51
|
Cho K, Vaught TG, Ji H, Gu D, Papasakelariou-Yared C, Horstmann N, Jennings JM, Lee M, Sevilla LM, Kloc M, Reynolds AB, Watt FM, Brennan RG, Kowalczyk AP, McCrea PD. Xenopus Kazrin interacts with ARVCF-catenin, spectrin and p190B RhoGAP, and modulates RhoA activity and epithelial integrity. J Cell Sci 2010; 123:4128-44. [PMID: 21062899 DOI: 10.1242/jcs.072041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In common with other p120-catenin subfamily members, Xenopus ARVCF (xARVCF) binds cadherin cytoplasmic domains to enhance cadherin metabolic stability or, when dissociated, modulates Rho-family GTPases. We report here that xARVCF binds and is stabilized by Xenopus KazrinA (xKazrinA), a widely expressed conserved protein that bears little homology to established protein families, and which is known to influence keratinocyte proliferation and differentiation and cytoskeletal activity. Although we found that xKazrinA binds directly to xARVCF, we did not resolve xKazrinA within a larger ternary complex with cadherin, nor did it co-precipitate with core desmosomal components. Instead, screening revealed that xKazrinA binds spectrin, suggesting a potential means by which xKazrinA localizes to cell-cell borders. This was supported by the resolution of a ternary biochemical complex of xARVCF-xKazrinA-xβ2-spectrin and, in vivo, by the finding that ectodermal shedding followed depletion of xKazrin in Xenopus embryos, a phenotype partially rescued with exogenous xARVCF. Cell shedding appeared to be the consequence of RhoA activation, and thereby altered actin organization and cadherin function. Indeed, we also revealed that xKazrinA binds p190B RhoGAP, which was likewise capable of rescuing Kazrin depletion. Finally, xKazrinA was found to associate with δ-catenins and p0071-catenins but not with p120-catenin, suggesting that Kazrin interacts selectively with additional members of the p120-catenin subfamily. Taken together, our study supports the essential role of Kazrin in development, and reveals the biochemical and functional association of KazrinA with ARVCF-catenin, spectrin and p190B RhoGAP.
Collapse
Affiliation(s)
- Kyucheol Cho
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Alfandari D, Cousin H, Marsden M. Mechanism of Xenopus cranial neural crest cell migration. Cell Adh Migr 2010; 4:553-60. [PMID: 20505318 DOI: 10.4161/cam.4.4.12202] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review focuses on recent advances in the field of cranial neural crest cell migration in Xenopus laevis with specific emphasis on cell adhesion and the regulation of cell migration. Our goal is to combine the understanding of cell adhesion to the extracellular matrix with the regulation of cell-cell adhesion and the involvement of the planar cell polarity signaling-pathway in guiding the migration of cranial neural crest cells during embryogenesis.
Collapse
Affiliation(s)
- Dominque Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, USA.
| | | | | |
Collapse
|
53
|
Andl CD. The Misregulation of Cell Adhesion Components during Tumorigenesis: Overview and Commentary. JOURNAL OF ONCOLOGY 2010; 2010:174715. [PMID: 20953359 PMCID: PMC2952821 DOI: 10.1155/2010/174715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/23/2010] [Accepted: 09/10/2010] [Indexed: 12/18/2022]
Abstract
Cell adhesion complexes facilitate attachment between cells or the binding of cells to the extracellular matrix. The regulation of cell adhesion is an important step in embryonic development and contributes to tissue homeostasis allowing processes such as differentiation and cell migration. Many mechanisms of cancer progression are reminiscent of embryonic development, for example, epithelial-mesenchymal transition, and involve the disruption of cell adhesion and expression changes in components of cell adhesion structures. Tight junctions, adherens junctions, desmosomes, and focal adhesion besides their roles in cell-cell or cell-matrix interaction also possess cell signaling function. Perturbations of such signaling pathways can lead to cancer. This article gives an overview of the common structures of cell adhesion and summarizes the impact of their loss on cancer development and progression with articles highlighted from the present issue.
Collapse
Affiliation(s)
- Claudia D. Andl
- Department of Surgery and Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
54
|
McCrea PD, Gu D, Balda MS. Junctional music that the nucleus hears: cell-cell contact signaling and the modulation of gene activity. Cold Spring Harb Perspect Biol 2010; 1:a002923. [PMID: 20066098 DOI: 10.1101/cshperspect.a002923] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell-cell junctions continue to capture the interest of cell and developmental biologists, with an emerging area being the molecular means by which junctional signals relate to gene activity in the nucleus. Although complexities often arise in determining the direct versus indirect nature of such signal transduction, it is clear that such pathways are essential for the function of tissues and that alterations may contribute to many pathological outcomes. This review assesses a variety of cell-cell junction-to-nuclear signaling pathways, and outlines interesting areas for further study.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
55
|
Heuberger J, Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol 2010; 2:a002915. [PMID: 20182623 DOI: 10.1101/cshperspect.a002915] [Citation(s) in RCA: 482] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epithelial-mesenchymal transition is essential in both embryonic development and the progression of carcinomas. Wnt signaling and cadherin-mediated adhesion have been implicated in both processes; clarifying their role will depend on linking them to rearrangements of cellular structure and behavior. beta-Catenin is an essential molecule both in cadherin-mediated cell adhesion and in canonical Wnt signaling. Numerous experiments have shown that the loss of cadherin-mediated cell adhesion can promote beta-catenin release and signaling; this is accomplished by proteases, protein kinases and other molecules. Cadherin loss can also signal to several other regulatory pathways. Additionally, many target genes of Wnt signaling influence cadherin adhesion. The most conspicuous of these Wnt target genes encode the transcription factors Twist and Slug, which directly inhibit the E-cadherin gene promoter. Other Wnt/beta-catenin target genes encode metalloproteases or the cell adhesion molecule L1, which favor the degradation of E-cadherin. These factors provide a mechanism whereby cadherin loss and increased Wnt signaling induce epithelial-mesenchymal transition in both carcinomas and development.
Collapse
Affiliation(s)
- Julian Heuberger
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | |
Collapse
|
56
|
Zhao Y, Yang ZQ, Wang Y, Miao Y, Liu Y, Dai SD, Han Y, Wang EH. Dishevelled-1 and dishevelled-3 affect cell invasion mainly through canonical and noncanonical Wnt pathway, respectively, and associate with poor prognosis in nonsmall cell lung cancer. Mol Carcinog 2010; 49:760-70. [PMID: 20572159 DOI: 10.1002/mc.20651] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dishevelled (Dvl) family proteins are overexpressed in nonsmall cell lung cancer (NSCLC), but the correlation between Dvl overexpression and patient prognosis is not clear. The underlying mechanisms of Dvl-1 and Dvl-3 promoting lung cancer cell invasion require further research. We used immunohistochemistry to assess the presence of Dvl-1, Dvl-3, beta-catenin, and p120ctn, and compared their expression to the prognosis in 102 specimens from NSCLC patients. We also examined the effect of Dvl-1 and Dvl-3 on Tcf-dependent transcriptional activity, as well as on the invasiveness in A549 and LTEP-alpha-2 lung cancer cells. The results showed that Dvl-1 correlated to the abnormal expression of beta-catenin, while Dvl-3 correlated to p120ctn. Both Dvl-1 and Dvl-3 were related to the poor prognosis of patient. Dvl-1 overexpression enhanced the Tcf-dependent transcriptional activity and beta-catenin expression significantly. However, Dvl-3 had little effect on the Tcf-dependent transcriptional activity and beta-catenin expression, which was accompanied by p38 and JNK phosphorylation. Furthermore, the invasiveness of Dvl-3-enhanced cells was inhibited by p38 and JNK inhibitors. Exogenous expression of both Dvl-1 and Dvl-3 increased the p120ctn protein expression, while only Dvl-3 upregulated p120ctn mRNA. We conclude that both protein and mRNA of Dvl-1 and Dvl-3 are overexpressed in NSCLC in a manner related to poor prognosis. Dvl-1 may affect the biological behavior of lung cancer cells mainly through beta-catenin (canonical Wnt pathway), while Dvl-3 mainly through p38 and JNK pathway (noncanonical Wnt pathway).
Collapse
Affiliation(s)
- Yue Zhao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Tewari R, Bailes E, Bunting KA, Coates JC. Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 2010; 20:470-81. [PMID: 20688255 DOI: 10.1016/j.tcb.2010.05.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 05/11/2010] [Accepted: 05/17/2010] [Indexed: 01/24/2023]
Abstract
Armadillo (ARM)-repeat proteins form a large family with diverse and fundamental functions in many eukaryotes. ARM-repeat proteins have largely been characterised in multicellular organisms and much is known about how a subset of these proteins function. The structure of ARM-repeats allows proteins containing them to be functionally very versatile. Are the ARM-repeat proteins in 'little creatures' as multifunctional as their better-studied relatives? The time is now right to start analysing ARM-repeat proteins in these new systems to better understand their cell biology. Here, we review recent advances in understanding the many cellular roles of both well-known and novel ARM-repeat proteins.
Collapse
Affiliation(s)
- Rita Tewari
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | |
Collapse
|
58
|
Yang ZQ, Zhao Y, Liu Y, Zhang JY, Zhang S, Jiang GY, Zhang PX, Yang LH, Liu D, Li QC, Wang EH. Downregulation of HDPR1 is associated with poor prognosis and affects expression levels of p120-catenin and beta-catenin in nonsmall cell lung cancer. Mol Carcinog 2010; 49:508-19. [PMID: 20232357 DOI: 10.1002/mc.20622] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
HDPR1 (human homologue of Dapper) is considered as a Dishevelled (DVL) antagonist in WNT signaling. We recently reported that DVL was associated with cytoplasmic accumulation of beta-catenin in nonsmall cell lung cancer (NSCLC). Whether cytoplasmic accumulation of beta-catenin is correlated with HDPR1 is unclear. Xenopus Dapper (XDpr) was found to stabilize p120-catenin (p120ctn) in Xenopus embryogenesis. However, whether HDPR1 can regulate p120ctn expression level is not reported. Furthermore, how HDPR1 influences invasiveness in lung carcinogenesis is also not well understood. In this study, our aims were to explore the effects of HDPR1 on the lung carcinogenesis and to examine the relationship among HDPR1, beta-catenin, and p120ctn. Immunohistochemical analysis in 120 NSCLC tissues showed that HDPR1 was significantly lower in 82 specimens (68.3%). Reverse transcription (RT)-polymerase chain reaction (PCR) and Western blotting analysis showed that the mRNA and protein expression of HDPR1 were lower in tumor tissues as compared to corresponding nontumorous tissues. Moreover, reduced HDPR1 expression was related to the clinicopathological factors and was an independent risk factor for prognosis of the patients with NSCLC. In addition, HDPR1 expression was also associated with the expression of p120ctn and beta-catenin in lung cancer tissues. Knockdown of HDPR1 gene enhanced the invasive ability of lung cancer cells, which was dependent on p120ctn and independent of beta-catenin. In conclusion, the function of HDPR1 on regulating p120ctn may play an important role in human lung carcinogenesis. Restoration of HDPR1 gene may be a new therapeutic target of lung cancer.
Collapse
Affiliation(s)
- Zhi-Qiang Yang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Heping District, Shenyang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Affiliation(s)
- Pierre D McCrea
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
60
|
Okerlund ND, Kivimäe S, Tong CK, Peng IF, Ullian EM, Cheyette BNR. Dact1 is a postsynaptic protein required for dendrite, spine, and excitatory synapse development in the mouse forebrain. J Neurosci 2010; 30:4362-8. [PMID: 20335472 PMCID: PMC2848693 DOI: 10.1523/jneurosci.0354-10.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 02/18/2010] [Indexed: 11/21/2022] Open
Abstract
Dact1 (Dapper/Frodo), an intracellular phosphoprotein that binds Dishevelled, catenins, and other signaling proteins, is expressed in the developing and mature mammalian CNS, but its function there is unknown. Dact1 colocalized with synaptic markers and partitioned to postsynaptic fractions from cultured mouse forebrain neurons. Hippocampal neurons from Dact1 knock-out mice had simpler dendritic arbors and fewer spines than hippocampal neurons from wild-type littermates. This correlated with reductions in excitatory synapses and miniature EPSCs, whereas inhibitory synapses were not affected. Loss of Dact1 resulted in a decrease in activated Rac, and recombinant expression of either Dact1 or constitutively active Rac, but not Rho or Cdc42, rescued dendrite and spine phenotypes in Dact1 mutant neurons. Our findings suggest that, during neuronal differentiation, Dact1 plays a critical role in a molecular pathway promoting Rac activity underlying the elaboration of dendrites and the establishment of spines and excitatory synapses.
Collapse
Affiliation(s)
- Nathan D Okerlund
- Departments of Psychiatry, Physiology, and Ophthalmology and Neuroscience Graduate Program, University of California, San Francisco, San Francisco, California 94158, USA
| | | | | | | | | | | |
Collapse
|
61
|
RETRACTED: Kaiso is expressed in lung cancer: Its expression and localization is affected by p120ctn. Lung Cancer 2010; 67:205-15. [PMID: 19615783 DOI: 10.1016/j.lungcan.2009.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/11/2009] [Accepted: 06/16/2009] [Indexed: 01/11/2023]
|
62
|
Lipid phosphate phosphatase 3 stabilization of beta-catenin induces endothelial cell migration and formation of branching point structures. Mol Cell Biol 2010; 30:1593-606. [PMID: 20123964 DOI: 10.1128/mcb.00038-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Endothelial cell (EC) migration, cell-cell adhesion, and the formation of branching point structures are considered hallmarks of angiogenesis; however, the underlying mechanisms of these processes are not well understood. Lipid phosphate phosphatase 3 (LPP3) is a recently described p120-catenin-associated integrin ligand localized in adherens junctions (AJs) of ECs. Here, we tested the hypothesis that LPP3 stimulates beta-catenin/lymphoid enhancer binding factor 1 (beta-catenin/LEF-1) to induce EC migration and formation of branching point structures. In subconfluent ECs, LPP3 induced expression of fibronectin via beta-catenin/LEF-1 signaling in a phosphatase and tensin homologue (PTEN)-dependent manner. In confluent ECs, depletion of p120-catenin restored LPP3-mediated beta-catenin/LEF-1 signaling. Depletion of LPP3 resulted in destabilization of beta-catenin, which in turn reduced fibronectin synthesis and deposition, which resulted in inhibition of EC migration. Accordingly, reexpression of beta-catenin but not p120-catenin in LPP3-depleted ECs restored de novo synthesis of fibronectin, which mediated EC migration and formation of branching point structures. In confluent ECs, however, a fraction of p120-catenin associated and colocalized with LPP3 at the plasma membrane, via the C-terminal cytoplasmic domain, thereby limiting the ability of LPP3 to stimulate beta-catenin/LEF-1 signaling. Thus, our study identified a key role for LPP3 in orchestrating PTEN-mediated beta-catenin/LEF-1 signaling in EC migration, cell-cell adhesion, and formation of branching point structures.
Collapse
|
63
|
Dishevelled: The hub of Wnt signaling. Cell Signal 2009; 22:717-27. [PMID: 20006983 DOI: 10.1016/j.cellsig.2009.11.021] [Citation(s) in RCA: 578] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 11/28/2009] [Indexed: 12/24/2022]
Abstract
Wnt signaling controls a variety of developmental and homeostatic events. As a key component of Wnt signaling, Dishevelled (Dvl/Dsh) protein relays Wnt signals from receptors to downstream effectors. In the canonical Wnt pathway that depends on the nuclear translocation of beta-catenin, Dvl is recruited by the receptor Frizzled and prevents the constitutive destruction of cytosolic beta-catenin. In the non-canonical Wnt pathways such as Wnt-Frizzled/PCP (planar cell polarity) signaling, Dvl signals via the Daam1-RhoA axis and the Rac1 axis. In addition, Dvl plays important roles in Wnt-GSK3beta-microtubule signaling, Wnt-calcium signaling, Wnt-RYK signaling, Wnt-atypical PKC signaling, etc. Dvl also functions to mediate receptor endocytosis. To fulfill its multifaceted functions, it is not surprising that Dvl associates with various kinds of proteins. Its activity is also modulated dynamically by phosphorylation, ubiquitination and degradation. In this review, we summarize the current understanding of Dvl functions in Wnt signal transduction and its biological functions in mouse development, and also discuss the molecular mechanisms of its actions.
Collapse
|
64
|
Gu D, Sater AK, Ji H, Cho K, Clark M, Stratton SA, Barton MC, Lu Q, McCrea PD. Xenopus delta-catenin is essential in early embryogenesis and is functionally linked to cadherins and small GTPases. J Cell Sci 2009; 122:4049-61. [PMID: 19843587 DOI: 10.1242/jcs.031948] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Catenins of the p120 subclass display an array of intracellular localizations and functions. Although the genetic knockout of mouse delta-catenin results in mild cognitive dysfunction, we found severe effects of its depletion in Xenopus. delta-catenin in Xenopus is transcribed as a full-length mRNA, or as three (or more) alternatively spliced isoforms designated A, B and C. Further structural and functional complexity is suggested by three predicted and alternative translation initiation sites. Transcript analysis suggests that each splice isoform is expressed during embryogenesis, with the B and C transcript levels varying according to developmental stage. Unlike the primarily neural expression of delta-catenin reported in mammals, delta-catenin is detectable in most adult Xenopus tissues, although it is enriched in neural structures. delta-catenin associates with classical cadherins, with crude embryo fractionations further revealing non-plasma-membrane pools that might be involved in cytoplasmic and/or nuclear functions. Depletion of delta-catenin caused gastrulation defects, phenotypes that were further enhanced by co-depletion of the related p120-catenin. Depletion was significantly rescued by titrated p120-catenin expression, suggesting that these catenins have shared roles. Biochemical assays indicated that delta-catenin depletion results in reduced cadherin levels and cell adhesion, as well as perturbation of RhoA and Rac1. Titrated doses of C-cadherin, dominant-negative RhoA or constitutively active Rac1 significantly rescued delta-catenin depletion. Collectively, our experiments indicate that delta-catenin has an essential role in amphibian development, and has functional links to cadherins and Rho-family GTPases.
Collapse
Affiliation(s)
- Dongmin Gu
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Suriben R, Kivimäe S, Fisher DAC, Moon RT, Cheyette BNR. Posterior malformations in Dact1 mutant mice arise through misregulated Vangl2 at the primitive streak. Nat Genet 2009; 41:977-85. [PMID: 19701191 PMCID: PMC2733921 DOI: 10.1038/ng.435] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 07/15/2009] [Indexed: 12/13/2022]
Abstract
Mice homozygous for mutations in Dact1 (also called Dapper or Frodo) phenocopy human malformations involving the spine, genitourinary system and distal digestive tract. We traced this phenotype to disrupted germ-layer morphogenesis at the primitive streak. Notably, heterozygous mutation of Vangl2, a transmembrane component of the planar cell polarity (PCP) pathway, rescued recessive Dact1 phenotypes, whereas loss of Dact1 reciprocally rescued semidominant Vangl2 phenotypes. We show that Dact1, an intracellular protein, forms a complex with Vangl2. In Dact1 mutants, Vangl2 was increased at the primitive streak, where cells ordinarily undergo an epithelial-mesenchymal transition. This is associated with abnormal E-cadherin distribution and changes in biochemical measures of the PCP pathway. We conclude that Dact1 contributes to morphogenesis at the primitive streak by regulating Vangl2 upstream of cell adhesion and the PCP pathway.
Collapse
Affiliation(s)
- Rowena Suriben
- Department of Psychiatry, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
66
|
Alvares LE, Winterbottom FL, Rodrigues Sobreira D, Xavier-Neto J, Schubert FR, Dietrich S. Chicken dapper genes are versatile markers for mesodermal tissues, embryonic muscle stem cells, neural crest cells, and neurogenic placodes. Dev Dyn 2009; 238:1166-78. [DOI: 10.1002/dvdy.21950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
67
|
The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 2009; 16:209-21. [PMID: 19217423 DOI: 10.1016/j.devcel.2009.01.004] [Citation(s) in RCA: 579] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human pathologies such as vascular malformations, hemorrhagic stroke, and edema have been associated with defects in the organization of endothelial cell junctions. Understanding the molecular basis of these diseases requires different integrated approaches which include basic cell biology, clinical studies, and studies in animal models such as mice and zebrafish. In this review we discuss recent findings derived from these approaches and their possible integration in a common picture.
Collapse
|
68
|
Iioka H, Doerner SK, Tamai K. Kaiso is a bimodal modulator for Wnt/beta-catenin signaling. FEBS Lett 2009; 583:627-32. [PMID: 19166851 DOI: 10.1016/j.febslet.2009.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 11/16/2022]
Abstract
The Wnt family of secreted ligands plays critical roles during embryonic development and tumorigenesis. Here we show that Kaiso, a dual specific DNA-binding protein, functions as a bimodal regulator of canonical Wnt signaling. Loss-of-function analysis of Kaiso abrogated Wnt-mediated reporter activity and axis duplication, whereas gain-of-function analysis of Kaiso dose-dependently resulted in synergistic and suppressive effects. Our analyses further suggest Kaiso can regulate TCF/LEF1-activity for these effects via modulating HDAC1 and beta-catenin-complex formation. Our studies together provide insights into why Kaiso null mice display resistance to intestinal tumors when crossed onto an Apc(Min/+) background.
Collapse
Affiliation(s)
- Hidekazu Iioka
- BRB 723, Department of Genetics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
69
|
Gao X, Wen J, Zhang L, Li X, Ning Y, Meng A, Chen YG. Dapper1 is a nucleocytoplasmic shuttling protein that negatively modulates Wnt signaling in the nucleus. J Biol Chem 2008; 283:35679-88. [PMID: 18936100 DOI: 10.1074/jbc.m804088200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Wnt signaling, via the activation of the canonical beta-catenin and lymphoid enhancer factor (LEF)/T-cell factor pathway, plays an important role in embryogenesis and cancer development by regulating the expression of genes involved in cell proliferation, differentiation, and survival. Dapper (Dpr), as a Dishevelled interactor, has been suggested to modulate Wnt signaling by promoting Dishevelled degradation. Here, we provide evidence that Dpr1 shuttles between the cytoplasm and the nucleus. Although overexpressed Dpr1 was mainly found in the cytoplasm, endogenous Dpr1 was localized over the cell, and Wnt1 induced its nuclear export. Treatment with leptomycin B induced nuclear accumulation of both endogenous and overexpressed Dpr1. We further identified the nuclear localization signal and the nuclear export signal within Dpr1. Using reporter assay and in vivo zebrafish embryo assay, we demonstrated that the forced nuclearly localized Dpr1 possessed the ability to antagonize Wnt signaling. Dpr1 interacted with beta-catenin and LEF1 and disrupted their complex formation. Furthermore, Dpr1 could associate with histone deacetylase 1 (HDAC1) and enhance the LEF1-HDAC1 interaction. Together, our findings suggest that Dpr1 negatively modulates the basal activity of Wnt/beta-catenin signaling in the nucleus by keeping LEF1 in the repressive state. Thus, Dpr1 controls Wnt/beta-catenin signaling in both the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Xia Gao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
70
|
Beckers CML, García-Vallejo JJ, van Hinsbergh VWM, van Nieuw Amerongen GP. Nuclear targeting of beta-catenin and p120ctn during thrombin-induced endothelial barrier dysfunction. Cardiovasc Res 2008; 79:679-88. [PMID: 18490349 DOI: 10.1093/cvr/cvn127] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIMS Cytosolic and nuclear localization of beta-catenin was observed in leaky vessels and in tumours. Several lines of evidence indicate that nuclear beta-catenin facilitates angiogenesis. We hypothesized that nuclear beta-catenin liberated from endothelial junctional complexes marks the transition from hyperpermeability to angiogenesis. The aim of this study was, therefore, to investigate the fate of beta-catenin and the related catenin p120catenin (p120ctn), during disruption of the endothelial barrier function in human umbilical vein endothelial cells (ECs). METHODS AND RESULTS The hyperpermeability-inducer thrombin caused a Rho kinase-dependent redistribution of beta-catenin from the membrane to the cytosol as evidenced by the western blot analysis of membrane and cytosol fractions and by immunohistochemistry. Glycogen synthase kinase 3beta, which phosphorylates cytosolic beta-catenin and thereby facilitates its proteasomal degradation, was inhibited by thrombin. The analysis of nuclear extracts demonstrated a thrombin-induced nuclear accumulation of beta-catenin as well as p120ctn. Thrombin stimulation activated beta-catenin-mediated transcriptional activity as evidenced by reporter assays. Finally, real-time-PCR revealed increased mRNA levels of several beta-catenin target genes. CONCLUSION Thrombin induced a cytosolic stabilization of membrane-liberated beta-catenin, which, together with p120ctn, subsequently translocated to the nucleus where it induces several beta-catenin target genes. This supports the suggestion that membrane-liberated beta-catenin and p120ctn contribute to angiogenic responses of ECs following episodes of vascular leakage.
Collapse
Affiliation(s)
- Cora M L Beckers
- Department for Physiology, VU University Medical Center, Institute for Cardiovascular Research, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
71
|
Arikkath J, Reichardt LF. Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. Trends Neurosci 2008; 31:487-94. [PMID: 18684518 PMCID: PMC2623250 DOI: 10.1016/j.tins.2008.07.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 11/16/2022]
Abstract
Synapse formation involves reciprocal interactions between cells resulting in formation of a structure optimized for efficient information transfer. Recent work has implicated constituents of the cadherin-catenin cell-adhesion complex in both synapse formation and plasticity. In this review, we describe recent interesting discoveries on mechanisms of cadherin complex function, in addition to regulating adhesion, that are relevant for understanding the role of this complex in synaptogenesis and plasticity. We describe how this complex acts via (i) recruitment/stabilization of intracellular partners; (ii) regulation of intracellular signaling pathways; (iii) regulation of cadherin surface levels, stability and turnover; (iv) stabilization of receptors; and (v) regulation of gene expression. These exciting discoveries provide insights into novel functional roles of the complex beyond regulating cell adhesion.
Collapse
Affiliation(s)
- Jyothi Arikkath
- Department of Physiology, University of California San Francisco, Rock Hall, Room 284A, Mission Bay, 1550 Fourth Street, San Francisco, CA 94158-2611, USA
| | | |
Collapse
|
72
|
Staal FJT, Luis TC, Tiemessen MM. WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol 2008; 8:581-93. [PMID: 18617885 DOI: 10.1038/nri2360] [Citation(s) in RCA: 448] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
WNT proteins are secreted morphogens that are required for basic developmental processes, such as cell-fate specification, progenitor-cell proliferation and the control of asymmetric cell division, in many different species and organs. In blood and immune cells, WNT signalling controls the proliferation of progenitor cells and might also affect the cell-fate decisions of stem cells. Recent studies indicate that WNT proteins also regulate effector T-cell development, regulatory T-cell activation and dendritic-cell maturation. WNT signalling seems to function as a universal mechanism in leukocytes to establish a pool of undifferentiated cells for further selection, effector-cell maturation and terminal differentiation. WNT signalling is therefore subject to strict molecular control, and dysregulated WNT signalling is implicated in the development of haematological malignancies.
Collapse
Affiliation(s)
- Frank J T Staal
- Department of Immunology, Erasmus University Medical Center, 3015 GE, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
73
|
Kiss A, Troyanovsky RB, Troyanovsky SM. p120-catenin is a key component of the cadherin-gamma-secretase supercomplex. Mol Biol Cell 2008; 19:4042-50. [PMID: 18632982 DOI: 10.1091/mbc.e08-04-0394] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this work, we show several previously unknown features of p120-catenin in a cadherin-catenin complex that are critical for our understanding of cadherin-based adhesion and signaling. We show that in human epithelial A-431 cells, nearly all p120 molecules engage in high-affinity interaction with E-cadherin-catenin complexes located at the cellular surface. p120 is positioned in proximity to alpha-catenin in the complex with cadherin. These findings suggest a functional cooperation between p120 and alpha-catenin in cadherin-based adhesion. A low level of cadherin-free p120 molecules, in contrast, could facilitate p120-dependent signaling. Finally, we present compelling evidence that p120 is a key linker cementing the E-cadherin-catenin complex with the transmembrane protease gamma-secretase. The cell-cell contact location of this supercomplex makes it an important candidate for conducting different signals that rely on gamma-secretase proteolytic activity.
Collapse
Affiliation(s)
- Alexi Kiss
- Division of Dermatology, Washington University Medical School, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
74
|
Nyqvist D, Giampietro C, Dejana E. Deciphering the functional role of endothelial junctions by using in vivo models. EMBO Rep 2008; 9:742-7. [PMID: 18600233 DOI: 10.1038/embor.2008.123] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 05/23/2008] [Indexed: 11/09/2022] Open
Abstract
Endothelial cell-to-cell junctions are vital for the formation and integrity of blood vessels. The main adhesive junctional complexes in endothelial cells, adherens junctions and tight junctions, are formed by transmembrane adhesive proteins that are linked to intracellular signalling partners and cytoskeletal-binding proteins. Gene inactivation and blocking antibodies in mouse models have revealed some of the functions of the individual junctional components in vivo, and are increasing our understanding of the functional role of endothelial cell junctions in angiogenesis and vascular homeostasis. Adherens-junction organization is required for correct vascular morphogenesis during embryo development. By contrast, the data available suggest that tight-junction proteins are not essential for vascular development but are necessary for endothelial barrier function.
Collapse
Affiliation(s)
- Daniel Nyqvist
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | | | | |
Collapse
|
75
|
Mruk DD, Silvestrini B, Cheng CY. Anchoring junctions as drug targets: role in contraceptive development. Pharmacol Rev 2008; 60:146-80. [PMID: 18483144 PMCID: PMC3023124 DOI: 10.1124/pr.107.07105] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In multicellular organisms, cell-cell interactions are mediated in part by cell junctions, which underlie tissue architecture. Throughout spermatogenesis, for instance, preleptotene leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier to enter the adluminal compartment for continued development. At the same time, germ cells must also remain attached to Sertoli cells, and numerous studies have reported extensive restructuring at the Sertoli-Sertoli and Sertoli-germ cell interface during germ cell movement across the seminiferous epithelium. Furthermore, the proteins and signaling cascades that regulate adhesion between testicular cells have been largely delineated. These findings have unveiled a number of potential "druggable" targets that can be used to induce premature release of germ cells from the seminiferous epithelium, resulting in transient infertility. Herein, we discuss a novel approach with the aim of developing a nonhormonal male contraceptive for future human use, one that involves perturbing adhesion between Sertoli and germ cells in the testis.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, The Mary M Wohlford Laboratory for Male Contraceptive Research, 1230 York Avenue, New York, NY 10065, USA.
| | | | | |
Collapse
|
76
|
Fuerer C, Nusse R, ten Berge D. Wnt signalling in development and disease. Max Delbrück Center for Molecular Medicine meeting on Wnt signaling in Development and Disease. EMBO Rep 2008; 9:134-8. [PMID: 18188179 PMCID: PMC2246409 DOI: 10.1038/sj.embor.7401159] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 12/05/2007] [Indexed: 12/18/2022] Open
Affiliation(s)
- Christophe Fuerer
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University, School of Medicine, Beckman Center, B271B, 279 Campus Drive, Stanford, California 94305-5323, USA
| | - Roel Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University, School of Medicine, Beckman Center, B271B, 279 Campus Drive, Stanford, California 94305-5323, USA
| | - Derk ten Berge
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University, School of Medicine, Beckman Center, B271B, 279 Campus Drive, Stanford, California 94305-5323, USA
| |
Collapse
|
77
|
Abstract
Adherens junctions have been traditionally viewed as building blocks of tissue architecture. The foundations for this view began to change with the discovery that a central component of AJs, beta-catenin, can also function as a transcriptional cofactor in Wnt signaling. In recent years, conventional views have similarly been shaken about the other two major AJ catenins, alpha-catenin and p120-catenin. Catenins have emerged as molecular sensors that integrate cell-cell junctions and cytoskeletal dynamics with signaling pathways that govern morphogenesis, tissue homeostasis, and even intercellular communication between different cell types within a tissue. These findings reveal novel aspects of AJ function in normal tissues and offer insights into how changes in AJs and their associated proteins and cytoskeletal dynamics impact wound-repair and cancer.
Collapse
Affiliation(s)
- Mirna Perez-Moreno
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|