interactions. Because the larval and adult forms are so distinct in structure, they require distinct strategies for sensing and moving the body. The metamorphic divide thus presents an opportunity for comparative analysis of neural circuits. Here, we review recent progress toward understanding the neural mechanisms of proprioception and motor control in larval and adult Drosophila. We highlight commonalities that point toward general principles of sensorimotor control and differences that may reflect unique constraints imposed by biomechanics. Finally, we discuss emerging opportunities for comparative analysis of neural circuit architecture in the fly and other animal species.
Collapse
Affiliation(s)
- Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| |
Collapse
|
68
|
Multimodal Information Processing and Associative Learning in the Insect Brain. INSECTS 2022; 13:insects13040332. [PMID: 35447774 PMCID: PMC9033018 DOI: 10.3390/insects13040332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Insect behaviors are a great indicator of evolution and provide useful information about the complexity of organisms. The realistic sensory scene of an environment is complex and replete with multisensory inputs, making the study of sensory integration that leads to behavior highly relevant. We summarize the recent findings on multimodal sensory integration and the behaviors that originate from them in our review. Abstract The study of sensory systems in insects has a long-spanning history of almost an entire century. Olfaction, vision, and gustation are thoroughly researched in several robust insect models and new discoveries are made every day on the more elusive thermo- and mechano-sensory systems. Few specialized senses such as hygro- and magneto-reception are also identified in some insects. In light of recent advancements in the scientific investigation of insect behavior, it is not only important to study sensory modalities individually, but also as a combination of multimodal inputs. This is of particular significance, as a combinatorial approach to study sensory behaviors mimics the real-time environment of an insect with a wide spectrum of information available to it. As a fascinating field that is recently gaining new insight, multimodal integration in insects serves as a fundamental basis to understand complex insect behaviors including, but not limited to navigation, foraging, learning, and memory. In this review, we have summarized various studies that investigated sensory integration across modalities, with emphasis on three insect models (honeybees, ants and flies), their behaviors, and the corresponding neuronal underpinnings.
Collapse
|
69
|
Rahul, Siddique YH. Drosophila: A Model to Study the Pathogenesis of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:259-277. [PMID: 35040399 DOI: 10.2174/1871527320666210809120621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/15/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Human Central Nervous System (CNS) is the complex part of the human body, which regulates multiple cellular and molecular events taking place simultaneously. Parkinsons Disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). The pathological hallmarks of PD are loss of dopaminergic neurons in the substantianigra (SN) pars compacta (SNpc) and accumulation of misfolded α-synuclein, in intra-cytoplasmic inclusions called Lewy bodies (LBs). So far, there is no cure for PD, due to the complexities of molecular mechanisms and events taking place during the pathogenesis of PD. Drosophila melanogaster is an appropriate model organism to unravel the pathogenicity not only behind PD but also other NDs. In this context as numerous biological functions are preserved between Drosophila and humans. Apart from sharing 75% of human disease-causing genes homolog in Drosophila, behavioral responses like memory-based tests, negative geotaxis, courtship and mating are also well studied. The genetic, as well as environmental factors, can be studied in Drosophila to understand the geneenvironment interactions behind the disease condition. Through genetic manipulation, mutant flies can be generated harboring human orthologs, which can prove to be an excellent model to understand the effect of the mutant protein on the pathogenicity of NDs.
Collapse
Affiliation(s)
- Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh,India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh,India
| |
Collapse
|
70
|
Lu J, Behbahani AH, Hamburg L, Westeinde EA, Dawson PM, Lyu C, Maimon G, Dickinson MH, Druckmann S, Wilson RI. Transforming representations of movement from body- to world-centric space. Nature 2022; 601:98-104. [PMID: 34912123 PMCID: PMC10759448 DOI: 10.1038/s41586-021-04191-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
When an animal moves through the world, its brain receives a stream of information about the body's translational velocity from motor commands and sensory feedback signals. These incoming signals are referenced to the body, but ultimately, they must be transformed into world-centric coordinates for navigation1,2. Here we show that this computation occurs in the fan-shaped body in the brain of Drosophila melanogaster. We identify two cell types, PFNd and PFNv3-5, that conjunctively encode translational velocity and heading as a fly walks. In these cells, velocity signals are acquired from locomotor brain regions6 and are multiplied with heading signals from the compass system. PFNd neurons prefer forward-ipsilateral movement, whereas PFNv neurons prefer backward-contralateral movement, and perturbing PFNd neurons disrupts idiothetic path integration in walking flies7. Downstream, PFNd and PFNv neurons converge onto hΔB neurons, with a connectivity pattern that pools together heading and translation direction combinations corresponding to the same movement in world-centric space. This network motif effectively performs a rotation of the brain's representation of body-centric translational velocity according to the current heading direction. Consistent with our predictions, we observe that hΔB neurons form a representation of translational velocity in world-centric coordinates. By integrating this representation over time, it should be possible for the brain to form a working memory of the path travelled through the environment8-10.
Collapse
Affiliation(s)
- Jenny Lu
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Amir H Behbahani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lydia Hamburg
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Elena A Westeinde
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Paul M Dawson
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Cheng Lyu
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Gaby Maimon
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michael H Dickinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Rachel I Wilson
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
71
|
Nguyen TD, Lee JS. Recent Development of Flexible Tactile Sensors and Their Applications. SENSORS (BASEL, SWITZERLAND) 2021; 22:s22010050. [PMID: 35009588 PMCID: PMC8747637 DOI: 10.3390/s22010050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 05/15/2023]
Abstract
With the rapid development of society in recent decades, the wearable sensor has attracted attention for motion-based health care and artificial applications. However, there are still many limitations to applying them in real life, particularly the inconvenience that comes from their large size and non-flexible systems. To solve these problems, flexible small-sized sensors that use body motion as a stimulus are studied to directly collect more accurate and diverse signals. In particular, tactile sensors are applied directly on the skin and provide input signals of motion change for the flexible reading device. This review provides information about different types of tactile sensors and their working mechanisms that are piezoresistive, piezocapacitive, piezoelectric, and triboelectric. Moreover, this review presents not only the applications of the tactile sensor in motion sensing and health care monitoring, but also their contributions in the field of artificial intelligence in recent years. Other applications, such as human behavior studies, are also suggested.
Collapse
Affiliation(s)
| | - Jun Seop Lee
- Correspondence: ; Tel.: +82-31-750-5814; Fax: +82-31-750-5389
| |
Collapse
|
72
|
Nanchung and Inactive define pore properties of the native auditory transduction channel in Drosophila. Proc Natl Acad Sci U S A 2021; 118:2106459118. [PMID: 34848538 DOI: 10.1073/pnas.2106459118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 11/18/2022] Open
Abstract
Auditory transduction is mediated by chordotonal (Cho) neurons in Drosophila larvae, but the molecular identity of the mechanotransduction (MET) channel is elusive. Here, we established a whole-cell recording system of Cho neurons and showed that two transient receptor potential vanilloid (TRPV) channels, Nanchung (NAN) and Inactive (IAV), are essential for MET currents in Cho neurons. NAN and IAV form active ion channels when expressed simultaneously in S2 cells. Point mutations in the pore region of NAN-IAV change the reversal potential of the MET currents. Particularly, residues 857 through 990 in the IAV carboxyl terminus regulate the kinetics of MET currents in Cho neurons. In addition, TRPN channel NompC contributes to the adaptation of auditory transduction currents independent of its ion-conduction function. These results indicate that NAN-IAV, rather than NompC, functions as essential pore-forming subunits of the native auditory transduction channel in Drosophila and provide insights into the gating mechanism of MET currents in Cho neurons.
Collapse
|
73
|
Gebehart C, Büschges A. Temporal differences between load and movement signal integration in the sensorimotor network of an insect leg. J Neurophysiol 2021; 126:1875-1890. [PMID: 34705575 DOI: 10.1152/jn.00399.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nervous systems face a torrent of sensory inputs, including proprioceptive feedback. Signal integration depends on spatially and temporally coinciding signals. It is unclear how relative time delays affect multimodal signal integration from spatially distant sense organs. We measured transmission times and latencies along all processing stages of sensorimotor pathways in the stick insect leg muscle control system, using intra- and extracellular recordings. Transmission times of signals from load-sensing tibial and trochanterofemoral campaniform sensilla (tiCS, tr/fCS) to the premotor network were longer than from the movement-sensing femoral chordotonal organ (fCO). We characterized connectivity patterns from tiCS, tr/fCS, and fCO afferents to identified premotor nonspiking interneurons (NSIs) and motor neurons (MNs) by distinguishing short- and long-latency responses to sensory stimuli. Functional NSI connectivity depended on sensory context. The timeline of multisensory integration in the NSI network showed an early phase of movement signal processing and a delayed phase of load signal integration. The temporal delay of load signals relative to movement feedback persisted into MN activity and muscle force development. We demonstrate differential delays in the processing of two distinct sensory modalities generated by the sensorimotor network and affecting motor output. The reported temporal differences in sensory processing and signal integration improve our understanding of sensory network computation and function in motor control.NEW & NOTEWORTHY Networks integrating multisensory input face the challenge of not only spatial but also temporal integration. In the local network controlling insect leg movements, proprioceptive signal delays differ between sensory modalities. Specifically, signal transmission times to and neuronal connectivity within the sensorimotor network lead to delayed information about leg loading relative to movement signals. Temporal delays persist up to the level of the motor output, demonstrating its relevance for motor control.
Collapse
Affiliation(s)
- Corinna Gebehart
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
74
|
Mechanosensory Stimulation via Nanchung Expressing Neurons Can Induce Daytime Sleep in Drosophila. J Neurosci 2021; 41:9403-9418. [PMID: 34635540 DOI: 10.1523/jneurosci.0400-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
The neuronal and genetic bases of sleep, a phenomenon considered crucial for well-being of organisms, has been under investigation using the model organism Drosophila melanogaster Although sleep is a state where sensory threshold for arousal is greater, it is known that certain kinds of repetitive sensory stimuli, such as rocking, can indeed promote sleep in humans. Here we report that orbital motion-aided mechanosensory stimulation promotes sleep of male and female Drosophila, independent of the circadian clock, but controlled by the homeostatic system. Mechanosensory receptor nanchung (Nan)-expressing neurons in the chordotonal organs mediate this sleep induction: flies in which these neurons are either silenced or ablated display significantly reduced sleep induction on mechanosensory stimulation. Transient activation of the Nan-expressing neurons also enhances sleep levels, confirming the role of these neurons in sleep induction. We also reveal that certain regions of the antennal mechanosensory and motor center in the brain are involved in conveying information from the mechanosensory structures to the sleep centers. Thus, we show, for the first time, that a circadian clock-independent pathway originating from peripherally distributed mechanosensors can promote daytime sleep of flies Drosophila melanogaster SIGNIFICANCE STATEMENT Our tendency to fall asleep in moving vehicles or the practice of rocking infants to sleep suggests that slow rhythmic movement can induce sleep, although we do not understand the mechanistic basis of this phenomenon. We find that gentle orbital motion can induce behavioral quiescence even in flies, a highly genetically tractable system for sleep studies. We demonstrate that this is indeed true sleep based on its rapid reversibility by sensory stimulation, enhanced arousal threshold, and homeostatic control. Furthermore, we demonstrate that mechanosensory neurons expressing a TRPV channel nanchung, located in the antennae and chordotonal organs, mediate orbital motion-induced sleep by communicating with antennal mechanosensory motor centers, which in turn may project to sleep centers in the brain.
Collapse
|
75
|
Cruz TL, Pérez SM, Chiappe ME. Fast tuning of posture control by visual feedback underlies gaze stabilization in walking Drosophila. Curr Biol 2021; 31:4596-4607.e5. [PMID: 34499851 PMCID: PMC8556163 DOI: 10.1016/j.cub.2021.08.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/01/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Locomotion requires a balance between mechanical stability and movement flexibility to achieve behavioral goals despite noisy neuromuscular systems, but rarely is it considered how this balance is orchestrated. We combined virtual reality tools with quantitative analysis of behavior to examine how Drosophila uses self-generated visual information (reafferent visual feedback) to control gaze during exploratory walking. We found that flies execute distinct motor programs coordinated across the body to maximize gaze stability. However, the presence of inherent variability in leg placement relative to the body jeopardizes fine control of gaze due to posture-stabilizing adjustments that lead to unintended changes in course direction. Surprisingly, whereas visual feedback is dispensable for head-body coordination, we found that self-generated visual signals tune postural reflexes to rapidly prevent turns rather than to promote compensatory rotations, a long-standing idea for visually guided course control. Together, these findings support a model in which visual feedback orchestrates the interplay between posture and gaze stability in a manner that is both goal dependent and motor-context specific.
Collapse
Affiliation(s)
- Tomás L Cruz
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | - M Eugenia Chiappe
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|
76
|
Flat on its back: the impact of substrate on righting methods of the brown marmorated stink bug, Halyomorpha halys. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:747-755. [PMID: 34664104 DOI: 10.1007/s00359-021-01515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 10/20/2022]
Abstract
Many animals, including insects, need to solve the problem of self-righting if inverted and substrate is one understudied factor that could affect righting ability. In this study we ask the questions, how does Halyomorpha halys self-right and does variation in substrate affect self-righting? To address our questions we used four substrates with different features and filmed H. halys righting response on each substrate (n = 22 individuals). We also used two synced cameras to film the most common righting method and quantified its kinematics. Self-righting metrics did vary depending on substrate in terms of diversity of righting methods used, duration of the successful righting event, number of fails per attempt, and stance width. We also determined that the symmetrical forward flip is the most common method used by H. halys. In the forward flip H. halys creates a tripod of support using the hindlegs and the tip of the abdomen to elevate the anterior portion of the body off the substrate and pitch forward onto its feet. In addition to demonstrating that substrate can impact self-righting and quantifying the symmetrical forward flip, we also provide a foundation for future explorations of sensory feedback and adaptive motor control using H. halys.
Collapse
|
77
|
de Reus K, Soma M, Anichini M, Gamba M, de Heer Kloots M, Lense M, Bruno JH, Trainor L, Ravignani A. Rhythm in dyadic interactions. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200337. [PMID: 34420383 DOI: 10.1098/rstb.2020.0337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review paper discusses rhythmic interactions and distinguishes them from non-rhythmic interactions. We report on communicative behaviours in social and sexual contexts, as found in dyads of humans, non-human primates, non-primate mammals, birds, anurans and insects. We discuss observed instances of rhythm in dyadic interactions, identify knowledge gaps and propose suggestions for future research. We find that most studies on rhythmicity in interactive signals mainly focus on one modality (acoustic or visual) and we suggest more work should be performed on multimodal signals. Although the social functions of interactive rhythms have been fairly well described, developmental research on rhythms used to regulate social interactions is still lacking. Future work should also focus on identifying the exact timing mechanisms involved. Rhythmic signalling behaviours are widespread and critical in regulating social interactions across taxa, but many questions remain unexplored. A multidisciplinary, comparative cross-species approach may help provide answers. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Koen de Reus
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Masayo Soma
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Marianna Anichini
- Hanse-Wissenschaftskolleg Institute for Advanced Study, 'Brain' Research Area, Delmenhorst, Germany.,Division of Animal Physiology and Behaviour, Department of Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Miriam Lense
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Laurel Trainor
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| |
Collapse
|
78
|
Ambe Y, Aoi S, Tsuchiya K, Matsuno F. Generation of Direct-, Retrograde-, and Source-Wave Gaits in Multi-Legged Locomotion in a Decentralized Manner via Embodied Sensorimotor Interaction. Front Neural Circuits 2021; 15:706064. [PMID: 34552472 PMCID: PMC8450536 DOI: 10.3389/fncir.2021.706064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Multi-legged animals show several types of ipsilateral interlimb coordination. Millipedes use a direct-wave gait, in which the swing leg movements propagate from posterior to anterior. In contrast, centipedes use a retrograde-wave gait, in which the swing leg movements propagate from anterior to posterior. Interestingly, when millipedes walk in a specific way, both direct and retrograde waves of the swing leg movements appear with the waves' source, which we call the source-wave gait. However, the gait generation mechanism is still unclear because of the complex nature of the interaction between neural control and dynamic body systems. The present study used a simple model to understand the mechanism better, primarily how local sensory feedback affects multi-legged locomotion. The model comprises a multi-legged body and its locomotion control system using biologically inspired oscillators with local sensory feedback, phase resetting. Each oscillator controls each leg independently. Our simulation produced the above three types of animal gaits. These gaits are not predesigned but emerge through the interaction between the neural control and dynamic body systems through sensory feedback (embodied sensorimotor interaction) in a decentralized manner. The analytical description of these gaits' solution and stability clarifies the embodied sensorimotor interaction's functional roles in the interlimb coordination.
Collapse
Affiliation(s)
- Yuichi Ambe
- Tough Cyberphysical AI Research Center, Tohoku University, Sendai, Japan
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Kyoto University, Kyoto, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Kyoto University, Kyoto, Japan
| | - Fumitoshi Matsuno
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
79
|
Boublil BL, Diebold CA, Moss CF. Mechanosensory Hairs and Hair-like Structures in the Animal Kingdom: Specializations and Shared Functions Serve to Inspire Technology Applications. SENSORS (BASEL, SWITZERLAND) 2021; 21:6375. [PMID: 34640694 PMCID: PMC8512044 DOI: 10.3390/s21196375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022]
Abstract
Biological mechanosensation has been a source of inspiration for advancements in artificial sensory systems. Animals rely on sensory feedback to guide and adapt their behaviors and are equipped with a wide variety of sensors that carry stimulus information from the environment. Hair and hair-like sensors have evolved to support survival behaviors in different ecological niches. Here, we review the diversity of biological hair and hair-like sensors across the animal kingdom and their roles in behaviors, such as locomotion, exploration, navigation, and feeding, which point to shared functional properties of hair and hair-like structures among invertebrates and vertebrates. By reviewing research on the role of biological hair and hair-like sensors in diverse species, we aim to highlight biological sensors that could inspire the engineering community and contribute to the advancement of mechanosensing in artificial systems, such as robotics.
Collapse
Affiliation(s)
| | | | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA; (B.L.B.); (C.A.D.)
| |
Collapse
|
80
|
Szczecinski NS, Dallmann CJ, Quinn RD, Zill SN. A computational model of insect campaniform sensilla predicts encoding of forces during walking. BIOINSPIRATION & BIOMIMETICS 2021; 16:065001. [PMID: 34384067 DOI: 10.1088/1748-3190/ac1ced] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Control of forces is essential in both animals and walking machines. Insects measure forces as strains in their exoskeletons via campaniform sensilla (CS). Deformations of cuticular caps embedded in the exoskeleton excite afferents that project to the central nervous system. CS afferent firing frequency (i.e. 'discharge') is highly dynamic, correlating with the rate of change of the force. Discharges adapt over time to tonic forces and exhibit hysteresis during cyclic loading.In this study we characterized a phenomenological model that predicts CS discharge, in which discharge is proportional to the instantaneous stimulus force relative to an adaptive variable. In contrast to previous studies of sensory adaptation, our model (1) is nonlinear and (2) reproduces the characteristic power-law adaptation with first order dynamics only (i.e. no 'fractional derivatives' are required to explain dynamics). We solve the response of the system analytically in multiple cases and use these solutions to derive the dynamics of the adaptive variable. We show that the model can reproduce responses of insect CS to many different force stimuli after being tuned to reproduce only one response, suggesting that the model captures the underlying dynamics of the system. We show that adaptation to tonic forces, rate-sensitivity, and hysteresis are different manifestations of the same underlying mechanism: the adaptive variable. We tune the model to replicate the dynamics of three different CS groups from two insects (cockroach and stick insect), demonstrating that it is generalizable. We also invert the model to estimate the stimulus force given the discharge recording from the animal. We discuss the adaptive neural and mechanical processes that the model may mimic and the model's use for understanding the role of load feedback in insect motor control. A preliminary model and results were previously published in the proceedings of the Conference on Biohybrid and Biomimetic Systems.
Collapse
Affiliation(s)
- Nicholas S Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26505, United States of America
| | - Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, United States of America
| | - Roger D Quinn
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Sasha N Zill
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States of America
| |
Collapse
|
81
|
Godoy RSM, Barbosa RC, Procópio TF, Costa BA, Jacobs-Lorena M, Martins GF. FMRF-related peptides in Aedes aegypti midgut: neuromuscular connections and enteric nervous system. Cell Tissue Res 2021; 385:585-602. [PMID: 33961128 PMCID: PMC9841599 DOI: 10.1007/s00441-021-03462-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/11/2021] [Indexed: 01/19/2023]
Abstract
FMRFamide-related peptides (FaRPs) are a class of neuropeptides that participate in a variety of physiological processes in invertebrates. They occur in nerves of stomatogastric ganglia and enteroendocrine cells of the insect digestive tract, where they may control muscle functions. However, their direct involvement in muscle function has never been shown in situ. We studied the relationship between FaRPs and midgut muscle during larval-pupal transition of the mosquito Aedes aegypti. In late L4, FaRP-positive neuronal extensions attach to the bundles of the external circular muscle layer, and muscle stem cells start to undergo mitosis in the internal circular layer. Thereafter, the external muscle layer degenerates, disappearing during early pupal development, and is completely absent in the adult mosquito. Our results indicate that FaRP-based neural signals are involved in the reorganization of the muscle fibers of the mosquito midgut during the larval-pupal transition. In addition to confirming FaRP involvement in muscle function, we show that the mosquito midgut muscles are largely innervated, and that circular and longitudinal muscle have specific neuron bodies associated with them.
Collapse
Affiliation(s)
- Raquel S. M. Godoy
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil,Fundação Oswaldo Cruz, Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Renata C. Barbosa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Thamara F. Procópio
- Departamento de Bioquímica e Fisiologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-420, Brazil
| | - Breno A. Costa
- Fundação Oswaldo Cruz, Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Marcelo Jacobs-Lorena
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gustavo F. Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
82
|
Abstract
In animals, proper locomotion is crucial to find mates and foods and avoid predators or dangers. Multiple sensory systems detect external and internal cues and integrate them to modulate motor outputs. Proprioception is the internal sense of body position, and proprioceptive control of locomotion is essential to generate and maintain precise patterns of movement or gaits. This proprioceptive feedback system is conserved in many animal species and is mediated by stretch-sensitive receptors called proprioceptors. Recent studies have identified multiple proprioceptive neurons and proprioceptors and their roles in the locomotion of various model organisms. In this review we describe molecular and neuronal mechanisms underlying proprioceptive feedback systems in C. elegans, Drosophila, and mice.
Collapse
Affiliation(s)
- Kyeong Min Moon
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Jimin Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Yurim Seong
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Byung-Chang Suh
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - KyeongJin Kang
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
- KBRI (Korea Brain Research Institute), Daegu 41068, Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
- KBRI (Korea Brain Research Institute), Daegu 41068, Korea
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
- KBRI (Korea Brain Research Institute), Daegu 41068, Korea
| |
Collapse
|
83
|
Montell C. Drosophila sensory receptors-a set of molecular Swiss Army Knives. Genetics 2021; 217:1-34. [PMID: 33683373 DOI: 10.1093/genetics/iyaa011] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Genetic approaches in the fruit fly, Drosophila melanogaster, have led to a major triumph in the field of sensory biology-the discovery of multiple large families of sensory receptors and channels. Some of these families, such as transient receptor potential channels, are conserved from animals ranging from worms to humans, while others, such as "gustatory receptors," "olfactory receptors," and "ionotropic receptors," are restricted to invertebrates. Prior to the identification of sensory receptors in flies, it was widely assumed that these proteins function in just one modality such as vision, smell, taste, hearing, and somatosensation, which includes thermosensation, light, and noxious mechanical touch. By employing a vast combination of genetic, behavioral, electrophysiological, and other approaches in flies, a major concept to emerge is that many sensory receptors are multitaskers. The earliest example of this idea was the discovery that individual transient receptor potential channels function in multiple senses. It is now clear that multitasking is exhibited by other large receptor families including gustatory receptors, ionotropic receptors, epithelial Na+ channels (also referred to as Pickpockets), and even opsins, which were formerly thought to function exclusively as light sensors. Genetic characterizations of these Drosophila receptors and the neurons that express them also reveal the mechanisms through which flies can accurately differentiate between different stimuli even when they activate the same receptor, as well as mechanisms of adaptation, amplification, and sensory integration. The insights gleaned from studies in flies have been highly influential in directing investigations in many other animal models.
Collapse
Affiliation(s)
- Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, The Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
84
|
Dallmann CJ, Karashchuk P, Brunton BW, Tuthill JC. A leg to stand on: computational models of proprioception. CURRENT OPINION IN PHYSIOLOGY 2021; 22:100426. [PMID: 34595361 PMCID: PMC8478261 DOI: 10.1016/j.cophys.2021.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dexterous motor control requires feedback from proprioceptors, internal mechanosensory neurons that sense the body's position and movement. An outstanding question in neuroscience is how diverse proprioceptive feedback signals contribute to flexible motor control. Genetic tools now enable targeted recording and perturbation of proprioceptive neurons in behaving animals; however, these experiments can be challenging to interpret, due to the tight coupling of proprioception and motor control. Here, we argue that understanding the role of proprioceptive feedback in controlling behavior will be aided by the development of multiscale models of sensorimotor loops. We review current phenomenological and structural models for proprioceptor encoding and discuss how they may be integrated with existing models of posture, movement, and body state estimation.
Collapse
Affiliation(s)
- Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Pierre Karashchuk
- Neuroscience Graduate Program, University of Washington, Seattle, WA, USA
| | - Bingni W Brunton
- Department of Biology, University of Washington, Seattle, WA, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| |
Collapse
|
85
|
Jaske B, Lepreux G, Dürr V. Input of hair field afferents to a descending interneuron. J Neurophysiol 2021; 126:398-412. [PMID: 34161139 DOI: 10.1152/jn.00169.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In insects the tactile sense is important for near-range orientation and is involved in various behaviors. Nocturnal insects, such as the stick insect Carausius morosus, continuously explore their surroundings by actively moving their antennae when walking. Upon antennal contact with objects, stick insects show a targeted front-leg movement. As this reaction occurs within 40 ms, descending transfer of information from the brain to the thorax needs to be fast. So far, a number of descending interneurons have been described that may be involved in this reach-to-grasp behavior. One of these is the contralateral ON-type velocity-sensitive neuron (cONv). cONv was found to encode antennal joint-angle velocity during passive movement. Here, we characterize the transient response properties of cONv, including its dependence on joint angle range and direction. As antennal hair field afferent terminals were shown to arborize close to cONv dendrites, we test whether antennal hair fields contribute to the joint-angle velocity encoding of cONv. To do so, we conducted bilateral extracellular recordings of both cONv interneurons per animal before and after hair field ablations. Our results show that cONv responses are highly transient, with velocity-dependent differences in delay and response magnitude. As yet, the steady state activity level was maintained until the stop of antennal movement, irrespective of movement velocity. Hair field ablation caused a moderate but significant reduction of movement-induced cONv firing rate by up to 40%. We conclude that antennal proprioceptive hair fields contribute to the velocity-tuning of cONv, though further antennal mechanoreceptors must be involved, too.NEW & NOTEWORTHY Active tactile exploration and tactually induced behaviors are important for many animals. They require descending information transfer about tactile sensor movement to thoracic networks. Here, we investigate response properties and afferent input to the identified descending interneuron cONv in stick insects. cONv may be involved in tactually induced reach-to-grasp movements. We show that cONv response delay, transient and steady state are velocity-dependent and that antennal proprioceptive hair fields contribute to the velocity encoding of cONv.
Collapse
Affiliation(s)
- Bianca Jaske
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Gaëtan Lepreux
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.,Center of Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.,Center of Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
86
|
Zill SN, Dallmann CJ, S Szczecinski N, Büschges A, Schmitz J. Evaluation of force feedback in walking using joint torques as "naturalistic" stimuli. J Neurophysiol 2021; 126:227-248. [PMID: 34107221 PMCID: PMC8424542 DOI: 10.1152/jn.00120.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Control of adaptive walking requires the integration of sensory signals of muscle force and load. We have studied how mechanoreceptors (tibial campaniform sensilla) encode “naturalistic” stimuli derived from joint torques of stick insects walking on a horizontal substrate. Previous studies showed that forces applied to the legs using the mean torque profiles of a proximal joint were highly effective in eliciting motor activities. However, substantial variations in torque direction and magnitude occurred at the more distal femorotibial joint, which can generate braking or propulsive forces and provide lateral stability. To determine how these forces are encoded, we used torque waveforms of individual steps that had maximum values in stance in the directions of flexion or extension. Analysis of kinematic data showed that the torques in different directions tended to occur in different ranges of joint angles. Variations within stance were not accompanied by comparable changes in joint angle but often reflected vertical ground reaction forces and leg support of body load. Application of torque waveforms elicited sensory discharges with variations in firing frequency similar to those seen in freely walking insects. All sensilla directionally encoded the dynamics of force increases and showed hysteresis to transient force decreases. Smaller receptors exhibited more tonic firing. Our findings suggest that dynamic sensitivity in force feedback can modulate ongoing muscle activities to stabilize distal joints when large forces are generated at proximal joints. Furthermore, use of “naturalistic” stimuli can reproduce characteristics seen in freely moving animals that are absent in conventional restrained preparations. NEW & NOTEWORTHY Sensory encoding of forces during walking by campaniform sensilla was characterized in stick insects using waveforms of joint torques calculated by inverse dynamics as mechanical stimuli. Tests using the mean joint torque and torques of individual steps showed the system is highly sensitive to force dynamics (dF/dt). Use of “naturalistic” stimuli can reproduce characteristics of sensory discharges seen in freely walking insects, such as load transfer among legs.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Nicholas S Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
87
|
David I, Ayali A. From Motor-Output to Connectivity: An In-Depth Study of in-vitro Rhythmic Patterns in the Cockroach Periplaneta americana. FRONTIERS IN INSECT SCIENCE 2021; 1:655933. [PMID: 38468881 PMCID: PMC10926548 DOI: 10.3389/finsc.2021.655933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/22/2021] [Indexed: 03/13/2024]
Abstract
The cockroach is an established model in the study of locomotion control. While previous work has offered important insights into the interplay among brain commands, thoracic central pattern generators, and the sensory feedback that shapes their motor output, there remains a need for a detailed description of the central pattern generators' motor output and their underlying connectivity scheme. To this end, we monitored pilocarpine-induced activity of levator and depressor motoneurons in two types of novel in-vitro cockroach preparations: isolated thoracic ganglia and a whole-chain preparation comprising the thoracic ganglia and the subesophageal ganglion. Our data analyses focused on the motoneuron firing patterns and the coordination among motoneuron types in the network. The burstiness and rhythmicity of the motoneurons were monitored, and phase relations, coherence, coupling strength, and frequency-dependent variability were analyzed. These parameters were all measured and compared among network units both within each preparation and among the preparations. Here, we report differences among the isolated ganglia, including asymmetries in phase and coupling strength, which indicate that they are wired to serve different functions. We also describe the intrinsic default gait and a frequency-dependent coordination. The depressor motoneurons showed mostly similar characteristics throughout the network regardless of interganglia connectivity; whereas the characteristics of the levator motoneurons activity were mostly ganglion-dependent, and influenced by the presence of interganglia connectivity. Asymmetries were also found between the anterior and posterior homolog parts of the thoracic network, as well as between ascending and descending connections. Our analyses further discover a frequency-dependent inversion of the interganglia coordination from alternations between ipsilateral homolog oscillators to simultaneous activity. We present a detailed scheme of the network couplings, formulate coupling rules, and review a previously suggested model of connectivity in light of our new findings. Our data support the notion that the inter-hemiganglia coordination derives from the levator networks and their coupling with local depressor interneurons. Our findings also support a dominant role of the metathoracic ganglion and its ascending output in governing the anterior ganglia motor output during locomotion in the behaving animal.
Collapse
Affiliation(s)
- Izhak David
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
88
|
Yapici N. Mechanosensation: Too Hard or Too Soft? Curr Biol 2021; 30:R936-R939. [PMID: 32810453 DOI: 10.1016/j.cub.2020.06.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maternal decisions, such as where to build a nest or where to lay your eggs, are critical for the offspring's fitness and survival in any species. A new study in Drosophila now reveals that distinct classes of mechanosensory receptors and neurons fine tune the physical assessment of an oviposition site and determine where the female fly lays her eggs.
Collapse
Affiliation(s)
- Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
89
|
Ilami M, Bagheri H, Ahmed R, Skowronek EO, Marvi H. Materials, Actuators, and Sensors for Soft Bioinspired Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003139. [PMID: 33346386 DOI: 10.1002/adma.202003139] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/15/2020] [Indexed: 05/23/2023]
Abstract
Biological systems can perform complex tasks with high compliance levels. This makes them a great source of inspiration for soft robotics. Indeed, the union of these fields has brought about bioinspired soft robotics, with hundreds of publications on novel research each year. This review aims to survey fundamental advances in bioinspired soft actuators and sensors with a focus on the progress between 2017 and 2020, providing a primer for the materials used in their design.
Collapse
Affiliation(s)
- Mahdi Ilami
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Hosain Bagheri
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Reza Ahmed
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - E Olga Skowronek
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Hamid Marvi
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
90
|
Mongeau JM, Schweikert LE, Davis AL, Reichert MS, Kanwal JK. Multimodal integration across spatiotemporal scales to guide invertebrate locomotion. Integr Comp Biol 2021; 61:842-853. [PMID: 34009312 DOI: 10.1093/icb/icab041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Locomotion is a hallmark of organisms that has enabled adaptive radiation to an extraordinarily diverse class of ecological niches, and allows animals to move across vast distances. Sampling from multiple sensory modalities enables animals to acquire rich information to guide locomotion. Locomotion without sensory feedback is haphazard, therefore sensory and motor systems have evolved complex interactions to generate adaptive behavior. Notably, sensory-guided locomotion acts over broad spatial and temporal scales to permit goal-seeking behavior, whether to localize food by tracking an attractive odor plume or to search for a potential mate. How does the brain integrate multimodal stimuli over different temporal and spatial scales to effectively control behavior? In this review, we classify locomotion into three ordinally ranked hierarchical layers that act over distinct spatiotemporal scales: stabilization, motor primitives, and higher-order tasks, respectively. We discuss how these layers present unique challenges and opportunities for sensorimotor integration. We focus on recent advances in invertebrate locomotion due to their accessible neural and mechanical signals from the whole brain, limbs and sensors. Throughout, we emphasize neural-level description of computations for multimodal integration in genetic model systems, including the fruit fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti. We identify that summation (e.g. gating) and weighting-which are inherent computations of spiking neurons-underlie multimodal integration across spatial and temporal scales, therefore suggesting collective strategies to guide locomotion.
Collapse
Affiliation(s)
- Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lorian E Schweikert
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181. University of North Carolina Wilmington, Department of Biology and Marine Biology, Wilmington, NC, U.S.A
| | | | - Michael S Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jessleen K Kanwal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
91
|
Büschges A. Drosophila neuroscience: Unravelling the circuits of sensory-motor control in the fly. Curr Biol 2021; 31:R394-R396. [PMID: 33905699 DOI: 10.1016/j.cub.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Effective motor control requires the real-time transmission of information between sensory organs and the motor system. With the powerful techniques that are now available, Drosophila neuroscientists are unravelling the topology of the neural circuits that carry this information in the fly at synaptic resolution.
Collapse
Affiliation(s)
- Ansgar Büschges
- Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany.
| |
Collapse
|
92
|
Niemeier M, Jeschke M, Dürr V. Effect of Thoracic Connective Lesion on Inter-Leg Coordination in Freely Walking Stick Insects. Front Bioeng Biotechnol 2021; 9:628998. [PMID: 33959593 PMCID: PMC8093632 DOI: 10.3389/fbioe.2021.628998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
Multi-legged locomotion requires appropriate coordination of all legs with coincident ground contact. Whereas behaviourally derived coordination rules can adequately describe many aspects of inter-leg coordination, the neural mechanisms underlying these rules are still not entirely clear. The fact that inter-leg coordination is strongly affected by cut thoracic connectives in tethered walking insects, shows that neural information exchange among legs is important. As yet, recent studies have shown that load transfer among legs can contribute to inter-leg coordination through mechanical coupling alone, i.e., without neural information exchange among legs. Since naturalistic load transfer among legs works only in freely walking animals but not in tethered animals, we tested the hypothesis that connective lesions have less strong effects if mechanical coupling through load transfer among legs is possible. To do so, we recorded protraction/retraction angles of all legs in unrestrained walking stick insects that either had one thoracic connective cut or had undergone a corresponding sham operation. In lesioned animals, either a pro-to-mesothorax or a meso-to-metathorax connective was cut. Overall, our results on temporal coordination were similar to published reports on tethered walking animals, in that the phase relationship of the legs immediately adjacent to the lesion was much less precise, although the effect on mean phase was relatively weak or absent. Lesioned animals could walk at the same speed as the control group, though with a significant sideward bias toward the intact side. Detailed comparison of lesion effects in free-walking and supported animals reveal that the strongest differences concern the spatial coordination among legs. In free walking, lesioned animals, touch-down and lift-off positions shifted significantly in almost all legs, including legs of the intact body side. We conclude that insects with disrupted neural information transfer through one connective adjust to this disruption differently if they experience naturalistic load distribution. While mechanical load transfer cannot compensate for lesion-induced effects on temporal inter-leg coordination, several compensatory changes in spatial coordination occur only if animals carry their own weight.
Collapse
Affiliation(s)
- Miriam Niemeier
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Manon Jeschke
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.,Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
93
|
Naniwa K, Aonuma H. Descending and Ascending Signals That Maintain Rhythmic Walking Pattern in Crickets. Front Robot AI 2021; 8:625094. [PMID: 33855051 PMCID: PMC8039156 DOI: 10.3389/frobt.2021.625094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/01/2021] [Indexed: 12/04/2022] Open
Abstract
The cricket is one of the model animals used to investigate the neuronal mechanisms underlying adaptive locomotion. An intact cricket walks mostly with a tripod gait, similar to other insects. The motor control center of the leg movements is located in the thoracic ganglia. In this study, we investigated the walking gait patterns of the crickets whose ventral nerve cords were surgically cut to gain an understanding of how the descending signals from the head ganglia and ascending signals from the abdominal nervous system into the thoracic ganglia mediate the initiation and coordination of the walking gait pattern. Crickets whose paired connectives between the brain and subesophageal ganglion (SEG) (circumesophageal connectives) were cut exhibited a tripod gait pattern. However, when one side of the circumesophageal connectives was cut, the crickets continued to turn in the opposite direction to the connective cut. Crickets whose paired connectives between the SEG and prothoracic ganglion were cut did not walk, whereas the crickets exhibited an ordinal tripod gait pattern when one side of the connectives was intact. Crickets whose paired connectives between the metathoracic ganglion and abdominal ganglia were cut initiated walking, although the gait was not a coordinated tripod pattern, whereas the crickets exhibited a tripod gait when one side of the connectives was intact. These results suggest that the brain plays an inhibitory role in initiating leg movements and that both the descending signals from the head ganglia and the ascending signals from the abdominal nervous system are important in initiating and coordinating insect walking gait patterns.
Collapse
Affiliation(s)
- Keisuke Naniwa
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
94
|
Zhang J, Li J, Li C, Wu Z, Liang H, Wu J. Self-righting physiology of the ladybird beetle Coccinella septempunctata on surfaces with variable roughness. JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104202. [PMID: 33582102 DOI: 10.1016/j.jinsphys.2021.104202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Insects such as cockroaches and locusts self-right swiftly to reduce chances of being attacked by predators. Compared to these insects, ladybirds have shorter legs hidden inside highly domed elytra so self-righting is of great challenge if using strategies of abdominal arching and/or leg swinging. Specifically, ladybirds live in over-ground environment with clusters of vegetation so they are prone to self-right from various natural substrates, such as soil, bark, and leaves. However, self-righting strategies under such complicated environment packed with multiple surfaces remain elusive. In this combined experimental and theoretical study, we examined and quantified self-righting physiology of ladybirds (Coccinella septempunctata) on surfaces with varying roughness. Most ladybirds self-right in 15.00 s with a success rate of ~100.00% within 3 attempts using either legged or winged strategies, and the self-righting strategy is strongly associated with the surface roughness. Righting on a coarser board (Ra = 124.62 μm) is performed by swinging the legs to attach and hook the protrusions on the rough surface. However, if self-righting occurs on a smooth surface (Ra = 6.69 μm), both the elytra and hind wings deploy to alter the body orientation to roll over. Considering the effect of surface roughness, we analyzed the self-righting mechanism by a mathematical model, and uncovered that contact status between the claw and surface microstructures affected the arm of force required to self-right, which leads to the binary strategic selection. Our quantification of self-righting on diverse surfaces not only deepens understanding of ladybird's self-righting but may inspire new means of evaluating its environmental adaptability.
Collapse
Affiliation(s)
- Jie Zhang
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Jing Li
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Chujun Li
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Zhigang Wu
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Haizhao Liang
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, PR China.
| | - Jianing Wu
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, PR China.
| |
Collapse
|
95
|
Gebehart C, Schmidt J, Büschges A. Distributed processing of load and movement feedback in the premotor network controlling an insect leg joint. J Neurophysiol 2021; 125:1800-1813. [PMID: 33788591 DOI: 10.1152/jn.00090.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In legged animals, integration of information from various proprioceptors in and on the appendages by local premotor networks in the central nervous system is crucial for controlling motor output. To ensure posture maintenance and precise active movements, information about limb loading and movement is required. In insects, various groups of campaniform sensilla (CS) measure forces and loads acting in different directions on the leg, and the femoral chordotonal organ (fCO) provides information about movement of the femur-tibia (FTi) joint. In this study, we used extra- and intracellular recordings of extensor tibiae (ExtTi) and retractor coxae (RetCx) motor neurons (MNs) and identified local premotor nonspiking interneurons (NSIs) and mechanical stimulation of the fCO and tibial or trochanterofemoral CS (tiCS, tr/fCS), to investigate the premotor network architecture underlying multimodal proprioceptive integration. We found that load feedback from tiCS altered the strength of movement-elicited resistance reflexes and determined the specificity of ExtTi and RetCx MN responses to various load and movement stimuli. These responses were mediated by a common population of identified NSIs into which synaptic inputs from the fCO, tiCS, and tr/fCS are distributed, and whose effects onto ExtTi MNs can be antagonistic for both stimulus modalities. Multimodal sensory signal interaction was found at the level of single NSIs and MNs. The results provide evidence that load and movement feedback are integrated in a multimodal, distributed local premotor network consisting of antagonistic elements controlling movements of the FTi joint, thus substantially extending current knowledge on how legged motor systems achieve fine-tuned motor control.NEW & NOTEWORTHY Proprioception is crucial for motor control in legged animals. We show the extent to which processing of movement (fCO) and load (CS) signals overlaps in the local premotor network of an insect leg. Multimodal signals converge onto the same set of interneurons, and our knowledge about distributed, antagonistic processing is extended to incorporate multiple modalities within one perceptual neuronal framework.
Collapse
Affiliation(s)
- Corinna Gebehart
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Joachim Schmidt
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
96
|
The color pattern inducing gene wingless is expressed in specific cell types of campaniform sensilla of a polka-dotted fruit fly, Drosophila guttifera. Dev Genes Evol 2021; 231:85-93. [PMID: 33774724 DOI: 10.1007/s00427-021-00674-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
A polka-dotted fruit fly, Drosophila guttifera, has a unique pigmentation pattern on its wings and is used as a model for evo-devo studies exploring the mechanism of evolutionary gain of novel traits. In this species, a morphogen-encoding gene, wingless, is expressed in species-specific positions and induces a unique pigmentation pattern. To produce some of the pigmentation spots on wing veins, wingless is thought to be expressed in developing campaniform sensillum cells, but it was unknown which of the four cell types there express(es) wingless. Here we show that two of the cell types, dome cells and socket cells, express wingless, as indicated by in situ hybridization together with immunohistochemistry. This is a unique case in which non-neuronal SOP (sensory organ precursor) progeny cells produce Wingless as an inducer of pigmentation pattern formation. Our finding opens a path to clarifying the mechanism of evolutionary gain of a unique wingless expression pattern by analyzing gene regulation in dome cells and socket cells.
Collapse
|
97
|
Kosaka T, Gan JH, Long LD, Umezu S, Sato H. Remote radio control of insect flight reveals why beetles lift their legs in flight while other insects tightly fold. BIOINSPIRATION & BIOMIMETICS 2021; 16:036001. [PMID: 33513597 DOI: 10.1088/1748-3190/abe138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
In the research and development of micro air vehicles, understanding and imitating the flight mechanism of insects presents a viable way of progressing forward. While research is being conducted on the flight mechanism of insects such as flies and dragonflies, research on beetles that can carry larger loads is limited. Here, we clarified the beetle midlegs' role in the attenuation and cessation of the wingbeat. We anatomically confirmed the connection between the midlegs and the elytra. We also further clarified which pair of legs are involved in the wingbeat attenuation mechanism, and lastly demonstrated free-flight control via remote leg muscle stimulation. Observation of multiple landings using a high-speed camera revealed that the wingbeat stopped immediately after their midlegs were lowered. Moreover, the action of lowering the midleg attenuated and often stopped the wingbeat. A miniature remote stimulation device (backpack) mountable on beetles was designed and utilized for the free-flight demonstration. Beetles in free flight were remotely induced into lowering (swing down) each leg pair via electrical stimulation, and they were found to lose significant altitude only when the midlegs were stimulated. Thus, the results of this study revealed that swinging down of the midlegs played a significant role in beetle wingbeat cessation. In the future, our findings on the wingbeat attenuation and cessation mechanism are expected to be helpful in designing bioinspired micro air vehicles.
Collapse
Affiliation(s)
- Takumi Kosaka
- Department of Modern Mechanical Engineering, Waseda University, Japan
| | - Jia Hui Gan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Le Duc Long
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Shinjiro Umezu
- Department of Modern Mechanical Engineering, Waseda University, Japan
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
98
|
Abstract
Our current understanding of manipulation is based on primate hands, resulting in a detailed but narrow perspective of ways to handle objects. Although most other animals lack hands, they are still capable of flexible manipulation of diverse objects, including food and nest materials, and depend on dexterity in object handling to survive and reproduce. Birds, for instance, use their bills and feet to forage and build nests, while insects carry food and construct nests with their mandibles and legs. Bird bills and insect mandibles are much simpler than a primate hand, resembling simple robotic grippers. A better understanding of manipulation in these and other species would provide a broader comparative perspective on the origins of dexterity. Here we contrast data from primates, birds and insects, describing how they sense and grasp objects, and the neural architectures that control manipulation. Finally, we outline techniques for collecting comparable manipulation data from animals with diverse morphologies and describe the practical applications of studying manipulation in a wide range of species, including providing inspiration for novel designs of robotic manipulators.
Collapse
Affiliation(s)
- Shoko Sugasawa
- Centre for Biological Diversity, Harold Mitchell Building, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Barbara Webb
- School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
| | - Susan D Healy
- Centre for Biological Diversity, Harold Mitchell Building, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| |
Collapse
|
99
|
Strohmer B, Stagsted RK, Manoonpong P, Larsen LB. Integrating Non-spiking Interneurons in Spiking Neural Networks. Front Neurosci 2021; 15:633945. [PMID: 33746701 PMCID: PMC7973219 DOI: 10.3389/fnins.2021.633945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
Researchers working with neural networks have historically focused on either non-spiking neurons tractable for running on computers or more biologically plausible spiking neurons typically requiring special hardware. However, in nature homogeneous networks of neurons do not exist. Instead, spiking and non-spiking neurons cooperate, each bringing a different set of advantages. A well-researched biological example of such a mixed network is a sensorimotor pathway, responsible for mapping sensory inputs to behavioral changes. This type of pathway is also well-researched in robotics where it is applied to achieve closed-loop operation of legged robots by adapting amplitude, frequency, and phase of the motor output. In this paper we investigate how spiking and non-spiking neurons can be combined to create a sensorimotor neuron pathway capable of shaping network output based on analog input. We propose sub-threshold operation of an existing spiking neuron model to create a non-spiking neuron able to interpret analog information and communicate with spiking neurons. The validity of this methodology is confirmed through a simulation of a closed-loop amplitude regulating network inspired by the internal feedback loops found in insects for posturing. Additionally, we show that non-spiking neurons can effectively manipulate post-synaptic spiking neurons in an event-based architecture. The ability to work with mixed networks provides an opportunity for researchers to investigate new network architectures for adaptive controllers, potentially improving locomotion strategies of legged robots.
Collapse
Affiliation(s)
- Beck Strohmer
- SDU Biorobotics, Maersk McKinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | - Rasmus Karnøe Stagsted
- SDU Biorobotics, Maersk McKinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | - Poramate Manoonpong
- SDU Biorobotics, Maersk McKinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | - Leon Bonde Larsen
- SDU Biorobotics, Maersk McKinney Moller Institute, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
100
|
Phelps JS, Hildebrand DGC, Graham BJ, Kuan AT, Thomas LA, Nguyen TM, Buhmann J, Azevedo AW, Sustar A, Agrawal S, Liu M, Shanny BL, Funke J, Tuthill JC, Lee WCA. Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell 2021; 184:759-774.e18. [PMID: 33400916 PMCID: PMC8312698 DOI: 10.1016/j.cell.2020.12.013] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023]
Abstract
To investigate circuit mechanisms underlying locomotor behavior, we used serial-section electron microscopy (EM) to acquire a synapse-resolution dataset containing the ventral nerve cord (VNC) of an adult female Drosophila melanogaster. To generate this dataset, we developed GridTape, a technology that combines automated serial-section collection with automated high-throughput transmission EM. Using this dataset, we studied neuronal networks that control leg and wing movements by reconstructing all 507 motor neurons that control the limbs. We show that a specific class of leg sensory neurons synapses directly onto motor neurons with the largest-caliber axons on both sides of the body, representing a unique pathway for fast limb control. We provide open access to the dataset and reconstructions registered to a standard atlas to permit matching of cells between EM and light microscopy data. We also provide GridTape instrumentation designs and software to make large-scale EM more accessible and affordable to the scientific community.
Collapse
Affiliation(s)
- Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - David Grant Colburn Hildebrand
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Brett J Graham
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron T Kuan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Logan A Thomas
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tri M Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Buhmann
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Anthony W Azevedo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Mingguan Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Brendan L Shanny
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Wei-Chung Allen Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|