51
|
Zhu H, He W, Ye P, Chen J, Wu X, Mu X, Wu Y, Pang H, Han F, Nie X. Piezo1 in skin wound healing and related diseases: Mechanotransduction and therapeutic implications. Int Immunopharmacol 2023; 123:110779. [PMID: 37582313 DOI: 10.1016/j.intimp.2023.110779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
Skin wound healing is a multifaceted and intricate process involving inflammation, tissue proliferation, and scar formation, all of which are accompanied by the continuous application of mechanical forces. Mechanotransduction is the mechanism by which the skin receives and reacts to physical signals from the internal and external environment, converting them into intracellular biochemical signals. This intricate process relies on specialized proteins known as mechanotransducers, with Piezo1 being a critical mechanosensitive ion channel that plays a central role in this process. This article provides an overview of the structural characteristics of Piezo1 and summarizes its effects on corresponding cells or tissues at different stages of skin trauma, including how it regulates skin sensation and skin-related diseases. The aim is to reveal the potential diagnostic and therapeutic value of Piezo1 in skin trauma and skin-related diseases. Piezo1 has been reported to be a vital mediator of mechanosensation and transduction in various organs and tissues. Given its high expression in the skin, Piezo1, as a significant cell membrane ion channel, is essential in activating intracellular signaling cascades that trigger several cellular physiological functions, including cell migration and muscle contraction. These functions contribute to the regulation and improvement of wound healing.
Collapse
Affiliation(s)
- Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia; School of Biomedical Sciences, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia.
| |
Collapse
|
52
|
Wang J, Duan Z, Chen X, Li M. The immune function of dermal fibroblasts in skin defence against pathogens. Exp Dermatol 2023; 32:1326-1333. [PMID: 37387265 DOI: 10.1111/exd.14858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Dermal fibroblasts are the main resident cells of the dermis. They have several significant functions related to wound healing, extracellular matrix production and hair cycling. Dermal fibroblasts can also act as sentinels in defence against infection. They express pattern recognition receptors such as toll-like receptors to sense pathogen components, followed by the synthesis of pro-inflammatory cytokines (including IL-6, IFN-β and TNF-α), chemokines (such as IL-8 and CXCL1) and antimicrobial peptides. Dermal fibroblasts also secrete other molecules-like growth factors and matrix metalloproteinases to benefit tissue repair from infection. Crosstalk between dermal fibroblasts and immune cells may amplify the immune response against infection. Moreover, the transition of a certain adipogenic fibroblasts to adipocytes protects skin from bacterial infection. Together, we discuss the role of dermal fibroblasts in the war against pathogens in this review. Dermal fibroblasts have important immune functions in anti-infection immunity, which should not be overlooked.
Collapse
Affiliation(s)
- Jianing Wang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zhimin Duan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xu Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
53
|
Sen S, Samat R, Jash M, Ghosh S, Roy R, Mukherjee N, Ghosh S, Sarkar J, Ghosh S. Potential Broad-Spectrum Antimicrobial, Wound Healing, and Disinfectant Cationic Peptide Crafted from Snake Venom. J Med Chem 2023; 66:11555-11572. [PMID: 37566805 DOI: 10.1021/acs.jmedchem.3c01150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Antimicrobial cationic peptides are intriguing and propitious antibiotics for the future, even against multidrug-resistant superbugs. Venoms serve as a source of cutting-edge therapeutics and innovative, unexplored medicines. In this study, a novel cationic peptide library consisting of seven sequences was designed and synthesized from the snake venom cathelicidin, batroxicidin (BatxC), with the inclusion of the FLPII motif at the N-terminus. SP1V3_1 demonstrated exceptional antibacterial effectiveness against Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Klebsiella pneumoniae and destroyed the bacteria by depolarizing, rupturing, and permeabilizing their membranes, as evident from fluorescence assays, atomic force microscopy, and scanning electron microscopy. SP1V3_1 was observed to modulate the immune response in LPS-elicited U937 cells and exhibited good antibiofilm activity against MRSA and K. pneumoniae. The peptide promoted wound healing and disinfection in the murine model. The study demonstrated that SP1V3_1 is an exciting peptide lead and may be explored further for the development of better therapeutic peptides.
Collapse
Affiliation(s)
- Samya Sen
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Ramkamal Samat
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surojit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
54
|
Knoedler S, Broichhausen S, Guo R, Dai R, Knoedler L, Kauke-Navarro M, Diatta F, Pomahac B, Machens HG, Jiang D, Rinkevich Y. Fibroblasts - the cellular choreographers of wound healing. Front Immunol 2023; 14:1233800. [PMID: 37646029 PMCID: PMC10461395 DOI: 10.3389/fimmu.2023.1233800] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Injuries to our skin trigger a cascade of spatially- and temporally-synchronized healing processes. During such endogenous wound repair, the role of fibroblasts is multifaceted, ranging from the activation and recruitment of innate immune cells through the synthesis and deposition of scar tissue to the conveyor belt-like transport of fascial connective tissue into wounds. A comprehensive understanding of fibroblast diversity and versatility in the healing machinery may help to decipher wound pathologies whilst laying the foundation for novel treatment modalities. In this review, we portray the diversity of fibroblasts and delineate their unique wound healing functions. In addition, we discuss future directions through a clinical-translational lens.
Collapse
Affiliation(s)
- Samuel Knoedler
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Sonja Broichhausen
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Ruiji Guo
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Leonard Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Fortunay Diatta
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Hans-Guenther Machens
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
55
|
Sheikh-Oleslami S, Tao B, D'Souza J, Butt F, Suntharalingam H, Rempel L, Amiri N. A Review of Metal Nanoparticles Embedded in Hydrogel Scaffolds for Wound Healing In Vivo. Gels 2023; 9:591. [PMID: 37504470 PMCID: PMC10379627 DOI: 10.3390/gels9070591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
An evolving field, nanotechnology has made its mark in the fields of nanoscience, nanoparticles, nanomaterials, and nanomedicine. Specifically, metal nanoparticles have garnered attention for their diverse use and applicability to dressings for wound healing due to their antimicrobial properties. Given their convenient integration into wound dressings, there has been increasing focus dedicated to investigating the physical, mechanical, and biological characteristics of these nanoparticles as well as their incorporation into biocomposite materials, such as hydrogel scaffolds for use in lieu of antibiotics as well as to accelerate and ameliorate healing. Though rigorously tested and applied in both medical and non-medical applications, further investigations have not been carried out to bring metal nanoparticle-hydrogel composites into clinical practice. In this review, we provide an up-to-date, comprehensive review of advancements in the field, with emphasis on implications on wound healing in in vivo experiments.
Collapse
Affiliation(s)
- Sara Sheikh-Oleslami
- Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brendan Tao
- Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jonathan D'Souza
- Faculty of Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Fahad Butt
- Faculty of Science, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Hareshan Suntharalingam
- Faculty of Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Lucas Rempel
- Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nafise Amiri
- International Collaboration on Repair Discoveries, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
56
|
Qian Q, Zhu N, Li W, Wan S, Wu D, Wu Y, Liu W. Human Umbilical Mesenchymal Stem Cells-Derived Microvesicles Attenuate Formation of Hypertrophic Scar through Multiple Mechanisms. Stem Cells Int 2023; 2023:1-15. [DOI: 10.1155/2023/9125265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Mesenchymal stem cells and the derived extracellular microvesicles are potential promising therapy for many disease conditions, including wound healing. Since current therapeutic approaches do not satisfactorily attenuate or ameliorate formation of hypertrophic scars, it is necessary to develop novel drugs to achieve better outcomes. In this study, we investigated the effects and the underlying mechanisms of human umbilical mesenchymal stem cells (HUMSCs)-derived microvesicles (HUMSCs-MVs) on hypertrophic scar formation using a rabbit ear model and a human foreskin fibroblasts (HFF) culture model. The results showed that HUMSCs-MVs reduced formation of hypertrophic scar tissues in the rabbit model based on appearance observation, and hematoxylin and eosin (H&E), Masson, and immunohistochemical stainings. HUMSCs-MVs inhibited invasion of HFF cells and decreased the levels of the α-SMA, N-WASP, and cortacin proteins. HUMSCs-MVs also inhibited cell proliferation of HFF cells. The MMP-1, MMP-3, and TIMP-3 mRNA levels were significantly increased, and the TIMP-4 mRNA level and the NF-kB p65/β-catenin protein levels were significantly decreased in HFF cells after HUMSCs-MVs treatment. The p-SMAD2/3 levels and the ratios of p-SMAD2/3/SMAD2/3 were significantly decreased in both the wound healing tissues and HFF cells after HUMSCs-MVs treatment. CD34 levels were significantly decreased in both wound healing scar tissues and HFF cells after HUMSCs-MVs treatment. The VEGF-A level was also significantly decreased in HFF cells after HUMSCs-MVs treatment. The magnitudes of changes in these markers by HUMSCs-MVs were mostly higher than those by dexamethasone. These results suggested that HUMSCs-MVs attenuated formation of hypertrophic scar during wound healing through inhibiting proliferation and invasion of fibrotic cells, inflammation and oxidative stress, Smad2/3 activation, and angiogenesis. HUMSCs-MVs is a potential promising drug to attenuate formation of hypertrophic scar during wound healing.
Collapse
Affiliation(s)
- Qun Qian
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| | - Ni Zhu
- Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Wenzhe Li
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| | - Songlin Wan
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yunhua Wu
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| | - Weicheng Liu
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
57
|
Salvadores Fernandez C, Jaufuraully S, Bagchi B, Chen W, Datta P, Gupta P, David AL, Siassakos D, Desjardins A, Tiwari MK. A Triboelectric Nanocomposite for Sterile Sensing, Energy Harvesting, and Haptic Diagnostics in Interventional Procedures from Surgical Gloves. Adv Healthc Mater 2023; 12:e2202673. [PMID: 36849872 PMCID: PMC10614699 DOI: 10.1002/adhm.202202673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Advanced interfacial engineering has the potential to enable the successful realization of three features that are particularly important for a variety of healthcare applications: wettability control, antimicrobial activity to reduce infection risks, and sensing of physiological parameters. Here, a sprayable multifunctional triboelectric coating is exploited as a nontoxic, ultrathin tactile sensor that can be integrated directly on the fingertips of surgical gloves. The coating is based on a polymer blend mixed with zinc oxide (ZnO) nanoparticles, which enables antifouling and antibacterial properties. Additionally, the nanocomposite is superhydrophobic (self-cleaning) and is not cytotoxic. The coating is also triboelectric and can be applied directly onto surgical gloves with printed electrodes. The sensorized gloves so obtained enable mechanical energy harvesting, force sensing, and detection of materials stiffness changes directly from fingertip, which may complement proprioceptive feedback for clinicians. Just as importantly, the sensors also work with a second glove on top offering better reassurance regarding sterility in interventional procedures. As a case study of clinical use for stiffness detection, the sensors demonstrate successful detection of pig anal sphincter injury ex vivo. This may lead to improving the accuracy of diagnosing obstetric anal sphincter injury, resulting in prompt repair, fewer complications, and improved quality of life.
Collapse
Affiliation(s)
- Carmen Salvadores Fernandez
- Nanoengineered Systems LaboratoryMechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
| | - Shireen Jaufuraully
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
| | - Biswajoy Bagchi
- Nanoengineered Systems LaboratoryMechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
| | - Wenqing Chen
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
| | - Priyankan Datta
- Nanoengineered Systems LaboratoryMechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
| | - Priya Gupta
- Nanoengineered Systems LaboratoryMechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
| | - Anna L. David
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
- NIHR Biomedical Research Centre at UCLLondonW1T 7DNUK
| | - Dimitrios Siassakos
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
- NIHR Biomedical Research Centre at UCLLondonW1T 7DNUK
| | - Adrien Desjardins
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Manish K. Tiwari
- Nanoengineered Systems LaboratoryMechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
| |
Collapse
|
58
|
Pisani S, Mauri V, Negrello E, Mauramati S, Alaimo G, Auricchio F, Benazzo M, Dorati R, Genta I, Conti B, Ferretti VV, De Silvestri A, Pietrabissa A, Marconi S. Assessment of different manufacturing techniques for the production of bioartificial scaffolds as soft organ transplant substitutes. Front Bioeng Biotechnol 2023; 11:1186351. [PMID: 37441194 PMCID: PMC10333585 DOI: 10.3389/fbioe.2023.1186351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction: The problem of organs' shortage for transplantation is widely known: different manufacturing techniques such as Solvent casting, Electrospinning and 3D Printing were considered to produce bioartificial scaffolds for tissue engineering purposes and possible transplantation substitutes. The advantages of manufacturing techniques' combination to develop hybrid scaffolds with increased performing properties was also evaluated. Methods: Scaffolds were produced using poly-L-lactide-co-caprolactone (PLA-PCL) copolymer and characterized for their morphological, biological, and mechanical features. Results: Hybrid scaffolds showed the best properties in terms of viability (>100%) and cell adhesion. Furthermore, their mechanical properties were found to be comparable with the reference values for soft tissues (range 1-10 MPa). Discussion: The created hybrid scaffolds pave the way for the future development of more complex systems capable of supporting, from a morphological, mechanical, and biological standpoint, the physiological needs of the tissues/organs to be transplanted.
Collapse
Affiliation(s)
- Silvia Pisani
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Valeria Mauri
- SC General Surgery 2, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Erika Negrello
- SC General Surgery 2, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Simone Mauramati
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gianluca Alaimo
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Marco Benazzo
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | - Annalisa De Silvestri
- SSD Biostatistica e Clinical Trial Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Pietrabissa
- SC General Surgery 2, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Surgery, University of Pavia, Pavia, Italy
| | - Stefania Marconi
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
59
|
Lei L, Wan G, Geng X, Sun J, Zhang Y, Wang J, Yang C, Pan Z. The total iridoid glycoside extract of Lamiophlomis rotata Kudo induces M2 macrophage polarization to accelerate wound healing by RAS/ p38 MAPK/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116193. [PMID: 36746295 DOI: 10.1016/j.jep.2023.116193] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lamiophlomis rotata (Benth.) Kudo (L. rotata), a Tibetan medicinal plant, is used to treat "yellow-water diseases", such as skin disease, jaundice and rheumatism. Our previous study showed that the iridoid glycoside extract of L. rotata (IGLR) is the major constituent of skin wound healing. However, the role of IGLR in the biological process of trauma repair and the probable mechanism of the action remain largely unknown. AIM OF THE STUDY To investigate the role of IGLR in the biological process of trauma repair and the probable mechanism of the action. MATERIALS AND METHODS The role of IGLR in wound healing was investigated by overall skin wound in mice with Hematoxylin and Eosin (H&E) and Masson trichrome staining. The anti-inflammatory, angiogenesis-promoting and fibril formation effects of IGLR were visualized in wound skin tissue by immunofluorescence staining, and the proinflammatory factors and growth factors were assayed by real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Macrophages, dermal fibroblasts, and endothelial cells were cultured to measure the direct/indirect interaction effects of IGLR on the proliferation and migration of cells, and flow cytometry was employed to assess the role of IGLR on macrophage phenotype. Network pharmacology combined with Western blot experiments were conducted to explore possible mechanisms of the actions. RESULTS IGLR increased the expression of CD206 (M2 markers) through the RAS/p38 MAPK/NF-κB signaling pathway during wound injury in vivo and in vitro. IGLR suppressed the inflammatory cytokines iNOS, IL-1β and TNF-α in the early stage of wound healing. During the proliferation step of wound repair, IGLR promoted angiogenesis and fibril formation by increasing the expression of VEGF, CD31, TGF-β and α-SMA in wound tissue, and similar results were verified by RT-PCR and ELISA. In a paracrine mechanism, the extract promoted the proliferation of dermal fibroblasts, and endothelial cells were founded by the conditioned medium (CM). CONCLUSION IGLR induced M2 macrophage polarization in the early stage of wound healing; in turn, IGLR played a key role in the transition from inflammation to cell proliferation during the biological process of wound healing.
Collapse
Affiliation(s)
- Lei Lei
- Chongqing Medical University, Chongqing, China
| | - Guoguo Wan
- Chongqing Medical University, Chongqing, China
| | - Xiaoyu Geng
- Chongqing Medical University, Chongqing, China
| | - Jianguo Sun
- Chongqing Medical University, Chongqing, China
| | - Yi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | | | | | - Zheng Pan
- Chongqing Medical University, Chongqing, China.
| |
Collapse
|
60
|
Pinnaratip R, Zhang Z, Smies A, Forooshani PK, Tang X, Rajachar RM, Lee BP. Utilizing Robust Design to Optimize Composite Bioadhesive for Promoting Dermal Wound Repair. Polymers (Basel) 2023; 15:1905. [PMID: 37112052 PMCID: PMC10144490 DOI: 10.3390/polym15081905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Catechol-modified bioadhesives generate hydrogen peroxide (H2O2) during the process of curing. A robust design experiment was utilized to tune the H2O2 release profile and adhesive performance of a catechol-modified polyethylene glycol (PEG) containing silica particles (SiP). An L9 orthogonal array was used to determine the relative contributions of four factors (the PEG architecture, PEG concentration, phosphate-buffered saline (PBS) concentration, and SiP concentration) at three factor levels to the performance of the composite adhesive. The PEG architecture and SiP wt% contributed the most to the variation in the results associated with the H2O2 release profile, as both factors affected the crosslinking of the adhesive matrix and SiP actively degraded the H2O2. The predicted values from this robust design experiment were used to select the adhesive formulations that released 40-80 µM of H2O2 and evaluate their ability to promote wound healing in a full-thickness murine dermal wound model. The treatment with the composite adhesive drastically increased the rate of the wound healing when compared to the untreated controls, while minimizing the epidermal hyperplasia. The release of H2O2 from the catechol and soluble silica from the SiP contributed to the recruitment of keratinocytes to the wound site and effectively promoted the wound healing.
Collapse
Affiliation(s)
- Rattapol Pinnaratip
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
| | - Ariana Smies
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
| | - Pegah Kord Forooshani
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
| | - Xiaoqing Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Rupak M Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
- Marine Ecology and Telemetry Research (MarEcoTel), Seabeck, WA 98380, USA
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
| |
Collapse
|
61
|
Lyu X, Cui F, Zhou H, Cao B, Zhang X, Cai M, Yang S, Sun B, Li G. 3D co-culture of macrophages and fibroblasts in a sessile drop array for unveiling the role of macrophages in skin wound-healing. Biosens Bioelectron 2023; 225:115111. [PMID: 36731395 DOI: 10.1016/j.bios.2023.115111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
Three-dimensional (3D) heterotypic multicellular spheroid models play important roles in researches of the proliferation and remodeling phases in wound healing. This study aimed to develop a sessile drop array to cultivate 3D spheroids and simulate wound healing stage in vitro using NIH-3T3 fibroblasts and M2-type macrophages. By the aid of the offset of surface tension and gravity, the sessile drop array is able to transfer cell suspensions to spheroids via the superhydrophobic surface of each microwell. Meanwhile, each microwell has a cylinder hole at its bottom that provides adequate oxygen to the spheroid. It demonstrated that the NIH-3T3 fibroblast spheroid and the 3T3 fibroblast/M2-type macrophage heterotypic multicellular spheroid can form and maintain physiological activities within nine days. In order to further investigate the structure without destroying the entire spheroid, we reconstructed its 3D morphology using transparent processing technology and the Z-stack function of confocal microscopy. Additionally, a nano antibody-based 3D immunostaining assay was used to analyze the proliferation and differentiation characteristics of these cells. It found that M2-type macrophages were capable of promoting the differentiation of 3T3 fibroblast spheroid. In this study, a novel, inexpensive platform was constructed for developing spheroids, as well as a 3D immunofluorescence method for investigating the macrophage-associated wound healing microenvironment.
Collapse
Affiliation(s)
- Xiaoyan Lyu
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Feiyun Cui
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Hang Zhou
- The Ministry of Education Key Laboratory of Clinical Diagnostics, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bo Cao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Xiaolan Zhang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Minghui Cai
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Shulong Yang
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Bangyong Sun
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China
| | - Gang Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
62
|
Gilbert MM, Mathes SC, Mahajan AS, Rohan CA, Travers JB, Thyagarajan A. The role of sirtuins in dermal fibroblast function. Front Med (Lausanne) 2023; 10:1021908. [PMID: 36993812 PMCID: PMC10040577 DOI: 10.3389/fmed.2023.1021908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
The sirtuins are a family of seven proteins that perform a variety of dermatological functions and help maintain both the structure and function of the skin. More specifically, the sirtuins have been shown to be altered in multiple dermal cell types including dermal fibroblasts. The functions of dermal fibroblasts are extensive, and include playing a significant role in wound healing as well as helping to maintain the integrity of the skin. As dermal fibroblasts age, they can undergo a state of permanent cell cycle arrest, known as cellular senescence. This senescent process can occur as a result of various stressors, including oxidative stress, ultraviolet radiation -induced stress, and replicative stress. In recent years, there has been a growing interest in both enhancing the cutaneous fibroblast’s ability to facilitate wound healing and altering fibroblast cellular senescence. Thus, in this review, we examine the relationship between sirtuin signaling and dermal fibroblasts to understand how this family of proteins may modulate skin conditions ranging from the wound healing process to photocarcinogenesis associated with fibroblast senescence. Additionally, we offer supporting data from experiments examining the relationship between fibroblast senescence and sirtuin levels in an oxidative stress model indicating that senescent dermal fibroblasts exhibit diminished sirtuin levels. Furthermore, we survey the research on the role of sirtuins in specific dermatological disease states that where dermal fibroblast function has been implicated. Finally, we conclude with outlining potential clinical applications of sirtuins in dermatology. In sum, we find that the literature on the involvement of sirtuins in dermal fibroblasts is limited, with research still in its early stages. Nevertheless, intriguing preliminary findings merit additional investigation into the clinical implications of sirtuins in dermatology.
Collapse
Affiliation(s)
- Michael M. Gilbert
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- *Correspondence: Michael M. Gilbert,
| | | | - Avinash S. Mahajan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Craig A. Rohan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Jeffrey B. Travers
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Anita Thyagarajan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Anita Thyagarajan,
| |
Collapse
|
63
|
Yang H, Xu H, Wang Z, Li X, Wang P, Cao X, Xu Z, Lv D, Rong Y, Chen M, Tang B, Hu Z, Deng W, Zhu J. Analysis of miR-203a-3p/SOCS3-mediated induction of M2 macrophage polarization to promote diabetic wound healing based on epidermal stem cell-derived exosomes. Diabetes Res Clin Pract 2023; 197:110573. [PMID: 36764461 DOI: 10.1016/j.diabres.2023.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND The development of therapeutic strategies to improve wound healing in individual diabetic patients remains challenging. Stem cell-derived exosomes represent a promising nanomaterial, and microRNAs (miRNAs) can be isolated from them. It is important to identify the potential therapeutic role of specific miRNAs, given that miRNAs can play a therapeutic role. METHODS qPCR, flow cytometry, and western blotting were used to verify the effect of epidermal stem cell-derived exosomes (EpiSC-EXOs) on M2 macrophage polarization and SOCS3 expression. By screening key miRNAs targeting SOCS3 in EpiSC-EXOs by high-throughput sequencing, we verified the mechanism in vitro. Finally, an animal model was used to verify the effect of promoting healing. RESULTS The use of EpiSC-EXOs reduced SOCS3 expression and promoted M2 macrophage polarization. The abundant miR-203a-3p present in the EpiSC-EXOs specifically bound to SOCS3 and activated the JAK2/STAT3 signaling pathway to induce M2 macrophage polarization. Treatment of the db/db mouse wound model with miR-203a-3p agomir exerted a pro-healing effect. CONCLUSIONS Our results demonstrated that the abundant miR-203a-3p present in EpiSC-EXOs can promote M2 macrophage polarization by downregulating SOCS3 and suggested that diabetic wounds can obtain better healing effects through this mechanism.
Collapse
Affiliation(s)
- Hao Yang
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Hailin Xu
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Zhiyong Wang
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Xiaohui Li
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Peng Wang
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Xiaoling Cao
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Zhongye Xu
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Dongming Lv
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Yanchao Rong
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Bing Tang
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Zhicheng Hu
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Jiayuan Zhu
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China.
| |
Collapse
|
64
|
Rai V, Moellmer R, Agrawal DK. Role of fibroblast plasticity and heterogeneity in modulating angiogenesis and healing in the diabetic foot ulcer. Mol Biol Rep 2023; 50:1913-1929. [PMID: 36528662 DOI: 10.1007/s11033-022-08107-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022]
Abstract
Chronic diabetic foot ulcers (DFUs) are an important clinical issue faced by clinicians despite the advanced treatment strategies consisting of wound debridement, off-loading, medication, wound dressings, and keeping the ulcer clean. Non-healing DFUs are associated with the risk of amputation, increased morbidity and mortality, and economic stress. Neo-angiogenesis and granulation tissue formation are necessary for physiological DFU healing and acute inflammation play a key role in healing. However, chronic inflammation in association with diabetic complications holds the ulcer in the inflammatory phase without progressing to the resolution phase contributing to non-healing. Fibroblasts acquiring myofibroblasts phenotype contribute to granulation tissue formation and angiogenesis. However, recent studies suggest the presence of five subtypes of fibroblast population and of changing density in non-healing DFUs. Further, the association of fibroblast plasticity and heterogeneity with wound healing suggests that the switch in fibroblast phenotype may affect wound healing. The fibroblast phenotype shift and altered function may be due to the presence of chronic inflammation or a diabetic wound microenvironment. This review focuses on the role of fibroblast plasticity and heterogeneity, the effect of hyperglycemia and inflammatory cytokines on fibroblasts, and the interaction of fibroblasts with other cells in diabetic wound microenvironment in the perspective of DFU healing. Next, we summarize secretory, angiogenic, and angiostatic phenotypes of fibroblast which have been discussed in other organ systems but not in relation to DFUs followed by the perspective on the role of their phenotypes in promoting angiogenesis in DFUs.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, 91766, Pomona, CA, USA.
| | - Rebecca Moellmer
- College of Podiatric Medicine, Western University of Health Sciences, 91766, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 91766, Pomona, CA, USA
| |
Collapse
|
65
|
Korkmaz HI, Flokstra G, Waasdorp M, Pijpe A, Papendorp SG, de Jong E, Rustemeyer T, Gibbs S, van Zuijlen PPM. The Complexity of the Post-Burn Immune Response: An Overview of the Associated Local and Systemic Complications. Cells 2023; 12:345. [PMID: 36766687 PMCID: PMC9913402 DOI: 10.3390/cells12030345] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Burn injury induces a complex inflammatory response, both locally and systemically, and is not yet completely unravelled and understood. In order to enable the development of accurate treatment options, it is of paramount importance to fully understand post-burn immunology. Research in the last decades describes insights into the prolonged and excessive inflammatory response that could exist after both severe and milder burn trauma and that this response differs from that of none-burn acute trauma. Persistent activity of complement, acute phase proteins and pro- and anti-inflammatory mediators, changes in lymphocyte activity, activation of the stress response and infiltration of immune cells have all been related to post-burn local and systemic pathology. This "narrative" review explores the current state of knowledge, focusing on both the local and systemic immunology post-burn, and further questions how it is linked to the clinical outcome. Moreover, it illustrates the complexity of post-burn immunology and the existing gaps in knowledge on underlying mechanisms of burn pathology.
Collapse
Affiliation(s)
- H. Ibrahim Korkmaz
- Department of Plastic Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity (AII) Institute, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, 1942 LE Beverwijk, The Netherlands
- Association of Dutch Burn Centres (ADBC), 1941 AJ Beverwijk, The Netherlands
| | - Gwendolien Flokstra
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity (AII) Institute, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Maaike Waasdorp
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity (AII) Institute, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Anouk Pijpe
- Department of Plastic Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, 1942 LE Beverwijk, The Netherlands
- Association of Dutch Burn Centres (ADBC), 1941 AJ Beverwijk, The Netherlands
| | - Stephan G. Papendorp
- Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, 1942 LE Beverwijk, The Netherlands
- Intensive Care Unit, Red Cross Hospital, 1942 LE Beverwijk, The Netherlands
| | - Evelien de Jong
- Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, 1942 LE Beverwijk, The Netherlands
- Intensive Care Unit, Red Cross Hospital, 1942 LE Beverwijk, The Netherlands
| | - Thomas Rustemeyer
- Department of Dermatology, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity (AII) Institute, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Paul P. M. van Zuijlen
- Department of Plastic Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, 1942 LE Beverwijk, The Netherlands
- Association of Dutch Burn Centres (ADBC), 1941 AJ Beverwijk, The Netherlands
- Paediatric Surgical Centre, Emma Children’s Hospital, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
66
|
Vizely K, Wagner KT, Mandla S, Gustafson D, Fish JE, Radisic M. Angiopoietin-1 derived peptide hydrogel promotes molecular hallmarks of regeneration and wound healing in dermal fibroblasts. iScience 2023; 26:105984. [PMID: 36818306 PMCID: PMC9932487 DOI: 10.1016/j.isci.2023.105984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/12/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
By providing an ideal environment for healing, biomaterials can be designed to facilitate and encourage wound regeneration. As the wound healing process is complex, there needs to be consideration for the cell types playing major roles, such as fibroblasts. As a major cell type in the dermis, fibroblasts have a large impact on the processes and outcomes of wound healing. Prevopisly, conjugating the angiopoietin-1 derived Q-peptide (QHREDGS) to a collagen-chitosan hydrogel created a biomaterial with in vivo success in accelerating wound healing. This study utilized solvent cast Q-peptide conjugated collagen-chitosan seeded with fibroblast monolayers to investigate the direct impact of the material on this major cell type. After 24 h, fibroblasts had a significant change in release of anti-inflammatory, pro-healing, and ECM deposition cytokines, with demonstrated immunomodulatory effects on macrophages and upregulated expression of critical wound healing genes.
Collapse
Affiliation(s)
- Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Karl T. Wagner
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Serena Mandla
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Dakota Gustafson
- Toronto General Hospital Research Institute, University Health Network, Toronto,ON M5G 2C4, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto,ON M5G 2C4, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada,Toronto General Hospital Research Institute, University Health Network, Toronto,ON M5G 2C4, Canada,Corresponding author
| |
Collapse
|
67
|
Fang W, Yang L, Chen Y, Hu Q. Bioinspired multifunctional injectable hydrogel for hemostasis and infected wound management. Acta Biomater 2023; 161:50-66. [PMID: 36640951 DOI: 10.1016/j.actbio.2023.01.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/08/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Routine wound management faces significant challenges including rebleeding and bacterial infection that affect millions of people each year. However, conventional wound dressings (e.g., gauze, bandage) are limited to simply cover the injured surfaces and rarely show special functionality to promote the wound recovery. Currently, injectable hydrogels have been widely designed as multifunctional wound dressings to manage the hemostatic and wound healing process. Nevertheless, the integration of multiple functions through simple composition and easy construction is still difficult and hardly achieved. Herein, we reported a bioinspired multifunctional injectable hydrogel (CQCS@gel) consisted of only two components, catechol-functionalized quaternized chitosan (CQCS) and dibenzaldehyde-terminated poly(ethylene glycol) (DB-PEG2000). The building blocks endowed CQCS@gel with tissue-adhesive, antibacterial, antioxidant, self-healing and pH-responsive properties. Based on the in vivo hemostatic study, quick hemostasis for acute tissue injuries such as liver and carotid wounds was realized owing to the rapid gelation rate and strong tissue-adhesiveness of CQCS@gel. Moreover, CQCS@gel remarkably boosted the chronic recovery process of MRSA-infected cutaneous wounds by promoting collagen deposition, hair follicles regeneration and angiogenesis. Overall, this multifunctional injectable hydrogel shows potentials as a universal wound dressing in clinical applications, enabling both hemostasis and infected wound management. STATEMENT OF SIGNIFICANCE: This is the first report showing the multifunctional injectable hydrogel (CQCS@gel) consisted of catechol-functionalized quaternized chitosan and dibenzaldehyde-terminated poly(ethylene glycol). The incorporation of quaternary ammonium groups imparted the CQCS@gel with outstanding contact-active bacterial killing efficiency and the catechol moieties enhanced its tissue adhesive and antioxidant properties. Moreover, the reversible imine crosslinks endowed the CQCS@gel with self-healing and pH-responsive drug release capabilities. These multiple functions were integrated into a single injectable hydrogel system with easy availability and low cost. In vitro and in vivo results showed that the newly designed hydrogel was biocompatible, realized successful sealing hemostasis under multiple bleeding scenarios and enabled accelerated healing of infected skin wounds.
Collapse
Affiliation(s)
- Wen Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling Yang
- Jiaxing Key Laboratory of Flexible Electronics based Intelligent Sensing and Advanced Manufacturing Technology, Institute of Flexible Electronics Technology of THU, Jiaxing, China
| | - Yihao Chen
- School of Engineering Medicine, Beihang University, Beijing, China.
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
68
|
Rai V, Agrawal DK. Male or female sex: considerations and translational aspects in diabetic foot ulcer research using rodent models. Mol Cell Biochem 2022. [PMID: 36574098 DOI: 10.1007/s11010-022-04642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
69
|
A Prospective Multicenter Randomized Controlled Trial to Evaluate the Efficacy of Chitosan Hydrogel Paste in Comparison to Commercial Hydroactive Gel as a Wound Bed Preparation. Indian J Plast Surg 2022; 56:44-52. [PMID: 36998939 PMCID: PMC10049809 DOI: 10.1055/s-0042-1759503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
abstract
Background This clinical trial aimed to evaluate the clinical efficacy of chitosan derivative hydrogel paste (CDHP) as a wound bed preparation for wounds with cavities.
Methods This study enrolled 287 patients, with 143 patients randomized into the CDHP group (treatment) and 144 patients randomized into the commercial hydroactive gel (CHG) group (control). The granulation tissue, necrotic tissue, patient comfort, clinical signs, symptoms, and patient convenience during the application and removal of the dressing were assessed.
Results The study was completed by 111 and 105 patients from the treatment and control groups, respectively. Both groups showed an increasing mean percentage of wound granulation over time when the initial wound size and comorbidity were adjusted (F(10,198) = 4.61; p < 0.001), but no significant difference was found between the groups (F(1,207) = 0.043; p = 0.953). The adjusted mean percentage of necrotic tissue of both groups showed a significant decrease over time (F(10,235) = 5.65; p <0.001), but no significant differences were found between the groups (F (1,244) = 0.487; p = 0.486).
Conclusion CDHP is equivalent to CHG and is an alternative in wound management and wound bed preparation for wounds with cavities.
Collapse
|
70
|
Gaertner K, Michell C, Tapanainen R, Goffart S, Saari S, Soininmäki M, Dufour E, Pohjoismäki JLO. Molecular phenotyping uncovers differences in basic housekeeping functions among closely related species of hares (
Lepus
spp., Lagomorpha: Leporidae). Mol Ecol 2022. [PMID: 36320183 DOI: 10.1111/mec.16755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022]
Abstract
Speciation is a fundamental evolutionary process, which results in genetic differentiation of populations and manifests as discrete morphological, physiological and behavioural differences. Each species has travelled its own evolutionary trajectory, influenced by random drift and driven by various types of natural selection, making the association of genetic differences between the species with the phenotypic differences extremely complex to dissect. In the present study, we have used an in vitro model to analyse in depth the genetic and gene regulation differences between fibroblasts of two closely related mammals, the arctic/subarctic mountain hare (Lepus timidus Linnaeus) and the temperate steppe-climate adapted brown hare (Lepus europaeus Pallas). We discovered the existence of a species-specific expression pattern of 1623 genes, manifesting in differences in cell growth, cell cycle control, respiration, and metabolism. Interspecific differences in the housekeeping functions of fibroblast cells suggest that speciation acts on fundamental cellular processes, even in these two interfertile species. Our results help to understand the molecular constituents of a species difference on a cellular level, which could contribute to the maintenance of the species boundary.
Collapse
Affiliation(s)
- Kateryna Gaertner
- Mitochondrial Bioenergetics and Metabolism, Faculty of Medicine and Health Technology FI‐33014 Tampere University Tampere Finland
| | - Craig Michell
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Riikka Tapanainen
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| | - Sina Saari
- Mitochondrial Bioenergetics and Metabolism, Faculty of Medicine and Health Technology FI‐33014 Tampere University Tampere Finland
| | - Manu Soininmäki
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| | - Eric Dufour
- Mitochondrial Bioenergetics and Metabolism, Faculty of Medicine and Health Technology FI‐33014 Tampere University Tampere Finland
| | - Jaakko L. O. Pohjoismäki
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| |
Collapse
|
71
|
Pérez-Díaz MA, Alvarado-Gómez E, Martínez-Pardo ME, José Yacamán M, Flores-Santos A, Sánchez-Sánchez R, Martínez-Gutiérrez F, Bach H. Development of Radiosterilized Porcine Skin Electrosprayed with Silver Nanoparticles Prevents Infections in Deep Burns. Int J Mol Sci 2022; 23:13910. [PMID: 36430385 PMCID: PMC9698029 DOI: 10.3390/ijms232213910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Extensive burns represent a significant challenge in biomedicine due to the multiple systemic and localized complications resulting from the major skin barrier loss. The functionalization of xenografts with nanostructured antibacterial agents proposes a fast and accessible application to restore barrier function and prevent localized bacterial contamination. Based on this, the objective of this work was to functionalize a xenograft by electrospray deposition with silver nanoparticles (AgNPs) and to evaluate its antibiofilm and cytotoxic effects on human fibroblasts. Initially, AgNPs were synthesized by a green microwave route with sizes of 2.1, 6.8, and 12.2 nm and concentrations of 0.055, 0.167, and 0.500 M, respectively. The AgNPs showed a size relationship directly proportional to the concentration of AgNO3, with a spherical and homogeneous distribution determined by high-resolution transmission electron microscopy. The surface functionalization of radiosterilized porcine skin (RPS) via electrospray deposition with the three AgNP concentrations (0.055, 0.167, and 0.500 M) in the epidermis and the dermis showed a uniform distribution on both surfaces by energy-dispersive X-ray spectroscopy. The antibiofilm assays of clinical multidrug-resistant Pseudomonas aeruginosa showed significant effects at the concentrations of 0.167 and 0.500 M, with a log reduction of 1.3 and 2.6, respectively. Additionally, viability experiments with human dermal fibroblasts (HDF) exposed to AgNPs released from functionalized porcine skin showed favorable tolerance, with retention of viability more significant than 90% for concentrations of 0.05 and 0.167 M after 24 h exposure. Antibacterial activity combined with excellent biocompatibility makes this biomaterial a candidate for antibacterial protection by inhibiting bacterial biofilms in deep burns during early stages of development.
Collapse
Affiliation(s)
- Mario Alberto Pérez-Díaz
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Calzada México Xochimilco No. 289, Colonia Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Elizabeth Alvarado-Gómez
- Laboratorio de Antimicrobianos, Biopelículas y Microbiota, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No. 6, Zona Universitaria, San Luis Potosí 78210, Mexico
| | - María Esther Martínez-Pardo
- Banco de Tejidos Radioesterilizados, Instituto Nacional de Investigaciones Nucleares (BTR-ININ), Carretera México-Toluca S/N La Marquesa, Ocoyoacac 52750, Mexico
| | - Miguel José Yacamán
- Applied Physics and Materials Science Department, Core Faculty Center for Materials Interfaces in Research and Applications (MIRA), Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Andrés Flores-Santos
- Laboratorio de Antimicrobianos, Biopelículas y Microbiota, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No. 6, Zona Universitaria, San Luis Potosí 78210, Mexico
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Calzada México Xochimilco No. 289, Colonia Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Instituto Tecnologico de Monterrey, C. Puente No. 222, Colonia Arboledas Sur, Tlalpan, Ciudad de México 14380, Mexico
| | - Fidel Martínez-Gutiérrez
- Laboratorio de Antimicrobianos, Biopelículas y Microbiota, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No. 6, Zona Universitaria, San Luis Potosí 78210, Mexico
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Sierra Leona No. 550, Lomas, San Luis Potosí 28210, Mexico
| | - Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
72
|
Littig JPB, Moellmer R, Estes AM, Agrawal DK, Rai V. Increased Population of CD40+ Fibroblasts Is Associated with Impaired Wound Healing and Chronic Inflammation in Diabetic Foot Ulcers. J Clin Med 2022; 11:6335. [PMID: 36362563 PMCID: PMC9654055 DOI: 10.3390/jcm11216335] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 08/30/2023] Open
Abstract
Despite the advancement in the treatment, nonhealing diabetic foot ulcers (DFUs) are an important clinical issue accounting for increased morbidity and risk of amputation. Persistent inflammation, decreased granulation tissue formation, decreased neo-angiogenesis, and infections are common underlying causes of the nonhealing pattern. Fibroblasts play a critical role in granulation tissue formation and angiogenesis and mediate wound healing how fibroblasts regulate inflammation in nonhealing DFUs is a question to ponder. This study aims to investigate the expression of a de-differentiated subpopulation of fibroblasts which are CD40+ (secretory fibroblasts) and increased secretion of IL-6 and IL-8 but have never been reported in DFUs. We characterized 11 DFU tissues and nearby clean tissues histologically and for the presence of inflammation and CD40+ fibroblasts using immunohistochemistry and RT-PCR. The results revealed significantly increased density of CD40+ fibroblasts and differential expression of mediators of inflammation in DFU tissues compared to clean tissue. Increased expression of IL-6, IL-1β, and TNF-α in DFU tissues along with CD40+ fibroblast suggest that CD40+ fibroblasts in DFUs contribute to the chronicity of inflammation and targeting fibroblasts phenotypic switch to decrease secretory fibroblasts may have therapeutic significance to promote healing.
Collapse
Affiliation(s)
| | - Rebecca Moellmer
- College of Podiatry, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Adrienne M. Estes
- College of Podiatry, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
73
|
Choi YJ, Alishir A, Jang T, Kang KS, Lee S, Kim KH. Antiskin Aging Effects of Indole Alkaloid N-Glycoside from Ginkgo Fruit ( Ginkgo biloba fruit) on TNF-α-Exposed Human Dermal Fibroblasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13651-13660. [PMID: 36251736 DOI: 10.1021/acs.jafc.2c05769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Human skin aging has internal and external factors, both of which are characterized by TNF-α overproduction. Therefore, we aimed to identify a natural product that suppresses the damage that occurs in cutaneous dermal fibroblasts exposed to TNF-α. The protective effects of the indole alkaloid N-glycoside, ginkgoside B dimethyl ester (GBDE), isolated from ginkgo fruit (Ginkgo biloba fruit) were evaluated in TNF-α stimulated human dermal fibroblasts (HDFs). GBDE inhibited TNF-α-induced MMP-1 expression to 2.2 ± 0.1-fold (p < 0.01) and reversed the decrease in collagen levels to 0.4 ± 0.00-fold (p < 0.01) at 50 μM. The effect of GBDE was due to the suppression of the phospolylaton of MAPKs (ERK, 0.47 ± 0.05; JNK, 1.21 ± 0.07; p38, 0.77 ± 0.07-folds, p < 0.001) and Akt (0.14 ± 0.03-fold, p < 0.001) compared to the TNF-α group. GBDE also reduced the expression of COX-2 to 2.06 ± 0.12-fold (p < 0.001) and increased the expression of HO-1 to 10.64 ± 0.2-fold (p < 0.001). In addition, GBDE inhibited the expression of the pro-inflammatory cytokines (IL-8, 2.2 ± 0.0; IL-1β, 1.6 ± 0.0; IL-6, 2.0 ± 0.10-folds, p < 0.05). These results provide experimental evidence that GBDE can protect against skin damage, including aging.
Collapse
Affiliation(s)
- Yea Jung Choi
- College of Korean Medicine, Gachon University, Seongnam13120, Republic of Korea
| | - Akida Alishir
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Taesu Jang
- Health Administration, Dankook University, Cheonan31116, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam13120, Republic of Korea
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam13120, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| |
Collapse
|
74
|
Cui X, Wang X, Wen J, Li X, Li N, Hao X, Zhao B, Wu X, Miao J. Identification of a new way to induce differentiation of dermal fibroblasts into vascular endothelial cells. STEM CELL RESEARCH & THERAPY 2022; 13:501. [PMID: 36210433 PMCID: PMC9549676 DOI: 10.1186/s13287-022-03185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 09/04/2021] [Indexed: 12/03/2022]
Abstract
Background Human dermal fibroblasts (HDFs) have the potential to differentiate into vascular endothelial cells (VECs), but their differentiation rate is low and the mechanism involved is not clear. The small molecule pathway controls the phenotype of fibroblasts by activating cellular signaling pathways, which is a more convenient method in the differentiation strategy of HDFs into VECs. Methods In this study, HDFs were treated with the different doses of CPP ((E)-4-(4-(4-(7-(diethylamino)-2-oxo-2H-chromene-3-carbonyl) piperazin-1-yl) styryl)-1-methylpyridin-1-ium iodide), and the mRNA and protein levels of HDFs were detected by qPCR, Western blot, flow cytometry and immunofluorescent staining. The matrigel assays, acetylated-LDL uptake and angiogenesis assays of chick embryo chorioallantoic membrane (CAM) and hindlimb ischemia model of nude mice were performed to evaluate the functions of VECs derived from HDFs. Results Here, we report that the small chemical molecule, CPP, can effectively induce HDFs to differentiate into VECs. First, we observed the morphological changes of HDFS treated with CPP. Flow cytometry, Western blot and qRT-PCR analyses showed that CPP effectively decreased the level of the HDFs-marker Vimentin and increased levels of the VEC-markers CD31, CD133, TEK, ERG, vWF, KDR and CDH5. Detection of the percentage of CD31-positive cells by immunofluorescent staining confirmed that CPP can effectively induce HDFs to differentiate into VECs. The results of Matrigel assays, DiI-ac-LDL uptake, angiogenesis assays on CAM and hindlimb ischemia model of nude mice showed that CPP-induced HDFs have the functions of VECs in vitro and in vivo. Western blot and qRT-PCR analysis showed that CPP induces HDFs to differentiate into VECs by promoting the expression of pro-angiogenic factors (VEGF, FGF-2 and PDGF-BB). Conclusions Our data suggest that the small chemical molecule CPP efficiently induces the differentiation of HDFs into VECs. Simultaneously, this new inducer provides a potential to develop new approaches to restore vascular function for the treatment of ischemic vascular diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03185-4.
Collapse
|
75
|
Isolation of Aloe saponaria-Derived Extracellular Vesicles and Investigation of Their Potential for Chronic Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14091905. [PMID: 36145653 PMCID: PMC9504946 DOI: 10.3390/pharmaceutics14091905] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
A chronic wound is caused by a failure to progress through the normal phases of wound repair in an orderly and timely manner. To induce skin regeneration while inhibiting chronic inflammation, numerous natural products, and in particular, plant-derived biomaterials, have been developed. Aloe saponaria, is known to contain flavonoid and phenolic acid compounds with anti-oxidative and anti-inflammatory properties. Here, we isolated extracellular vesicles (EVs) from Aloe saponaria by polyethylene glycol (PEG)-based precipitation and investigated their potential as a therapeutic for chronic wound healing. The Aloe saponaria-derived EVs (AS-EVs) showed no significant cytotoxicity on several cell types, despite a high level of intracellular uptake. When lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were treated with AS-EVs, significant reductions in the expression of pro-inflammatory genes, such as interleukin-6 and interleukin-1β, were observed. Proliferation and migration of human dermal fibroblasts, as determined by the water-soluble tetrazolium salt-8 and transwell migration assay, respectively, were shown to be promoted by treatment with AS-EVs. It was also demonstrated that AS-EVs enhanced tube formation in human umbilical vein endothelial cells, indicating a stimulatory activity on angiogenesis; one of the crucial steps for effective wound healing. Collectively, our results suggest the potential of AS-EVs as a natural therapeutic for chronic wound healing.
Collapse
|
76
|
Ngoepe MP, Battison A, Mufamadi S. Nano-Enabled Chronic Wound Healing Strategies: Burn and Diabetic Ulcer Wounds. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The human skin serves as the body’s first line of defense against the environment. Diabetes mellitus (DM) and 2nd–4th degree burns, on the other hand, affect the skin’s protective barrier features. Burn wounds, hypermetabolic state, and hyperglycemia compromise the
immune system leading to chronic wound healing. Unlike acute wound healing processes, chronic wounds are affected by reinfections which can lead to limb amputation or death. The conventional wound dressing techniques used to protect the wound and provide an optimal environment for repair have
their limitations. Various nanomaterials have been produced that exhibit distinct features to tackle issues affecting wound repair mechanisms. This review discusses the emerging technologies that have been designed to improve wound care upon skin injury. To ensure rapid healing and possibly
prevent scarring, different nanomaterials can be applied at different stages of healing (hemostasis, inflammation, proliferation, remodeling).
Collapse
Affiliation(s)
- Mpho Phehello Ngoepe
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| | - Aidan Battison
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| | - Steven Mufamadi
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| |
Collapse
|
77
|
Yu H, Wang Y, Wang D, Yi Y, Liu Z, Wu M, Wu Y, Zhang Q. Landscape of the epigenetic regulation in wound healing. Front Physiol 2022; 13:949498. [PMID: 36035490 PMCID: PMC9403478 DOI: 10.3389/fphys.2022.949498] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Wound healing after skin injury is a dynamic and highly coordinated process involving a well-orchestrated series of phases, including hemostasis, inflammation, proliferation, and tissue remodeling. Epigenetic regulation refers to genome-wide molecular events, including DNA methylation, histone modification, and non-coding RNA regulation, represented by microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA). Epigenetic regulation is pervasively occurred in the genome and emerges as a new role in gene expression at the post-transcriptional level. Currently, it is well-recognized that epigenetic factors are determinants in regulating gene expression patterns, and may provide evolutionary mechanisms that influence the wound microenvironments and the entire healing course. Therefore, this review aims to comprehensively summarize the emerging roles and mechanisms of epigenetic remodeling in wound healing. Moreover, we also pose the challenges and future perspectives related to epigenetic modifications in wound healing, which would bring novel insights to accelerated wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Wu
- *Correspondence: Min Wu, ; Yiping Wu, ; Qi Zhang,
| | - Yiping Wu
- *Correspondence: Min Wu, ; Yiping Wu, ; Qi Zhang,
| | - Qi Zhang
- *Correspondence: Min Wu, ; Yiping Wu, ; Qi Zhang,
| |
Collapse
|
78
|
Zavadakova A, Vistejnova L, Tonarova P. Functional responses of dermal fibroblasts to low nutrition and pro-inflammatory stimuli mimicking a wound environment in vitro. In Vitro Cell Dev Biol Anim 2022; 58:643-657. [PMID: 35948856 DOI: 10.1007/s11626-022-00713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022]
Abstract
Dermal fibroblasts (DF) constitute one of key cells involved in wound healing. However, the functions they perform in wound conditions remain poorly understood. This study involved exposing DF to low nutrition and to low nutrition + LPS for 5 d as conditions representing the wound. Although DF exhibited increasing metabolic activity in time under all conditions including control, the proliferation did not change in both low nutrition and low nutrition + LPS. Only the low nutrition + LPS was found to potentiate the migration and pro-inflammatory phenotype (IL6 release) of DF. The potential of DF to contract collagen hydrogel declined only under low nutrition as a consequence of low cell number. The expression of α-SMA was reduced under both conditions independently of the cell number. The remodeling capability of DF was affected under both conditions as documented by the enhanced MMP2 activity. Finally, the production of collagen type I was not affected by either condition. The study shows that low nutrition as the single factor is able to delay the healing process. Moreover, the addition of the mild pro-inflammatory stimulus represented by LPS may amplify the cell response in case of decreased α-SMA expression or excite DF to produce IL6 impairing the healing process.
Collapse
Affiliation(s)
- Anna Zavadakova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, Czech Republic.
| | - Lucie Vistejnova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, Pilsen, Czech Republic
| | - Pavla Tonarova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, Czech Republic.,Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, U Nemocnice 5, Prague, Czech Republic
| |
Collapse
|
79
|
Zhu J, Quan H. Adipose-derived stem cells-derived exosomes facilitate cutaneous wound healing by delivering XIST and restoring discoidin domain receptor 2. Cytokine 2022; 158:155981. [PMID: 35952595 DOI: 10.1016/j.cyto.2022.155981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) and their derived exosomes (ADSC-Exos) have shown potential functions in tissue repair. This study focuses on the effects of ADSCs-Exos on cutaneous wound healing and the potential involvement of the long non-coding RNA (lncRNA) XIST/microRNA-96-5p (miR-96-5p)/discoidin domain receptor 2 (DDR2) axis. METHODS Exos were isolated from the ADSCs and identified. A mouse model of full-thickness skin wounds was established. The mice were treated with ADSC-Exos to evaluate the function of ADSC-Exos in wound healing. Mouse dermal fibroblasts (MDFs) were co-cultured with the ADSC-Exos for in vitro experiments. The most differentially expressed lncRNAs in mouse skin tissues after ADSC-Exo treatment were screened by microarray analysis. The downstream molecules were analyzed by bioinformatics tools. Gain- and loss-of-function studies were performed to examine the functions of the XIST/miR-96-5p/DDR2 axis in wound healing. RESULTS ADSC-Exos facilitated wound healing in mice, reduced inflammatory infiltration, and increased collagen deposition in the wound skin tissues. In vitro, the ADSC-Exos promoted proliferation, migration of the MDFs. XIST was the most upregulated lncRNA in MDFs after ADSC-Exo treatment. Downregulation of XIST suppressed the promoting role of ADSC-Exos in wound healing. XIST bound to miR-96-5p to restore the expression of DDR2 mRNA. Either silencing of miR-96-5p or overexpression of DDR2 restored the promoting functions of ADSC-Exos in proliferation and migration of MDFs. CONCLUSION This study demonstrates that ADSC-Exos-carried XIST accelerates cutaneous wound healing through suppressing miR-96-5p and restoring the DDR2 expression.
Collapse
Affiliation(s)
- Jinglin Zhu
- Department of Plastic Surgery 18, Plastic Surgery Hospital (Institute), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, PR China
| | - Hongguang Quan
- Department of General Surgery, Xuzhou Hospital of Traditional Chinese Medicine, the Affiliated Xuzhou Hospital of Nanjing University of Chinese Medicine, Xuzhou 221000, Jiangsu, PR China.
| |
Collapse
|
80
|
Rippon MG, Rogers AA, Ousey K, Atkin L, Williams K. The importance of periwound skin in wound healing: an overview of the evidence. J Wound Care 2022; 31:648-659. [PMID: 36001708 DOI: 10.12968/jowc.2022.31.8.648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DECLARATION OF INTEREST The authors have no conflicts of interest.
Collapse
Affiliation(s)
| | | | - Karen Ousey
- Institute of Skin Integrity and Infection Prevention, Department of Nursing and Midwifery, University of Huddersfield.,Adjunct Professor, School of Nursing, Faculty of Health at the Queensland University of Technology, Australia.,Visiting Professor, RCSI, Dublin, Ireland
| | | | - Kate Williams
- Department of Nursing and Midwifery, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
81
|
Wang Z, Lu H, Tang T, Liu L, Pan B, Chen J, Cheng D, Cai X, Sun Y, Zhu F, Zhu S. Tetrahedral framework nucleic acids promote diabetic wound healing via the Wnt signalling pathway. Cell Prolif 2022; 55:e13316. [PMID: 35869570 PMCID: PMC9628242 DOI: 10.1111/cpr.13316] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Objectives To determine the therapeutic effect of tetrahedral framework nucleic acids (tFNAs) on diabetic wound healing and the underlying mechanism. Materials and Methods The tFNAs were characterized by polyacrylamide gel electrophoresis (PAGE), atomic force microscopy (AFM), transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential assays. Cell Counting Kit‐8 (CCK‐8) and migration assays were performed to evaluate the effects of tFNAs on cellular proliferation and migration. Quantitative polymerase chain reaction (Q‐PCR) and enzyme‐linked immunosorbent assay (ELISA) were used to detect the effect of tFNAs on growth factors. The function and role of tFNAs in diabetic wound healing were investigated using diabetic wound models, histological analyses and western blotting. Results Cellular proliferation and migration were enhanced after treatment with tFNAs in a high‐glucose environment. The expression of growth factors was also facilitated by tFNAs in vitro. During in vivo experiments, tFNAs accelerated the healing process in diabetic wounds and promoted the regeneration of the epidermis, capillaries and collagen. Moreover, tFNAs increased the secretion of growth factors and activated the Wnt pathway in diabetic wounds. Conclusions This study indicates that tFNAs can accelerate diabetic wound healing and have potential for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Zejing Wang
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Hao Lu
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Tao Tang
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Lei Liu
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Bohan Pan
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Jiqiu Chen
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Dasheng Cheng
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Yu Sun
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Feng Zhu
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Shihui Zhu
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| |
Collapse
|
82
|
Ledoult E, Jendoubi M, Collet A, Guerrier T, Largy A, Speca S, Vivier S, Bray F, Figeac M, Hachulla E, Labalette M, Leprêtre F, Sebda S, Sanges S, Rolando C, Sobanski V, Dubucquoi S, Launay D. Simple gene signature to assess murine fibroblast polarization. Sci Rep 2022; 12:11748. [PMID: 35817787 PMCID: PMC9273630 DOI: 10.1038/s41598-022-15640-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
We provide an original multi-stage approach identifying a gene signature to assess murine fibroblast polarization. Prototypic polarizations (inflammatory/fibrotic) were induced by seeded mouse embryonic fibroblasts (MEFs) with TNFα or TGFß1, respectively. The transcriptomic and proteomic profiles were obtained by RNA microarray and LC-MS/MS. Gene Ontology and pathways analysis were performed among the differentially expressed genes (DEGs) and proteins (DEPs). Balb/c mice underwent daily intradermal injections of HOCl (or PBS) as an experimental murine model of inflammation-mediated fibrosis in a time-dependent manner. As results, 1456 and 2215 DEGs, and 289 and 233 DEPs were respectively found in MEFs in response to TNFα or TGFß1, respectively. Among the most significant pathways, we combined 26 representative genes to encompass the proinflammatory and profibrotic polarizations of fibroblasts. Based on principal component analysis, this signature deciphered baseline state, proinflammatory polarization, and profibrotic polarization as accurately as RNA microarray and LC-MS/MS did. Then, we assessed the gene signature on dermal fibroblasts isolated from the experimental murine model. We observed a proinflammatory polarization at day 7, and a mixture of a proinflammatory and profibrotic polarizations at day 42 in line with histological findings. Our approach provides a small-size and convenient gene signature to assess murine fibroblast polarization.
Collapse
Affiliation(s)
- Emmanuel Ledoult
- Inserm, U1286, 4Ème Étage Centre, Place Verdun, 59000, Lille, France. .,INFINITE - Institute for Translational Research in Inflammation, Univ. Lille, 59000, Lille, France. .,Service de Médecine Interne et d'Immunologie Clinique, Centre de Référence Des Maladies Auto-Immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), CHU Lille, 59000, Lille, France.
| | - Manel Jendoubi
- Inserm, U1286, 4Ème Étage Centre, Place Verdun, 59000, Lille, France.,INFINITE - Institute for Translational Research in Inflammation, Univ. Lille, 59000, Lille, France
| | - Aurore Collet
- Inserm, U1286, 4Ème Étage Centre, Place Verdun, 59000, Lille, France.,INFINITE - Institute for Translational Research in Inflammation, Univ. Lille, 59000, Lille, France.,Service de Médecine Interne et d'Immunologie Clinique, Centre de Référence Des Maladies Auto-Immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), CHU Lille, 59000, Lille, France
| | - Thomas Guerrier
- Inserm, U1286, 4Ème Étage Centre, Place Verdun, 59000, Lille, France.,INFINITE - Institute for Translational Research in Inflammation, Univ. Lille, 59000, Lille, France.,Laboratoire d'Immunologie, Pole Biologie et d'Anatomopathologie, CHU Lille, 59000, Lille, France
| | - Alexis Largy
- INFINITE - Institute for Translational Research in Inflammation, Univ. Lille, 59000, Lille, France
| | - Silvia Speca
- Inserm, U1286, 4Ème Étage Centre, Place Verdun, 59000, Lille, France.,INFINITE - Institute for Translational Research in Inflammation, Univ. Lille, 59000, Lille, France
| | - Solange Vivier
- Inserm, U1286, 4Ème Étage Centre, Place Verdun, 59000, Lille, France.,INFINITE - Institute for Translational Research in Inflammation, Univ. Lille, 59000, Lille, France
| | - Fabrice Bray
- CNRS, UAR 3290 - MSAP - Miniaturisation Pour La Synthèse, Univ. Lille, l'Analyse et la Protéomique, 59000, Lille, France
| | - Martin Figeac
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Univ. Lille, 59000, Lille, France
| | - Eric Hachulla
- Inserm, U1286, 4Ème Étage Centre, Place Verdun, 59000, Lille, France.,INFINITE - Institute for Translational Research in Inflammation, Univ. Lille, 59000, Lille, France.,Service de Médecine Interne et d'Immunologie Clinique, Centre de Référence Des Maladies Auto-Immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), CHU Lille, 59000, Lille, France
| | - Myriam Labalette
- Inserm, U1286, 4Ème Étage Centre, Place Verdun, 59000, Lille, France.,INFINITE - Institute for Translational Research in Inflammation, Univ. Lille, 59000, Lille, France.,Laboratoire d'Immunologie, Pole Biologie et d'Anatomopathologie, CHU Lille, 59000, Lille, France
| | - Frédéric Leprêtre
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Univ. Lille, 59000, Lille, France
| | - Shéhérazade Sebda
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Univ. Lille, 59000, Lille, France
| | - Sébastien Sanges
- Inserm, U1286, 4Ème Étage Centre, Place Verdun, 59000, Lille, France.,INFINITE - Institute for Translational Research in Inflammation, Univ. Lille, 59000, Lille, France.,Service de Médecine Interne et d'Immunologie Clinique, Centre de Référence Des Maladies Auto-Immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), CHU Lille, 59000, Lille, France
| | - Christian Rolando
- CNRS, UAR 3290 - MSAP - Miniaturisation Pour La Synthèse, Univ. Lille, l'Analyse et la Protéomique, 59000, Lille, France.,Shrieking Sixties, 1-3 Allée Lavoisier, 59650, Villeneuve-d'Ascq, France
| | - Vincent Sobanski
- Inserm, U1286, 4Ème Étage Centre, Place Verdun, 59000, Lille, France.,INFINITE - Institute for Translational Research in Inflammation, Univ. Lille, 59000, Lille, France.,Service de Médecine Interne et d'Immunologie Clinique, Centre de Référence Des Maladies Auto-Immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), CHU Lille, 59000, Lille, France.,Institut Universitaire de France (IUF), 75005, Paris, France
| | - Sylvain Dubucquoi
- Inserm, U1286, 4Ème Étage Centre, Place Verdun, 59000, Lille, France.,INFINITE - Institute for Translational Research in Inflammation, Univ. Lille, 59000, Lille, France.,Laboratoire d'Immunologie, Pole Biologie et d'Anatomopathologie, CHU Lille, 59000, Lille, France
| | - David Launay
- Inserm, U1286, 4Ème Étage Centre, Place Verdun, 59000, Lille, France.,INFINITE - Institute for Translational Research in Inflammation, Univ. Lille, 59000, Lille, France.,Service de Médecine Interne et d'Immunologie Clinique, Centre de Référence Des Maladies Auto-Immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), CHU Lille, 59000, Lille, France
| |
Collapse
|
83
|
Zhang H, Li H, Wang H, Lei S, Yan L. Overexpression of TRPM7 contributes promotesto the therapeutic effect of curcumin in treatmentprocess of wound healing through STAT3/SMAD3 signaling pathway in human fibroblasts. Burns 2022; 49:889-900. [PMID: 35850880 DOI: 10.1016/j.burns.2022.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Curcumin, a natural extract from the rhizomes of Curcuma longa, is also known as a curcuminoid. Curcumin has been studied as a therapeutic drug for wound healing because of its anti-inflammatory, anti-oxidant, and anti-bacterial activities. However, the detailed mechanism of curcumin in wound healing is not clear. It is well-known that the skin is the largest organ in humans and prevents tissues from damage, including infection, radiation, and mechanical damage. Wound healing of the skin is a complex physiological regulation process requiring various cell types and cytokines; hence, wound healing, including surgery and care, incurs a huge expenditure each year. Transient receptor potential cation channel subfamily M member 7 (TRPM7) regulates multiple physiological and pharmacological processes through its channel and kinase activities. In addition, TRPM7 regulates cell adhesion, migration, and anti-oxidative activity, thereby playing a regulatory role in the wound healing process. This study aimed to explore the function of curcumin in the wound healing process. METHODS We first established TRPM7 overexpression and knockdown models in fibroblasts using lentivirus. CCK-8 and wound healing assays were used to clarify whether overexpression of TRPM7 promoted proliferation and migration in fibroblasts. Expression of target genes and proteins was detected using qPCR and western blotting. Concentrations of migration-related cytokines were measured using ELISA. RESULTS Proliferation and migration of fibroblasts increased after curcumin treatment and was further enhanced after overexpression of TRPM7. In addition, expression of proliferation-related genes and proteins was elevated after TRPM7 overexpression. Further, the secretion of migration-related cytokines was elevated after TRPM7 overexpression. CONCLUSION Curcumin treatment promoted proliferation and migration of fibroblasts, and these effects were mediated by the signal transducer and activator of transcription 3 (STAT3)/SMAD family member 3/hypoxia-inducible factor 1 subunit alpha signaling pathway. Thus, we conclude that overexpression of TRPM7 might contribute to wound healing.
Collapse
Affiliation(s)
- Hongzhuang Zhang
- Characteristics Medical Center of PAP, Burn, Frostbite and Tissue Function Reconstruction Institute, 300162 Tianjin, China
| | - Helin Li
- Characteristics Medical Center of PAP, Burn, Frostbite and Tissue Function Reconstruction Institute, 300162 Tianjin, China
| | - Hang Wang
- Neurosurgery Department, No.1 Tianjin Center Hospital, 300162 Tianjin, China
| | - Shaojun Lei
- Characteristics Medical Center of PAP, Burn, Frostbite and Tissue Function Reconstruction Institute, 300162 Tianjin, China.
| | - Li Yan
- Characteristics Medical Center of PAP, Burn, Frostbite and Tissue Function Reconstruction Institute, 300162 Tianjin, China.
| |
Collapse
|
84
|
Poyraz Ş, Altınışık Z, Çakmak AS, Şimşek M, Gümüşderelioğlu M. RANDOM/ALIGNED ELECTROSPUN PCL FIBROUS MATRICES WITH MODIFIED SURFACE TEXTURES: CHARACTERIZATION AND INTERACTIONS WITH DERMAL FIBROBLASTS AND KERATINOCYTES. Colloids Surf B Biointerfaces 2022; 218:112724. [DOI: 10.1016/j.colsurfb.2022.112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022]
|
85
|
Yu P, Guo J, Li J, Shi X, Xu N, Jiang Y, Chen W, Hu Q. lncRNA-H19 in Fibroblasts Promotes Wound Healing in Diabetes. Diabetes 2022; 71:1562-1578. [PMID: 35472819 DOI: 10.2337/db21-0724] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022]
Abstract
Cutaneous wound healing in diabetes is impaired and would develop into nonhealing ulcerations. However, the molecular mechanism underlying the wound-healing process remains largely obscure. Here, we found that cutaneous PDGFRα+ fibroblast-expressing lncRNA-H19 (lncH19) accelerates the wound-healing process via promoting dermal fibroblast proliferation and macrophage infiltration in injured skin. PDGFRα+ cell-derived lncH19, which is lower in contents in the wound-healing cutaneous tissue of patients and mice with type 2 diabetes, is required for wound healing through promoting proliferative capacity of dermis fibroblasts as well as macrophage recruitments. Mechanistically, lncH19 relieves the cell cycle arrest of fibroblasts and increases macrophage infiltration in injured tissues via inhibiting p53 activity and GDF15 releasement. Furthermore, exosomes derived from adipocyte progenitor cells efficiently restore the impaired diabetic wound healing via delivering lncH19 to injured tissue. Therefore, our study reveals a new role for lncRNA in regulating cutaneous tissue repair and provides a novel promising insight for developing clinical treatment of diabetes.
Collapse
Affiliation(s)
- Pijun Yu
- Department of Plastic and Cosmetic Surgery, Shanghai Eighth People's Hospital, Shanghai, China
| | - Jian Guo
- Department of Plastic and Cosmetic Surgery, Shanghai Eighth People's Hospital, Shanghai, China
| | - Junjie Li
- Department of Plastic and Cosmetic Surgery, Shanghai Eighth People's Hospital, Shanghai, China
| | - Xiao Shi
- Department of Plastic and Cosmetic Surgery, Shanghai Eighth People's Hospital, Shanghai, China
| | - Ning Xu
- Department of Plastic and Cosmetic Surgery, Shanghai Eighth People's Hospital, Shanghai, China
| | - Yongkang Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Chen
- Department of Plastic and Cosmetic Surgery, Shanghai Eighth People's Hospital, Shanghai, China
| | - Qin Hu
- Department of Gynecology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
86
|
Machura L, Wawrzkiewicz-Jałowiecka A, Bednarczyk P, Trybek P. Linking the sampling frequency with multiscale entropy to classify mitoBK patch-clamp data. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
87
|
Zhu Z, Zhang X, Hao H, Xu H, Shu J, Hou Q, Wang M. Exosomes Derived From Umbilical Cord Mesenchymal Stem Cells Treat Cutaneous Nerve Damage and Promote Wound Healing. Front Cell Neurosci 2022; 16:913009. [PMID: 35846563 PMCID: PMC9279568 DOI: 10.3389/fncel.2022.913009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Wound repair is a key step in the treatment of skin injury caused by burn, surgery, and trauma. Various stem cells have been proven to promote wound healing and skin regeneration as candidate seed cells. Therefore, exosomes derived from stem cells are emerging as a promising method for wound repair. However, the mechanism by which exosomes promote wound repair is still unclear. In this study, we reported that exosomes derived from umbilical cord mesenchymal stem cells (UC-MSCs) promote wound healing and skin regeneration by treating cutaneous nerve damage. The results revealed that UC-MSCs exosomes (UC-MSC-Exo) promote the growth and migration of dermal fibroblast cells. In in vitro culture, dermal fibroblasts could promote to nerve cells and secrete nerve growth factors when stimulated by exosomes. During the repair process UC-MSC-Exo accelerated the recruitment of fibroblasts at the site of trauma and significantly enhanced cutaneous nerve regeneration in vivo. Interestingly, it was found that UC-MSC-Exo could promote wound healing and skin regeneration by recruiting fibroblasts, stimulating them to secrete nerve growth factors (NGFs) and promoting skin nerve regeneration. Therefore, we concluded that UC-MSC-Exo promote cutaneous nerve repair, which may play an important role in wound repair and skin regeneration.
Collapse
Affiliation(s)
- Ziying Zhu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- *Correspondence: Ziying Zhu,
| | - Xiaona Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Haojie Hao
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Heran Xu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Jun Shu
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Qian Hou
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- Medical Innovation Research Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- Qian Hou,
| | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
- Min Wang,
| |
Collapse
|
88
|
He Y, Zou C, Cai Z. Construction and Comprehensive Analysis of the ceRNA Network to Reveal Key Genes for Benign Tracheal Stenosis. Front Genet 2022; 13:891741. [PMID: 35812753 PMCID: PMC9261475 DOI: 10.3389/fgene.2022.891741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Objective: To explore the possible biological functions of the differentially expressed genes in patients with benign tracheal stenosis, and to provide a valuable molecular basis for investigating the pathogenesis of benign tracheal stenosis. Method: Whole transcriptome sequencing was performed on blood samples collected from patients with benign tracheal stenosis and normal controls. Differentially expressed mRNA, lncRNA, and circRNA were analyzed using the DESeq2 package. The protein interaction networks for differentially expressed mRNAs were constructed by STRING. The results of gene co-expression network analysis, Starbase database prediction, and differential gene expression were combined to construct a competing endogenous RNA network. The transcription factors of key genes were predicted using the Network Analyst database and a transcription factor-mRNA regulatory network was constructed. The classical pathways, intermolecular interaction networks, and upstream regulatory components of key genes were analyzed using Ingenuity Pathway Analysis (IPA). Finally, the DGIDB database was used to predict the potential therapeutic drugs to target the identified key genes. Result: Based on mRNA, lncRNA and circRNA expression data, we found that differentially expressed mRNAs were enriched in oxygen transport, neutrophil activation, immune response, and oxygen binding. Then the pearson correlation between mRNAs of 46 key genes and lncRNAs and cricRNAs were calculated, and the correlation greater than 0.9 were selected to construct the co-expression network of “mRNA-lncRA” and “mRNA-cricRNA.” Moreover, a “lncRNA-miRNA-mRNA” network and a “circRNA-miRNA-mRNA” network were constructed. IPA analysis showed that the 46 key genes were significantly associated with inflammatory activation and acute respiratory distress syndrome. The constructed TF-mRNA regulatory network was composed of 274 nodes and 573 interacting pairs. 251 potential therapeutic drugs were identified from the DGIDB database. Conclusion: This study analyzed the differential genes associated with benign tracheal stenosis and explored the potential regulatory mechanisms, providing a scientific reference for further studies on the pathogenesis of benign tracheal stenosis.
Collapse
Affiliation(s)
- Yanpeng He
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Heibei Key Laboratory of Respiratory Critical Care, Shijiazhuang, China
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Chunyan Zou
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Zhigang Cai
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Heibei Key Laboratory of Respiratory Critical Care, Shijiazhuang, China
- *Correspondence: Zhigang Cai,
| |
Collapse
|
89
|
Cheng J, Zhang Y, Yang J, Wang Y, Xu J, Fan Y. MiR-155-5p modulates inflammatory phenotype of activated oral lichen-planus-associated-fibroblasts by targeting SOCS1. Mol Biol Rep 2022; 49:7783-7792. [PMID: 35733067 DOI: 10.1007/s11033-022-07603-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Oral lichen planus (OLP) is a chronic inflammatory oral mucosal disease. Cytokines are closely associated with OLP development. In addition to immune cells, fibroblasts have been reported to induce regional inflammation. MicroRNA(miR)-155-5p is reportedly increased significantly in OLP and is known to regulate inflammation. This study aimed to investigate the role of miR-155-5p in fibroblasts of OLP lesions. METHODS AND RESULTS Normal mucosal fibroblasts (NFs) and OLP associated-fibroblasts (OLP AFs) were isolated from the oral mucosa of 15 healthy controls and 30 OLP patients. We detected the expression of miR-155-5p and fibroblast activation protein alpha (FAP-α) using quantitative RT-PCR and analyzed their correlation. Interleukin (IL)-6 and IL-8 levels were determined using ELISA. Expression of suppressor of cytokine signaling (SOCS) 1 was analyzed by western blotting. A dual-luciferase reporter assay was performed to investigate the interaction between miR-155-5p and SOCS1. MiR-155-5p and FAP-α were significantly increased and positively correlated in OLP AFs. Overexpression of miR-155-5p in OLP AFs augmented IL-6 and IL-8 release and decreased SOCS1 expression, whereas knockdown of miR-155-5p in OLP AFs decreased IL-6 and IL-8 release. The expression of SOCS1 was downregulated in OLP AFs, and SOCS1 silencing augmented IL-6 and IL-8 production in OLP AFs. Furthermore, miR-155-5p inhibited SOCS1 expression by directly targeting its 3'-UTR in OLP AFs. CONCLUSIONS MiR-155-5p regulates the secretion of IL-6 and IL-8 by downregulating the expression of SOCS1 in activated OLP AFs. Our results provide novel insights into the pathogenesis of OLP and identify a potential new target for OLP therapy.
Collapse
Affiliation(s)
- Juehua Cheng
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yuyao Zhang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jingjing Yang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yanting Wang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Juanyong Xu
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yuan Fan
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
90
|
Ahuja AK, Pontiggia L, Moehrlen U, Biedermann T. The Dynamic Nature of Human Dermal Fibroblasts Is Defined by Marked Variation in the Gene Expression of Specific Cytoskeletal Markers. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070935. [PMID: 35888024 PMCID: PMC9319478 DOI: 10.3390/life12070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
The evidence for fibroblast heterogeneity is continuously increasing, and recent work has shed some light on the existence of different sub-populations of fibroblasts in the human skin. Although we now have a more precise understanding of their distribution in the human body, we do not know whether their properties are predictive of where these cells derive from or whether these sub-types have functional consequences. In this study, we employed single-cell transcriptomics (10X Genomics) to study gene expression and segregate fibroblast sub-populations based on their genetic signature. We report the differential expression of a defined set of genes in fibroblasts from human skin, which may contribute to their dynamicity in vivo and in vitro. We show that the sub-population of fibroblasts expressing cytoskeletal markers, such as ANXA2, VIM, ACTB, are enriched in an adult skin sample. Interestingly, this sub-population of fibroblasts is not enriched in a neonatal skin sample but becomes predominant when neonatal fibroblasts are cultivated. On the other hand, the fibroblast sub-populations expressing COL1A1 and ELN are enriched in neonatal skin but are reduced in the adult skin and in fibroblasts from neonatal skin that are cultured in vitro. Our results indicate that fibroblasts are a dynamic cell type, and while their genetic make-up changes markedly, only a handful of genes belonging to the same functional pathway govern this alteration. The gene expression pattern of cytoskeletal markers may help in identifying whether the fibroblasts were isolated from an adult or an infant or whether they were cultivated, and this information could be useful for quality control in clinics and in cell banking. Furthermore, this study opens additional avenues to investigate the role of these markers in defining the complexity of human dermal fibroblasts.
Collapse
Affiliation(s)
- Akshay Kumar Ahuja
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital, University of Zurich, 8057 Zurich, Switzerland; (L.P.); (U.M.)
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Correspondence: (A.K.A.); (T.B.)
| | - Luca Pontiggia
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital, University of Zurich, 8057 Zurich, Switzerland; (L.P.); (U.M.)
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital, University of Zurich, 8057 Zurich, Switzerland; (L.P.); (U.M.)
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital, University of Zurich, 8057 Zurich, Switzerland; (L.P.); (U.M.)
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
- Correspondence: (A.K.A.); (T.B.)
| |
Collapse
|
91
|
Therapeutic Potential of Skin Stem Cells and Cells of Skin Origin: Effects of Botanical Drugs Derived from Traditional Medicine. Stem Cell Rev Rep 2022; 18:1986-2001. [PMID: 35648312 DOI: 10.1007/s12015-022-10388-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/09/2022]
Abstract
Skin, the largest organ of the body, plays a vital role in protecting inner organs. Skin stem cells (SSCs) comprise a group of cells responsible for multiplication and replacement of damaged and non-functional skin cells; thereby help maintain homeostasis of skin functions. SSCs and differentiated cells of the skin such as melanocytes and keratinocytes, have a plethora of applications in regenerative medicine. However, as SSCs reside in small populations in specific niches in the skin, use of external stimulants for cell proliferation in vitro and in vivo is vital. Synthetic and recombinant stimulants though available, pose many challenges due to their exorbitant prices, toxicity issues and side effects. Alternatively, time tested traditional medicine preparations such as polyherbal formulations are widely tested as effective natural stimulants, to mainly stimulate proliferation, and melanogenesis/prevention of melanogenesis of both SSCs and cells of skin origin. Complex, multiple targets, synergistic bioactivities of the phytochemical constituents of herbal preparations amply justify these as natural stimulants. The use of these formulations in clinical applications such as in skin regeneration for burn wounds, wound healing acceleration, enhancement or decrease of melanin pigmentations will be in great demand. Although much multidisciplinary research is being conducted on the use of herbal formulas as stem cell stimulants, very few related clinical trials are yet registered with the NIH clinical trial registry. Therefore, identification/ discovery, in depth investigations culminating in clinical trials, as well as standardization and commercialization of such natural stimulants must be promoted, ensuring the sustainable use of medicinal plants.
Collapse
|
92
|
Wang J, Yano S, Xie K, Ohata Y, Hara T. Genome-Wide RNA Sequencing Analysis in Human Dermal Fibroblasts Exposed to Low-Dose Ultraviolet A Radiation. Genes (Basel) 2022; 13:genes13060974. [PMID: 35741736 PMCID: PMC9222854 DOI: 10.3390/genes13060974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Ultraviolet A (UVA) radiation can pass through the epidermis and reach the dermal skin layer, contributing to photoaging, DNA damage, and photocarcinogenesis in dermal fibroblasts. High-dose UVA exposure induces erythema, whereas low-dose, long-term UVA exposure causes skin damage and cell senescence. Biomarkers for evaluating damage caused by low-dose UVA in fibroblasts are lacking, making it difficult to develop therapeutic agents for skin aging and aging-associated diseases. We performed RNA-sequencing to investigate gene and pathway alterations in low-dose UVA-irradiated human skin-derived NB1RGB primary fibroblasts. Differentially expressed genes were identified and subjected to Gene Ontology and reactome pathway analysis, which revealed enrichment in genes in the senescence-associated secretory phenotype, apoptosis, respiratory electron transport, and transcriptional regulation by tumor suppressor p53 pathways. Insulin-like growth factor binding protein 7 (IGFBP7) showed the lowest p-value in RNA-sequencing analysis and was associated with the senescence-associated secretory phenotype. Protein–protein interaction analysis revealed that Fos proto-oncogene had a high-confidence network with IGFBP7 as transcription factor of the IGFBP7 gene among SASP hit genes, which were validated using RT-qPCR. Because of their high sensitivity to low-dose UVA radiation, Fos and IGFBP7 show potential as biomarkers for evaluating the effect of low-dose UVA radiation on dermal fibroblasts.
Collapse
|
93
|
Yeganeh PM, Tahmasebi S, Esmaeilzadeh A. Cellular and biological factors involved in healing wounds and burns and treatment options in tissue engineering. Regen Med 2022; 17:401-418. [PMID: 35545963 DOI: 10.2217/rme-2022-0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Severe traumatic wounds and burns have a high chance of mortality and can leave survivors with many functional disabilities and cosmetic problems, including scars. The healing process requires a harmonious interplay of various cells and growth factors. Different structures of the skin house numerous cells, matrix components and growth factors. Any disturbance in the balance between these components can impair the healing process. The function of cells and growth factors can be manipulated and facilitated to aid tissue repair. In the current review, the authors focus on the importance of the skin microenvironment, the pathophysiology of various types of burns, mechanisms and factors involved in skin repair and wound healing and regeneration of the skin using tissue engineering approaches.
Collapse
Affiliation(s)
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Esmaeilzadeh
- Department of immunology, School of Medicine, Zanjan University of Medical Science, Zanjan, 4513956111, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran
| |
Collapse
|
94
|
Guo C, Wu Y, Li W, Wang Y, Kong Q. Development of a Microenvironment-Responsive Hydrogel Promoting Chronically Infected Diabetic Wound Healing through Sequential Hemostatic, Antibacterial, and Angiogenic Activities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30480-30492. [PMID: 35467827 DOI: 10.1021/acsami.2c02725] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microenvironment-responsive hydrogels present high potential in treating refractory wounds due to their capability of on-demand drug release. In this study, a specially designed hydrogel with smart targeting of refractory wound characteristics was designed to treat chronically infected diabetic wounds. Aminated gelatin reacted with oxidized dextran, forming a hydrogel cross-linked with a dynamic Schiff base, which is sensitive to the low-pH environment in refractory wounds. Nano-ZnO was loaded into the hydrogel for killing microbes. A Paeoniflorin-encapsulated micelle with a ROS-responsive property was fixed to the skeleton of the hydrogel via a Schiff base bond for low-pH- and ROS-stimulated angiogenic activity. The sequential responsiveness of the novel hydrogel enabled smart rescue of the deleterious microenvironment in refractory wounds. This highly biocompatible hydrogel demonstrated antibacterial and angiogenic abilities in vitro and significantly promoted healing of chronically infected diabetic wounds via sequential hemostatic, microbe killing, and angiogenic activities. This microenvironment-responsive hydrogel loaded with nZnO and Pf-encapsulated micelles holds great potential as a location-specific dual-response delivery platform for curing refractory, chronically infected diabetic wounds.
Collapse
Affiliation(s)
- Chuan Guo
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ye Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Weilong Li
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qingquan Kong
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Joint Research Institute of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
95
|
Liu C, Wang C, Yang F, Lu Y, Du P, Hu K, Yin X, Zhao P, Lu G. The conditioned medium from mesenchymal stromal cells pretreated with proinflammatory cytokines promote fibroblasts migration and activation. PLoS One 2022; 17:e0265049. [PMID: 35404961 PMCID: PMC9000110 DOI: 10.1371/journal.pone.0265049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Human dermal fibroblasts (HDFs) play important roles in all stages of wound healing. However, in nonhealing wounds, fibroblasts are prone to aging, resulting in insufficient migration, proliferation and secretion functions. Recent studies have suggested that mesenchymal stromal cells (MSCs) are conducive to wound healing and cell growth through paracrine cytokine signaling. In our studies, we found that conditioned medium of MSCs pretreated with IFN-γ and TNF-α (IT MSC-CM) has abundant growth factors associated with wound repair. Our in vitro results showed that the effects of IT MSC-CM on promoting cell migration, proliferation and activation in HDFs were better than those of conditioned medium from mesenchymal stromal cells (MSC-CM). Moreover, we embedded a scaffold material containing IT MSC-CM and reconfirmed that cell migration and activation were superior to that in the presence of MSC-CM in vivo. Generally, PDGF-BB is perceived as a promoter of the migration and proliferation of HDFs. Moreover, a high level of PDGF-BB in IT MSC-CM was detected, according to which we guess that the effect on HDFs may be mediated by the upregulation of PDGF-BB. These studies all showed the potential of IT MSC-CM to promote rapid and effective wound healing.
Collapse
Affiliation(s)
- Chenyang Liu
- Nanjng University of Traditional Chinese Medcine, Nanjng, Jiangsu, China
| | - Chengchun Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | | | - Yichi Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Pan Du
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Kai Hu
- Nanjng University of Traditional Chinese Medcine, Nanjng, Jiangsu, China
| | - Xinyao Yin
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Peng Zhao
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, The Affiliated Hospital of Jiangnan University, Jiangsu, China
- * E-mail: (GL); (PZ)
| | - Guozhong Lu
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, The Affiliated Hospital of Jiangnan University, Jiangsu, China
- * E-mail: (GL); (PZ)
| |
Collapse
|
96
|
Li G, Tang X, Zhang S, Deng Z, Wang B, Shi W, Xie H, Liu B, Li J. Aging-conferred SIRT7 Decline Inhibits Rosacea-like Skin Inflammation via Modulating TLR2-NF-κB Signaling. J Invest Dermatol 2022; 142:2580-2590.e6. [DOI: 10.1016/j.jid.2022.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022]
|
97
|
Toxicity, Anti-Inflammatory, and Antioxidant Activities of Cubiu (Solanum sessiliflorum) and Its Interaction with Magnetic Field in the Skin Wound Healing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7562569. [PMID: 35310021 PMCID: PMC8930208 DOI: 10.1155/2022/7562569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/23/2021] [Accepted: 02/12/2022] [Indexed: 11/21/2022]
Abstract
Cubiu, an Amazonian fruit, is widely used as food and popular treatment for pathologies that present an inflammatory pattern, such as skin wound healing. However, there is still no confirmation in the scientific literature about the safety profile, as well as the anti-inflammatory, antioxidant, and healing actions of cubiu. This study is divided into two experimental protocols using Wistar rats. Thus, the first objective (protocol 1) of this study was to evaluate the toxicity of an oral administration of cubiu extract at different doses for 28 days. The macroscopic and microscopic analyses of the liver and kidney were performed, and the following analysis was determined in plasma: glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, gamma-glutamyl transpeptidase, glucose, triglycerides, total cholesterol, urea, creatinine, and uric acid. After, we conducted the second protocol aimed to establish the potential antioxidant and anti-inflammatory capacity of cubiu and its interaction with magnetic field in skin wound healing. On days 3, 7, and 14 of treatment, skin and blood samples were collected and analyzed: the oxidative stress biomarkers (reactive substances to thiobarbituric acid, nonprotein thiols, superoxide dismutase, catalase, and glutathione S-transferase), myeloperoxidase enzymatic activity, and cytokines levels (interleukin 1, interleukin 6, interleukin 10, and tumor necrosis factor-alpha). The cubiu has shown to be safe and nontoxic. Both cubiu and magnetic field promoted decreased levels of proinflammatory and prooxidant biomarkers (interleukin 1, interleukin 6, tumor necrosis factor-alpha, and reactive substances to thiobarbituric acid), as well as increased levels of anti-inflammatory and antioxidant biomarkers (interleukin 10, nonprotein thiols, and superoxide dismutase), with greater potential when treatments are used in association. Thus, cubiu promotes antioxidant and anti-inflammatory action in skin wound healing, while also improving results of the conventional treatment for skin healing (magnetic field) when used in association.
Collapse
|
98
|
Gardiner JC, Cukierman E. Meaningful connections: Interrogating the role of physical fibroblast cell-cell communication in cancer. Adv Cancer Res 2022; 154:141-168. [PMID: 35459467 PMCID: PMC9483832 DOI: 10.1016/bs.acr.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As part of the connective tissue, activated fibroblasts play an important role in development and disease pathogenesis, while quiescent resident fibroblasts are responsible for sustaining tissue homeostasis. Fibroblastic activation is particularly evident in the tumor microenvironment where fibroblasts transition into tumor-supporting cancer-associated fibroblasts (CAFs), with some CAFs maintaining tumor-suppressive functions. While the tumor-supporting features of CAFs and their fibroblast-like precursors predominantly function through paracrine chemical communication (e.g., secretion of cytokine, chemokine, and more), the direct cell-cell communication that occurs between fibroblasts and other cells, and the effect that the remodeled CAF-generated interstitial extracellular matrix has in these types of cellular communications, remain poorly understood. Here, we explore the reported roles fibroblastic cell-cell communication play within the cancer stroma context and highlight insights we can gain from other disciplines.
Collapse
Affiliation(s)
- Jaye C Gardiner
- Cancer Signaling and Epigenetics Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Edna Cukierman
- Cancer Signaling and Epigenetics Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States.
| |
Collapse
|
99
|
Bagchi B, Salvadores Fernandez C, Bhatti M, Ciric L, Lovat L, Tiwari MK. Copper nanowire embedded hypromellose: An antibacterial nanocomposite film. J Colloid Interface Sci 2022; 608:30-39. [PMID: 34624763 PMCID: PMC7611964 DOI: 10.1016/j.jcis.2021.09.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
The present work reports a novel antibacterial nanocomposite film comprising of copper nanowire impregnated biocompatible hypromellose using polyethylene glycol as a plasticiser. Detailed physico-chemical characterization using X-ray diffraction, Fourier transform infrared spectroscopy, UV-Visible spectroscopy and electron microscopy shows uniform dispersion of copper nanowire in the polymer matrix without any apparent oxidation. The film is flexible and shows excellent antibacterial activity against both Gram positive and negative bacteria at 4.8 wt% nanowire loading with MIC values of 400 μg/mL and 500 μg/mL for E. coli and S. aureus respectively. Investigation into the antibacterial mechanism of the composite indicates multiple pathways including cellular membrane damage caused by released copper ions and reactive oxygen species generation in the microbial cell. Interestingly, the film showed good biocompatibility towards normal human dermal fibroblast at minimum bactericidal concentration (MBC). Compared to copper nanoparticles as reported earlier in vitro studies, this low cytotoxicity of copper nanowires is due to the slow dissolution rate of the film and production of lower amount of ROS producing Cu2+ ions. Thus, the study indicates a strong potential for copper nanowire-based composites films in broader biomedical and clinical applications.
Collapse
Affiliation(s)
- Biswajoy Bagchi
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London W1W 7TS, UK; Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Carmen Salvadores Fernandez
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London W1W 7TS, UK; Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Manni Bhatti
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, UK
| | - Lena Ciric
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, UK
| | - Laurence Lovat
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London W1W 7TS, UK
| | - Manish K Tiwari
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London W1W 7TS, UK; Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK.
| |
Collapse
|
100
|
Wang P, Theocharidis G, Vlachos IS, Kounas K, Lobao A, Shu B, Wu B, Xie J, Hu Z, Qi S, Tang B, Zhu J, Veves A. Exosomes Derived from Epidermal Stem Cells Improve Diabetic Wound Healing. J Invest Dermatol 2022; 142:2508-2517.e13. [PMID: 35181300 DOI: 10.1016/j.jid.2022.01.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
Diabetic foot ulceration is a major diabetic complication with unmet needs. We investigated the efficacy of epidermal stem cells (ESCs) and ESCs-derived exosomes (ESCs-Exo) in improving impaired diabetic wound healing and their mechanisms of action. In vitro experiments showed that ESCs-Exo enhanced the proliferation and migration of diabetic fibroblasts and macrophages (Mφ), and promoted alternative or M2 Mφ polarization. In wounds of db/db mice, treatment with both ESCs and ESCs-Exo, when compared to fibroblast exosomes (FB-Exo) and PBS control, accelerated wound healing by decreasing inflammation, augmenting wound cell proliferation, stimulating angiogenesis and inducing M2 Mφ polarization. Multiplex protein quantification of wound lysates revealed TGFβ signaling influenced by ESCs-Exo. High-throughput sequencing of small RNAs contained in the ESCs-Exo showed higher proportions of miRNAs when compared to FB-Exo. In silico functional analysis demonstrated that the ESCs-Exo-miRNAs target genes were primarily involved in homeostatic processes and cell differentiation and highlighted regulatory control of PI3K/AKT and TGFβ signaling pathways. This was also validated in vitro. Collectively, our results indicate that ESCs and ESCs-Exo are equally effective in promoting impaired diabetic wound healing and that ESCs-Exo treatment may be a promising and technically advantageous alternative to stem cell therapies.
Collapse
Affiliation(s)
- Peng Wang
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics; Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics
| | - Ioannis S Vlachos
- Cancer Research Institute
- HMS Initiative for RNA Medicine
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Konstantinos Kounas
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics
| | - Antonio Lobao
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics
| | - Bin Shu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Biaoliang Wu
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics
| | - Julin Xie
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhicheng Hu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaohai Qi
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bing Tang
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiayuan Zhu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics.
| |
Collapse
|