51
|
Schwalm MP, Berger LM, Meuter MN, Vasta JD, Corona CR, Röhm S, Berger BT, Farges F, Beinert SM, Preuss F, Morasch V, Rogov VV, Mathea S, Saxena K, Robers MB, Müller S, Knapp S. A Toolbox for the Generation of Chemical Probes for Baculovirus IAP Repeat Containing Proteins. Front Cell Dev Biol 2022; 10:886537. [PMID: 35721509 PMCID: PMC9204419 DOI: 10.3389/fcell.2022.886537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
E3 ligases constitute a large and diverse family of proteins that play a central role in regulating protein homeostasis by recruiting substrate proteins via recruitment domains to the proteasomal degradation machinery. Small molecules can either inhibit, modulate or hijack E3 function. The latter class of small molecules led to the development of selective protein degraders, such as PROTACs (PROteolysis TArgeting Chimeras), that recruit protein targets to the ubiquitin system leading to a new class of pharmacologically active drugs and to new therapeutic options. Recent efforts have focused on the E3 family of Baculovirus IAP Repeat (BIR) domains that comprise a structurally conserved but diverse 70 amino acid long protein interaction domain. In the human proteome, 16 BIR domains have been identified, among them promising drug targets such as the Inhibitors of Apoptosis (IAP) family, that typically contain three BIR domains (BIR1, BIR2, and BIR3). To date, this target area lacks assay tools that would allow comprehensive evaluation of inhibitor selectivity. As a consequence, the selectivity of current BIR domain targeting inhibitors is unknown. To this end, we developed assays that allow determination of inhibitor selectivity in vitro as well as in cellulo. Using this toolbox, we have characterized available BIR domain inhibitors. The characterized chemical starting points and selectivity data will be the basis for the generation of new chemical probes for IAP proteins with well-characterized mode of action and provide the basis for future drug discovery efforts and the development of PROTACs and molecular glues.
Collapse
Affiliation(s)
- Martin P Schwalm
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Lena M Berger
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Maximilian N Meuter
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | | | | | - Sandra Röhm
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Benedict-Tilman Berger
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Frederic Farges
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Sebastian M Beinert
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Franziska Preuss
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Viktoria Morasch
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Vladimir V Rogov
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Sebastian Mathea
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Krishna Saxena
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | | | - Susanne Müller
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Stefan Knapp
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
52
|
Targeted protein degraders march towards the clinic for neurodegenerative diseases. Ageing Res Rev 2022; 78:101616. [PMID: 35378298 DOI: 10.1016/j.arr.2022.101616] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Accepted: 03/30/2022] [Indexed: 12/28/2022]
Abstract
Protein degraders are emerging as potent therapeutic tools to address neurological disorders and many complex diseases. It offered several key advantages, including the doses, drug resistance, and side effects over traditional occupancy-based inhibitors. Translation of chemical degraders into a clinical therapy for neurodegenerative disorders has a well-documented knowledge and resource gap. Researchers strive to develop clinical candidates employing chemical degraders' technologies, including hydrophobic tagging, molecular glues, proteolysis targeting chimeras (PROTACs), specific and nongenetic Inhibitor of Apoptosis Protein (IAP)-dependent protein erasers (SNIPERs), autophagy targeted chimeras, and autophagosome-tethered compounds for targeted degradation of pathological markers in neurodegenerative disease. Herein, we examined the present state of chemical-mediated targeted protein degradation in the quest for medications to treat neurodegenerative diseases. We further identified targeted degraders under clinical development for neurodegenerative diseases summarizing pertinent discoveries guiding the future of degradation therapeutics. We also addressed the necessary pharmacological interventions needed to achieve unprecedented therapeutic efficacy and its associated challenges.
Collapse
|
53
|
Wang C, Zhang Y, Shi L, Yang S, Chang J, Zhong Y, Li Q, Xing D. Recent advances in IAP-based PROTACs (SNIPERs) as potential therapeutic agents. J Enzyme Inhib Med Chem 2022; 37:1437-1453. [PMID: 35589670 PMCID: PMC9122363 DOI: 10.1080/14756366.2022.2074414] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteolytic targeting chimaeras (PROTACs) have been developed as an effective technology for targeted protein degradation. PROTACs are heterobifunctional molecules that can trigger the polyubiquitination of proteins of interest (POIs) by recruiting the ubiquitin-proteasome system, thereby inhibiting the intracellular level of POIs. To date, a variety of small-molecule PROTACs (CRBN, VHL, IAP, and MDM2-based PROTACs) have been developed. IAP-based PROTACs, also known as specific and nongenetic IAP-dependent protein erasers (SNIPERs), are used to degrade the target proteins closely related to diseases. Their structures consist of three parts, including target protein ligand, E3 ligase ligand, and the linker between them. So far, many SNIPERs have been extensively studied worldwide and have performed well in multiple diseases, especially cancer. In this review, we will present the most relevant advances in the field of SNIPERs and provide our perspective on the opportunities and challenges for SNIPERs to become therapeutic agents.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Shanbo Yang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Jing Chang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Qian Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
54
|
Ohoka N, Suzuki M, Uchida T, Tsukumo Y, Yoshida M, Inoue T, Ohki H, Naito M. Development of a potent small molecule degrader against oncogenic BRAF V600E protein that evades paradoxical MAPK activation. Cancer Sci 2022; 113:2828-2838. [PMID: 35579105 PMCID: PMC9357609 DOI: 10.1111/cas.15401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
BRAF mutations are frequently observed in melanoma and hairy‐cell leukemia. Currently approved rapidly accelerated fibrosarcoma (RAF) kinase inhibitors targeting oncogenic BRAF V600 mutations have shown remarkable efficacy in the clinic, but their therapeutic benefits are occasionally hampered by acquired resistance due to RAF dimerization–dependent reactivation of the downstream MAPK pathway, which is known as paradoxical activation. There is also a concern that paradoxical activation of the MAPK pathway may trigger secondary cancer progression. In this study, we developed chimeric compounds, proteolysis targeting chimeras (PROTACs), that target BRAFV600E protein for degradation. CRBN(BRAF)‐24, the most effective chimera, potently degraded BRAFV600E in a ubiquitin‐proteasome system (UPS)‐dependent manner and inhibited the proliferation of BRAFV600E‐driven cancer cells. In BRAF wild‐type cells, CRBN(BRAF)‐24 induced neither BRAFWT degradation nor paradoxical activation of the MAPK pathway. Biochemical analysis revealed that CRBN(BRAF)‐24 showed more potent and sustained suppression of MAPK signaling than a BRAFV600E inhibitor, PLX‐8394, in BRAFV600E‐driven cancer cells. Targeted degradation of BRAFV600E by CRBN(BRAF)‐24 could be a promising strategy to evade paradoxical activation of the RAF‐MAPK pathway.
Collapse
Affiliation(s)
- Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Masanori Suzuki
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takuya Uchida
- Medicinal Chemistry Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yoshinori Tsukumo
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Masayuki Yoshida
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Hitoshi Ohki
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan.,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
55
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [PMID: 35079164 DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Mammalian development demands precision. Millions of molecules must be properly located in temporal order, and their function regulated, to orchestrate important steps in cell cycle progression, apoptosis, migration and differentiation, to shape developing embryos. Ubiquitin and its associated enzymes act as cellular guardians to ensure precise spatio-temporal control of key molecules during each of these important cellular processes. Loss of precision results in numerous examples of embryological disorders or even cancer. This Review discusses the crucial roles of E3 ubiquitin ligases during key steps of early mammalian development and their roles in human disease, and considers how new methods to manipulate and exploit the ubiquitin regulatory machinery - for example, the development of molecular glues and PROTACs - might facilitate clinical therapy.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Zhuoyao Chen
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Alex N Bullock
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
56
|
Naito M. Targeted Protein Degradation and Drug Discovery. J Biochem 2022; 172:61-69. [PMID: 35468190 DOI: 10.1093/jb/mvac041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/19/2022] [Indexed: 11/12/2022] Open
Abstract
Targeted protein degradation attracts attention as a novel modality for drug discovery as well as for basic research. Various types of degrader molecules have been developed so far, which include PROTACs and SNIPERs, E3 modulators, hydrophobic tagging molecules, IAP antagonists, and deubiquitylase inhibitors. PROTACs and SNIPERs are chimeric degrader molecules consisting of a target ligand linked to another ligand that binds to an E3 ubiquitin ligase. In the cells, they recruit an E3 ligase to the target protein, thereby inducing ubiquitylation and proteasomal degradation of the target protein. Because of their modular structure, novel PROTACs and SNIPERs targeting proteins of your interest can be rationally developed by substituting target ligands. In this article, various compounds capable of inducing protein degradation were overviewed, including SNIPER compounds developed in our laboratory.
Collapse
Affiliation(s)
- Mikihiko Naito
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
57
|
Sosič I, Bricelj A, Steinebach C. E3 ligase ligand chemistries: from building blocks to protein degraders. Chem Soc Rev 2022; 51:3487-3534. [PMID: 35393989 DOI: 10.1039/d2cs00148a] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, proteolysis-targeting chimeras (PROTACs), capable of achieving targeted protein degradation, have proven their great therapeutic potential and usefulness as molecular biology tools. These heterobifunctional compounds are comprised of a protein-targeting ligand, an appropriate linker, and a ligand binding to the E3 ligase of choice. A successful PROTAC induces the formation of a ternary complex, leading to the E3 ligase-mediated ubiquitination of the targeted protein and its proteasomal degradation. In over 20 years since the concept was first demonstrated, the field has grown substantially, mainly due to the advancements in the discovery of non-peptidic E3 ligase ligands. Development of small-molecule E3 binders with favourable physicochemical profiles aided the design of PROTACs, which are known for breaking the rules of established guidelines for discovering small molecules. Synthetic accessibility of the ligands and numerous successful applications led to the prevalent use of cereblon and von Hippel-Lindau as the hijacked E3 ligase. However, the pool of over 600 human E3 ligases is full of untapped potential, which is why expanding the artillery of E3 ligands could contribute to broadening the scope of targeted protein degradation. In this comprehensive review, we focus on the chemistry aspect of the PROTAC design process by providing an overview of liganded E3 ligases, their chemistries, appropriate derivatisation, and synthetic approaches towards their incorporation into heterobifunctional degraders. By covering syntheses of both established and underexploited E3 ligases, this review can serve as a chemistry blueprint for PROTAC researchers during their future ventures into the complex field of targeted protein degradation.
Collapse
Affiliation(s)
- Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleša Bricelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
58
|
Targeted protein degradation: mechanisms, strategies and application. Signal Transduct Target Ther 2022; 7:113. [PMID: 35379777 PMCID: PMC8977435 DOI: 10.1038/s41392-022-00966-4] [Citation(s) in RCA: 332] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
Traditional drug discovery mainly focuses on direct regulation of protein activity. The development and application of protein activity modulators, particularly inhibitors, has been the mainstream in drug development. In recent years, PROteolysis TArgeting Chimeras (PROTAC) technology has emerged as one of the most promising approaches to remove specific disease-associated proteins by exploiting cells’ own destruction machinery. In addition to PROTAC, many different targeted protein degradation (TPD) strategies including, but not limited to, molecular glue, Lysosome-Targeting Chimaera (LYTAC), and Antibody-based PROTAC (AbTAC), are emerging. These technologies have not only greatly expanded the scope of TPD, but also provided fresh insights into drug discovery. Here, we summarize recent advances of major TPD technologies, discuss their potential applications, and hope to provide a prime for both biologists and chemists who are interested in this vibrant field.
Collapse
|
59
|
Richardson PG, Mateos MV, Vangsted AJ, Ramasamy K, Abildgaard N, Ho PJ, Quach H, Bahlis NJ. The role of E3 ubiquitin ligase in multiple myeloma: potential for cereblon E3 ligase modulators in the treatment of relapsed/refractory disease. Expert Rev Proteomics 2022; 19:235-246. [PMID: 36342226 DOI: 10.1080/14789450.2022.2142564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Insights into the mechanisms of protein homeostasis and proteasomal degradation have led to new strategies of redirecting the ubiquitin-proteasome system (UPS) to reduce or eliminate proteins or survival factors key to malignant pathobiology, multiple myeloma (MM) in particular. These strategies have enabled researchers to target proteins that were previously considered difficult to modulate by pharmacological means. AREAS COVERED This review provides a brief overview of UPS biology, particularly the role of the CRL4CRBN E3 ubiquitin ligase complex, and summarizes current strategies for co-opting the UPS, including CELMoD compounds, SNIPERs, PROTACs, and degronimids. A detailed discussion is provided on lead CELMoD compounds iberdomide and mezigdomide, which are currently being evaluated in clinical trials in patients with MM. EXPERT OPINION Since a high proportion of patients develop drug resistance, it is vital to have novel therapeutic agents for treating relapsed patients with MM more effectively. It is encouraging that the expanding pathophysiological insight into cellular signaling pathways in MM increasingly translates into the development of novel therapeutic agents such as targeted protein degraders. This holds promise for improving outcomes in MM and beyond.
Collapse
Affiliation(s)
- Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Karthik Ramasamy
- Department of Clinical Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Niels Abildgaard
- Hematology Research Unit, Department of Hematology, Odense University Hospital, Odense, Denmark; and Department of Clinical Research.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - P Joy Ho
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Hang Quach
- Department of Haematology, St Vincent's Hospital, Melbourne, Australia
| | - Nizar J Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
60
|
Ulaganathan VK. Membrane anchorage-induced (MAGIC) knock-down of non-synonymous point mutations. Chembiochem 2022; 23:e202100637. [PMID: 35352864 DOI: 10.1002/cbic.202100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Indexed: 11/08/2022]
Abstract
The promise of personalized medicine for monogenic and complex polygenic diseases depends on the availability of strategies for targeted inhibition of disease-associated polymorphic protein variants. A large majority of disease-causing genetic alterations are non-synonymous single nucleotide genetic variations (nsSNVs). Yet a general strategy for inhibiting the expression of nsSNVs without editing the human genome is currently lacking. Here, we reveal that upon intracellular delivery of lipid conjugated point mutation-specific monoclonal antibodies, a target-specific knockdown of gene expression at both mRNA and protein levels is observed. By harnessing the phenomenon of m embrane a nchorage i ndu c ed (MAGIC) knock-down of epitope-containing protein targets, we reveal a novel approach for inhibiting the expression of amino acid-altering point mutations. This approach opens up a new opportunity for the therapeutic inhibition of undruggable protein variants as well as paves the way for interrogating the nsSNVs in the human genome.
Collapse
Key Words
- membrane anchorage-induced knockdown, nsSNV, 18:0-14:0 PC, lipid-anchor, phospholipid-conjugated mAbs, SNP, SNV, genetic variants, allele varaints, rare variants, common variants, pathogenic mutations, point mutation knockdown, mRNA knockdown
Collapse
Affiliation(s)
- Vijay Kumar Ulaganathan
- University of Lorraine: Universite de Lorraine, NGERE Unit, Faculté de Médecine, Bâtiment C - 2ème étage, 54505, Nancy, FRANCE
| |
Collapse
|
61
|
Shibata N, Cho N, Koyama H, Naito M. Development of a degrader against oncogenic fusion protein FGFR3-TACC3. Bioorg Med Chem Lett 2022; 60:128584. [PMID: 35085722 DOI: 10.1016/j.bmcl.2022.128584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/02/2022]
Abstract
Fibroblast growth factor receptor 3-transforming acidic coiled-coil containing protein 3 (FGFR3-TACC3), which has been identified in many cancers such as glioblastoma and bladder cancer, is a potent oncogenic fusion protein that induces constitutive activation of FGFR signaling, resulting in uncontrolled cell proliferation. Although several tyrosine kinase inhibitors against FGFR are currently under development, resistance to such types of inhibitors in patients has become a concern. In this study, a chimeric molecule SNIPER(TACC3)-11 (5a) was developed and found to reduce FGFR3-TACC3 levels effectively. Compound 5a conjugated KHS108 (a TACC3 ligand) to an LCL161 derivative (11) (an inhibitor of apoptosis protein [IAP] ligand) with a PEG linker (n = 2). Mechanistical analysis showed that cellular IAP1 was required for the reduction of FGFR3-TACC3 levels. Consistent with the decrease in FGFR3-TACC3 levels, compound 5a suppressed the growth of FGFR3-TACC3 positive cells. Thus, compound 5a is a candidate therapeutic with a novel drug modality against cancers that exhibit FGFR3-TACC3-dependent proliferation and exerts pharmacological effects distinct from FGFR3 kinase inhibitors because it lacks substructures crucial for kinase inhibition.
Collapse
Affiliation(s)
- Norihito Shibata
- Division of Biochemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan.
| | - Nobuo Cho
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroo Koyama
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikihiko Naito
- Social Cooperation Program of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
62
|
Hirai K, Yamashita H, Tomoshige S, Mishima Y, Niwa T, Ohgane K, Ishii M, Kanamitsu K, Ikemi Y, Nakagawa S, Taguchi H, Sato S, Hashimoto Y, Ishikawa M. Conversion of a PROTAC Mutant Huntingtin Degrader into Small-Molecule Hydrophobic Tags Focusing on Drug-like Properties. ACS Med Chem Lett 2022; 13:396-402. [PMID: 35300080 PMCID: PMC8919385 DOI: 10.1021/acsmedchemlett.1c00500] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/07/2022] [Indexed: 01/03/2023] Open
Abstract
The onset of neurodegenerative disorders (NDs), such as Alzheimer's disease, is associated with the accumulation of aggregates of misfolded proteins. We previously showed that chemical knockdown of ND-related aggregation-prone proteins can be achieved by proteolysis targeting chimeras (PROTACs). However, hetero-bifunctional PROTACs generally show poor permeability into the central nervous system, where NDs are located. Here, we document the conversion of one of our PROTACs into hydrophobic tags (HyTs), another class of degraders bearing hydrophobic degrons. This conversion decreases the molecular weight and the number of hydrogen bond donors/acceptors. All the developed HyTs lowered the level of mutant huntingtin, an aggregation-prone protein, with potency comparable to that of the parent PROTAC. Through IAM chromatography analysis and in vivo brain penetration assay of the HyTs, we discovered a brain-permeable HyT. Our results and mechanistic analysis indicate that conversion of protein degraders into HyTs could be a useful approach to improve their drug-like properties.
Collapse
Affiliation(s)
- Keigo Hirai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hiroko Yamashita
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-032, Japan
| | - Shusuke Tomoshige
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yugo Mishima
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Kenji Ohgane
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-032, Japan
| | - Mayumi Ishii
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kayoko Kanamitsu
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yui Ikemi
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinsaku Nakagawa
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Shinichi Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yuichi Hashimoto
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-032, Japan
| | - Minoru Ishikawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
63
|
E3 ligases: a potential multi-drug target for different types of cancers and neurological disorders. Future Med Chem 2022; 14:187-201. [DOI: 10.4155/fmc-2021-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ubiquitylation is a posttranslational modification of proteins that is necessary for a variety of cellular processes. E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase are all involved in transferring ubiquitin to the target substrate to regulate cellular function. The objective of this review is to provide an overview of different aspects of E3 ubiquitin ligases that can lead to major biological system failure in several deadly diseases. The first part of this review covers the important characteristics of E3 ubiquitin ligases and their classification based on structural domains. Further, the authors provide some online resources that help researchers explore the data relevant to the enzyme. The following section delves into the involvement of E3 ubiquitin ligases in various diseases and biological processes, including different types of cancer and neurological disorders.
Collapse
|
64
|
Liu L, Shi L, Wang Z, Zeng J, Wang Y, Xiao H, Zhu Y. Targeting Oncoproteins for Degradation by Small Molecule-Based Proteolysis-Targeting Chimeras (PROTACs) in Sex Hormone-Dependent Cancers. Front Endocrinol (Lausanne) 2022; 13:839857. [PMID: 35370971 PMCID: PMC8971670 DOI: 10.3389/fendo.2022.839857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Sex hormone-dependent cancers, including breast, ovary, and prostate cancer, contribute to the high number of cancer-related deaths worldwide. Steroid hormones promote tumor occurrence, development, and metastasis by acting on receptors, such as estrogen receptors (ERs), androgen receptors (ARs), and estrogen-related receptors (ERRs). Therefore, endocrine therapy targeting ERs, ARs, and ERRs represents the potential and pivotal therapeutic strategy in sex hormone-dependent cancers. Proteolysis-targeting chimeras (PROTACs) are a novel strategy that can harness the potential of the endogenous ubiquitin-proteasome system (UPS) to target and degrade specific proteins, rather than simply inhibiting the activity of target proteins. Small molecule PROTACs degrade a variety of proteins in cells, mice, and humans and are an emerging approach for novel drug development. PROTACs targeting ARs, ERs, ERRs, and other proteins in sex hormone-dependent cancers have been reported and may overcome the problem of resistance to existing endocrine therapy and receptor antagonist treatments. This review briefly introduces the PROTAC strategy and summarizes the progress on the development of small molecule PROTACs targeting oncoproteins in sex hormone-dependent cancers, focusing on breast and prostate cancers.
Collapse
Affiliation(s)
- Li Liu
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lihong Shi
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhaodi Wang
- Department of Gynecology, People’s Hospital of Henan University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jun Zeng
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Wang
- Department of Gynecology, People’s Hospital of Henan University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Hongtao Xiao
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongxia Zhu
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Yongxia Zhu,
| |
Collapse
|
65
|
Ohoka N, Yokoo H, Okuhira K, Demizu Y, Naito M. Molecular Design, Synthesis, and Evaluation of SNIPER (ER) that Induces Targeted Protein Degradation of ERα. Methods Mol Biol 2022; 2418:363-382. [PMID: 35119675 DOI: 10.1007/978-1-0716-1920-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Manipulation of protein stability using small molecules has a great potential for both basic research and clinical therapy. Based on our protein knockdown technology, we developed chimeric degrader molecules SNIPER(ER)s that target the estrogen receptor alpha (ERα) for degradation via the ubiquitin-proteasome system. This chapter describes the design and synthesis of SNIPER(ER) compounds and methods for the evaluation of their activity in cellular systems and in a tumor xenograft model.
Collapse
Affiliation(s)
- Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Keiichiro Okuhira
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
- Department of Environment and Health Sciences, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
- Division of Organic Chemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
- Laboratory of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
66
|
Dai M, Radhakrishnan S, Li R, Tan R, Yan K, Fan G, Liu M. Targeted Protein Degradation: An Important Tool for Drug Discovery for "Undruggable" Tumor Transcription Factors. Technol Cancer Res Treat 2022; 21:15330338221095950. [PMID: 35466792 PMCID: PMC9047787 DOI: 10.1177/15330338221095950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Conventional small-molecule drugs (SMDs) are compounds characterized by low
molecular weight, high cell permeability, and high selectivity. In clinical
translation, SMDs are regarded as good candidates for oral drug formulation. SMD
inhibitors play an important role in cancer treatment; however, resistance and
low effectiveness have been major bottlenecks in clinical application.
Generally, only 20% of cell proteins can potentially be targeted and have been
developed as SMDs; thus, some types of tumor targets are considered
“undruggable.” Among these are transcription factors (TFs), an important class
of proteins that regulate the occurrence, formation, and development of tumors.
It is difficult for SMDs and macromolecular drugs to identify bioactive sites in
TFs and hence for use as pharmacological inhibitors in targeting TF proteins.
For this reason, technologies that enable targeted protein degradation, such as
proteolysis-targeting chimera or molecular glues, could serve as a potential
tool to solve these conundrums.
Collapse
Affiliation(s)
- Mengyuan Dai
- Department of Gynecological Oncology, 89674Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sridhar Radhakrishnan
- Cancer Science Institute of Singapore, 37580National University of Singapore, Singapore, Singapore
| | - Rui Li
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, 598782Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Kuo Yan
- Institute of Cell and Neurobiology, Charité Medical University, Berlin, Germany
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.,477382The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Miao Liu
- Department of Pathology, 1861Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
67
|
Aurora A and AKT Kinase Signaling Associated with Primary Cilia. Cells 2021; 10:cells10123602. [PMID: 34944109 PMCID: PMC8699881 DOI: 10.3390/cells10123602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of kinase signaling is associated with various pathological conditions, including cancer, inflammation, and autoimmunity; consequently, the kinases involved have become major therapeutic targets. While kinase signaling pathways play crucial roles in multiple cellular processes, the precise manner in which their dysregulation contributes to disease is dependent on the context; for example, the cell/tissue type or subcellular localization of the kinase or substrate. Thus, context-selective targeting of dysregulated kinases may serve to increase the therapeutic specificity while reducing off-target adverse effects. Primary cilia are antenna-like structures that extend from the plasma membrane and function by detecting extracellular cues and transducing signals into the cell. Cilia formation and signaling are dynamically regulated through context-dependent mechanisms; as such, dysregulation of primary cilia contributes to disease in a variety of ways. Here, we review the involvement of primary cilia-associated signaling through aurora A and AKT kinases with respect to cancer, obesity, and other ciliopathies.
Collapse
|
68
|
Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells 2021; 10:cells10123465. [PMID: 34943974 PMCID: PMC8700063 DOI: 10.3390/cells10123465] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a cell suicide process that is essential for development, tissue homeostasis and human health. Impaired apoptosis is associated with a variety of human diseases, including neurodegenerative disorders, autoimmunity and cancer. As the levels of pro- and anti-apoptotic proteins can determine the life or death of cells, tight regulation of these proteins is critical. The ubiquitin proteasome system (UPS) is essential for maintaining protein turnover, which can either trigger or inhibit apoptosis. In this review, we will describe the E3 ligases that regulate the levels of pro- and anti-apoptotic proteins and assisting proteins that regulate the levels of these E3 ligases. We will provide examples of apoptotic cell death modulations using the UPS, determined by positive and negative feedback loop reactions. Specifically, we will review how the stability of p53, Bcl-2 family members and IAPs (Inhibitor of Apoptosis proteins) are regulated upon initiation of apoptosis. As increased levels of oncogenes and decreased levels of tumor suppressor proteins can promote tumorigenesis, targeting these pathways offers opportunities to develop novel anti-cancer therapies, which act by recruiting the UPS for the effective and selective killing of cancer cells.
Collapse
|
69
|
Grohmann C, Marapana DS, Ebert G. Targeted protein degradation at the host-pathogen interface. Mol Microbiol 2021; 117:670-681. [PMID: 34816514 DOI: 10.1111/mmi.14849] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022]
Abstract
Infectious diseases remain a major burden to global health. Despite the implementation of successful vaccination campaigns and efficient drugs, the increasing emergence of pathogenic vaccine or treatment resistance demands novel therapeutic strategies. The development of traditional therapies using small-molecule drugs is based on modulating protein function and activity through the occupation of active sites such as enzyme inhibition or ligand-receptor binding. These prerequisites result in the majority of host and pathogenic disease-relevant, nonenzymatic and structural proteins being labeled "undruggable." Targeted protein degradation (TPD) emerged as a powerful strategy to eliminate proteins of interest including those of the undruggable variety. Proteolysis-targeting chimeras (PROTACs) are rationally designed heterobifunctional small molecules that exploit the cellular ubiquitin-proteasome system to specifically mediate the highly selective and effective degradation of target proteins. PROTACs have shown remarkable results in the degradation of various cancer-associated proteins, and several candidates are already in clinical development. Significantly, PROTAC-mediated TPD holds great potential for targeting and modulating pathogenic proteins, especially in the face of increasing drug resistance to the best-in-class treatments. In this review, we discuss advances in the development of TPD in the context of targeting the host-pathogen interface and speculate on their potential use to combat viral, bacterial, and parasitic infection.
Collapse
Affiliation(s)
- Christoph Grohmann
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Danushka S Marapana
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
70
|
Targeted protein degraders from an oncologist point of view: The Holy Grail of cancer therapy? Crit Rev Oncol Hematol 2021; 169:103532. [PMID: 34800655 DOI: 10.1016/j.critrevonc.2021.103532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
In the era of precision medicine, monoclonal antibodies and small molecule inhibitors are the mainstays of the biological therapy in patients with solid tumors. However, resistance to treatment and the "undruggability" of certain key oncogenic proteins emerged as major limitations and jeopardize the clinical benefit of modern therapeutic approaches. Targeted protein degraders are novel molecules entering the early phase of clinical development that exploit the intracellular ubiquitine-proteasome system to promote a specific degradation of target proteins. Since the peculiar mechanism of action, targeted protein degraders have the potential to limit and overcome resistance to treatment and to allow a full actionability of certain cancer drivers that are actually elusive targets. Here, we discuss the state-of-the-art and the open issues in the development of these emerging biological agents from a clinical perspective and with a focus on solid tumors.
Collapse
|
71
|
Li H, Dong J, Cai M, Xu Z, Cheng XD, Qin JJ. Protein degradation technology: a strategic paradigm shift in drug discovery. J Hematol Oncol 2021; 14:138. [PMID: 34488823 PMCID: PMC8419833 DOI: 10.1186/s13045-021-01146-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2021] [Indexed: 01/10/2023] Open
Abstract
Targeting pathogenic proteins with small-molecule inhibitors (SMIs) has become a widely used strategy for treating malignant tumors. However, most intracellular proteins have been proven to be undruggable due to a lack of active sites, leading to a significant challenge in the design and development of SMIs. In recent years, the proteolysis-targeting chimeric technology and related emerging degradation technologies have provided additional approaches for targeting these undruggable proteins. These degradation technologies show a tendency of superiority over SMIs, including the rapid and continuous target consumption as well as the stronger pharmacological effects, being a hot topic in current research. This review mainly focuses on summarizing the development of protein degradation technologies in recent years. Their advantages, potential applications, and limitations are also discussed. We hope this review would shed light on the design, discovery, and clinical application of drugs associated with these degradation technologies.
Collapse
Affiliation(s)
- Haobin Li
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022 Zhejiang China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Jinyun Dong
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022 Zhejiang China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang China
| | - Maohua Cai
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022 Zhejiang China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Zhiyuan Xu
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022 Zhejiang China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang China
| | - Xiang-Dong Cheng
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022 Zhejiang China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang China
| | - Jiang-Jiang Qin
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022 Zhejiang China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| |
Collapse
|
72
|
Yokoo H, Ohoka N, Takyo M, Ito T, Tsuchiya K, Kurohara T, Fukuhara K, Inoue T, Naito M, Demizu Y. Peptide Stapling Improves the Sustainability of a Peptide-Based Chimeric Molecule That Induces Targeted Protein Degradation. Int J Mol Sci 2021; 22:ijms22168772. [PMID: 34445478 PMCID: PMC8396023 DOI: 10.3390/ijms22168772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
Peptide-based target protein degradation inducers called PROTACs/SNIPERs have low cell penetrability and poor intracellular stability as drawbacks. These shortcomings can be overcome by easily modifying these peptides by conjugation with cell penetrating peptides and side-chain stapling. In this study, we succeeded in developing the stapled peptide stPERML-R7, which is based on the estrogen receptor alpha (ERα)-binding peptide PERML and composed of natural amino acids. stPERML-R7, which includes a hepta-arginine motif and a hydrocarbon stapling moiety, showed increased α-helicity and similar binding affinity toward ERα when compared with those of the parent peptide PERML. Furthermore, we used stPERML-R7 to develop a peptide-based degrader LCL-stPERML-R7 targeting ERα by conjugating stPERML-R7 with a small molecule LCL161 (LCL) that recruits the E3 ligase IAPs to induce proteasomal degradation via ubiquitylation. The chimeric peptide LCL-stPERML-R7 induced sustained degradation of ERα and potently inhibited ERα-mediated transcription more effectively than the unstapled chimera LCL-PERML-R7. These results suggest that a stapled structure is effective in maintaining the intracellular activity of peptide-based degraders.
Collapse
Affiliation(s)
- Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Kanagawa 210-9501, Japan; (H.Y.); (M.T.); (T.I.); (K.T.); (T.K.)
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Kanagawa 210-9501, Japan; (N.O.); (T.I.)
| | - Mami Takyo
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Kanagawa 210-9501, Japan; (H.Y.); (M.T.); (T.I.); (K.T.); (T.K.)
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Takahito Ito
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Kanagawa 210-9501, Japan; (H.Y.); (M.T.); (T.I.); (K.T.); (T.K.)
| | - Keisuke Tsuchiya
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Kanagawa 210-9501, Japan; (H.Y.); (M.T.); (T.I.); (K.T.); (T.K.)
- Graduate School of Pharmacy, Showa University, Tokyo 142-0064, Japan;
| | - Takashi Kurohara
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Kanagawa 210-9501, Japan; (H.Y.); (M.T.); (T.I.); (K.T.); (T.K.)
| | - Kiyoshi Fukuhara
- Graduate School of Pharmacy, Showa University, Tokyo 142-0064, Japan;
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Kanagawa 210-9501, Japan; (N.O.); (T.I.)
| | - Mikihiko Naito
- Laboratory of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Kanagawa 210-9501, Japan; (H.Y.); (M.T.); (T.I.); (K.T.); (T.K.)
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
- Correspondence: ; Tel.: +81-44-270-6578
| |
Collapse
|
73
|
Powell M, Blaskovich MAT, Hansford KA. Targeted Protein Degradation: The New Frontier of Antimicrobial Discovery? ACS Infect Dis 2021; 7:2050-2067. [PMID: 34259518 DOI: 10.1021/acsinfecdis.1c00203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeted protein degradation aims to hijack endogenous protein quality control systems to achieve direct knockdown of protein targets. This exciting technology utilizes event-based pharmacology to produce therapeutic outcomes, a feature that distinguishes it from classical occupancy-based inhibitor agents. Early degrader candidates display resilience to mutations while possessing potent nanomolar activity and high target specificity. Paired with the rapid advancement of our knowledge in the factors driving targeted degradation, the expansion of this style of therapeutic agent to a range of disease indications is eagerly awaited. In particular, the area of antibiotic discovery is sorely lacking in novel approaches, with the Antimicrobial Resistance (AMR) crisis looming as the next potential global health calamity. Here, the current advances in targeted protein degradation are highlighted, and potential approaches for designing novel antimicrobial protein degraders are proposed, ranging from adaptations of current strategies to completely novel approaches to targeted protein degradation.
Collapse
Affiliation(s)
- Matthew Powell
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Karl A. Hansford
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
74
|
Ahn G, Banik SM, Bertozzi CR. Degradation from the outside in: Targeting extracellular and membrane proteins for degradation through the endolysosomal pathway. Cell Chem Biol 2021; 28:1072-1080. [PMID: 33770486 PMCID: PMC8286304 DOI: 10.1016/j.chembiol.2021.02.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Targeted protein degradation (TPD) is a promising strategy to remove deleterious proteins for therapeutic benefit and to probe biological pathways. The past two decades have witnessed a surge in the development of technologies that rely on intracellular machinery to degrade challenging cytosolic targets. However, these TPD platforms leave the majority of extracellular and membrane proteins untouched. To enable degradation of these classes of proteins, internalizing receptors can be co-opted to traffic extracellular proteins to the lysosome. Sweeping antibodies and Seldegs use Fc receptors in conjunction with engineered antibodies to degrade soluble proteins. Recently, lysosome-targeting chimeras (LYTACs) have emerged as a strategy to degrade both secreted and membrane-anchored targets. Together with other newcomer technologies, including antibody-based proteolysis-targeting chimeras, modalities that degrade extracellular proteins have promising translational potential. This perspective will give an overview of TPD platforms that degrade proteins via outside-in approaches and focus on the recent development of LYTACs.
Collapse
Affiliation(s)
- Green Ahn
- Department of Chemistry and Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Steven M Banik
- Department of Chemistry and Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Carolyn R Bertozzi
- Department of Chemistry and Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| |
Collapse
|
75
|
Scholes NS, Mayor-Ruiz C, Winter GE. Identification and selectivity profiling of small-molecule degraders via multi-omics approaches. Cell Chem Biol 2021; 28:1048-1060. [PMID: 33811812 DOI: 10.1016/j.chembiol.2021.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/18/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
The therapeutic modality of targeted protein degradation promises to overcome limitations of traditional pharmacology. Small-molecule degraders recruit disease-causing proteins to E3 ubiquitin ligases, prompting their ubiquitination and degradation by the proteasome. The discovery, mechanistic elucidation, and selectivity profiling of novel degraders are often conducted in cellular systems. This highlights the need for unbiased multi-omics strategies that inform on the functionally involved components. Here, we review how proteomics and functional genomics can be integrated to identify and mechanistically understand degraders, their target selectivity as well as putative resistance mechanisms.
Collapse
Affiliation(s)
- Natalie S Scholes
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Cristina Mayor-Ruiz
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; IRB Barcelona - Institute for Research in Biomedicine, 08028 Barcelona, Spain
| | - Georg E Winter
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.
| |
Collapse
|
76
|
Henneberg LT, Schulman BA. Decoding the messaging of the ubiquitin system using chemical and protein probes. Cell Chem Biol 2021; 28:889-902. [PMID: 33831368 PMCID: PMC7611516 DOI: 10.1016/j.chembiol.2021.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 12/29/2022]
Abstract
Post-translational modification of proteins by ubiquitin is required for nearly all aspects of eukaryotic cell function. The numerous targets of ubiquitylation, and variety of ubiquitin modifications, are often likened to a code, where the ultimate messages are diverse responses to target ubiquitylation. E1, E2, and E3 multiprotein enzymatic assemblies modify specific targets and thus function as messengers. Recent advances in chemical and protein tools have revolutionized our ability to explore the ubiquitin system, through enabling new high-throughput screening methods, matching ubiquitylation enzymes with their cellular targets, revealing intricate allosteric mechanisms regulating ubiquitylating enzymes, facilitating structural revelation of transient assemblies determined by multivalent interactions, and providing new paradigms for inhibiting and redirecting ubiquitylation in vivo as new therapeutics. Here we discuss the development of methods that control, disrupt, and extract the flow of information across the ubiquitin system and have enabled elucidation of the underlying molecular and cellular biology.
Collapse
Affiliation(s)
- Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
77
|
Yuan M, Chu Y, Duan Y. Reversible Covalent PROTACs: Novel and Efficient Targeted Degradation Strategy. Front Chem 2021; 9:691093. [PMID: 34291036 PMCID: PMC8287302 DOI: 10.3389/fchem.2021.691093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
The proteolysis targeting chimeras (PROTACs), which are composed of a target protein binding moiety, a linker, and an E3 ubiquitin ligase binder, have been a promising strategy for drug design and discovery. Given the advantages of potency, selectivity, and drug resistance over inhibitors, several PROTACs have been reported in literature, which mostly focus on noncovalent or irreversible covalent binding to the target proteins. However, it must be noted that noncovalent or irreversible PROTACs have several drawbacks such as weak binding affinity and unpredictable off-target effects. Reversible covalent PROTACs, with properties of enhanced potency, selectivity, and long duration of action, have attracted an increasing amount of attention. Here, we propose a comparison between these three patterns and highlight that reversible covalent PROTACs could pave the way for a wide variety of challenging target degradations.
Collapse
Affiliation(s)
- Minghua Yuan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.,School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, China
| | - Yanan Chu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.,School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| |
Collapse
|
78
|
Barghout SH. Targeted Protein Degradation: An Emerging Therapeutic Strategy in Cancer. Anticancer Agents Med Chem 2021; 21:214-230. [PMID: 32275492 DOI: 10.2174/1871520620666200410082652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/20/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
Drug discovery in the scope of cancer therapy has been focused on conventional agents that nonselectively induce DNA damage or selectively inhibit the activity of key oncogenic molecules without affecting their protein levels. An emerging therapeutic strategy that garnered attention in recent years is the induction of Targeted Protein Degradation (TPD) of cellular targets by hijacking the intracellular proteolysis machinery. This novel approach offers several advantages over conventional inhibitors and introduces a paradigm shift in several pharmacological aspects of drug therapy. While TPD has been found to be the major mode of action of clinically approved anticancer agents such as fulvestrant and thalidomide, recent years have witnessed systematic endeavors to expand the repertoire of proteins amenable to therapeutic ablation by TPD. Such endeavors have led to three major classes of agents that induce protein degradation, including molecular glues, Proteolysis Targeting Chimeras (PROTACs) and Hydrophobic Tag (HyT)-based degraders. Here, we briefly highlight agents in these classes and key advances made in the field with a focus on clinical translation in cancer therapy.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
79
|
LaPlante G, Zhang W. Targeting the Ubiquitin-Proteasome System for Cancer Therapeutics by Small-Molecule Inhibitors. Cancers (Basel) 2021; 13:3079. [PMID: 34203106 PMCID: PMC8235664 DOI: 10.3390/cancers13123079] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a critical regulator of cellular protein levels and activity. It is, therefore, not surprising that its dysregulation is implicated in numerous human diseases, including many types of cancer. Moreover, since cancer cells exhibit increased rates of protein turnover, their heightened dependence on the UPS makes it an attractive target for inhibition via targeted therapeutics. Indeed, the clinical application of proteasome inhibitors in treatment of multiple myeloma has been very successful, stimulating the development of small-molecule inhibitors targeting other UPS components. On the other hand, while the discovery of potent and selective chemical compounds can be both challenging and time consuming, the area of targeted protein degradation through utilization of the UPS machinery has seen promising developments in recent years. The repertoire of proteolysis-targeting chimeras (PROTACs), which employ E3 ligases for the degradation of cancer-related proteins via the proteasome, continues to grow. In this review, we will provide a thorough overview of small-molecule UPS inhibitors and highlight advancements in the development of targeted protein degradation strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Gabriel LaPlante
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
- CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, MaRS Centre West Tower, 661 University Avenue, Toronto, ON M5G1M1, Canada
| |
Collapse
|
80
|
Reynders M, Trauner D. Optical control of targeted protein degradation. Cell Chem Biol 2021; 28:969-986. [PMID: 34115971 DOI: 10.1016/j.chembiol.2021.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Molecular glues and proteolysis targeting chimeras (PROTACs) have emerged as small-molecule tools that selectively induce the degradation of a chosen protein and have shown therapeutic promise. Recently, several approaches employing light as an additional stimulus to control induced protein degradation have been reported. Here, we analyze the principles guiding the design of such systems, provide a survey of the literature published to date, and discuss opportunities for further development. Light-responsive degraders enable the precise temporal and spatial control of protein levels, making them useful research tools but also potential candidates for human precision medicine.
Collapse
Affiliation(s)
- Martin Reynders
- Department of Chemistry, New York University, New York, NY 10003, USA; Department of Chemistry, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY 10003, USA; Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
81
|
Takahashi D, Arimoto H. Selective autophagy as the basis of autophagy-based degraders. Cell Chem Biol 2021; 28:1061-1071. [PMID: 34087173 DOI: 10.1016/j.chembiol.2021.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/23/2021] [Accepted: 05/07/2021] [Indexed: 01/13/2023]
Abstract
Degrader technologies, which enable the chemical knockdown of disease-causing proteins, are promising for drug discovery. After two decades of research, degraders using the ubiquitin-proteasome system (UPS) are currently in clinical trials. However, the UPS substrates are mainly limited to soluble proteins. Autophagy-targeting chimeras and autophagosome-tethering compounds are degraders that use autophagy, which has functions complementary to the UPS. They can degrade organelles and aggregate-prone proteins, making them promising treatments against age-related conditions such as mitochondrial dysfunction and neurodegenerative diseases. The molecular mechanism of selective autophagy is an ongoing research topic, which explains why autophagy-based degraders were not available until recently. In this review, we introduce four classifications of selective autophagy mechanisms to facilitate the understanding of the degrader design.
Collapse
Affiliation(s)
- Daiki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Hirokazu Arimoto
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
82
|
Izert MA, Klimecka MM, Górna MW. Applications of Bacterial Degrons and Degraders - Toward Targeted Protein Degradation in Bacteria. Front Mol Biosci 2021; 8:669762. [PMID: 34026843 PMCID: PMC8138137 DOI: 10.3389/fmolb.2021.669762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
A repertoire of proteolysis-targeting signals known as degrons is a necessary component of protein homeostasis in every living cell. In bacteria, degrons can be used in place of chemical genetics approaches to interrogate and control protein function. Here, we provide a comprehensive review of synthetic applications of degrons in targeted proteolysis in bacteria. We describe recent advances ranging from large screens employing tunable degradation systems and orthogonal degrons, to sophisticated tools and sensors for imaging. Based on the success of proteolysis-targeting chimeras as an emerging paradigm in cancer drug discovery, we discuss perspectives on using bacterial degraders for studying protein function and as novel antimicrobials.
Collapse
Affiliation(s)
| | | | - Maria Wiktoria Górna
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
83
|
Jevtić P, Haakonsen DL, Rapé M. An E3 ligase guide to the galaxy of small-molecule-induced protein degradation. Cell Chem Biol 2021; 28:1000-1013. [PMID: 33891901 DOI: 10.1016/j.chembiol.2021.04.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/28/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Induced protein degradation accomplishes elimination, rather than inhibition, of pathological proteins. Key to the success of this novel therapeutic modality is the modification of proteins with ubiquitin chains, which is brought about by molecular glues or bivalent compounds that induce proximity between the target protein and an E3 ligase. The human genome encodes ∼600 E3 ligases that differ widely in their structures, catalytic mechanisms, modes of regulation, and physiological roles. While many of these enzymes hold great promise for drug discovery, few have been successfully engaged by small-molecule degraders. Here, we review E3 ligases that are being used for induced protein degradation. Based on these prior successes and our growing understanding of the biology and biochemistry of E3 ligases, we propose new ubiquitylation enzymes that can be harnessed for drug discovery to firmly establish induced protein degradation as a specific and efficient therapeutic approach.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Diane L Haakonsen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
84
|
Ishida T, Ciulli A. E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:484-502. [PMID: 33143537 PMCID: PMC8013866 DOI: 10.1177/2472555220965528] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
Abstract
Bifunctional degrader molecules, also called proteolysis-targeting chimeras (PROTACs), are a new modality of chemical tools and potential therapeutics to understand and treat human disease. A required PROTAC component is a ligand binding to an E3 ubiquitin ligase, which is then joined to another ligand binding to a protein to be degraded via the ubiquitin-proteasome system. The advent of nonpeptidic small-molecule E3 ligase ligands, notably for von Hippel-Lindau (VHL) and cereblon (CRBN), revolutionized the field and ushered in the design of drug-like PROTACs with potent and selective degradation activity. A first wave of PROTAC drugs are now undergoing clinical development in cancer, and the field is seeking to extend the repertoire of chemistries that allow hijacking new E3 ligases to improve the scope of targeted protein degradation.Here, we briefly review how traditional E3 ligase ligands were discovered, and then outline approaches and ligands that have been recently used to discover new E3 ligases for PROTACs. We will then take an outlook at current and future strategies undertaken that invoke either target-based screening or phenotypic-based approaches, including the use of DNA-encoded libraries (DELs), display technologies and cyclic peptides, smaller molecular glue degraders, and covalent warhead ligands. These approaches are ripe for expanding the chemical space of PROTACs and usher in the advent of other emerging bifunctional modalities of proximity-based pharmacology.
Collapse
Affiliation(s)
- Tasuku Ishida
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
85
|
LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat Chem Biol 2021; 17:937-946. [PMID: 33767387 PMCID: PMC8387313 DOI: 10.1038/s41589-021-00770-1] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Selective protein degradation platforms have afforded new development opportunities for therapeutics and tools for biological inquiry. The first lysosome targeting chimeras (LYTACs) targeted extracellular and membrane proteins for degradation by bridging a target protein to the cation-independent mannose-6-phosphate receptor (CI-M6PR). Here, we developed LYTACs that engage the asialoglycoprotein receptor (ASGPR), a liver-specific lysosomal targeting receptor, to degrade extracellular proteins in a cell type-specific manner. We conjugated binders to a tri-GalNAc motif that engages ASGPR to drive downregulation of proteins. Degradation of EGFR by GalNAc-LYTAC attenuated EGFR signaling compared to inhibition with an antibody. Furthermore, we demonstrated that a LYTAC comprising a 3.4 kDa peptide binder linked to a tri-GalNAc ligand degrades integrins and reduces cancer cell proliferation. Degradation with a single tri-GalNAc ligand prompted site-specific conjugation on antibody scaffolds, which improved the pharmacokinetic profile of GalNAc-LYTACs in vivo. GalNAc-LYTACs thus represent an avenue for cell-type restricted protein degradation.
Collapse
|
86
|
Bond MJ, Crews CM. Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation. RSC Chem Biol 2021; 2:725-742. [PMID: 34212149 PMCID: PMC8190915 DOI: 10.1039/d1cb00011j] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
With the discovery of PROteolysis TArgeting Chimeras (PROTACs) twenty years ago, targeted protein degradation (TPD) has changed the landscape of drug development. PROTACs have evolved from cell-impermeable peptide-small molecule chimeras to orally bioavailable clinical candidate drugs that degrade oncogenic proteins in humans. As we move into the third decade of TPD, the pace of discovery will only accelerate. Improved technologies are enabling the development of ligands for "undruggable" proteins and the recruitment of new E3 ligases. Moreover, enhanced computing power will expedite identification of active degraders. Here we discuss the strides made in these areas and what advances we can look forward to as the next decade in this exciting field begins.
Collapse
Affiliation(s)
- Michael J Bond
- Department of Pharmacology, Yale University New Haven CT 06511 USA
| | - Craig M Crews
- Department of Pharmacology, Yale University New Haven CT 06511 USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University New Haven CT 06511 USA
- Department of Chemistry, Yale University New Haven CT 06511 USA
| |
Collapse
|
87
|
Kaur R, Chaudhary G, Kaur A, Singh P, Longowal GD, Sapkale GP, Arora S. PROTACs: A Hope for Breast Cancer Patients? Anticancer Agents Med Chem 2021; 22:406-417. [PMID: 33687888 DOI: 10.2174/1871520621666210308100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast Cancer (BC) is the most widely recognized disease in women. A massive number of women are diagnosed with breast cancer and many lost their lives every year. Cancer is the subsequent driving reason for dying, giving rise to it one of the current medication's most prominent difficulties. OBJECTIVES The main objective of the study is to examine and explore novel therapy (PROTAC) and its effectiveness against breast cancer. METHODS The literature search was done across Medline, Cochrane, ScienceDirect, Wiley Online, Google Scholar, PubMed, Bentham Sciences from 2001 to 2020. The articles were collected; screened, segregated, and selected papers were included for writing the review article. RESULTS AND CONCLUSION A novel innovation emerged around two decades ago that has great potential to not only overcome the limitations but also can provide future direction for the treatment of many diseases which has presently not many therapeutic options available and regarded as incurable with traditional techniques; that innovation is called PROTAC (Proteolysis Targeting Chimera) and able to efficaciously ubiquitinate and debase cancer encouraging proteins by noncovalent interaction. PROTACs are constituted of two active regions isolated by a linker and equipped for eliminating explicit undesirable protein. It is empowering greater sensitivity to "drug-resistant targets" as well as a more prominent opportunity to influence non-enzymatic function. PROTACs have been demonstrated to show better target selectivity contrasted with traditional small-molecule inhibitors. So far, the most investigation into PROTACs possesses particularly concentrated on applications to cancer treatment including breast cancer, the treatment of different ailments may profit from this blossoming innovation.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Gaurav Chaudhary
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Amritpal Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Pargat Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | | | - Gayatri P Sapkale
- Fortis Flt. Lt. Rajan Dhall Hospital, Aruna Asaf Ali Marg, Pocket 1, Sector B, Vasant Kunj, New Delhi-110070. India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| |
Collapse
|
88
|
Yokoo H, Shibata N, Naganuma M, Murakami Y, Fujii K, Ito T, Aritake K, Naito M, Demizu Y. Development of a Hematopoietic Prostaglandin D Synthase-Degradation Inducer. ACS Med Chem Lett 2021; 12:236-241. [PMID: 33603969 PMCID: PMC7883460 DOI: 10.1021/acsmedchemlett.0c00605] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 11/28/2022] Open
Abstract
Although hematopoietic prostaglandin D synthase (H-PGDS) is an attractive target for treatment of a variety of diseases, including allergic diseases and Duchenne muscular dystrophy, no H-PGDS inhibitors have yet been approved for treatment of these diseases. Therefore, the development of novel agents having other modes of action to modulate the activity of H-PGDS is required. In this study, a chimeric small molecule that degrades H-PGDS via the ubiquitin-proteasome system, PROTAC(H-PGDS)-1, was developed. PROTAC(H-PGDS)-1 is composed of two ligands, TFC-007 (that binds to H-PGDS) and pomalidomide (that binds to cereblon). PROTAC(H-PGDS)-1 showed potent activity in the degradation of H-PGDS protein via the ubiquitin-proteasome system and in the suppression of prostaglandin D2 (PGD2) production. Notably, PROTAC(H-PGDS)-1 showed sustained suppression of PGD2 production after the drug removal, whereas PGD2 production recovered following removal of TFC-007. Thus, the H-PGDS degrader-PROTAC(H-PGDS)-1-is expected to be useful in biological research and clinical therapies.
Collapse
Affiliation(s)
- Hidetomo Yokoo
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, Kanagawa, Japan
| | - Norihito Shibata
- Division
of Biochemistry, National Institute of Health
Sciences, Kanagawa, Japan
| | - Miyako Naganuma
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
| | - Yuki Murakami
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, Kanagawa, Japan
| | - Kiyonaga Fujii
- Laboratory
of Analytical Chemistry, Daiichi University
of Pharmacy, Fukuoka, Japan
| | - Takahito Ito
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
| | - Kosuke Aritake
- Laboratory
of Chemical Pharmacology, Daiichi University
of Pharmacy, Fukuoka, Japan
| | - Mikihiko Naito
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
- Laboratory
of Targeted Protein Degradation, Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Tokyo, Japan
| | - Yosuke Demizu
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, Kanagawa, Japan
| |
Collapse
|
89
|
Gabizon R, London N. The rise of covalent proteolysis targeting chimeras. Curr Opin Chem Biol 2021; 62:24-33. [PMID: 33549806 DOI: 10.1016/j.cbpa.2020.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/05/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
Targeted protein degradation offers several advantages over direct inhibition of protein activity and is gaining increasing interest in chemical biology and drug discovery. Proteolysis targeting chimeras (PROTACs) in particular are enjoying widespread application. However, PROTACs, which recruit an E3 ligase for degradation of a target protein, still suffer from certain challenges. These include a limited selection for E3 ligases on the one hand and the requirement for potent target binding on the other hand. Both issues restrict the target scope available for PROTACs. Degraders that covalently engage the target protein or the E3 ligase can potentially expand the pool of both targets and E3 ligases. Moreover, they may offer additional advantages by improving the kinetics of ternary complex formation or by endowing additional selectivity to the degrader. Here, we review the recent progress in the emerging field of covalent PROTACs.
Collapse
Affiliation(s)
- Ronen Gabizon
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Nir London
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
90
|
Ma Z, Ji Y, Yu Y, Liang D. Specific non-genetic IAP-based protein erasers (SNIPERs) as a potential therapeutic strategy. Eur J Med Chem 2021; 216:113247. [PMID: 33652355 DOI: 10.1016/j.ejmech.2021.113247] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/29/2022]
Abstract
As a newly emerged technology, PROTAC (proteolysis targeting chimera) is a promising therapeutic strategy for varieties of diseases. Unlike small molecule inhibitors, PROTACs catalytically induce target proteins degradation, including currently "undruggable" target proteins. In addition, PROTACs can be a potentially successful strategy to overcome drug resistance. IAPs can inhibit apoptosis by inhibiting caspase, and also exhibits the activity of E3 ubiquitin ligase. Specific and nongenetic IAP-based protein erasers (SNIPERs) are hybrid molecules that designed based on IAPs, and used to degrade the target proteins closely associated with diseases. Their structures consist of three parts, including target protein ligand, E3 ligase ligand and the linker between them. SNIPERs (PROTACs) degrade diseases-associated proteins through human inherent ubiquitin-proteasome system. So far, many SNIPERs have been developed to treat diseases that difficult to handle by traditional methods, such as radiotherapy, chemotherapy and small molecule inhibitors, and showed promising prospects in application. In this paper, the recent advances of SNIPERs were summarized, and the chances and challenges associated with this area were also highlighted.
Collapse
Affiliation(s)
- Zonghui Ma
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China.
| | - Yu Ji
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Yifan Yu
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Dailin Liang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| |
Collapse
|
91
|
Cotton AD, Nguyen DP, Gramespacher JA, Seiple IB, Wells JA. Development of Antibody-Based PROTACs for the Degradation of the Cell-Surface Immune Checkpoint Protein PD-L1. J Am Chem Soc 2021; 143:593-598. [PMID: 33395526 PMCID: PMC8154509 DOI: 10.1021/jacs.0c10008] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 12/13/2022]
Abstract
Targeted protein degradation has emerged as a new paradigm to manipulate cellular proteostasis. Proteolysis-targeting chimeras (PROTACs) are bifunctional small molecules that recruit an E3 ligase to a target protein of interest, promoting its ubiquitination and subsequent degradation. Here, we report the development of antibody-based PROTACs (AbTACs), fully recombinant bispecific antibodies that recruit membrane-bound E3 ligases for the degradation of cell-surface proteins. We show that an AbTAC can induce the lysosomal degradation of programmed death-ligand 1 by recruitment of the membrane-bound E3 ligase RNF43. AbTACs represent a new archetype within the PROTAC field to target cell-surface proteins with fully recombinant biological molecules.
Collapse
Affiliation(s)
- Adam D. Cotton
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94143, United States
| | - Duy P. Nguyen
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94143, United States
| | - Josef A. Gramespacher
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94143, United States
| | - Ian B. Seiple
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94143, United States
- Cardiovascular
Research Institute, University of California, San Francisco, California 94143, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94143, United States
| |
Collapse
|
92
|
Abstract
Targeted protein degradation is an emerging technology for drug development. An article published in Nature reported a novel mechanism of targeted protein degradation triggered by small-molecule-induced polymerization of the oncogenic transcription factor BCL6.
Collapse
Affiliation(s)
- Mikihiko Naito
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
| | - Shigeo Murata
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
93
|
Naito M, Komatsu H. [Intermolecular interaction-based ubiquitin-proteasome system-targeting drug discovery]. Nihon Yakurigaku Zasshi 2021; 156:9-12. [PMID: 33390482 DOI: 10.1254/fpj.20070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We review recent advances of Ubiquitin-Proteasome System (UPS)-based research and development with increased focus as drug discovery approaches and introduce applications of chimera-type small molecule compounds (SNIPER/PROTAC) that selectively promote degradation of a drug target protein. UPS makes the point (polyubiquitin chain) of targeting protein as a substrate and has a property that degrade the target protein with proteasome. Protein knockout technologies degrade the drug target protein by apply this protein degrading system. In current technologies, polyubiquitin chains are artificially added to the drug target proteins through small molecules and introduce degradation of the target proteins. The approaches are divided into 2 types, one of which is E3 modulator-based technology represented by thalidomide, the other one is chimera compound-based technology represented by SNIPER/PROTAC. Furthermore, novel technologies are practically used to identify small molecule E3 binders as well as E3-targeting protein binders. These new approaches are expected to contribute to the efficient UPS-based drug discovery.
Collapse
|
94
|
Nishimura Y, Inagaki M. [Targeting the ubiquitin system for treatment of cilia-related diseases]. Nihon Yakurigaku Zasshi 2021; 156:4-8. [PMID: 33390480 DOI: 10.1254/fpj.20072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The ubiquitin system regulates a wide variety of cellular functions. Not surprisingly, dysregulation of the ubiquitin system is associated with various disorders. Therefore, drugs that can modulate the functions of the ubiquitin system have been actively developed to treat these disorders. Chemical knockdown of pathogenic proteins using the ubiquitin-proteasome system is also a promising approach. The ubiquitin system regulates the assemble and disassemble of primary cilia through balanced control over the ubiquitination and deubiquitination of ciliary proteins. Primary cilia are antenna-like structures present in many vertebrate cells that sense and transduce extracellular cues to control cellular processes such as proliferation and differentiation. Impairment of primary cilia is associated with many diseases, including cancer and ciliopathy, a group of multisystem developmental disorders. In this review, we focus on the role of the ubiquitin system on cilia-related disorders and discuss the possibility of the ubiquitin system as therapeutic targets for these diseases through regulation of primary cilia formation.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine.,Glocal Center for Advanced Medical Research, Mie University
| | - Masaki Inagaki
- Glocal Center for Advanced Medical Research, Mie University.,Department of Physiology, Mie University Graduate School of Medicine
| |
Collapse
|
95
|
Fuchs O, Bokorova R. Preclinical Studies of PROTACs in Hematological Malignancies. Cardiovasc Hematol Disord Drug Targets 2021; 21:7-22. [PMID: 33687890 DOI: 10.2174/1871529x21666210308111546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Incorrectly expressed or mutated proteins associated with hematologic malignancies have been generally targeted by chemotherapy using small-molecule inhibitors or monoclonal antibodies. But the majority of these intracellular proteins are without active sites and antigens. PROTACs, proteolysis targeting chimeras, are bifunctional molecules designed to polyubiquitinate and degrade specific pathological proteins of interest (POIs) by hijacking the activity of E3-ubiquitin ligases for POI polyubiquitination and subsequent degradation by the proteasome. This strategy utilizes the ubiquitin-proteasome system for the degradation of specific proteins in the cell. In many cases, including hematologic malignancies, inducing protein degradation as a therapeutic strategy offers therapeutic benefits over classical enzyme inhibition connected with resistance to inhibitors. Limitations of small-molecule inhibitors are shown. PROTACs can polyubiquitinate and mark for degradation of "undruggable"proteins, e.g. transcription factor STAT3 and scaffold proteins. Today, this technology is used in preclinical studies in various hematologic malignancies, mainly for targeting drug-resistant bromodomain and extraterminal proteins and Bruton tyrosine kinase. Several mechanisms limiting selectivity and safety of PROTAC molecules function are also discussed.
Collapse
Affiliation(s)
- Ota Fuchs
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Radka Bokorova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
96
|
Leissing TM, Luh LM, Cromm PM. Structure driven compound optimization in targeted protein degradation. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:73-82. [PMID: 34895657 DOI: 10.1016/j.ddtec.2020.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/14/2023]
Abstract
Small molecule induced protein degradation has created tremendous excitement in drug discovery within recent years. Not being confined to target inhibition and being able to remove disease-causing protein targets via engagement and subsequent ubiquitination has provided scientists with a powerful tool to expand the druggable space. At the center of this approach sits the ternary complex formed between an E3 ubiquitin ligase, the small molecule degrader, and the target protein. A productive ternary complex is pivotal for a ubiquitin to be transferred to a surface lysine of the target protein resulting in poly-ubiquitination which enables recognition and finally degradation by the proteasome. As understanding the ternary complex means understanding the degradation process, many efforts are put into obtaining structural information of the ternary complex and getting a snapshot of the underlying conformations and molecular contacts. Locking this transient trimeric intermediate in a crystalline state has proven to be very demanding but the obtained results have tremendously improved our understanding of small molecule degraders. This review discusses target protein degradation from a structural perspective and highlights the evolution of certain degraders based on the obtained structural insights.
Collapse
Affiliation(s)
| | - Laura M Luh
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Philipp M Cromm
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany.
| |
Collapse
|
97
|
Troup RI, Fallan C, Baud MGJ. Current strategies for the design of PROTAC linkers: a critical review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:273-312. [PMID: 36046485 PMCID: PMC9400730 DOI: 10.37349/etat.2020.00018] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) are heterobifunctional molecules consisting of two ligands; an “anchor” to bind to an E3 ubiquitin ligase and a “warhead” to bind to a protein of interest, connected by a chemical linker. Targeted protein degradation by PROTACs has emerged as a new modality for the knock down of a range of proteins, with the first agents now reaching clinical evaluation. It has become increasingly clear that the length and composition of the linker play critical roles on the physicochemical properties and bioactivity of PROTACs. While linker design has historically received limited attention, the PROTAC field is evolving rapidly and currently undergoing an important shift from synthetically tractable alkyl and polyethylene glycol to more sophisticated functional linkers. This promises to unlock a wealth of novel PROTAC agents with enhanced bioactivity for therapeutic intervention. Here, the authors provide a timely overview of the diverse linker classes in the published literature, along with their underlying design principles and overall influence on the properties and bioactivity of the associated PROTACs. Finally, the authors provide a critical analysis of current strategies for PROTAC assembly. The authors highlight important limitations associated with the traditional “trial and error” approach around linker design and selection, and suggest potential future avenues to further inform rational linker design and accelerate the identification of optimised PROTACs. In particular, the authors believe that advances in computational and structural methods will play an essential role to gain a better understanding of the structure and dynamics of PROTAC ternary complexes, and will be essential to address the current gaps in knowledge associated with PROTAC design.
Collapse
Affiliation(s)
- Robert I. Troup
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ Southampton, UK
| | - Charlene Fallan
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge Science Park, Milton Road, CB4 0WG Cambridge, UK
| | - Matthias G. J. Baud
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ Southampton, UK
| |
Collapse
|
98
|
Luh LM, Scheib U, Juenemann K, Wortmann L, Brands M, Cromm PM. Prey for the Proteasome: Targeted Protein Degradation-A Medicinal Chemist's Perspective. Angew Chem Int Ed Engl 2020; 59:15448-15466. [PMID: 32428344 PMCID: PMC7496094 DOI: 10.1002/anie.202004310] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Targeted protein degradation (TPD), the ability to control a proteins fate by triggering its degradation in a highly selective and effective manner, has created tremendous excitement in chemical biology and drug discovery within the past decades. The TPD field is spearheaded by small molecule induced protein degradation with molecular glues and proteolysis targeting chimeras (PROTACs) paving the way to expand the druggable space and to create a new paradigm in drug discovery. However, besides the therapeutic angle of TPD a plethora of novel techniques to modulate and control protein levels have been developed. This enables chemical biologists to better understand protein function and to discover and verify new therapeutic targets. This Review gives a comprehensive overview of chemical biology techniques inducing TPD. It explains the strengths and weaknesses of these methods in the context of drug discovery and discusses their future potential from a medicinal chemist's perspective.
Collapse
Affiliation(s)
- Laura M. Luh
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| | - Ulrike Scheib
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| | - Katrin Juenemann
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| | - Lars Wortmann
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| | - Michael Brands
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| | - Philipp M. Cromm
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| |
Collapse
|
99
|
Yokoo H, Ohoka N, Naito M, Demizu Y. Design and synthesis of peptide-based chimeric molecules to induce degradation of the estrogen and androgen receptors. Bioorg Med Chem 2020; 28:115595. [PMID: 32631565 DOI: 10.1016/j.bmc.2020.115595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/12/2023]
Abstract
Peptide-based inducers of estrogen receptor (ER) α and androgen receptor (AR) degradations via the ubiquitin-proteasome system (UPS) were developed. The designated inducers were composed of two biologically active scaffolds: the helical peptide PERM3, which is an LXXLL-like mimic of the coactivator SRC-1, and various small molecules (MV1, LCL161, VH032, and POM) that bind to E3 ligases (IAPs, VHL, and cereblon, respectively), to induce ubiquitylation of nuclear receptors that bind to SRC-1. All of the synthesized chimeric E3 ligand-containing molecules induced the UPS-mediated degradation of ERα and AR. The PERM3 peptide was applicable for the development of the ERα and AR degraders using these E3 ligands.
Collapse
Affiliation(s)
- Hidetomo Yokoo
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; Graduate School of Medical Health Sciences, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Nobumichi Ohoka
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Mikihiko Naito
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Yosuke Demizu
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; Graduate School of Medical Health Sciences, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
100
|
Banik SM, Pedram K, Wisnovsky S, Ahn G, Riley NM, Bertozzi CR. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 2020; 584:291-297. [PMID: 32728216 PMCID: PMC7727926 DOI: 10.1038/s41586-020-2545-9] [Citation(s) in RCA: 603] [Impact Index Per Article: 120.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/22/2020] [Indexed: 01/30/2023]
Abstract
The majority of therapies that target individual proteins rely on specific activity-modulating interactions with the target protein-for example, enzyme inhibition or ligand blocking. However, several major classes of therapeutically relevant proteins have unknown or inaccessible activity profiles and so cannot be targeted by such strategies. Protein-degradation platforms such as proteolysis-targeting chimaeras (PROTACs)1,2 and others (for example, dTAGs3, Trim-Away4, chaperone-mediated autophagy targeting5 and SNIPERs6) have been developed for proteins that are typically difficult to target; however, these methods involve the manipulation of intracellular protein degradation machinery and are therefore fundamentally limited to proteins that contain cytosolic domains to which ligands can bind and recruit the requisite cellular components. Extracellular and membrane-associated proteins-the products of 40% of all protein-encoding genes7-are key agents in cancer, ageing-related diseases and autoimmune disorders8, and so a general strategy to selectively degrade these proteins has the potential to improve human health. Here we establish the targeted degradation of extracellular and membrane-associated proteins using conjugates that bind both a cell-surface lysosome-shuttling receptor and the extracellular domain of a target protein. These initial lysosome-targeting chimaeras, which we term LYTACs, consist of a small molecule or antibody fused to chemically synthesized glycopeptide ligands that are agonists of the cation-independent mannose-6-phosphate receptor (CI-M6PR). We use LYTACs to develop a CRISPR interference screen that reveals the biochemical pathway for CI-M6PR-mediated cargo internalization in cell lines, and uncover the exocyst complex as a previously unidentified-but essential-component of this pathway. We demonstrate the scope of this platform through the degradation of therapeutically relevant proteins, including apolipoprotein E4, epidermal growth factor receptor, CD71 and programmed death-ligand 1. Our results establish a modular strategy for directing secreted and membrane proteins for lysosomal degradation, with broad implications for biochemical research and for therapeutics.
Collapse
Affiliation(s)
- Steven M Banik
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Kayvon Pedram
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Simon Wisnovsky
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Green Ahn
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford, CA, USA.
| |
Collapse
|