51
|
Chen JY, Fu EJ, Patel PR, Hostetler AJ, Sawan HA, Moss KA, Hocevar SE, Anderson AJ, Chestek CA, Shea LD. Lentiviral Interleukin-10 Gene Therapy Preserves Fine Motor Circuitry and Function After a Cervical Spinal Cord Injury in Male and Female Mice. Neurotherapeutics 2021; 18:503-514. [PMID: 33051853 PMCID: PMC8116384 DOI: 10.1007/s13311-020-00946-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
In mammals, spinal cord injuries often result in muscle paralysis through the apoptosis of lower motor neurons and denervation of neuromuscular junctions. Previous research shows that the inflammatory response to a spinal cord injury can cause additional tissue damage after the initial trauma. To modulate this inflammatory response, we delivered lentiviral anti-inflammatory interleukin-10, via loading onto an implantable biomaterial scaffold, into a left-sided hemisection at the C5 vertebra in mice. We hypothesized that improved behavioral outcomes associated with anti-inflammatory treatment are due to the sparing of fine motor circuit components. We examined behavioral recovery using a ladder beam, tissue sparing using histology, and electromyogram recordings using intraspinal optogenetic stimulation at 2 weeks post-injury. Ladder beam analysis shows interleukin-10 treatment results in significant improvement of behavioral recovery at 2 and 12 weeks post-injury when compared to mice treated with a control virus. Histology shows interleukin-10 results in greater numbers of lower motor neurons, axons, and muscle innervation at 2 weeks post-injury. Furthermore, electromyogram recordings suggest that interleukin-10-treated animals have signal-to-noise ratios and peak-to-peak amplitudes more similar to that of uninjured controls than to that of control injured animals at 2 weeks post-injury. These data show that gene therapy using anti-inflammatory interleukin-10 can significantly reduce tissue damage and subsequent motor deficits after a spinal cord injury. Together, these results suggest that early modulation of the injury response can preserve muscle function with long-lasting benefits.
Collapse
Affiliation(s)
- Jessica Y Chen
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Emily J Fu
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
| | - Paras R Patel
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
| | - Alexander J Hostetler
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
| | - Hasan A Sawan
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
| | - Kayla A Moss
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
| | - Sarah E Hocevar
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Aileen J Anderson
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
- Robotics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Boulevard, 1119 Carl A Gerstacker Building, Ann Arbor, MI, 48109, USA.
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
52
|
Ahangar P, Mills SJ, Smith LE, Gronthos S, Cowin AJ. Human gingival fibroblast secretome accelerates wound healing through anti-inflammatory and pro-angiogenic mechanisms. NPJ Regen Med 2020; 5:24. [PMID: 33303754 PMCID: PMC7728777 DOI: 10.1038/s41536-020-00109-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Healing of the skin and oral mucosa utilises similar mechanisms of tissue repair, however, scarring and the rate of wound closure is vastly superior in the oral cavity suggesting differences between these two environments. One key difference is the phenotype of dermal fibroblasts compared to fibroblasts of gingival tissues. Human gingival fibroblasts (hGFs) are undifferentiated cells with multi-differentiation and self-renewal capacities. This study aimed to examine if delivering hGFs or their secretome, contained in hGF-conditioned media (hGF-CM), would improve healing of the skin and recapitulate features of oral healing. Human fibroblasts, keratinocytes and endothelial cells were first treated with hGF-CM and showed improved migration, proliferation and angiogenic functions. A significant reduction in macroscopic wound area and histologic dermal wound width, as well as an increased rate of re-epithelialisation, were observed in both hGFs and hGF-CM treated murine excisional wounds. This improvement was associated with reduced inflammation, increased angiogenesis and elevated collagen deposition. These findings demonstrate that treatment of dermal wounds with either hGFs or hGF-CM may provide beneficial gingival-like properties to dermal wounds and may be a potential opportunity for improving healing of the skin.
Collapse
Affiliation(s)
- Parinaz Ahangar
- Future Industries Institute, University of South Australia, Adelaide, SA, 5000, Australia.,Cell Therapy Manufacturing Cooperative Research Centre, Adelaide, SA, 5000, Australia
| | - Stuart J Mills
- Future Industries Institute, University of South Australia, Adelaide, SA, 5000, Australia
| | - Louise E Smith
- Future Industries Institute, University of South Australia, Adelaide, SA, 5000, Australia.,Cell Therapy Manufacturing Cooperative Research Centre, Adelaide, SA, 5000, Australia
| | - Stan Gronthos
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
53
|
Han L, Lu Y, Wang X, Zhang S, Wang Y, Wu F, Zhang W, Wang X, Zhang L. Regulatory role and mechanism of the inhibition of the Mcl-1 pathway during apoptosis and polarization of H37Rv-infected macrophages. Medicine (Baltimore) 2020; 99:e22438. [PMID: 33080678 PMCID: PMC7572003 DOI: 10.1097/md.0000000000022438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Myeloid cell leukemia-1 (Mcl-1) plays an important role in the clearance of Mycobacterium tuberculosis (MTB) infection. It has the effect of anti-apoptosis, protecting macrophages that have engulfed pathogens and preventing pathogen clearance. Meanwhile, the MAPK signaling pathway plays a significant role in regulating Mcl-1 expression during tuberculosis infection. In the case of latent infection and active infection, the apoptosis and polarization of macrophages have a great influence during MTB infection, so we discussed the effect of Mcl-1 on apoptosis and polarization. Then, further discussed its mechanism. METHODS An infected RAW264.7 macrophage model was established to investigate the regulatory role and mechanism of the Mcl-1 pathway inhibition during apoptosis and polarization of H37Rv infection. First, Mcl-1 protein and mRNA was identified by western blotting and Real-Time Polymerase Chain Reaction (RT-PCR). RAW264.7 macrophage apoptosis was detected by flow cytometry. RT-PCR was utilized to detect Bax, Caspase-3, Cyt-c and Bcl-2 mRNA expression. Next, Then the expression levels of inflammation factors CD86, CD206, iNOS, Fizz1, IL-6, IL-10, TNF-α, and TGF-β was detected by ELISA. SEM was used to observe macrophages phenotype. Finally, Bax, Bcl-2 and Bcl-xl the expression was detected by western blotting. Confocal microscopy was used to analyze mitochondrial membrane potential using the JC-10 kit. RESULTS In this study, we found that inhibiting the Mcl-1 expression signaling pathway led to infection by different virulence Mycobacterium tuberculosis, as well as changes in Mcl-1 protein and mRNA expression. Concomitantly macrophage apoptosis rate also changed, While, two phenotypic states of M1 and M2 appeared in the infected cells. We also found that the mitochondrial pathway was activated, the expression of its related genes Bax, casepase3, and Cyt-c, increased, whereas that of Bcl-2 decreased, and the mitochondrial membrane depolarization function was changed. CONCLUSIONS We found that Mcl-1 affected the apoptosis and polarization of macrophages infected by Mycobacterium tuberculosis, mainly M1 in the early stage and M2 in the later stage. In addition, mitochondria played a crucial role in this process.
Collapse
Affiliation(s)
- Ling Han
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Yang Lu
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Xiaofang Wang
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Shujun Zhang
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Yingzi Wang
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Fang Wu
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Wanjiang Zhang
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Xinmin Wang
- Department of Urinary Surgery, The First Affiliated Hospital, Medical College of Shihezi University, Shihezi, Xinjiang, China
| | - Le Zhang
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| |
Collapse
|
54
|
Thiriot JD, Martinez-Martinez YB, Endsley JJ, Torres AG. Hacking the host: exploitation of macrophage polarization by intracellular bacterial pathogens. Pathog Dis 2020; 78:5739920. [PMID: 32068828 DOI: 10.1093/femspd/ftaa009] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages play an integral role in host defenses against intracellular bacterial pathogens. A remarkable plasticity allows for adaptation to the needs of the host to orchestrate versatile innate immune responses to a variety of microbial threats. Several bacterial pathogens have adapted to macrophage plasticity and modulate the classical (M1) or alternative (M2) activation bias towards a polarization state that increases fitness for intracellular survival. Here, we summarize the current understanding of the host macrophage and intracellular bacterial interface; highlighting the roles of M1/M2 polarization in host defense and the mechanisms employed by several important intracellular pathogens to modulate macrophage polarization to favor persistence or proliferation. Understanding macrophage polarization in the context of disease caused by different bacterial pathogens is important for the identification of targets for therapeutic intervention.
Collapse
Affiliation(s)
- Joseph D Thiriot
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| | - Yazmin B Martinez-Martinez
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| | - Janice J Endsley
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA.,Department of Pathology, University of Texas Medical Branch , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| |
Collapse
|
55
|
Chen YC, Chang YP, Hsiao CC, Wu CC, Wang YH, Chao TY, Leung SY, Fang WF, Lee CP, Wang TY, Hsu PY, Lin MC. Blood M2a monocyte polarization and increased formyl peptide receptor 1 expression are associated with progression from latent tuberculosis infection to active pulmonary tuberculosis disease. Int J Infect Dis 2020; 101:210-219. [PMID: 32971238 DOI: 10.1016/j.ijid.2020.09.1056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES This study aims to explore the role of M2a polarization and formyl peptide receptor (FPR) regulation in the reactivation of Mycobacterium tuberculosis (Mtb) infection. METHODS M1/M2a monocyte percentage and FPR1/2/3 protein expression of blood immune cells were measured in 38 patients with sputum culture (+) active pulmonary TB disease, 18 subjects with latent TB infection (LTBI), and 28 noninfected healthy subjects (NIHS) using flow cytometry method. RESULTS M1 percentage was decreased in active TB versus either NIHS or LTBI group, while M2a percentage and M2a/M1 percentage ratio were increased. FPR1 expression on M1/M2a, FPR2 expression on M1, and FPR3 expression of M1 were all decreased in active TB versus LTBI group, while FPR1 over FPR2 expression ratio on NK T cell was increased in active TB versus either NIHS or LTBI group. In 11 patients with active TB disease, M1 percentage became normal again after anti-TB treatment. In vitro Mtb-specific antigen stimulation of monocytic THP-1 cells resulted in M2a polarization in association with increased FPR2 expression on M2a. CONCLUSIONS Increased M2a and decreased M1 phenotypes of blood monocyte may serve as a marker for active TB disease, while decreased FPR1 on blood monocyte may indicate LTBI status.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Graduate Institute of Clinical Medical Sciences and Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Chang-Chun Hsiao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Graduate Institute of Clinical Medical Sciences and Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Yi-Hsi Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Tung-Ying Chao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Sum-Yee Leung
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Wen-Feng Fang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Chiu-Ping Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Ting-Ya Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| |
Collapse
|
56
|
Zadka Ł, Grybowski DJ, Dzięgiel P. Modeling of the immune response in the pathogenesis of solid tumors and its prognostic significance. Cell Oncol (Dordr) 2020; 43:539-575. [PMID: 32488850 PMCID: PMC7363737 DOI: 10.1007/s13402-020-00519-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor initiation and subsequent progression are usually long-term processes, spread over time and conditioned by diverse aspects. Many cancers develop on the basis of chronic inflammation; however, despite dozens of years of research, little is known about the factors triggering neoplastic transformation under these conditions. Molecular characterization of both pathogenetic states, i.e., similarities and differences between chronic inflammation and cancer, is also poorly defined. The secretory activity of tumor cells may change the immunophenotype of immune cells and modify the extracellular microenvironment, which allows the bypass of host defense mechanisms and seems to have diagnostic and prognostic value. The phenomenon of immunosuppression is also present during chronic inflammation, and the development of cancer, due to its duration, predisposes patients to the promotion of chronic inflammation. The aim of our work was to discuss the above issues based on the latest scientific insights. A theoretical mechanism of cancer immunosuppression is also proposed. CONCLUSIONS Development of solid tumors may occur both during acute and chronic phases of inflammation. Differences in the regulation of immune responses between precancerous states and the cancers resulting from them emphasize the importance of immunosuppressive factors in oncogenesis. Cancer cells may, through their secretory activity and extracellular transport mechanisms, enhance deterioration of the immune system which, in turn, may have prognostic implications.
Collapse
Affiliation(s)
- Łukasz Zadka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland.
| | - Damian J Grybowski
- Orthopedic Surgery, University of Illinois, 900 S. Ashland Avenue (MC944) Room 3356, Molecular Biology Research Building Chicago, Chicago, IL, 60607, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland
| |
Collapse
|
57
|
Yaghoubi S, Najminejad H, Dabaghian M, Karimi MH, Abdollahpour-Alitappeh M, Rad F, Mahi-Birjand M, Mohammadi S, Mohseni F, Sobhani Lari M, Teymouri GH, Rigi Yousofabadi E, Salmani A, Bagheri N. How hypoxia regulate exosomes in ischemic diseases and cancer microenvironment? IUBMB Life 2020; 72:1286-1305. [PMID: 32196941 DOI: 10.1002/iub.2275] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022]
Abstract
Exosomes, as natural occurring vesicles, play highly important roles in the behavior and fate of ischemic diseases and different tumors. Secretion, composition, and function of exosomes are remarkably influenced by hypoxia in ischemic diseases and tumor microenvironment. Exosomes secreted from hypoxic cells affect development, growth, angiogenesis, and progression in ischemic diseases and tumors through a variety of signaling pathways. In this review article, we discuss how hypoxia affects the quantity and quality of exosomes, and review the mechanisms by which hypoxic cell-derived exosomes regulate ischemic cell behaviors in both cancerous and noncancerous cells.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Hamid Najminejad
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehran Dabaghian
- Research and Development Department, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | | | | | - Fariba Rad
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Motahareh Mahi-Birjand
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shiva Mohammadi
- Department of Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mohammad Sobhani Lari
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran
| | | | | | | | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
58
|
Sun L, Girnary M, Wang L, Jiao Y, Zeng E, Mercer K, Zhang J, Marchesan JT, Yu N, Moss K, Lei YL, Offenbacher S, Zhang S. IL-10 Dampens an IL-17-Mediated Periodontitis-Associated Inflammatory Network. THE JOURNAL OF IMMUNOLOGY 2020; 204:2177-2191. [PMID: 32169848 DOI: 10.4049/jimmunol.1900532] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 02/04/2020] [Indexed: 02/05/2023]
Abstract
Emerging evidence suggests comprehensive immune profiling represents a highly promising, yet insufficiently tapped approach to identify potentially prognostic signatures for periodontitis. In this report, we agnostically identified a periodontitis-associated inflammatory expression network with multiple biomarkers identified within gingival crevicular fluid samples from study participants by applying principal component analysis. We identified an IL-17-dominated trait that is associated with periodontal disease and is inversely modified by the level of IL-10. IL-10 mitigated chemokine CXCL5 and CXCL1 expressions in IL-17-stimulated peripheral blood monocytic cells and peripheral blood monocytic cell-derived macrophages. Il10-deficient mice presented more bone loss, which was associated with more Il17 and IL-17-mediated chemokine and cytokine expression at the transcriptional levels in comparison with control wild-type mice in both the Porphyromonas gingivalis-induced experimental murine periodontitis and ligature-induced alveolar bone-loss models. The dampening effect of IL-10 on the excessive signaling of IL-17 appeared to be mediated by innate immune cells populations rather than by gingival epithelial cells, which are the major cell target for IL-17 signaling. Additionally, elevated IL-17 response in Il10-deficient mice specifically elicited an M1-skewing macrophage phenotype in the gingiva that was associated with the advanced bone loss in the ligature model. In summary, IL-17 dominated an inflammatory network characteristic of periodontitis, and IL-10 dampens this excessive IL-17-mediated periodontitis trait.
Collapse
Affiliation(s)
- Lu Sun
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Center for Oral and Systemic Diseases, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mustafa Girnary
- Department of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Lufei Wang
- Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yizu Jiao
- Doctor of Dental Surgery Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Erliang Zeng
- Division of Biostatistics and Computational Biology, University of Iowa College of Dentistry, Iowa City, IA 52242
| | - Kyle Mercer
- Department of Periodontics, University of Iowa College of Dentistry, Iowa City, IA 52242.,Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242
| | - Jinmei Zhang
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Julie T Marchesan
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Center for Oral and Systemic Diseases, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ning Yu
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA 02142
| | - Kevin Moss
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Center for Oral and Systemic Diseases, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Dental Ecology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Yu L Lei
- Department of Periodontics and Oral Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| | - Steven Offenbacher
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Center for Oral and Systemic Diseases, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Shaoping Zhang
- Department of Periodontics, University of Iowa College of Dentistry, Iowa City, IA 52242; .,Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242
| |
Collapse
|
59
|
Rigo MM, Borges TJ, Lang BJ, Murshid A, Nitika, Wolfgeher D, Calderwood SK, Truman AW, Bonorino C. Host expression system modulates recombinant Hsp70 activity through post-translational modifications. FEBS J 2020; 287:10.1111/febs.15279. [PMID: 32144867 PMCID: PMC7483562 DOI: 10.1111/febs.15279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/22/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
The use of model organisms for recombinant protein production results in the addition of model-specific post-translational modifications (PTMs) that can affect the structure, charge, and function of the protein. The 70-kDa heat shock proteins (Hsp70) were originally described as intracellular chaperones, with ATPase and foldase activity. More recently, new extracellular activities of Hsp70 proteins (e.g. as immunomodulators) have been identified. While some studies indicate an inflammatory potential for extracellular Hsp70 proteins, others suggest an immunosuppressive activity. We hypothesized that the production of recombinant Hsp70 in different expression systems would result in the addition of different PTMs, perhaps explaining at least some of these opposing immunological outcomes. We produced and purified Mycobacterium tuberculosis DnaK from two different systems, Escherichia coli and Pichia pastoris, and analyzed by mass spectrometry the protein preparations, investigating the impact of PTMs in an in silico and in vitro perspective. The comparisons of DnaK structures in silico highlighted that electrostatic and topographical differences exist that are dependent upon the expression system. Production of DnaK in the eukaryotic system dramatically affected its ATPase activity, and significantly altered its ability to downregulate MHC II and CD86 expression on murine dendritic cells (DCs). Phosphatase treatment of DnaK indicated that some of these differences related specifically to phosphorylation. Altogether, our data indicate that PTMs are an important characteristic of the expression system, with differences that impact interactions of Hsps with their ligands and subsequent functional activities.
Collapse
Affiliation(s)
- Mauricio M Rigo
- School of Medicine, Pontificia Universidade Catolica do Rio Grande do Sul, Av. Ipiranga, 6681, Porto Alegre Rio Grande do Sul, Zip Code: 90619-900, Brazil
| | - Thiago J Borges
- Schuster Family Transplantation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA
| | - Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Nitika
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, 28223
| | - Donald Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Andrew W Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, 28223
| | - Cristina Bonorino
- Laboratório de Imunoterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre Rio Grande do Sul, Zip Code: 90050-170, Brazil
- Department of Surgery, School of Medicine, University of California at San Diego, La Jolla, CA, 92037
| |
Collapse
|
60
|
Röszer T. Signal Mechanisms of M2 Macrophage Activation. PROGRESS IN INFLAMMATION RESEARCH 2020:73-97. [DOI: 10.1007/978-3-030-50480-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
61
|
Komarova EY, Marchenko LV, Zhakhov AV, Nikotina AD, Aksenov ND, Suezov RV, Ischenko AM, Margulis BA, Guzhova IV. Extracellular Hsp70 Reduces the Pro-Tumor Capacity of Monocytes/Macrophages Co-Cultivated with Cancer Cells. Int J Mol Sci 2019; 21:ijms21010059. [PMID: 31861801 PMCID: PMC6982218 DOI: 10.3390/ijms21010059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer cells are known to contain high levels of the heat shock protein 70 kDa (Hsp70), which mediates increased cell proliferation, escape from programmed cell death, enhanced invasion, and metastasis. A part of Hsp70 molecules may release from cancer cells and affect the behavior of adjacent stromal cells. To explore the effects of Hsp70 on the status of monocytes/macrophages in the tumor locale, we incubated human carcinoma cells of three distinct lines with normal and reduced content of Hsp70 with THP1 monocytes. Using two methods, we showed that the cells with knock-down of Hsp70 released a lower amount of protein in the extracellular medium. Three cycles of the co-cultivation of cancer and monocytic cells led to the secretion of several cytokines typical of the tumor microenvironment (TME) and to pro-cancer activation of the monocytes/macrophages as established by elevation of F4/80 and arginase-1 markers. Unexpectedly, the efficacy of epithelial–mesenchymal transition and resistance of carcinoma cells to anticancer drugs after incubation with monocytic cells were more pronounced in cells with lower Hsp70, e.g., releasing less Hsp70 into the extracellular milieu. These data suggest that Hsp70 released from tumor cells into the TME is able, together with the development of an anti-cancer immune response, to limit the conversion of a considerable part of monocytic cells to the pro-tumor phenotype.
Collapse
Affiliation(s)
- Elena Y. Komarova
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.Y.K.); (L.V.M.); (A.D.N.); (N.D.A.); (R.V.S.); (B.A.M.)
| | - Larisa V. Marchenko
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.Y.K.); (L.V.M.); (A.D.N.); (N.D.A.); (R.V.S.); (B.A.M.)
| | - Alexander V. Zhakhov
- Institute of Highly Pure Biopreparation of Federal Medical and Biological Agency of Russia, Pudozhskaya street, 7, St. Petersburg 197110, Russia; (A.V.Z.); (A.M.I.)
| | - Alina D. Nikotina
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.Y.K.); (L.V.M.); (A.D.N.); (N.D.A.); (R.V.S.); (B.A.M.)
| | - Nikolay D. Aksenov
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.Y.K.); (L.V.M.); (A.D.N.); (N.D.A.); (R.V.S.); (B.A.M.)
| | - Roman V. Suezov
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.Y.K.); (L.V.M.); (A.D.N.); (N.D.A.); (R.V.S.); (B.A.M.)
| | - Alexander M. Ischenko
- Institute of Highly Pure Biopreparation of Federal Medical and Biological Agency of Russia, Pudozhskaya street, 7, St. Petersburg 197110, Russia; (A.V.Z.); (A.M.I.)
| | - Boris A. Margulis
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.Y.K.); (L.V.M.); (A.D.N.); (N.D.A.); (R.V.S.); (B.A.M.)
| | - Irina V. Guzhova
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (E.Y.K.); (L.V.M.); (A.D.N.); (N.D.A.); (R.V.S.); (B.A.M.)
- Correspondence: ; Tel.: +7812-2973794
| |
Collapse
|
62
|
Bouzeyen R, Haoues M, Barbouche MR, Singh R, Essafi M. FOXO3 Transcription Factor Regulates IL-10 Expression in Mycobacteria-Infected Macrophages, Tuning Their Polarization and the Subsequent Adaptive Immune Response. Front Immunol 2019; 10:2922. [PMID: 31921181 PMCID: PMC6927284 DOI: 10.3389/fimmu.2019.02922] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/28/2019] [Indexed: 12/24/2022] Open
Abstract
Alveolar Macrophages play a key role in the development of a robust adaptive immune response against the agent of Tuberculosis (TB), Mycobacterium tuberculosis (M.tb). However, macrophage response is often hampered by the production of IL-10, a potent suppressor of the host immune response. The secretion of IL-10 correlates with TB pathogenesis and persistence in host tissues. Concordantly, inhibition of IL-10 signaling, during BCG vaccination, confers higher protection against M.tb through a sustained Th1 and Th17 responses. Therefore, uncovering host effectors, underlying mycobacteria-induced expression of IL-10, may be beneficial toward the development of IL-10-blocking tools to be used either as adjuvants in preventive vaccination or as adjunct during standard treatment of TB. Here, we investigated the role of FOXO3 transcription factor in mycobacteria-induced secretion of IL-10. We observed that PI3K/Akt/FOXO3 axis regulates IL-10 expression in human macrophages. Knocking down of FOXO3 expression resulted in an increase of IL-10 production in BCG-infected macrophages. The gene reporter assay further confirmed the transcriptional regulation of IL-10 by FOXO3. In silico analysis identified four Forkhead binding motifs on the human IL-10 promoter, from which the typical FOXO3 one at position -203 was the major target as assessed by mutagenesis and CHIP binding assays. Further, we also observed a decrease in gene expression levels of the M1 typical markers (i.e., CD80 and CD86) in SiFOXO3-transfected macrophages while activation of FOXO3 led to the increase in the expression of CD86, MHCI, and MHCII. Finally, co-culture of human lymphocytes with siFOXO3-transfected macrophages, loaded with mycobacterial antigens, showed decreased expression of Th1/Th17 specific markers and a simultaneous increase in expression of IL-4 and IL-10. Taken together, we report for the first time that FOXO3 modulates IL-10 secretion in mycobacteria-infected macrophage, driving their polarization and the subsequent adaptive immune response. This work proposes FOXO3 as a potential target for the development of host-directed strategies for better treatment or prevention of TB.
Collapse
Affiliation(s)
- Rania Bouzeyen
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Laboratoire de Recherche 11 (LR11), Institut Pasteur de Tunis (IPT), Tunis, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Meriam Haoues
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Laboratoire de Recherche 11 (LR11), Institut Pasteur de Tunis (IPT), Tunis, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Laboratoire de Recherche 11 (LR11), Institut Pasteur de Tunis (IPT), Tunis, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Makram Essafi
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Laboratoire de Recherche 11 (LR11), Institut Pasteur de Tunis (IPT), Tunis, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
63
|
Xu W, Zhang L, Zhang Y, Zhang K, Wu Y, Jin D. TRAF1 Exacerbates Myocardial Ischemia Reperfusion Injury via ASK1-JNK/p38 Signaling. J Am Heart Assoc 2019; 8:e012575. [PMID: 31650881 PMCID: PMC6898833 DOI: 10.1161/jaha.119.012575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background After acute myocardial infarction, the recovery of ischemic myocardial blood flow may cause myocardial reperfusion injury, which reduces the efficacy of myocardial reperfusion. Ways to reduce and prevent myocardial ischemia/reperfusion (I/R) injury are of great clinical significance in the treatment of patients with acute myocardial infarction. TRAF1 (tumor necrosis factor receptor-associated factor 1) is an important adapter protein that is implicated in molecular events regulating immunity, inflammation, and cell death. Little is known about the role and impact of TRAF1 in myocardial I/R injury. Methods and Results TRAF1 expression is markedly induced in wild-type mice and cardiomyocytes after I/R or hypoxia/reoxygenation stimulation. I/R models were established in TRAF1 knockout mice and wild type mice (n=10 per group). We demonstrated that TRAF1 deficiency protects against myocardial I/R-induced loss of heat function, inflammation, and cardiomyocyte death. In addition, overexpression of TRAF1 in primary cardiomyocytes promotes hypoxia/reoxygenation-induced inflammation and apoptosis in vitro. Mechanistically, TRAF1 promotes myocardial I/R injury through regulating ASK1 (apoptosis signal-regulating kinase 1)-mediated JNK/p38 (c-Jun N-terminal kinase/p38) MAPK (mitogen-activated protein kinase) cascades. Conclusions Our results indicated that TRAF1 aggravates the development of myocardial I/R injury by enhancing the activation of ASK1-mediated JNK/p38 cascades. Targeting the TRAF1-ASK1-JNK/p38 pathway provide feasible therapies for cardiac I/R injury.
Collapse
Affiliation(s)
- Weipan Xu
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention Huang Shi China
| | - Li Zhang
- Center for Animal Experiment Wuhan University Wuhan China
| | - Yi Zhang
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Kai Zhang
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Yongbo Wu
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Daoqun Jin
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| |
Collapse
|
64
|
Wang Y, Zhang H, He YW. The Complement Receptors C3aR and C5aR Are a New Class of Immune Checkpoint Receptor in Cancer Immunotherapy. Front Immunol 2019; 10:1574. [PMID: 31379815 PMCID: PMC6658873 DOI: 10.3389/fimmu.2019.01574] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/24/2019] [Indexed: 01/11/2023] Open
Abstract
Cancer immunotherapy has made remarkable clinical advances in recent years. Antibodies targeting the immune checkpoint receptors PD-1 and CTLA-4 and adoptive cell therapy (ACT) based on ex vivo expanded peripheral CTLs, tumor infiltrating lymphocytes (TILs), gene-engineered TCR- and chimeric antigen receptor (CAR)-T cells have all shown durable clinical efficacies in multiple types of cancers. However, these immunotherapeutic approaches only benefit a small fraction of cancer patients as various immune resistance mechanisms and limitations make their effective use a challenge in the majority of cancer patients. For example, adaptive resistance to therapeutic PD-1 blockade is associated with an upregulation of some additional immune checkpoint receptors. The efficacy of transferred tumor-specific T cells under the current clinical ACT protocol is often limited by their inefficient engraftment, poor persistence, and weak capability to attack tumor cells. Recent studies demonstrate that the complement receptor C3aR and C5aR function as a new class of immune checkpoint receptors. Complement signaling through C3aR and C5aR expressed on effector T lymphocytes prevent the production of the cytokine interleukin-10 (IL-10). Removing C3aR/C5aR-mediated transcriptional suppression of IL-10 expression results in endogenous IL-10 production by antitumor effector T cells, which drives T cell expansion and enhances T cell-mediated antitumor immunity. Importantly, preclinical, and clinical data suggest that a signaling axis consisting of complement/C3aR/C5aR/IL-10 critically regulates T cell mediated antitumor immunity and manipulation of the pathway ex vivo and in vivo is an effective strategy for cancer immunotherapy. Furthermore, a combination of treatment strategies targeting the complement/C3aR/C5aR/IL-10 pathway with other treatment modalities may improve cancer therapeutic efficacy.
Collapse
Affiliation(s)
- Yu Wang
- Life Science Institute, Jinzhou Medical University, Jinzhou, China
| | - Hui Zhang
- First Affiliated Hospital, China Medical University, Shenyang, China
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
65
|
Ren J, Hou C, Shi C, Lin Z, Liao W, Yuan E. A polysaccharide isolated and purified from Platycladus orientalis (L.) Franco leaves, characterization, bioactivity and its regulation on macrophage polarization. Carbohydr Polym 2019; 213:276-285. [PMID: 30879670 DOI: 10.1016/j.carbpol.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/23/2019] [Accepted: 03/03/2019] [Indexed: 01/10/2023]
Abstract
The structure and bioactivity of a novel polysaccharide from Platycladus orientalis (L.) Franco leaves (POP2) were investigated in the present study. Structure characterization demonstrated that the average molecular weight of POP2 was 9.69 kDa and consisted of arabinose (14.39%), mannose (10.24%), glucose (63.95%) and galactose (11.42%). The main linkage types of POP2 consisted of (1→4)-linked α-d-Glc and (1→6)-linked α-d-Glc based on methylation and NMR analysis. Bioactivity evaluation showed that POP2 could effectively promote the secretion of inflammatory cytokines (IL-6 and TNF-α), as well as the anti-inflammatory cytokines (IL-10) in LPS-induced cells. Besides, the secretion of NO was significantly inhibited by POP2 in M1 model. POP2 could enhance the level of inflammatory cytokines (NO, IL-6 and TNF-α), while the secretion of the anti-inflammatory cytokine TGF-β was markedly suppressed in IL-4 induced cells. Our work attempted to elucidate the regulation of macrophage polarization and support the potential application of POP2 as bioactive ingredient for functional foods.
Collapse
Affiliation(s)
- Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Sino-Singapore International Joint Research Institute, Guangzhou Knowledge City, Huangpu District, Guangzhou, 510663, China
| | - Chuanli Hou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chuanchao Shi
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zehua Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Erdong Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
66
|
Montelukast, a Cysteinyl Leukotriene Receptor 1 Antagonist, Induces M2 Macrophage Polarization and Inhibits Murine Aortic Aneurysm Formation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9104680. [PMID: 31263710 PMCID: PMC6556796 DOI: 10.1155/2019/9104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/14/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023]
Abstract
Background The pathogenesis of abdominal aortic aneurysm (AAA) is characterized by atherosclerosis with chronic inflammation in the aortic wall. Montelukast is a selective cys-LT 1 receptor antagonist that can suppress atherosclerotic diseases. We evaluated the in vitro properties of montelukast and its in vivo activities in an angiotensin II–infused apolipoprotein E–deficient (apoE−/−) AAA mouse model. Methods The mouse monocyte/macrophage cell line J774A.1 was used in vitro. M1 macrophages were treated with montelukast, and gene expressions of inflammatory cytokines were measured. Macrophages were cultured with montelukast, then gene expressions of arginase-1 and IL (interleukin)-10 were assessed by quantitative polymerase chain reaction, arginase-1 was measured by fluorescence-activated cell sorting, and IL-10 concentration was analyzed by enzyme-linked immunosorbent assay. In vivo, one group (Mont, n=7) received oral montelukast (10 mg/kg/day) for 28 days, and the other group (Saline, n=7) was given normal Saline as a control for the same period. Aortic diameters, activities of matrix metalloproteinases (MMPs), cytokine concentrations, and the number of M2 macrophages were analyzed. Results Relative to control, montelukast significantly suppressed gene expressions of MMP-2, MMP-9, and IL-1β, induced gene expressions of arginase-1 and IL-10, enhanced the expression of the arginase-1 cell surface protein, and increased the protein concentration of IL-10. In vivo, montelukast significantly decreased aortic expansion (Saline vs Mont; 2.44 ± 0.15 mm vs 1.59 ± 0.20 mm, P<.01), reduced MMP-2 activity (Saline vs Mont; 1240 μM vs 755 μM, P<.05), and induced infiltration of M2 macrophages (Saline vs Mont; 7.51 % vs 14.7 %, P<.05). Conclusion Montelukast induces M2 macrophage polarization and prevents AAA formation in apoE−/− mice.
Collapse
|
67
|
The protective effects of β-caryophyllene on LPS-induced primary microglia M1/M2 imbalance: A mechanistic evaluation. Life Sci 2019; 219:40-73. [DOI: 10.1016/j.lfs.2018.12.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/06/2018] [Accepted: 12/31/2018] [Indexed: 11/21/2022]
|
68
|
Yang R, Wang H, Wen J, Ma K, Chen D, Chen Z, Huang C. Regulation of microglial process elongation, a featured characteristic of microglial plasticity. Pharmacol Res 2018; 139:286-297. [PMID: 30476531 DOI: 10.1016/j.phrs.2018.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/08/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Microglia, a type of glia within the brain characterized by a ramified morphology, are essential for removing neuronal debris and restricting the expansion of a lesion site. Upon moderate activation, they undergo a transformation in morphology inducing beneficial responses. However, upon strong stimulation, they mediate neuronal damage via production of pro-inflammatory cytokines. The inhibition of this cascade is considered an effective strategy for neuroinflammation-associated disorder therapy. During this pathological activation microglia also undergo a shortening of process length which contributes to the pathogenesis of such disorders. Thus, microglial plasticity should be considered to have two components: one is the production of inflammatory mediators, and the other is the dynamic changes in their processes. The former role has been well-documented in previous studies, while the latter one remains largely unknown. Recently, we and others have reported that the elongation of microglial process is associated with the transformation of microglia from a pro-inflammatory to an anti-inflammatory state, suggesting that the shortening of process length would make the microglia lose their ability to restrict pathological injury, while the elongation of microglial process would help attenuate neuroinflammation. Compared with the traditional anti-neuroinflammatory strategy, stimulating elongation of microglial process not only reduces the production of pro-inflammatory cytokines, but restores the ability of microglia to scan their surrounding environments, thus rendering their homeostasis regulation more effective. In this review, we provide a discussion of the factors that regulate microglial process elongation in vitro and in vivo, aiming to further drive the understanding of microglial process plasticity.
Collapse
Affiliation(s)
- Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, Jiangsu, China.
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes lane, Piscataway, 08854, NJ, United States
| | - Jie Wen
- Beijing Allwegene Health, B-607 Wanlin Technology Mansion, 8 Malianwa North Road, Beijing 100094, China
| | - Kai Ma
- Probiotics Australia, 24-30 Blanck Street, Ormeau, QLD, 4208, Australia
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
69
|
Borges TJ, Murakami N, Machado FD, Murshid A, Lang BJ, Lopes RL, Bellan LM, Uehara M, Antunes KH, Pérez-Saéz MJ, Birrane G, Vianna P, Gonçalves JIB, Zanin RF, Azzi J, Abdi R, Ishido S, Shin JS, Souza APD, Calderwood SK, Riella LV, Bonorino C. March1-dependent modulation of donor MHC II on CD103 + dendritic cells mitigates alloimmunity. Nat Commun 2018; 9:3482. [PMID: 30154416 PMCID: PMC6113260 DOI: 10.1038/s41467-018-05572-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/08/2018] [Indexed: 12/18/2022] Open
Abstract
In transplantation, donor dendritic cells (do-DCs) initiate the alloimmune response either by direct interaction with host T cells or by transferring intact donor MHC to host DCs. However, how do-DCs can be targeted for improving allograft survival is still unclear. Here we show CD103+ DCs are the major do-DC subset involved in the acute rejection of murine skin transplants. In the absence of CD103+ do-DCs, less donor MHC-II is carried to host lymph nodes, fewer allogenic T cells are primed and allograft survival is prolonged. Incubation of skin grafts with the anti-inflammatory mycobacterial protein DnaK reduces donor MHC-II on CD103+DCs and prolongs graft survival. This effect is mediated through IL-10-induced March1, which ubiquitinates and decreases MHC-II levels. Importantly, in vitro pre-treatment of human DCs with DnaK reduces their ability to prime alloreactive T cells. Our findings demonstrate a novel therapeutic approach to dampen alloimmunity by targeting donor MHC-II on CD103+DCs.
Collapse
Affiliation(s)
- Thiago J Borges
- School of Biosciences and Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS. Av. Ipiranga, 6690, IPB, 2nd floor, lab 6, Porto Alegre, RS, Brazil
- Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Naoka Murakami
- Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA
| | - Felipe D Machado
- School of Biosciences and Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS. Av. Ipiranga, 6690, IPB, 2nd floor, lab 6, Porto Alegre, RS, Brazil
| | - Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Rafael L Lopes
- School of Biosciences and Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS. Av. Ipiranga, 6690, IPB, 2nd floor, lab 6, Porto Alegre, RS, Brazil
| | - Laura M Bellan
- School of Biosciences and Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS. Av. Ipiranga, 6690, IPB, 2nd floor, lab 6, Porto Alegre, RS, Brazil
| | - Mayuko Uehara
- Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA
| | - Krist H Antunes
- School of Pharmacy and Centro Infant, Biomedical Research Institute, PUCRS. Av. Ipiranga, 6690, IPB, 2nd floor, lab 31, Porto Alegre, RS, Brazil
| | - Maria José Pérez-Saéz
- Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA
| | - Gabriel Birrane
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Ave, Boston, MA, 02215, USA
| | - Priscila Vianna
- Genetics Department, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| | - João Ismael B Gonçalves
- School of Biosciences and Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS. Av. Ipiranga, 6690, IPB, 2nd floor, lab 6, Porto Alegre, RS, Brazil
- Department of Health and Human Development, La Salle University, Av. Victor Barreto, 2288, Canoas, RS, Brazil
| | - Rafael F Zanin
- School of Biosciences and Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS. Av. Ipiranga, 6690, IPB, 2nd floor, lab 6, Porto Alegre, RS, Brazil
- Department of Health and Human Development, La Salle University, Av. Victor Barreto, 2288, Canoas, RS, Brazil
| | - Jamil Azzi
- Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA
| | - Reza Abdi
- Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Jeoung-Sook Shin
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, 513 Parnassus Ave, HSE-201, San Francisco, CA, 94143-0414, USA
| | - Ana Paula D Souza
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Ave, Boston, MA, 02215, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Leonardo V Riella
- Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA.
| | - Cristina Bonorino
- School of Biosciences and Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS. Av. Ipiranga, 6690, IPB, 2nd floor, lab 6, Porto Alegre, RS, Brazil.
- Department of Basic Health Sciences, Laboratory of Immunotherapy, Federal University of Health Sciences of Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, RS, Brazil.
| |
Collapse
|
70
|
Ni Y, Liang D, Tian Y, Kron IL, French BA, Yang Z. Infarct-Sparing Effect of Adenosine A2B Receptor Agonist Is Primarily Due to Its Action on Splenic Leukocytes Via a PI3K/Akt/IL-10 Pathway. J Surg Res 2018; 232:442-449. [PMID: 30463755 DOI: 10.1016/j.jss.2018.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/18/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Adenosine A2B receptor (A2BAR) agonist reduces myocardial reperfusion injury by acting on inflammatory cells. Recently, a cardiosplenic axis was shown to mediate the myocardial postischemic reperfusion injury. This study aimed to explore whether the infarct-squaring effect of A2BAR agonist was primarily due to its action on splenic leukocytes. METHODS C57BL6 (wild type [WT]) mice underwent 40 min of left coronary artery occlusion followed by 60 min of reperfusion. A2BAR knockout (KO) and interleukin (IL)-10KO mice served as donors for splenic leukocytes. Acute splenectomy was performed 30 min before ischemia. The acute splenic leukocyte adoptive transfer was performed by injecting 5 × 106 live splenic leukocytes into splenectomized mice. BAY 60-6583, an A2BAR agonist, was injected by i.v. 15 min before ischemia. The infarct size (IS) was determined using 2,3,5-triphenyltetrazolium chloride and Phthalo blue staining. The expression of p-Akt and IL-10 was estimated by Western blotting. Immunofluorescence staining assessed the localization of IL-10 expression. RESULTS BAY 60-6583 reduced the myocardial IS in intact mice but failed to reduce the same in splenectomized mice, which had a smaller IS than intact mice. BAY 60-6583 reduced the IS in splenectomized mice with the acute transfer of WT splenic leukocytes; however, it did not protect the heart of splenectomized mice with the acute transfer of A2BRKO splenic leukocytes. Furthermore, BAY 60-6583 increased the levels of p-Akt and IL-10 in the WT spleen. Moreover, it did not exert any protective effect in IL-10KO mice. CONCLUSIONS A2BAR activation before ischemia stimulated the IL-10 production in splenic leukocytes via a PI3K/Akt pathway, thereby exerting anti-inflammatory effects that limited the myocardial reperfusion injury.
Collapse
Affiliation(s)
- Yingying Ni
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. of China
| | - Degang Liang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. of China
| | - Yikui Tian
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. of China.
| | - Irving L Kron
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Brent A French
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia
| | - Zequan Yang
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia.
| |
Collapse
|
71
|
Bok E, Chung YC, Kim KS, Baik HH, Shin WH, Jin BK. Modulation of M1/M2 polarization by capsaicin contributes to the survival of dopaminergic neurons in the lipopolysaccharide-lesioned substantia nigra in vivo. Exp Mol Med 2018; 50:1-14. [PMID: 29968707 PMCID: PMC6030094 DOI: 10.1038/s12276-018-0111-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/18/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022] Open
Abstract
The present study examined the neuroprotective effects of capsaicin (CAP) and explored their underlying mechanisms in a lipopolysaccharide (LPS)-lesioned inflammatory rat model of Parkinson’s dieases (PD). LPS was unilaterally injected into the substantia nigra (SN) in the absence or presence of CAP or capsazepine (CZP, a TRPV1 antagonist). The SN tissues were prepared for immunohistochemical staining, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, western blot analysis, blood–brain barrier (BBB) permeability evaluation, and reactive oxygen species (ROS) detection. We found that CAP prevented the degeneration of nigral dopamine neurons in a dose-dependent manner and inhibited the expression of proinflammatory mediators in the LPS-lesioned SN. CAP shifted the proinflammatory M1 microglia/macrophage population to an anti-inflammatory M2 state as demonstrated by decreased expression of M1 markers (i.e., inducible nitric oxide synthase; iNOS and interleukin-6) and elevated expression of M2 markers (i.e., arginase 1 and CD206) in the SN. RT-PCR, western blotting, and immunohistochemical analysis demonstrated decreased iNOS expression and increased arginase 1 expression in the CAP-treated LPS-lesioned SN. Peroxynitrate production, reactive oxygen species levels and oxidative damage were reduced in the CAP-treated LPS-lesioned SN. The beneficial effects of CAP were blocked by CZP, indicating TRPV1 involvement. The present data indicate that CAP regulated the M1 and M2 activation states of microglia/macrophage in the LPS-lesioned SN, which resulted in the survival of dopamine neurons. It is therefore likely that TRPV1 activation by CAP has therapeutic potential for treating neurodegenerative diseases, that are associated with neuroinflammation and oxidative stress, such as PD. A drug that activates a neuron-protecting protein in the brain may help treat Parkinson’s disease (PD). Scientists believe neurons die during PD because of an over-activation of proinflammatory markers within immune cell populations, such as the microglia and macrophage cells found in the central nervous system and the brain. Now, Byung Kwan Jin at Kyung Hee University in Seoul and Won-Ho Shin at the Korea Institute of Toxicology in Daejeon and co-workers have demonstrated that a proinflammatory state can be reversed in rat PD models by administering capsaicin, an analgesic drug. Capsaicin activates a receptor protein that is highly expressed in neurons, microglia and astrocytes, and may play a role in neuronal function and motor control. The protein activation reversed the inflammatory state of the immune cells, providing a more protective environment for neurons.
Collapse
Affiliation(s)
- Eugene Bok
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Young Cheul Chung
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, 02447, Korea
| | - Ki-Suk Kim
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon, 34114, Korea.,Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Korea
| | - Hyung Hwan Baik
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, 02447, Korea
| | - Won-Ho Shin
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon, 34114, Korea.
| | - Byung Kwan Jin
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
72
|
Wang Z, Yi T, Long M, Gao Y, Cao C, Huang C, Wang Q, Yin N, Chen Z. Electro-Acupuncture at Zusanli Acupoint (ST36) Suppresses Inflammation in Allergic Contact Dermatitis Via Triggering Local IL-10 Production and Inhibiting p38 MAPK Activation. Inflammation 2018; 40:1351-1364. [PMID: 28493082 DOI: 10.1007/s10753-017-0578-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acupuncture has shown beneficial effect in the treatment of multiple dermatologic conditions including dermatitis, pruritus, urticaria, and hyperhidrosis; however, the detailed mechanisms are still kept unclear. This study aimed to investigate if electro-acupuncture (EA) treatment prevents 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) in rats and explore its underlying mechanisms. ACD was induced by sensitizing and challenging with DNFB topically. Rats were treated daily following bilateral subcutaneous stimulation of EA at Zusanli acupoint (ST36) for 1 week. Ear swelling and serum IgE levels were measured. The ear biopsies were obtained for histology. Inflammatory cytokines on the dermatological ear and local acupoint tissue were assayed. Spleen lymphocytes and the homogenized supernatant of local acupuncture area were used to co-culture for flow cytology and immune analysis, respectively. EA treatment at ST36 notably inhibited ear swelling and inflammatory cell infiltration on DNFB-induced ACD. EA also decreased serum IgE concentrations and alleviated the production of inflammatory cytokines in dermatological ear. Additionally, EA treatment attenuated the percentage of CD4+IFN-γ+ and CD4+IL-4+ T cells associated with ACD. Interestingly, secretion of interleukin (IL)-10 in the local acupoint tissue following EA stimulation was increased and showed suppressive function when co-cultured with the spleen lymphocytes from DNFB group. Lastly, EA treatment demonstrably suppressed p38 MAPK activation in DNFB-treated rats. Our findings suggest that EA treatment at ST36 may ameliorate inflammation associated with DNFB-induced ACD via triggering local IL-10 production and inhibiting p38 MAPK activation, which provide an alternative and promising therapy for ACD.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Pathogen Biology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tao Yi
- College of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Man Long
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yisen Gao
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chunhao Cao
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chenwei Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qian Wang
- Department of Pathogen Biology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Nina Yin
- Department of Anatomy, College of Basic Medicine, Hubei University of Chinese Medicine, 1 Huangjiahu West Road, Hongshan District, Wuhan, Hubei, 430065, China. .,Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, 1 Huangjiahu West Road, Hongshan District, Wuhan, Hubei, 430065, China.
| | - Zebin Chen
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, 1 Huangjiahu West Road, Hongshan District, Wuhan, Hubei, 430065, China.
| |
Collapse
|
73
|
Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol 2017; 14:963-975. [PMID: 28890547 PMCID: PMC5719146 DOI: 10.1038/cmi.2017.88] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022] Open
Abstract
The major innate immune cell types involved in tuberculosis (TB) infection are macrophages, dendritic cells (DCs), neutrophils and natural killer (NK) cells. These immune cells recognize the TB-causing pathogen Mycobacterium tuberculosis (Mtb) through various pattern recognition receptors (PRRs), including but not limited to Toll-like receptors (TLRs), Nod-like receptors (NLRs) and C-type lectin receptors (CLRs). Upon infection by Mtb, the host orchestrates multiple signaling cascades via the PRRs to launch a variety of innate immune defense functions such as phagocytosis, autophagy, apoptosis and inflammasome activation. In contrast, Mtb utilizes numerous exquisite strategies to evade or circumvent host innate immunity. Here we discuss recent research on major host innate immune cells, PRR signaling, and the cellular functions involved in Mtb infection, with a specific focus on the host's innate immune defense and Mtb immune evasion. A better understanding of the molecular mechanisms underlying host-pathogen interactions could provide a rational basis for the development of effective anti-TB therapeutics.
Collapse
Affiliation(s)
- Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haiying Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
74
|
Cai XJ, Wang Z, Cao JW, Ni JJ, Xu YY, Yao J, Xu H, Liu F, Yang GY. Anti-angiogenic and anti-tumor effects of metronomic use of novel liposomal zoledronic acid depletes tumor-associated macrophages in triple negative breast cancer. Oncotarget 2017; 8:84248-84257. [PMID: 29137420 PMCID: PMC5663592 DOI: 10.18632/oncotarget.20539] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/30/2017] [Indexed: 12/26/2022] Open
Abstract
Zoledronic acid (ZOL) has been used as an adjuvant therapy for breast cancer. It is suggested that ZOL might be associated with inhibition of macrophages, which in turn reduces tumor growth, metastasis and tumor angiogenesis. Moreover, metronomic therapy can inhibit tumor angiogenesis and tumor immune cells. Previously we developed ZOL based cationic liposomes that allowed a higher intratumor delivery of drug compared with free ZOL in vivo. Therefore, in this study, Asn-Gly-Arg (NGR) and PEG2000 were used as ligands to modify the surface of liposomes (NGR-PEG-LP-ZOL) in metronomic therapy to clear the tumor-associated macrophages (TAMs) and inhibit the formation of tumor angiogenesis, achieving the purpose of anti-tumor growth. Our data showed that NGR-PEG-LP-ZOL metronomic therapy has the strongest inhibitory effect on tumor growth. Further, NGR-PEG-LP-ZOL metronomic therapy could significantly impair TAMs by inhibiting the expression of CD206 antibody in tumor tissues, decreasing the expression of cytokine related gene expression of TAMs, as well as reducing the percentage of TAMs in tumor tissues. In addition, NGR-PEG-LP-ZOL metronomic therapy could significantly inhibit the expression of tumor neovascular specific antibody CD31 and reduce the microvessel density. In conclusion, our study demonstrated that NGR-PEG-LP-ZOL metronomic therapy could impair TAMs by inhibiting tumor angiogenesis and enhance the antitumor effect of ZOL.
Collapse
Affiliation(s)
- Xin-Jun Cai
- Department of Pharmacy, Zhe Jiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou 310003, People's Republic of China
| | - Zeng Wang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China
| | - Jia-Wei Cao
- Department of Pharmacy, Zhe Jiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou 310003, People's Republic of China
| | - Jian-Jun Ni
- Department of Pharmacy, Zhe Jiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou 310003, People's Republic of China
| | - Ying-Ying Xu
- Department of Pharmacy, Zhe Jiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou 310003, People's Republic of China
| | - Jun Yao
- Department of Pharmacy, Zhe Jiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou 310003, People's Republic of China
| | - Hong Xu
- Department of Gastroenterology and Hepatology, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou 310003, People's Republic of China
| | - Fang Liu
- Department of Acupuncture, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou 310003, People's Republic of China
| | - Gao-Yi Yang
- Department of Ultrasound, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou 310003, People's Republic of China
| |
Collapse
|
75
|
Ghiraldi-Lopes LD, Campanerut-Sá PAZ, Meneguello JE, Seixas FAV, Lopes-Ortiz MA, Scodro RBL, Pires CTA, da Silva RZ, Siqueira VLD, Nakamura CV, Cardoso RF. Proteomic profile of Mycobacterium tuberculosis after eupomatenoid-5 induction reveals potential drug targets. Future Microbiol 2017; 12:867-879. [DOI: 10.2217/fmb-2017-0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: We investigated a proteome profile, protein–protein interaction and morphological changes of Mycobacterium tuberculosis after different times of eupomatenoid-5 (EUP-5) induction to evaluate the cellular response to the drug-induced damages. Methods: The bacillus was induced to sub-minimal inhibitory concentration of EUP-5 at 12 h, 24 h and 48 h. The proteins were separated by 2D gel electrophoresis, identified by LC/MS-MS. Scanning electron microscopy and Search Tool for the Retrieval of Interacting Genes/Proteins analyses were performed. Results: EUP-5 impacts mainly in M. tuberculosis proteins of intermediary metabolism and interactome suggests a multisite disturbance that contributes to bacilli death. Scanning electron microscopy revealed the loss of bacillary form. Conclusion: Some of the differentially expressed proteins have the potential to be drug targets such as citrate synthase (Rv0896), phosphoglycerate kinase (Rv1437), ketol-acid reductoisomerase (Rv3001c) and ATP synthase alpha chain (Rv1308).
Collapse
Affiliation(s)
- Luciana D Ghiraldi-Lopes
- Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Paula AZ Campanerut-Sá
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Jean E Meneguello
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Flávio AV Seixas
- Department of Biochemistry, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Mariana A Lopes-Ortiz
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Uningá University Center, Rod PR 317, 6114, 87035-510, Maringá, Paraná, Brazil
| | - Regiane BL Scodro
- Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Claudia TA Pires
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Rosi Z da Silva
- State University of Ponta Grossa, Avenida General Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Paraná, Brazil
| | - Vera LD Siqueira
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Celso V Nakamura
- Postgraduate Program in Pharmaceutical Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Rosilene F Cardoso
- Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| |
Collapse
|
76
|
Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol Rep 2017; 38:522-528. [PMID: 28586039 DOI: 10.3892/or.2017.5697] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 05/24/2017] [Indexed: 11/05/2022] Open
Abstract
Hypoxia is a common feature of solid tumors. It is closely related to tumor progression. Exosomal microRNAs derived from cancers are considered to be mediators between cancer cells and the tumor microenvironment. In addition, the number of tumor-associated macrophages (TAMs) in the tumor microenvironment has also been demonstrated to correlate with tumor development. However, the relationship between tumor-secreted exosomes and TAM polarization under hypoxic conditions during tumor progression is not clear. Herein, we demonstrated that hypoxia induces the high expression of microRNA-940 (miR‑940) in exosomes derived from epithelial ovarian cancer (EOC). We also found that miR‑940 is highly expressed in exosomes isolated from ascites of EOC patients. Moreover, the overexpression of miR‑940 in macrophages delivered by exosomes stimulated M2 phenotype polarization, while the M2 subtype macrophages promoted EOC proliferation and migration. These results highlight the function of hypoxia in enhancing the high level of expression of miR‑940 in tumor exosomes taken up by macrophages. We also showed that the tumor-promoting function of miR‑940 is mediated by TAM polarization in EOC. These findings show that tumor-derived exosomal miR‑940 induced by hypoxia plays an important role in stimulating TAM polarization in the progression of EOC.
Collapse
|
77
|
Gong X, Chen Y, Fu B, Jiang J, Zhang M. Infant nerve injury induces delayed microglial polarization to the M1 phenotype, and exercise reduces delayed neuropathic pain by modulating microglial activity. Neuroscience 2017; 349:76-86. [DOI: 10.1016/j.neuroscience.2017.02.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/09/2023]
|