51
|
Chen YR, Liang CS, Chu H, Voss J, Kang XL, O'Connell G, Jen HJ, Liu D, Shen Hsiao ST, Chou KR. Diagnostic accuracy of blood biomarkers for Alzheimer's disease and amnestic mild cognitive impairment: A meta-analysis. Ageing Res Rev 2021; 71:101446. [PMID: 34391944 DOI: 10.1016/j.arr.2021.101446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 07/11/2021] [Accepted: 08/09/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To examine the diagnostic accuracy of blood-based biomarkers for detecting Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI). METHODS Seven electronic databases were comprehensively searched for studies evaluating the diagnostic accuracy of blood-based biomarkers for detecting AD or aMCI up to July 31, 2020. The pooled sensitivity, specificity, and the diagnostic odds ratio (DOR) were calculated using a hierarchical summary receiver operating characteristic model. RESULTS A total of 17 studies (n = 2,083) were included. In differentiating patients with AD from the controls, the DOR was 32.2 for the plasma Aβ42 (sensitivity = 88 %, specificity = 81 %), 29.1 for the plasma Aβ oligomer (sensitivity = 80 %, specificity = 88 %), and 52.1 for the plasma tau (sensitivity = 90 %, specificity = 87 %). For differentiating aMCI from the controls, the DOR was 60.4 for the plasma Aβ42 (sensitivity = 86 %, specificity = 90 %) and 49.1 for the plasma tau (sensitivity = 79 %, specificity = 94 %). The use of ultra-high sensitive technology explained the heterogeneity in the diagnostic performance of blood-based biomarkers (P = .01). CONCLUSIONS We suggest that blood-based biomarkers are minimally invasive and cost-effective tools for detecting AD; however, the evidence for detecting aMCI was still limited.
Collapse
|
52
|
Koychev I, Jansen K, Dette A, Shi L, Holling H. Blood-Based ATN Biomarkers of Alzheimer's Disease: A Meta-Analysis. J Alzheimers Dis 2021; 79:177-195. [PMID: 33252080 DOI: 10.3233/jad-200900] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The Amyloid Tau Neurodegeneration (ATN) framework was proposed to define the biological state underpinning Alzheimer's disease (AD). Blood-based biomarkers offer a scalable alternative to the costly and invasive currently available biomarkers. OBJECTIVE In this meta-analysis we sought to assess the diagnostic performance of plasma amyloid (Aβ40, Aβ42, Aβ42/40 ratio), tangle (p-tau181), and neurodegeneration (total tau [t-tau], neurofilament light [NfL]) biomarkers. METHODS Electronic databases were screened for studies reporting biomarker concentrations for AD and control cohorts. Biomarker performance was examined by random-effect meta-analyses based on the ratio between biomarker concentrations in patients and controls. RESULTS 83 studies published between 1996 and 2020 were included in the analyses. Aβ42/40 ratio as well as Aβ42 discriminated AD patients from controls when using novel platforms such as immunomagnetic reduction (IMR). We found significant differences in ptau-181 concentration for studies based on single molecule array (Simoa), but not for studies based on IMR or ELISA. T-tau was significantly different between AD patients and control in IMR and Simoa but not in ELISA-based studies. In contrast, NfL differentiated between groups across platforms. Exosome studies showed strong separation between patients and controls for Aβ42, t-tau, and p-tau181. CONCLUSION Currently available assays for sampling plasma ATN biomarkers appear to differentiate between AD patients and controls. Novel assay methodologies have given the field a significant boost for testing these biomarkers, such as IMR for Aβ, Simoa for p-tau181. Enriching samples through extracellular vesicles shows promise but requires further validation.
Collapse
Affiliation(s)
- Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Katrin Jansen
- Department of Psychology, University of Münster, Münster, Germany
| | - Alina Dette
- Department of Psychology, University of Münster, Münster, Germany
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Heinz Holling
- Department of Psychology, University of Münster, Münster, Germany
| |
Collapse
|
53
|
Brain Atrophy Mediates the Relationship between Misfolded Proteins Deposition and Cognitive Impairment in Parkinson's Disease. J Pers Med 2021; 11:jpm11080702. [PMID: 34442345 PMCID: PMC8401428 DOI: 10.3390/jpm11080702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 01/20/2023] Open
Abstract
Parkinson’s disease is associated with cognitive decline, misfolded protein deposition and brain atrophy. We herein hypothesized that structural abnormalities may be mediators between plasma misfolded proteins and cognitive functions. Neuropsychological assessments including five domains (attention, executive, speech and language, memory and visuospatial functions), ultra-sensitive immunomagnetic reduction-based immunoassay (IMR) measured misfolded protein levels (phosphorylated-Tau, Amyloidβ-42 and 40, α-synuclein and neurofilament light chain) and auto-segmented brain volumetry using FreeSurfur were performed for 54 Parkinson’s disease (PD) patients and 37 normal participants. Our results revealed that PD patients have higher plasma misfolded protein levels. Phosphorylated-Tau (p-Tau) and Amyloidβ-42 (Aβ-42) were correlated with atrophy of bilateral cerebellum, right caudate nucleus, and right accumbens area (RAA). In mediation analysis, RAA atrophy completely mediated the relationship between p-Tau and digit symbol coding (DSC). RAA and bilateral cerebellar cortex atrophy partially mediated the Aβ-42 and executive function (DSC and abstract thinking) relationship. Our study concluded that, in PD, p-Tau deposition adversely impacts DSC by causing RAA atrophy. Aβ-42 deposition adversely impacts executive functions by causing RAA and bilateral cerebellum atrophy.
Collapse
|
54
|
Qu Y, Ma YH, Huang YY, Ou YN, Shen XN, Chen SD, Dong Q, Tan L, Yu JT. Blood biomarkers for the diagnosis of amnestic mild cognitive impairment and Alzheimer's disease: A systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 128:479-486. [PMID: 34245759 DOI: 10.1016/j.neubiorev.2021.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
The development of blood-based biomarkers of Alzheimer's disease (AD) pathology as tools for screening the general population is essential, but persists controversies. We aimed to evaluate the effects of AD core pathological biomarkers on blood, and systematical searched Embase, PubMed and Cochrane for eligible studies. Biomarker performance was rated by random-effects meta-analysis based on the ratio of means method and multivariable-adjusted effect estimates. Finally, 150 articles were included, which demonstrated T-tau (average ratio: 1.25-1.62), P-tau 181 (1.36-2.16) and NfL (1.24-1.86) were increased, and AβPPr (0.65-0.88) were decreased from controls to amnestic mild cognitive impairment (aMCI) to AD. Furthermore, Aβ42, Aβ42/Aβ40 ratio and P-tau 217 using ultrasensitive platforms also had great diagnostic accuracy from controls to aMCI to AD. Consequently, significantly changes of blood AD core biomarkers were verified in comparison between AD, aMCI and control, supporting biomarkers were strongly valid in identifying AD and aMCI, which provides a new prospect of AD early diagnosis and progressive monitoring. This study is registered with PROSPERO, number CRD42020191927.
Collapse
Affiliation(s)
- Yi Qu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yu-Yuan Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
55
|
Castillo-Mendieta T, Arana-Lechuga Y, Campos-Peña V, Sosa AL, Orozco-Suarez S, Pinto-Almazán R, Segura-Uribe J, Javier Rodríguez-Sánchez de Tagle A, Ruiz-Sánchez E, Guerra-Araiza C. Plasma Levels of Amyloid-β Peptides and Tau Protein in Mexican Patients with Alzheimer's Disease. J Alzheimers Dis 2021; 82:S271-S281. [PMID: 34151786 DOI: 10.3233/jad-200912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) causes memory deficit and alterations in other cognitive functions, mainly in adults over 60 years of age. As the diagnosis confirmation is performed by a postmortem neuropathological examination of the brain, this disease can be confused with other types of dementia at early stages. About 860,000 Mexicans are affected by dementia, most of them with insufficient access to adequate comprehensive health care services. Plasma biomarkers could be a rapid option for early diagnosis of the disease. OBJECTIVE This study aimed to analyze some plasma biomarkers (amyloid-β, tau, and lipids) in Mexican AD patients and control subjects with no associated neurodegenerative diseases. METHODS Plasma amyloid-β peptides (Aβ40 and Aβ42), total and phosphorylated tau protein (T-tau and P-tau), and cholesterol and triglyceride levels were quantified by enzyme-linked immunosorbent assay in AD patients and control subjects. RESULTS In Mexican AD patients, we found significantly lower levels of Aβ42 (p < 0.05) compared to the control group. In contrast, significantly higher levels of P-tau (p < 0.05) and triglycerides (p < 0.05) were observed in AD patients compared to controls. Furthermore, a significant correlation was found between the severity of dementia and plasma P-tau levels, Aβ42/Aβ40 and P-tau/T-tau ratios, and triglycerides concentrations. This correlation increased gradually with cognitive decline. CONCLUSION The detection of these plasma biomarkers is an initial step in searching for a timely, less invasive, and cost-efficient diagnosis in Mexicans.
Collapse
Affiliation(s)
- Tzayaka Castillo-Mendieta
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Yoaly Arana-Lechuga
- Sleep Disorders Clinic, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Ana Luisa Sosa
- Clínica de Demencia, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Laboratorio de Biología Molecular en Enfermedades Metabólicas y Neurodegenerativas, Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca, State of Mexico, Mexico
| | - Julia Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
| | - Aldo Javier Rodríguez-Sánchez de Tagle
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Coordinación de QFBT, Universidad del Valle de México-Chapultepec, México City, México
| | - Elizabeth Ruiz-Sánchez
- Laboratorio de Neurotoxicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
56
|
Sun H, Wang A, Wang W, Liu C. An Improved Deep Residual Network Prediction Model for the Early Diagnosis of Alzheimer's Disease. SENSORS (BASEL, SWITZERLAND) 2021; 21:4182. [PMID: 34207145 PMCID: PMC8235495 DOI: 10.3390/s21124182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
The early diagnosis of Alzheimer's disease (AD) can allow patients to take preventive measures before irreversible brain damage occurs. It can be seen from cross-sectional imaging studies of AD that the features of the lesion areas in AD patients, as observed by magnetic resonance imaging (MRI), show significant variation, and these features are distributed throughout the image space. Since the convolutional layer of the general convolutional neural network (CNN) cannot satisfactorily extract long-distance correlation in the feature space, a deep residual network (ResNet) model, based on spatial transformer networks (STN) and the non-local attention mechanism, is proposed in this study for the early diagnosis of AD. In this ResNet model, a new Mish activation function is selected in the ResNet-50 backbone to replace the Relu function, STN is introduced between the input layer and the improved ResNet-50 backbone, and a non-local attention mechanism is introduced between the fourth and the fifth stages of the improved ResNet-50 backbone. This ResNet model can extract more information from the layers by deepening the network structure through deep ResNet. The introduced STN can transform the spatial information in MRI images of Alzheimer's patients into another space and retain the key information. The introduced non-local attention mechanism can find the relationship between the lesion areas and normal areas in the feature space. This model can solve the problem of local information loss in traditional CNN and can extract the long-distance correlation in feature space. The proposed method was validated using the ADNI (Alzheimer's disease neuroimaging initiative) experimental dataset, and compared with several models. The experimental results show that the classification accuracy of the algorithm proposed in this study can reach 97.1%, the macro precision can reach 95.5%, the macro recall can reach 95.3%, and the macro F1 value can reach 95.4%. The proposed model is more effective than other algorithms.
Collapse
Affiliation(s)
- Haijing Sun
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.S.); (W.W.); (C.L.)
- College of Information Engineering, Shenyang University, Shenyang 110044, China
| | - Anna Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.S.); (W.W.); (C.L.)
| | - Wenhui Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.S.); (W.W.); (C.L.)
| | - Chen Liu
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.S.); (W.W.); (C.L.)
| |
Collapse
|
57
|
Solje E, Benussi A, Buratti E, Remes AM, Haapasalo A, Borroni B. State-of-the-Art Methods and Emerging Fluid Biomarkers in the Diagnostics of Dementia-A Short Review and Diagnostic Algorithm. Diagnostics (Basel) 2021; 11:diagnostics11050788. [PMID: 33925655 PMCID: PMC8145467 DOI: 10.3390/diagnostics11050788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
The most common neurodegenerative dementias include Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). The correct etiology-based diagnosis is pivotal for clinical management of these diseases as well as for the suitable timing and choosing the accurate disease-modifying therapies when these become available. Enzyme-linked immunosorbent assay (ELISA)-based methods, detecting altered levels of cerebrospinal fluid (CSF) Tau, phosphorylated Tau, and Aβ-42 in AD, allowed the wide use of this set of biomarkers in clinical practice. These analyses demonstrate a high diagnostic accuracy in AD but suffer from a relatively restricted usefulness due to invasiveness and lack of prognostic value. In recent years, the development of novel advanced techniques has offered new state-of-the-art opportunities in biomarker discovery. These include single molecule array technology (SIMOA), a tool for non-invasive analysis of ultra-low levels of central nervous system-derived molecules from biofluids, such as CSF or blood, and real-time quaking (RT-QuIC), developed to analyze misfolded proteins. In the present review, we describe the history of methods used in the fluid biomarker analyses of dementia, discuss specific emerging biomarkers with translational potential for clinical use, and suggest an algorithm for the use of new non-invasive blood biomarkers in clinical practice.
Collapse
Affiliation(s)
- Eino Solje
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, 70211 Kuopio, Finland;
- Neuro Center, Neurology, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy;
| | - Anne M. Remes
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, 90230 Oulu, Finland;
- Medical Research Center (MRC), Oulu University Hospital, 90220 Oulu, Finland
| | - Annakaisa Haapasalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
- Correspondence:
| |
Collapse
|
58
|
Saito K, Hattori K, Hidese S, Sasayama D, Miyakawa T, Matsumura R, Tatsumi M, Yokota Y, Ota M, Hori H, Kunugi H. Profiling of Cerebrospinal Fluid Lipids and Their Relationship with Plasma Lipids in Healthy Humans. Metabolites 2021; 11:metabo11050268. [PMID: 33923144 PMCID: PMC8146161 DOI: 10.3390/metabo11050268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
Lipidomics provides an overview of lipid profiles in biological systems. Although blood is commonly used for lipid profiling, cerebrospinal fluid (CSF) is more suitable for exploring lipid homeostasis in brain diseases. However, whether an individual’s background affects the CSF lipid profile remains unclear, and the association between CSF and plasma lipid profiles in heathy individuals has not yet been defined. Herein, lipidomics approaches were employed to analyze CSF and plasma samples obtained from 114 healthy Japanese subjects. Results showed that the global lipid profiles differed significantly between CSF and plasma, with only 13 of 114 lipids found to be significantly correlated between the two matrices. Additionally, the CSF total protein content was the primary factor associated with CSF lipids. In the CSF, the levels of major lipids, namely, phosphatidylcholines, sphingomyelins, and cholesterolesters, correlated with CSF total protein levels. These findings indicate that CSF lipidomics can be applied to explore changes in lipid homeostasis in patients with brain diseases.
Collapse
Affiliation(s)
- Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa 210-9501, Japan
- Correspondence: (K.S.); (H.K.); Tel.:+81-44-270-6628 (K.S.); +81-42-346-1714 (H.K.)
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Tomoko Miyakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Ryo Matsumura
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Megumi Tatsumi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Yuuki Yokota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
- Correspondence: (K.S.); (H.K.); Tel.:+81-44-270-6628 (K.S.); +81-42-346-1714 (H.K.)
| |
Collapse
|
59
|
Ding XL, Tuo QZ, Lei P. An Introduction to Ultrasensitive Assays for Plasma Tau Detection. J Alzheimers Dis 2021; 80:1353-1362. [PMID: 33682718 DOI: 10.3233/jad-201499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The detection of plasma tau and its phosphorylation is technically challenging due to the relatively low sensitivity. However, in Alzheimer’s disease and other tauopathies, it is hypothesized that tau in the biofluid may serve as a biomarker. In recent years, several ultrasensitive assays have been developed, which can successfully detect tau and its phosphorylation in various biofluids, and collectively demonstrated the prognostic and diagnostic value of plasma tau/phosphorylated tau. Here we have summarized the principle of four ultrasensitive assays newly developed suitable for plasma tau detection, namely single-molecule array, immunomagnetic reduction assay, enhanced immunoassay using multi-arrayed fiber optics, and meso scale discovery assay, with their advantages and applications. We have also compared these assays with traditional enzyme-linked-immunosorbent serologic assay, hoping to facilitate future tau-based biomarker discovery for Alzheimer’s disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Xu-Long Ding
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qing-zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
60
|
Clark C, Lewczuk P, Kornhuber J, Richiardi J, Maréchal B, Karikari TK, Blennow K, Zetterberg H, Popp J. Plasma neurofilament light and phosphorylated tau 181 as biomarkers of Alzheimer's disease pathology and clinical disease progression. ALZHEIMERS RESEARCH & THERAPY 2021; 13:65. [PMID: 33766131 PMCID: PMC7995778 DOI: 10.1186/s13195-021-00805-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/09/2021] [Indexed: 01/01/2023]
Abstract
Background To assess the performance of plasma neurofilament light (NfL) and phosphorylated tau 181 (p-tau181) to inform about cerebral Alzheimer’s disease (AD) pathology and predict clinical progression in a memory clinic setting. Methods Plasma NfL and p-tau181, along with established cerebrospinal fluid (CSF) biomarkers of AD pathology, were measured in participants with normal cognition (CN) and memory clinic patients with cognitive impairment (mild cognitive impairment and dementia, CI). Clinical and neuropsychological assessments were performed at inclusion and follow-up visits at 18 and 36 months. Multivariate analysis assessed associations of plasma NfL and p-tau181 levels with AD, single CSF biomarkers, hippocampal volume, and clinical measures of disease progression. Results Plasma NfL levels were higher in CN participants with an AD CSF profile (defined by a CSF p-tau181/Aβ1–42 > 0.0779) as compared with CN non-AD, while p-tau181 plasma levels were higher in CI patients with AD. Plasma NfL levels correlated with CSF tau and p-tau181 in CN, and with CSF tau in CI patients. Plasma p-tau181 correlated with CSF p-tau181 in CN and with CSF tau, p-tau181, Aβ1–42, and Aβ1–42/Aβ1–40 in CI participants. Compared with a reference model, adding plasma p-tau181 improved the prediction of AD in CI patients while adding NfL did not. Adding p-tau181, but not NfL levels, to a reference model improved prediction of cognitive decline in CI participants. Conclusion Plasma NfL indicates neurodegeneration while plasma p-tau181 levels can serve as a biomarker of cerebral AD pathology and cognitive decline. Their predictive performance depends on the presence of cognitive impairment.
Collapse
Affiliation(s)
- Christopher Clark
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland.
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich - Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich - Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jonas Richiardi
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bénédicte Maréchal
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Advanced Clinical Imaging Technology group, Siemens Healthcare AG, Lausanne, Switzerland.,LTS5, École Polytechnique FÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Julius Popp
- Old age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland.,Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich and University of Zürich, Zürich, Switzerland
| |
Collapse
|
61
|
Ding X, Zhang S, Jiang L, Wang L, Li T, Lei P. Ultrasensitive assays for detection of plasma tau and phosphorylated tau 181 in Alzheimer's disease: a systematic review and meta-analysis. Transl Neurodegener 2021; 10:10. [PMID: 33712071 PMCID: PMC7953695 DOI: 10.1186/s40035-021-00234-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
A lack of convenient and reliable biomarkers for diagnosis and prognosis is a common challenge for neurodegenerative diseases such as Alzheimer's disease (AD). Recent advancement in ultrasensitive protein assays has allowed the quantification of tau and phosphorylated tau proteins in peripheral plasma. Here we identified 66 eligible studies reporting quantification of plasma tau and phosphorylated tau 181 (ptau181) using four ultrasensitive methods. Meta-analysis of these studies confirmed that the AD patients had significantly higher plasma tau and ptau181 levels compared with controls, and that the plasma tau and ptau181 could predict AD with high-accuracy area under curve of the Receiver Operating Characteristic. Therefore, plasma tau and plasma ptau181 can be considered as biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Xulong Ding
- Department of Neurology and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuting Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lijun Jiang
- Mental Health Center and West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Mental Health Center and West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
62
|
Villemagne VL, Barkhof F, Garibotto V, Landau SM, Nordberg A, van Berckel BNM. Molecular Imaging Approaches in Dementia. Radiology 2021; 298:517-530. [PMID: 33464184 DOI: 10.1148/radiol.2020200028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increasing prevalence of dementia worldwide places a high demand on healthcare providers to perform a diagnostic work-up in relatively early stages of the disease, given that the pathologic process usually begins decades before symptoms are evident. Structural imaging is recommended to rule out other disorders and can only provide diagnosis in a late stage with limited specificity. Where PET imaging previously focused on the spatial pattern of hypometabolism, the past decade has seen the development of novel tracers to demonstrate characteristic protein abnormalities. Molecular imaging using PET/SPECT is able to show amyloid and tau deposition in Alzheimer disease and dopamine depletion in parkinsonian disorders starting decades before symptom onset. Novel tracers for neuroinflammation and synaptic density are being developed to further unravel the molecular pathologic characteristics of dementia disorders. In this article, the authors review the current status of established and emerging PET tracers in a diagnostic setting and also their value as prognostic markers in research studies and outcome measures for clinical trials in Alzheimer disease.
Collapse
Affiliation(s)
- Victor L Villemagne
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Frederik Barkhof
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Valentina Garibotto
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Susan M Landau
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Agneta Nordberg
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Bart N M van Berckel
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| |
Collapse
|
63
|
Canepa E, Fossati S. Impact of Tau on Neurovascular Pathology in Alzheimer's Disease. Front Neurol 2021; 11:573324. [PMID: 33488493 PMCID: PMC7817626 DOI: 10.3389/fneur.2020.573324] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most prevalent cause of dementia. The main cerebral histological hallmarks are represented by parenchymal insoluble deposits of amyloid beta (Aβ plaques) and neurofibrillary tangles (NFT), intracellular filamentous inclusions of tau, a microtubule-associated protein. It is well-established that cerebrovascular dysfunction is an early feature of AD pathology, but the detrimental mechanisms leading to blood vessel impairment and the associated neurovascular deregulation are not fully understood. In 90% of AD cases, Aβ deposition around the brain vasculature, known as cerebral amyloid angiopathy (CAA), alters blood brain barrier (BBB) essential functions. While the effects of vascular Aβ accumulation are better documented, the scientific community has only recently started to consider the impact of tau on neurovascular pathology in AD. Emerging compelling evidence points to transmission of neuronal tau to different brain cells, including astrocytes, as well as to the release of tau into brain interstitial fluids, which may lead to perivascular neurofibrillar tau accumulation and toxicity, affecting vessel architecture, cerebral blood flow (CBF), and vascular permeability. BBB integrity and functionality may therefore be impacted by pathological tau, consequentially accelerating the progression of the disease. Tau aggregates have also been shown to induce mitochondrial damage: it is known that tau impairs mitochondrial localization, distribution and dynamics, alters ATP and reactive oxygen species production, and compromises oxidative phosphorylation systems. In light of this previous knowledge, we postulate that tau can initiate neurovascular pathology in AD through mitochondrial dysregulation. In this review, we will explore the literature investigating tau pathology contribution to the malfunction of the brain vasculature and neurovascular unit, and its association with mitochondrial alterations and caspase activation, in cellular, animal, and human studies of AD and tauopathies.
Collapse
Affiliation(s)
- Elisa Canepa
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Silvia Fossati
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
64
|
Tanprasertsuk J, Scott TM, Johnson MA, Poon LW, Nelson PT, Davey A, Woodard JL, Vishwanathan R, Barbey AK, Barger K, Wang XD, Johnson EJ. Brain Α-Tocopherol Concentration is Inversely Associated with Neurofibrillary Tangle Counts in Brain Regions Affected in Earlier Braak Stages: A Cross-Sectional Finding in the Oldest Old. JAR LIFE 2021; 10:8-16. [PMID: 36923512 PMCID: PMC10002902 DOI: 10.14283/jarlife.2021.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 11/11/2022]
Abstract
Objectives Higher vitamin E status has been associated with lower risk of Alzheimer's disease (AD). However, evidence of the association of vitamin E concentration in neural tissue with AD pathologies is limited. Design The cross-sectional relationship between the human brain concentrations of α- and γ-tocopherol and the severity of AD pathologies - neurofibrillary tangle (NFT) and neuritic plaque (NP) - was investigated. Setting & Participants Brains from 43 centenarians (≥ 98 years at death) enrolled in the Phase III of the Georgia Centenarian Study were collected at autopsy. Measurements Brain α- and γ-tocopherol concentrations (previously reported) were averaged from frontal, temporal, and occipital cortices. NP and NFT counts (previously reported) were assessed in frontal, temporal, parietal, entorhinal cortices, amygdala, hippocampus, and subiculum. NFT topological progression was assessed using Braak staging. Multiple linear regression was performed to assess the relationship between tocopherol concentrations and NP or NFT counts, with and without adjustment for covariates. Results Brain α-tocopherol concentrations were inversely associated with NFT but not NP counts in amygdala (β = -2.67, 95% CI [-4.57, -0.79]), entorhinal cortex (β = -2.01, 95% CI [-3.72, -0.30]), hippocampus (β = -2.23, 95% CI [-3.82, -0.64]), and subiculum (β = -2.52, 95% CI [-4.42, -0.62]) where NFT present earlier in its topological progression, but not in neocortices. Subjects with Braak III-IV had lower α-tocopherol (median = 69,622 pmol/g, IQR = 54,389-72,155 pmol/g) than those with Braak I-II (median = 72,108 pmol/g, IQR = 64,056-82,430 pmol/g), but the difference was of borderline significance (p = 0.063). γ-Tocopherol concentrations were not associated with either NFT or NP counts in any brain regions assessed. Conclusions Higher brain α-tocopherol level is specifically associated with lower NFT counts in brain structures affected in earlier Braak stages. Our findings emphasize the possible importance of α-tocopherol intervention timing in tauopathy progression and warrant future clinical trials.
Collapse
Affiliation(s)
- J Tanprasertsuk
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, 02111, United States of America
| | - T M Scott
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, 02111, United States of America
| | - M A Johnson
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE, 68583, United States of America
| | - L W Poon
- Institute of Gerontology, University of Georgia, Athens, GA, 30602, United States of America
| | - P T Nelson
- Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, 40536, United States of America
| | - A Davey
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, DE, 19716, United States of America
| | - J L Woodard
- Department of Psychology, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, 48202, United States of America
| | - R Vishwanathan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, United States of America
| | - A K Barbey
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - K Barger
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, United States of America
| | - X-D Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, United States of America
| | - E J Johnson
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, 02111, United States of America
| |
Collapse
|
65
|
Increasing the reproducibility of fluid biomarker studies in neurodegenerative studies. Nat Commun 2020; 11:6252. [PMID: 33288742 PMCID: PMC7721731 DOI: 10.1038/s41467-020-19957-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Biomarkers have revolutionized scientific research on neurodegenerative diseases, in particular Alzheimer's disease, transformed drug trial design, and are also increasingly improving patient management in clinical practice. A few key cerebrospinal fluid biomarkers have been robustly associated with neurodegenerative diseases. Several novel biomarkers are very promising, especially blood-based markers. However, many biomarker findings have had low reproducibility despite initial promising results. In this perspective, we identify possible sources for low reproducibility of studies on fluid biomarkers for neurodegenerative diseases, with a focus on Alzheimer's disease. We suggest guidelines for researchers and journal editors, with the aim to improve reproducibility of findings.
Collapse
|
66
|
Serum levels of total human Tau associated with axonal damage among severe malaria patients in Central India. Acta Trop 2020; 212:105675. [PMID: 32828917 DOI: 10.1016/j.actatropica.2020.105675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 01/30/2023]
Abstract
Tau is a microtubule-associated protein (MAP) that is abundant in the axonal part of neurons of the central nervous system. Previous studies among African children and Vietnamese adults suffering from cerebral malaria (CM) showed the pathological significance of measuring circulatory total Tau levels. A pilot investigation was carried out to better characterise neurological pathogenesis among severe malaria patients in Central India. Serum levels of total human Tau (pg/ml) were measured by ELISA following manufacturer guidelines among hospital admitted P. falciparum malaria patients classified with different degree of severity (mild malaria = MM, non-cerebral severe malaria = NCSM, cerebral malaria survivors = CM-S and cerebral malaria non-survivors = CM-NS) using WHO, 2000 definitions, including healthy controls (HC) enroled from the hospital's blood bank. Categorical and numerical variables were analysed by applying appropriate statistical test using Stata 11.0 software. A total of 139 subjects (14 HC, 25 MM, 29 NCSM, 44 CM-S and 27 CM-NS) were included in this preliminary investigation. Serum levels of total human Tau were detected in 0% HC, 4.0% MM, 20.7% NCSM, 43.2% CM-S and 48.2% CM-NS patients. Compared to MM, percent Tau detection was significantly higher among severe malaria patients (p = 0.001). Further, compared to NCSM,% Tau detection was significantly higher in CM-S patients (Chi2 = 3.9, p = 0.048) & CM-NS patients (Chi2 = 4.7, p = 0.030). Percent Tau detection was also significantly higher among severe malaria cases presenting with multiple complications compared to those without multiple complications (p = 0.006). ROC analysis of serum Tau levels (pg/ml) revealed a fair AUC value (0.75) to distinguish CM-NS group (but not CM-S) from NCSM group. In conclusion, serum percent detection of total human Tau is associated with axonal damage among patients with different degree of P. falciparum malaria severity in Central India.
Collapse
|
67
|
Cantero JL, Atienza M, Ramos-Cejudo J, Fossati S, Wisniewski T, Osorio RS. Plasma tau predicts cerebral vulnerability in aging. Aging (Albany NY) 2020; 12:21004-21022. [PMID: 33147571 PMCID: PMC7695405 DOI: 10.18632/aging.104057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Identifying cerebral vulnerability in late life may help prevent or slow the progression of aging-related chronic diseases. However, non-invasive biomarkers aimed at detecting subclinical cerebral changes in the elderly are lacking. Here, we have examined the potential of plasma total tau (t-tau) for identifying cerebral and cognitive deficits in normal elderly subjects. Patterns of cortical thickness and cortical glucose metabolism were used as outcomes of cerebral vulnerability. We found that increased plasma t-tau levels were associated with widespread reductions of cortical glucose uptake, thinning of the temporal lobe, and memory deficits. Importantly, tau-related reductions of glucose consumption in the orbitofrontal cortex emerged as a determining factor of the relationship between cortical thinning and memory loss. Together, these results support the view that plasma t-tau may serve to identify subclinical cerebral and cognitive deficits in normal aging, allowing detection of individuals at risk for developing aging-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Jose L. Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Jaime Ramos-Cejudo
- Division of Brain Aging, Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Silvia Fossati
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Ricardo S. Osorio
- Division of Brain Aging, Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
68
|
Bălașa AF, Chircov C, Grumezescu AM. Body Fluid Biomarkers for Alzheimer's Disease-An Up-To-Date Overview. Biomedicines 2020; 8:E421. [PMID: 33076333 PMCID: PMC7602623 DOI: 10.3390/biomedicines8100421] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegeneration is a highly complex process which is associated with a variety of molecular mechanisms related to ageing. Among neurodegenerative disorders, Alzheimer's disease (AD) is the most common, affecting more than 45 million individuals. The underlying mechanisms involve amyloid plaques and neurofibrillary tangles (NFTs) deposition, which will subsequently lead to oxidative stress, chronic neuroinflammation, neuron dysfunction, and neurodegeneration. The current diagnosis methods are still limited in regard to the possibility of the accurate and early detection of the diseases. Therefore, research has shifted towards the identification of novel biomarkers and matrices as biomarker sources, beyond amyloid-β and tau protein levels within the cerebrospinal fluid (CSF), that could improve AD diagnosis. In this context, the aim of this paper is to provide an overview of both conventional and novel biomarkers for AD found within body fluids, including CSF, blood, saliva, urine, tears, and olfactory fluids.
Collapse
Affiliation(s)
- Adrian Florian Bălașa
- Târgu Mures, Emergency Clinical Hospital, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mures, RO-540142 Târgu Mures, Romania;
| | - Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania;
| |
Collapse
|
69
|
Shen X, Li J, Wang H, Li H, Huang Y, Yang Y, Tan L, Dong Q, Yu J. Plasma amyloid, tau, and neurodegeneration biomarker profiles predict Alzheimer's disease pathology and clinical progression in older adults without dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12104. [PMID: 33005724 PMCID: PMC7513626 DOI: 10.1002/dad2.12104] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Plasma markers have been reported to be associated with brain amyloid burden, tau pathology, or neurodegeneration. We aimed to evaluate whether plasma biomarker profiles could predict Alzheimer's disease (AD) pathology and clinical progression in older adults without dementia. METHODS Cross-sectional and longitudinal data of participants enrolled in this study were from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Plasma amyloid beta (Aβ)1-42/Aβ1-40 ratio was selected as the marker for amyloid pathology, p-tau181 for tau pathology, and neurofilament light for neurodegeneration. Cut-offs for these plasma markers were calculated with well-established positron emission tomography and structural imaging biomarkers as reference. Older adults without dementia were categorized into eight groups at baseline by plasma amyloid/tau/neurodegeneration (A/T/N) cut-offs. Clinical progression was analyzed using linear mixed-effects models and Cox proportional hazard models. RESULTS A total of 183 participants (97 cognitively normal [CN] subjects and 86 patients with mild cognitive impairment [MCI]; mean age 72.6 years, and 48.1% men) were included. Participants with A+ had significantly higher proportions of apolipoprotein E (APOE) gene ɛ4 carriers than those with A-. Brain atrophy was observed in all groups of CN, whereas cognition decline was obvious in the A+T+N+ group. Compared to A-T-N-, MCI patients with A+T+N+ had faster cognition worsening and faster brain atrophy. In the whole cohort, A+T+N+ and A+T+N- participants were at higher risk of clinical progression. DISCUSSION Plasma A/T/N biomarker profiles may predict AD pathology and clinical progression, indicating a potential role for plasma biomarkers in clinical trials. More research is warranted to develop a robust plasma AD framework.
Collapse
Affiliation(s)
- Xue‐Ning Shen
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jie‐Qiong Li
- Department of Neurologythe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Hui‐Fu Wang
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Hong‐Qi Li
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yu‐Yuan Huang
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yu‐Xiang Yang
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Lan Tan
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Qiang Dong
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jin‐Tai Yu
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | | |
Collapse
|
70
|
Raket LL, Kühnel L, Schmidt E, Blennow K, Zetterberg H, Mattsson-Carlgren N. Utility of plasma neurofilament light and total tau for clinical trials in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12099. [PMID: 32995466 PMCID: PMC7507310 DOI: 10.1002/dad2.12099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Several blood-based biomarkers are associated with neuronal injury, but their utility in interventional clinical trials is unclear. This study retrospectively evaluated the utility of plasma neurofilament light (NfL) and total tau (t-tau) in an 18-month trial in mild Alzheimer's disease (AD). METHODS Correlation and conditional independence analyses and Gaussian graphical models were used to investigate cross-sectional and longitudinal relations between NfL, t-tau, and clinical scales. RESULTS NfL had a stronger association than t-tau with clinical scales; t-tau did not hold additional information to that given by NfL (P > 0.05 at all time points). NfL held independent information about shorter-term (3- to 6-month) progression beyond patient age and clinical scores. However, no meaningful gain in power was found when adjusting a longitudinal analysis of cognitive scores for baseline NfL. DISCUSSION Plasma NfL is superior to t-tau in mild AD. The ability of NfL to detect changes before clinical manifestations makes it a promising biomarker of drug response in trials of disease-modifying drugs.
Collapse
Affiliation(s)
- Lars Lau Raket
- H. Lundbeck A/S Valby Denmark
- Clinical Memory Research Unit Department of Clinical Sciences Lund University Malmö Sweden
| | - Line Kühnel
- H. Lundbeck A/S Valby Denmark
- Department of Mathematical Sciences University of Copenhagen Copenhagen Denmark
| | | | - Kaj Blennow
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology the Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology the Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
- Department of Neurodegenerative Disease UCL Institute of Neurology London UK
- UK Dementia Research Institute at UCL London UK
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit Department of Clinical Sciences Lund University Malmö Sweden
- Department of Neurology Skåne University Hospital Lund Sweden
- Wallenberg Centre for Molecular Medicine Lund University Lund Sweden
| |
Collapse
|
71
|
Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer's Disease: Sensitivity, Specificity and Potential for Clinical Use. J Pers Med 2020; 10:jpm10030116. [PMID: 32911755 PMCID: PMC7565390 DOI: 10.3390/jpm10030116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, affecting more than 5 million Americans, with steadily increasing mortality and incredible socio-economic burden. Not only have therapeutic efforts so far failed to reach significant efficacy, but the real pathogenesis of the disease is still obscure. The current theories are based on pathological findings of amyloid plaques and tau neurofibrillary tangles that accumulate in the brain parenchyma of affected patients. These findings have defined, together with the extensive neurodegeneration, the diagnostic criteria of the disease. The ability to detect changes in the levels of amyloid and tau in cerebrospinal fluid (CSF) first, and more recently in blood, has allowed us to use these biomarkers for the specific in-vivo diagnosis of AD in humans. Furthermore, other pathological elements of AD, such as the loss of neurons, inflammation and metabolic derangement, have translated to the definition of other CSF and blood biomarkers, which are not specific of the disease but, when combined with amyloid and tau, correlate with the progression from mild cognitive impairment to AD dementia, or identify patients who will develop AD pathology. In this review, we discuss the role of current and hypothetical biomarkers of Alzheimer's disease, their specificity, and the caveats of current high-sensitivity platforms for their peripheral detection.
Collapse
|
72
|
Liguori C, Maestri M, Spanetta M, Placidi F, Bonanni E, Mercuri NB, Guarnieri B. Sleep-disordered breathing and the risk of Alzheimer's disease. Sleep Med Rev 2020; 55:101375. [PMID: 33022476 DOI: 10.1016/j.smrv.2020.101375] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Sleep-disordered breathing is highly prevalent in the elderly population. Obstructive sleep apnea (OSA) represents the most common sleep disorder among the adult and elderly population. Recently, OSA diagnosis has been associated with an increased risk of developing cognitive decline and dementia, including vascular dementia and Alzheimer's disease (AD). Subsequently, there have been studies on AD biomarkers investigating cerebrospinal fluid, blood, neuroimaging, and nuclear medicine biomarkers in patients with OSA. Furthermore, studies have attempted to assess the possible effects of continuous positive airway pressure (CPAP) treatment on the cognitive trajectory and AD biomarkers in patients with OSA. This review summarizes the findings of studies on each AD biomarker (cognitive, biofluid, neuroimaging, and nuclear medicine imaging) in patients with OSA, also accounting for the related effects of CPAP treatment. In addition, the hypothetical model connecting OSA to AD in a bi-directional interplay is analyzed. Finally, the sex-based differences in prevalence and clinical symptoms of OSA between men and women have been investigated in relation to AD risk. Further studies investigating AD biomarkers changes in patients with OSA and the effect of CPAP treatment should be auspicated in future for identifying strategies to prevent the development of AD.
Collapse
Affiliation(s)
- Claudio Liguori
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Neurology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Michelangelo Maestri
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Matteo Spanetta
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fabio Placidi
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Neurology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Enrica Bonanni
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Nicola B Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Santa Lucia Foundation, Rome, Italy
| | - Biancamaria Guarnieri
- Center of Sleep Medicine, Department of Neurology, Villa Serena Hospital, Città S. Angelo, Pescara, Italy; Villa Serena Foundation for the Research, Città S. Angelo, Pescara, Italy
| |
Collapse
|
73
|
Laing KK, Simoes S, Baena-Caldas GP, Lao PJ, Kothiya M, Igwe KC, Chesebro AG, Houck AL, Pedraza L, Hernández AI, Li J, Zimmerman ME, Luchsinger JA, Barone FC, Moreno H, Brickman AM. Cerebrovascular disease promotes tau pathology in Alzheimer's disease. Brain Commun 2020; 2:fcaa132. [PMID: 33215083 PMCID: PMC7660042 DOI: 10.1093/braincomms/fcaa132] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 01/04/2023] Open
Abstract
Small vessel cerebrovascular disease, visualized as white matter hyperintensities on T2-weighted magnetic resonance imaging, contributes to the clinical presentation of Alzheimer's disease. However, the extent to which cerebrovascular disease represents an independent pathognomonic feature of Alzheimer's disease or directly promotes Alzheimer's pathology is unclear. The purpose of this study was to examine the association between white matter hyperintensities and plasma levels of tau and to determine if white matter hyperintensities and tau levels interact to predict Alzheimer's disease diagnosis. To confirm that cerebrovascular disease promotes tau pathology, we examined tau fluid biomarker concentrations and pathology in a mouse model of ischaemic injury. Three hundred ninety-one participants from the Alzheimer's Disease Neuroimaging Initiative (74.5 ± 7.1 years of age) were included in this cross-sectional analysis. Participants had measurements of plasma total-tau, cerebrospinal fluid beta-amyloid, and white matter hyperintensities, and were diagnosed clinically as Alzheimer's disease (n = 97), mild cognitive impairment (n = 186) or cognitively normal control (n = 108). We tested the relationship between plasma tau concentration and white matter hyperintensity volume across diagnostic groups. We also examined the extent to which white matter hyperintensity volume, plasma tau, amyloid positivity status and the interaction between white matter hyperintensities and plasma tau correctly classifies diagnostic category. Increased white matter hyperintensity volume was associated with higher plasma tau concentration, particularly among those diagnosed clinically with Alzheimer's disease. Presence of brain amyloid and the interaction between plasma tau and white matter hyperintensity volume distinguished Alzheimer's disease and mild cognitive impairment participants from controls with 77.6% and 63.3% accuracy, respectively. In 63 Alzheimer's Disease Neuroimaging Initiative participants who came to autopsy (82.33 ± 7.18 age at death), we found that higher degrees of arteriosclerosis were associated with higher Braak staging, indicating a positive relationship between cerebrovascular disease and neurofibrillary pathology. In a transient middle cerebral artery occlusion mouse model, aged mice that received transient middle cerebral artery occlusion, but not sham surgery, had increased plasma and cerebrospinal fluid tau concentrations, induced myelin loss, and hyperphosphorylated tau pathology in the ipsilateral hippocampus and cerebral hemisphere. These findings demonstrate a relationship between cerebrovascular disease, operationalized as white matter hyperintensities, and tau levels, indexed in the plasma, suggesting that hypoperfusive injury promotes tau pathology. This potential causal association is supported by the demonstration that transient cerebral artery occlusion induces white matter damage, increases biofluidic markers of tau, and promotes cerebral tau hyperphosphorylation in older-adult mice.
Collapse
Affiliation(s)
- Krystal K Laing
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sabrina Simoes
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gloria P Baena-Caldas
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
- School of Biomedical Sciences, Health Sciences Division, Universidad del Valle, Cali, Colombia, USA
| | - Patrick J Lao
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Milankumar Kothiya
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kay C Igwe
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Anthony G Chesebro
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Alexander L Houck
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lina Pedraza
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
| | - A Iván Hernández
- Department of Pathology. SUNY Downstate, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Jie Li
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
| | | | - José A Luchsinger
- Department of Medicine, College of Physicians and Surgeons, Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frank C Barone
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Herman Moreno
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | |
Collapse
|
74
|
Advantages and Pitfalls in Fluid Biomarkers for Diagnosis of Alzheimer's Disease. J Pers Med 2020; 10:jpm10030063. [PMID: 32708853 PMCID: PMC7563364 DOI: 10.3390/jpm10030063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a commonly occurring neurodegenerative disease in the advanced-age population, with a doubling of prevalence for each 5 years of age above 60 years. In the past two decades, there has been a sustained effort to find suitable biomarkers that may not only aide with the diagnosis of AD early in the disease process but also predict the onset of the disease in asymptomatic individuals. Current diagnostic evidence is supportive of some biomarker candidates isolated from cerebrospinal fluid (CSF), including amyloid beta peptide (Aβ), total tau (t-tau), and phosphorylated tau (p-tau) as being involved in the pathophysiology of AD. However, there are a few biomarkers that have been shown to be helpful, such as proteomic, inflammatory, oral, ocular and olfactory in the early detection of AD, especially in the individuals with mild cognitive impairment (MCI). To date, biomarkers are collected through invasive techniques, especially CSF from lumbar puncture; however, non-invasive (radio imaging) methods are used in practice to diagnose AD. In order to reduce invasive testing on the patients, present literature has highlighted the potential importance of biomarkers in blood to assist with diagnosing AD.
Collapse
|
75
|
Houben S, de Fisenne MA, Ando K, Vanden Dries V, Poncelet L, Yilmaz Z, Mansour S, De Decker R, Brion JP, Leroy K. Intravenous Injection of PHF-Tau Proteins From Alzheimer Brain Exacerbates Neuroinflammation, Amyloid Beta, and Tau Pathologies in 5XFAD Transgenic Mice. Front Mol Neurosci 2020; 13:106. [PMID: 32765217 PMCID: PMC7381181 DOI: 10.3389/fnmol.2020.00106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 02/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation in the brain of intraneuronal aggregates of abnormally and hyperphosphorylated tau proteins and of extracellular deposits of amyloid-β surrounded by dystrophic neurites. Numerous experimental models have shown that tau pathology develops in the brain after intracerebral injection of brain homogenates or pathological tau [paired helical filaments (PHF)-tau)] from AD brains. Further investigations are however necessary to identify or exclude potential extracerebral routes of tau pathology transmission, e.g., through the intravascular route. In this study, we have analyzed the effect of intravenous injection of PHF-tau proteins from AD brains on the formation of tau and amyloid pathologies in the brain of wild-type (WT) mice and of 5XFAD mice (an amyloid model). We observed that 5XFAD mice with a disrupted blood-brain barrier showed increased plaque-associated astrogliosis, microgliosis, and increased deposits of Aβ40 and Aβ42 after intravenous injection of PHF-tau proteins. In addition, an increased phosphotau immunoreactivity was observed in plaque-associated dystrophic neurites. These results suggest that blood products contaminated by PHF-tau proteins could potentially induce an exacerbation of neuroinflammation and AD pathologies.
Collapse
Affiliation(s)
- Sarah Houben
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Marie-Ange de Fisenne
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Virginie Vanden Dries
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Luc Poncelet
- Laboratory of Anatomy, Biomechanics and Organogenesis, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Zehra Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Salwa Mansour
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert De Decker
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Karelle Leroy
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
76
|
Villa C, Lavitrano M, Salvatore E, Combi R. Molecular and Imaging Biomarkers in Alzheimer's Disease: A Focus on Recent Insights. J Pers Med 2020; 10:jpm10030061. [PMID: 32664352 PMCID: PMC7565667 DOI: 10.3390/jpm10030061] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease among the elderly, affecting millions of people worldwide and clinically characterized by a progressive and irreversible cognitive decline. The rapid increase in the incidence of AD highlights the need for an easy, efficient and accurate diagnosis of the disease in its initial stages in order to halt or delay the progression. The currently used diagnostic methods rely on measures of amyloid-β (Aβ), phosphorylated (p-tau) and total tau (t-tau) protein levels in the cerebrospinal fluid (CSF) aided by advanced neuroimaging techniques like positron emission tomography (PET) and magnetic resonance imaging (MRI). However, the invasiveness of these procedures and the high cost restrict their utilization. Hence, biomarkers from biological fluids obtained using non-invasive methods and novel neuroimaging approaches provide an attractive alternative for the early diagnosis of AD. Such biomarkers may also be helpful for better understanding of the molecular mechanisms underlying the disease, allowing differential diagnosis or at least prolonging the pre-symptomatic stage in patients suffering from AD. Herein, we discuss the advantages and limits of the conventional biomarkers as well as recent promising candidates from alternative body fluids and new imaging techniques.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: (C.V.); (R.C.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Institute for the Experimental Endocrinology and Oncology, National Research Council (IEOS-CNR), 80131 Naples, Italy;
| | - Elena Salvatore
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Italy;
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: (C.V.); (R.C.)
| |
Collapse
|
77
|
Sugarman MA, Zetterberg H, Blennow K, Tripodis Y, McKee AC, Stein TD, Martin B, Palmisano JN, Steinberg EG, Simkin I, Budson AE, Killiany R, O'Connor MK, Au R, Qiu WWQ, Goldstein LE, Kowall NW, Mez J, Stern RA, Alosco ML. A longitudinal examination of plasma neurofilament light and total tau for the clinical detection and monitoring of Alzheimer's disease. Neurobiol Aging 2020; 94:60-70. [PMID: 32585491 DOI: 10.1016/j.neurobiolaging.2020.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
We examined baseline and longitudinal associations between plasma neurofilament light (NfL) and total tau (t-tau), and the clinical presentation of Alzheimer's disease (AD). A total of 579 participants (238, normal cognition [NC]; 185, mild cognitive impairment [MCI]; 156, AD dementia) had baseline blood draws; 82% had follow-up evaluations. Plasma samples were analyzed for NfL and t-tau using Simoa technology. Baseline plasma NfL was higher in AD dementia than MCI (standardized mean difference = 0.55, 95% CI: 0.37-0.73) and NC (standardized mean difference = 0.68, 95% CI: 0.49-0.88), corresponded to Clinical Dementia Rating scores (OR = 1.94, 95% CI: 1.35-2.79]), and correlated with all neuropsychological tests (r's = 0.13-0.42). Longitudinally, NfL did not predict diagnostic conversion but predicted decline on 3/10 neuropsychological tests. Baseline plasma t-tau was higher in AD dementia than NC with a small effect (standardized mean difference = 0.33, 95% CI: 0.10-0.57) but not MCI. t-tau did not statistically significant predict any longitudinal outcomes. Plasma NfL may be useful for the detection of AD dementia and monitoring of disease progression. In contrast, there was minimal evidence in support of plasma t-tau.
Collapse
Affiliation(s)
- Michael A Sugarman
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neuropsychology, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA; U.S. Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA; Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; U.S. Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA; Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Brett Martin
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N Palmisano
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Eric G Steinberg
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Irene Simkin
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Andrew E Budson
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; U.S. Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Ronald Killiany
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA; Center for Biomedical Imaging, Boston University School of Medicine, Boston, MA, USA
| | - Maureen K O'Connor
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neuropsychology, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA
| | - Rhoda Au
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Wendy Wei Qiao Qiu
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA; Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Lee E Goldstein
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA; Departments of Psychiatry and Ophthalmology, Boston University School of Medicine, Boston, MA, USA; Departments of Biomedical, Electrical & Computer Engineering, Boston University College of Engineering, Boston, MA, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA; U.S. Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA; Department of Neurosurgery, Boston University School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
78
|
Future avenues for Alzheimer's disease detection and therapy: liquid biopsy, intracellular signaling modulation, systems pharmacology drug discovery. Neuropharmacology 2020; 185:108081. [PMID: 32407924 DOI: 10.1016/j.neuropharm.2020.108081] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
When Alzheimer's disease (AD) disease-modifying therapies will be available, global healthcare systems will be challenged by a large-scale demand for clinical and biological screening. Validation and qualification of globally accessible, minimally-invasive, and time-, cost-saving blood-based biomarkers need to be advanced. Novel pathophysiological mechanisms (and related candidate biomarkers) - including neuroinflammation pathways (TREM2 and YKL-40), axonal degeneration (neurofilament light chain protein), synaptic dysfunction (neurogranin, synaptotagmin, α-synuclein, and SNAP-25) - may be integrated into an expanding pathophysiological and biomarker matrix and, ultimately, integrated into a comprehensive blood-based liquid biopsy, aligned with the evolving ATN + classification system and the precision medicine paradigm. Liquid biopsy-based diagnostic and therapeutic algorithms are increasingly employed in Oncology disease-modifying therapies and medical practice, showing an enormous potential for AD and other brain diseases as well. For AD and other neurodegenerative diseases, newly identified aberrant molecular pathways have been identified as suitable therapeutic targets and are currently investigated by academia/industry-led R&D programs, including the nerve-growth factor pathway in basal forebrain cholinergic neurons, the sigma1 receptor, and the GTPases of the Rho family. Evidence for a clinical long-term effect on cognitive function and brain health span of cholinergic compounds, drug candidates for repositioning programs, and non-pharmacological multidomain interventions (nutrition, cognitive training, and physical activity) is developing as well. Ultimately, novel pharmacological paradigms, such as quantitative systems pharmacology-based integrative/explorative approaches, are gaining momentum to optimize drug discovery and accomplish effective pathway-based strategies for precision medicine. This article is part of the special issue on 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
|
79
|
Li LX, Yang T, Guo L, Wang DY, Tang CH, Li Q, Yang HM, Zhu J, Zhang LL. Serum tau levels are increased in patients with hyperthyroidism. Neurosci Lett 2020; 729:135003. [PMID: 32335219 DOI: 10.1016/j.neulet.2020.135003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022]
Abstract
Hyperthyroidism may cause cognitive decline and increases the risk of Alzheimer's disease (AD), the major form of dementia; however, the underlying mechanism of this relationship is unclear. AD is associated with increased serum levels of tau. In this study, we investigated the relationship between serum thyroid hormones (THs) and tau. Fifty participants diagnosed with hyperthyroidism and fifty euthyroid counterparts were included and received clinical examinations. Serum concentrations of thyroid-stimulating hormone (TSH), free thyroxine (FT4), free triiodothyronine (FT3) and tau protein were assessed. The total tau protein level was significantly higher in hyperthyroidism participants than in their euthyroid counterparts. The level of circulating total tau had a significant positive association with the serum concentrations of FT3 and FT4. Total tau level was increased in the low TSH group and the serum THs decreased with the increase of age. These findings reveal that peripheral THs are associated with the serum concentration of tau, which may be involved in the pathogenesis of AD, suggesting a potential therapeutic target of AD via hyperthyroidism therapy.
Collapse
Affiliation(s)
- Lun-Xi Li
- Department of Neurology, Army Medical University Daping Hospital, China
| | - Tong Yang
- Department of Neurology, Army Medical University Daping Hospital, China
| | - Lu Guo
- Department of Neurology, Army Medical University Daping Hospital, China
| | - Da-Yan Wang
- Department of Neurology, the Seventh Affiliated Hospital, Sun Yat-sen University, China
| | - Chun-Hua Tang
- Department of Neurology, Army Medical University Daping Hospital, China
| | - Qiong Li
- Department of Neurology, Army Medical University Daping Hospital, China
| | - Hai-Mei Yang
- Department of Neurology, Army Medical University Daping Hospital, China
| | - Jie Zhu
- Department of Neurology, Army Medical University Daping Hospital, China.
| | - Li-Li Zhang
- Department of Neurology, Army Medical University Daping Hospital, China
| |
Collapse
|
80
|
Burnham SC, Fandos N, Fowler C, Pérez-Grijalba V, Dore V, Doecke JD, Shishegar R, Cox T, Fripp J, Rowe C, Sarasa M, Masters CL, Pesini P, Villemagne VL. Longitudinal evaluation of the natural history of amyloid-β in plasma and brain. Brain Commun 2020; 2:fcaa041. [PMID: 32954297 PMCID: PMC7425352 DOI: 10.1093/braincomms/fcaa041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 01/03/2023] Open
Abstract
Plasma amyloid-β peptide concentration has recently been shown to have high accuracy to predict amyloid-β plaque burden in the brain. These amyloid-β plasma markers will allow wider screening of the population and simplify and reduce screening costs for therapeutic trials in Alzheimer's disease. The aim of this study was to determine how longitudinal changes in blood amyloid-β track with changes in brain amyloid-β. Australian Imaging, Biomarker and Lifestyle study participants with a minimum of two assessments were evaluated (111 cognitively normal, 7 mild cognitively impaired, 15 participants with Alzheimer's disease). Amyloid-β burden in the brain was evaluated through PET and was expressed in Centiloids. Total protein amyloid-β 42/40 plasma ratios were determined using ABtest® assays. We applied our method for obtaining natural history trajectories from short term data to measures of total protein amyloid-β 42/40 plasma ratios and PET amyloid-β. The natural history trajectory of total protein amyloid-β 42/40 plasma ratios appears to approximately mirror that of PET amyloid-β, with both spanning decades. Rates of change of 7.9% and 8.8%, were observed for total protein amyloid-β 42/40 plasma ratios and PET amyloid-β, respectively. The trajectory of plasma amyloid-β preceded that of brain amyloid-β by a median value of 6 years (significant at 88% confidence interval). These findings, showing the tight association between changes in plasma and brain amyloid-β, support the use of plasma total protein amyloid-β 42/40 plasma ratios as a surrogate marker of brain amyloid-β. Also, that plasma total protein amyloid-β 42/40 plasma ratios has potential utility in monitoring trial participants, and as an outcome measure.
Collapse
Affiliation(s)
- Samantha C Burnham
- The Australian e-Health Research Centre, CSIRO Health & Biosecurity, Parkville, VIC 3052, Australia
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | | | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Vincent Dore
- The Australian e-Health Research Centre, CSIRO Health & Biosecurity, Parkville, VIC 3052, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - James D Doecke
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Herston 4029, Australia
| | - Rosita Shishegar
- The Australian e-Health Research Centre, CSIRO Health & Biosecurity, Parkville, VIC 3052, Australia
| | - Timothy Cox
- The Australian e-Health Research Centre, CSIRO Health & Biosecurity, Parkville, VIC 3052, Australia
| | - Jurgen Fripp
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Herston 4029, Australia
| | - Christopher Rowe
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC 3052, Australia
| | | | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Victor L Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
81
|
A soluble truncated tau species related to cognitive dysfunction is elevated in the brain of cognitively impaired human individuals. Sci Rep 2020; 10:3869. [PMID: 32123248 PMCID: PMC7052165 DOI: 10.1038/s41598-020-60777-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
Neurofibrillary tangles are a pathological hallmark of Alzheimer’s disease, and their levels correlate with the severity of cognitive dysfunction in humans. However, experimental evidence suggests that soluble tau species cause cognitive deficits and memory impairment. Our recent study suggests that caspase-2 (Casp2)-catalyzed tau cleavage at aspartate 314 mediates synaptic dysfunction and memory impairment in mouse and cellular models of neurodegenerative disorders. Δtau314, the C-terminally-truncated cleavage products, are soluble and present in human brain. In addition, levels of Δtau314 proteins are elevated in the brain of the cognitively impaired individuals compared to the cognitively normal individuals, indicating a possible role for Δtau314 proteins in cognitive deterioration. Here we show that (1) Δtau314 proteins are present in the inferior temporal gyrus of human brains; (2) Δtau314 proteins are generated from all six tau splicing isoforms, (3) levels of both Casp2 and Δtau314 proteins are elevated in cognitively impaired individuals compared to cognitively normal individuals, and (4) levels of Δtau314 proteins show a modest predictive value for dementia. These findings advance our understanding of the characteristics of Δtau314 proteins and their relevance to cognitive dysfunction and shed light on the contribution of Casp2-mediated Δtau314 production to cognitive deterioration.
Collapse
|
82
|
Milà-Alomà M, Suárez-Calvet M, Molinuevo JL. Latest advances in cerebrospinal fluid and blood biomarkers of Alzheimer's disease. Ther Adv Neurol Disord 2019; 12:1756286419888819. [PMID: 31897088 PMCID: PMC6920596 DOI: 10.1177/1756286419888819] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and its diagnosis has classically been based on clinical symptoms. Recently, a biological rather than a syndromic definition of the disease has been proposed that is based on biomarkers that reflect neuropathological changes. In AD, there are two main biomarker categories, namely neuroimaging and fluid biomarkers [cerebrospinal fluid (CSF) and blood]. As a complex and multifactorial disease, AD biomarkers are important for an accurate diagnosis and to stage the disease, assess the prognosis, test target engagement, and measure the response to treatment. In addition, biomarkers provide us with information that, even if it does not have a current clinical use, helps us to understand the mechanisms of the disease. In addition to the pathological hallmarks of AD, which include amyloid-β and tau deposition, there are multiple concomitant pathological events that play a key role in the disease. These include, but are not limited to, neurodegeneration, inflammation, vascular dysregulation or synaptic dysfunction. In addition, AD patients often have an accumulation of other proteins including α-synuclein and TDP-43, which may have a pathogenic effect on AD. In combination, there is a need to have biomarkers that reflect different aspects of AD pathogenesis and this will be important in the future to establish what are the most suitable applications for each of these AD-related biomarkers. It is unclear whether sex, gender, or both have an effect on the causes of AD. There may be differences in fluid biomarkers due to sex but this issue has often been neglected and warrants further research. In this review, we summarize the current state of the principal AD fluid biomarkers and discuss the effect of sex on these biomarkers.
Collapse
Affiliation(s)
- Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC),
Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC),
Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
- Department of Neurology, Hospital del Mar,
Barcelona
| | - José Luís Molinuevo
- Scientific Director, Alzheimer’s Prevention
Program, Barcelonaβeta Brain Research Center, Wellington 30, Barcelona,
08005, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
- CIBER Fragilidad y Envejecimiento Saludable,
Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
83
|
Vanderstichele HM, Teunissen CE, Vanmechelen E. Critical Steps to be Taken into Consideration Before Quantification of β-Amyloid and Tau Isoforms in Blood can be Implemented in a Clinical Environment. Neurol Ther 2019; 8:129-145. [PMID: 31833029 PMCID: PMC6908532 DOI: 10.1007/s40120-019-00166-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
This review aims to document difficulties, limitations, and pitfalls when considering protein analysis in blood samples. It proposes an improved workflow for design, development, and validation of (immuno)assays for blood proteins, without providing reflections on a potential hypothesis of the origin of protein mismetabolism and deposition. There is a special focus on assay development for quantification of β-amyloid (Aβ) and tau in blood for diagnostic use or for integration in clinical trials in the field of Alzheimer's disease (AD).
Collapse
|