51
|
Foldynova-Trantirkova S, Wilcox WR, Krejci P. Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias. Hum Mutat 2011; 33:29-41. [PMID: 22045636 DOI: 10.1002/humu.21636] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/30/2011] [Indexed: 11/09/2022]
Abstract
In 1994, the field of bone biology was significantly advanced by the discovery that activating mutations in the fibroblast growth factor receptor 3 (FGFR3) receptor tyrosine kinase (TK) account for the common genetic form of dwarfism in humans, achondroplasia (ACH). Other conditions soon followed, with the list of human disorders caused by FGFR3 mutations now reaching at least 10. An array of vastly different diagnoses is caused by similar mutations in FGFR3, including syndromes affecting skeletal development (hypochondroplasia [HCH], ACH, thanatophoric dysplasia [TD]), skin (epidermal nevi, seborrhaeic keratosis, acanthosis nigricans), and cancer (multiple myeloma [MM], prostate and bladder carcinoma, seminoma). Despite many years of research, several aspects of FGFR3 function in disease remain obscure or controversial. As FGFR3-related skeletal dysplasias are caused by growth attenuation of the cartilage, chondrocytes appear to be unique in their response to FGFR3 activation. However, the reasons why FGFR3 inhibits chondrocyte growth while causing excessive cellular proliferation in cancer are not clear. Likewise, the full spectrum of molecular events by which FGFR3 mediates its signaling is just beginning to emerge. This article describes the challenging journey to unravel the mechanisms of FGFR3 function in skeletal dysplasias, the extraordinary cellular manifestations of FGFR3 signaling in chondrocytes, and finally, the progress toward therapy for ACH and cancer.
Collapse
|
52
|
miRNAs control tracheal chondrocyte differentiation. Dev Biol 2011; 360:58-65. [PMID: 21945074 DOI: 10.1016/j.ydbio.2011.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/22/2011] [Accepted: 09/05/2011] [Indexed: 12/21/2022]
Abstract
The specific program that enables the stereotypic differentiation of specialized cartilages, including the trachea, is intrinsically distinct from the program that gives rise to growth plate hypertrophic chondrocytes. For example, Snail1 is an effector of FGF signaling in growth plate pre-hypertrophic chondrocytes, but it derails the normal program of permanent chondrocytes, repressing the transcription of Aggrecan and Collagen type 2a1 (Col2a1). Here we show that miRNA activity is essential for normal trachea development and that miR-125b and miR-30a/c keep Snail1 at low levels, thus enabling full functional differentiation of Col2a1 tracheal chondrocytes. Specific inhibition of miR-125b and miR-30a/c in chondrocytes or Dicer1 knockout in the trachea, de-repress Snail1. As a consequence, the transcription of Aggrecan and Col2a1 is hampered and extracellular matrix deposition is decreased. Our data reveals a new miRNA pathway that is safekeeping the specific genetic program of differentiated and matrix-producing tracheal chondrocytes from acquisition of unwanted signals. This pathway may improve understanding of human primary tracheomalacia and improve protocols for cartilage tissue engineering.
Collapse
|
53
|
Notch1 signaling regulates chondrogenic lineage determination through Sox9 activation. Cell Death Differ 2011; 19:461-9. [PMID: 21869831 DOI: 10.1038/cdd.2011.114] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Notch signaling is involved in several cell lineage determination processes during embryonic development. Recently, we have shown that Sox9 is most likely a primary target gene of Notch1 signaling in embryonic stem cells (ESCs). By using our in vitro differentiation protocol for chondrogenesis from ESCs through embryoid bodies (EBs) together with our tamoxifen-inducible system to activate Notch1, we analyzed the function of Notch signaling and its induction of Sox9 during EB differentiation towards the chondrogenic lineage. Temporary activation of Notch1 during early stages of EB, when lineage determination occurs, was accompanied by rapid and transient Sox9 upregulation and resulted in induction of chondrogenic differentiation during later stages of EB cultivation. Using siRNA targeting Sox9, we knocked down and adjusted this early Notch1-induced Sox9 expression peak to non-induced levels, which led to reversion of Notch1-induced chondrogenic differentiation. In contrast, continuous Notch1 activation during EB cultivation resulted in complete inhibition of chondrogenic differentiation. Furthermore, a reduction and delay of cardiac differentiation observed in EBs after early Notch1 activation was not reversed by siRNA-mediated Sox9 knockdown. Our data indicate that Notch1 signaling has an important role during early stages of chondrogenic lineage determination by regulation of Sox9 expression.
Collapse
|
54
|
Martínez-Morales PL, Diez del Corral R, Olivera-Martínez I, Quiroga AC, Das RM, Barbas JA, Storey KG, Morales AV. FGF and retinoic acid activity gradients control the timing of neural crest cell emigration in the trunk. ACTA ACUST UNITED AC 2011; 194:489-503. [PMID: 21807879 PMCID: PMC3153641 DOI: 10.1083/jcb.201011077] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Coordination between functionally related adjacent tissues is essential during development. For example, formation of trunk neural crest cells (NCCs) is highly influenced by the adjacent mesoderm, but the molecular mechanism involved is not well understood. As part of this mechanism, fibroblast growth factor (FGF) and retinoic acid (RA) mesodermal gradients control the onset of neurogenesis in the extending neural tube. In this paper, using gain- and loss-of-function experiments, we show that caudal FGF signaling prevents premature specification of NCCs and, consequently, premature epithelial-mesenchymal transition (EMT) to allow cell emigration. In contrast, rostrally generated RA promotes EMT of NCCs at somitic levels. Furthermore, we show that FGF and RA signaling control EMT in part through the modulation of elements of the bone morphogenetic protein and Wnt signaling pathways. These data establish a clear role for opposition of FGF and RA signaling in control of the timing of NCC EMT and emigration and, consequently, coordination of the development of the central and peripheral nervous system during vertebrate trunk elongation.
Collapse
|
55
|
Martínez-Frías ML, Egüés X, Puras A, Hualde J, de Frutos CA, Bermejo E, Nieto MA, Martínez S. Thanatophoric dysplasia type II with encephalocele and semilobar holoprosencephaly: Insights into its pathogenesis. Am J Med Genet A 2011; 155A:197-202. [PMID: 21204232 DOI: 10.1002/ajmg.a.33765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thanatophoric dysplasia (TD) is a lethal form of short-limb skeletal dysplasia that is associated with macrocephaly, and variably cloverleaf skull. Two types of TD are clinically recognized, TD1 and TD2, mainly distinguished by their radiographic characteristics. The differences between the two are principally observed in the femur, which appears curved in TD1, while it remains straight but with a proximal medial spike in TD2, and are a less severe overall affectation in TD2. Both types of TD are caused by mutations in different functional domains of the FGFR3 gene. However, whereas several mutations in the different domains of FGFR3 cause TD1, the K650E mutation involving the change of a lysine to glutamic acid ("Lys650Glu") has been found in all TD2 cases to date. Here we describe a newborn infant with TD2 associated with brain defects that have either been infrequently observed (encephalocele) or not hitherto described (holoprosencephaly). Based on recent studies, we consider encephaloceles described in TD to be pseudoencephaloceles, since they are secondary to the intracranial pressure generated by severe hydrocephaly and to severe cranial structural anomalies. Finally, to analyze the mechanisms of holoprosencephaly observed in the case described here, we include a concise review on the current understanding of how FGFs and their receptors are expressed in the rostral signaling center (particularly Fgf8). In addition, we evaluated recent observations that FGF ligands and receptors (including FGFR3) act in concert to organize the whole telencephalon activity, rather than independently patterning different areas.
Collapse
Affiliation(s)
- M L Martínez-Frías
- ECEMC, Centro de Investigación de Anomalías Congénitas, Instituto de Salud Carlos III, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Franco DL, Mainez J, Vega S, Sancho P, Murillo MM, de Frutos CA, Del Castillo G, López-Blau C, Fabregat I, Nieto MA. Snail1 suppresses TGF-beta-induced apoptosis and is sufficient to trigger EMT in hepatocytes. J Cell Sci 2011; 123:3467-77. [PMID: 20930141 DOI: 10.1242/jcs.068692] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although TGF-β suppresses early stages of tumour development, it later contributes to tumour progression when cells become resistant to its suppressive effects. In addition to circumventing TGF-β-induced growth arrest and apoptosis, malignant tumour cells become capable of undergoing epithelial-to-mesenchymal transition (EMT), favouring invasion and metastasis. Therefore, defining the mechanisms that allow cancer cells to escape from the suppressive effects of TGF-β is fundamental to understand tumour progression and to design specific therapies. Here, we have examined the role of Snail1 as a suppressor of TGF-β-induced apoptosis in murine non-transformed hepatocytes, rat and human hepatocarcinoma cell lines and transgenic mice. We show that Snail1 confers resistance to TGF-β-induced cell death and that it is sufficient to induce EMT in adult hepatocytes, cells otherwise refractory to this transition upon exposure to TGF-β. Furthermore, we show that Snail1 silencing prevents EMT and restores the cell death response induced by TGF-β. As Snail1 is a known target of TGF-β signalling, our data indicate that Snail1 might transduce the tumour-promoting effects of TGF-β, namely the EMT concomitant with the resistance to cell death.
Collapse
Affiliation(s)
- D Lorena Franco
- Instituto de Neurociencias (CSIC-UMH), 03550 San Juan de Alicante, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Iftikhar M, Hurtado P, Bais MV, Wigner N, Stephens DN, Gerstenfeld LC, Trackman PC. Lysyl oxidase-like-2 (LOXL2) is a major isoform in chondrocytes and is critically required for differentiation. J Biol Chem 2011; 286:909-18. [PMID: 21071451 PMCID: PMC3020776 DOI: 10.1074/jbc.m110.155622] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/06/2010] [Indexed: 12/18/2022] Open
Abstract
The lysyl oxidase family is made up of five members: lysyl oxidase (LOX) and lysyl oxidase-like 1-4 (LOXL1-LOXL4). All members share conserved C-terminal catalytic domains that provide for lysyl oxidase or lysyl oxidase-like enzyme activity; and more divergent propeptide regions. LOX family enzyme activities catalyze the final enzymatic conversion required for the formation of normal biosynthetic collagen and elastin cross-links. The importance of lysyl oxidase enzyme activity to normal bone development has long been appreciated, but regulation and roles for specific LOX isoforms in bone formation in vivo is largely unexplored. Fracture healing recapitulates aspects of endochondral bone development. The present study first investigated the expression of all LOX isoforms in fracture healing. A remarkable coincidence of LOXL2 expression with the chondrogenic phase of fracture healing was found, prompting more detailed analyses of LOXL2 expression in normal growth plates, and LOXL2 expression and function in developing ATDC5 chondrogenic cells. Data show that LOXL2 is expressed by pre-hypertrophic and hypertrophic chondrocytes in vivo, and that LOXL2 expression is regulated in vitro as a function of chondrocyte differentiation. Moreover, LOXL2 knockdown studies in vitro show that LOXL2 expression is required for ATDC5 chondrocyte cell line differentiation through regulation of SNAIL and SOX9, important transcription factors that control chondrocyte differentiation. Taken together, data provide evidence that LOXL2, like LOX, is a multifunctional protein. LOXL2 promotes chondrocyte differentiation by mechanisms that are likely to include roles as both a regulator and an effector of chondrocyte differentiation.
Collapse
Affiliation(s)
- Mussadiq Iftikhar
- From the Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental Medicine and
| | - Paola Hurtado
- From the Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental Medicine and
| | - Manish V. Bais
- From the Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental Medicine and
- the Department of Orthopedic Surgery, School of Medicine, Boston University, Boston, Massachusetts 02118
| | - Nate Wigner
- the Department of Orthopedic Surgery, School of Medicine, Boston University, Boston, Massachusetts 02118
| | - Danielle N. Stephens
- From the Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental Medicine and
| | - Louis C. Gerstenfeld
- the Department of Orthopedic Surgery, School of Medicine, Boston University, Boston, Massachusetts 02118
| | - Philip C. Trackman
- From the Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental Medicine and
| |
Collapse
|
58
|
TGF-β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J 2011; 30:783-95. [PMID: 21224849 PMCID: PMC3041949 DOI: 10.1038/emboj.2010.351] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 12/10/2010] [Indexed: 12/22/2022] Open
Abstract
Both TGF-β and FGF signalling regulate the epithelial–mesenchymal transition. Here, TGF-β is found to promote myofibroblast differentiation, while concomitant FGF pathway activation instead drives cells towards an invasive mesenchymal fate. The epithelial–mesenchymal transition (EMT) is a crucial event in wound healing, tissue repair, and cancer progression in adult tissues. Here, we demonstrate that transforming growth factor (TGF)-β induced EMT and that long-term exposure to TGF-β elicited the epithelial–myofibroblastic transition (EMyoT) by inactivating the MEK-Erk pathway. During the EMT process, TGF-β induced isoform switching of fibroblast growth factor (FGF) receptors, causing the cells to become sensitive to FGF-2. Addition of FGF-2 to TGF-β-treated cells perturbed EMyoT by reactivating the MEK-Erk pathway and subsequently enhanced EMT through the formation of MEK-Erk-dependent complexes of the transcription factor δEF1/ZEB1 with the transcriptional corepressor CtBP1. Consequently, normal epithelial cells that have undergone EMT as a result of combined TGF-β and FGF-2 stimulation promoted the invasion of cancer cells. Thus, TGF-β and FGF-2 may cooperate with each other and may regulate EMT of various kinds of cells in cancer microenvironment during cancer progression.
Collapse
|
59
|
Degnin CR, Laederich MB, Horton WA. FGFs in endochondral skeletal development. J Cell Biochem 2010; 110:1046-57. [PMID: 20564212 DOI: 10.1002/jcb.22629] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mammalian skeleton developments and grows through two complementary pathways: membranous ossification, which gives rise to the calvarial bones and distal clavicle, and endochondral ossification, which is responsible for the bones of the limbs, girdles, vertebrae, face and base of the skull and the medial clavicle. Fibroblast growth factors (FGFs) and their cognate FGF receptors (FGFRs) play important roles in regulating both pathways. However, the details of how FGF signals are initiated, propagated and modulated within the developing skeleton are only slowly emerging. This prospect will focus on the current understanding of these events during endochondral skeletal development with special attention given to concepts that have emerged in the past few years.
Collapse
Affiliation(s)
- Catherine R Degnin
- Shriners Hospital and Molecular & Medical Genetics and Cell & Developmental Biology, Oregon Health & Sciences University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
60
|
Pérez-Losada J, Sanchez-Garcia I. New functions for the Snail family of transcription factors: Two-faced proteins. Cell Cycle 2010; 9:2706-8. [PMID: 20676033 PMCID: PMC3233522 DOI: 10.4161/cc.9.14.12322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
61
|
Park SJ, Jung SH, Jogeswar G, Ryoo HM, Yook JI, Choi HS, Rhee Y, Kim CH, Lim SK. The transcription factor snail regulates osteogenic differentiation by repressing Runx2 expression. Bone 2010; 46:1498-507. [PMID: 20215006 DOI: 10.1016/j.bone.2010.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
Osteoblasts originate from mesenchymal stem cells by the coordinated activities of different signaling pathways that regulate the expression of osteoblast-specific genes. Runt-related transcription factor 2 (Runx2) is the master transcription factor for osteoblast differentiation. Despite the importance of Runx2 in the developing skeleton, how Runx2 expression is regulated remains a pivotal question. Snail, a zinc finger transcription factor, is essential for triggering epithelial-to-mesenchymal transitions (EMTs) during embryonic development and tumor progression. Here, we report that Runx2 expression is significantly up- or down-regulated relative to Snail expression. We demonstrate that Snail binds to the Runx2 promoter and that repression of Runx2 transcription by Snail is dependent on specific E-box sequence within the promoter. With antisense morpholino oligonucleotide (MO)-mediated knockdown of Snail expression in zebrafish, we observed alterations in osteogenic potential. These results indicate that Snail plays a crucial role in osteogenic differentiation by acting as a direct Runx2 repressor.
Collapse
Affiliation(s)
- Su Jin Park
- Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Harrington EK, Coon DJ, Kern MF, Svoboda KKH. PTH stimulated growth and decreased Col-X deposition are phosphotidylinositol-3,4,5 triphosphate kinase and mitogen activating protein kinase dependent in avian sterna. Anat Rec (Hoboken) 2010; 293:225-34. [PMID: 19957341 DOI: 10.1002/ar.21072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Type X collagen (Col-X) deposition is a marker of terminal differentiation during chondrogenesis, in addition to appositional growth and apoptosis. The parathyroid hormone/parathyroid hormone related peptide (PTH/PTHrP) receptor, or PPR, is a G-Protein coupled receptor (GPCR), which activates several downstream pathways, moderating chondrocyte differentiation, including suppression of Col-X deposition. An Avian sterna model was used to analyze the PPR GPCR downstream kinase role in growth rate and extracellular matrix (ECM) including Col-II, IX, and X. Phosphatidylinositol kinase (PI3K), mitogen activating protein kinase (MAPK) and protein kinase A (PKA) were inhibited with specific established inhibitors LY294002, PD98059, and H89, respectively to test the hypothesis that they could reverse/inhibit the PTH/PTHrP pathway. Excised E14 chick sterna were PTH treated with or without an inhibitor and compared to controls. Sternal length was measured every 24 hr. Cultured sterna were immuno-stained using specific antibodies for Col-II, IX, or X and examined via confocal microscopy. Increased growth in PTH-treated sterna was MAPK, PI3K, and PKA dose dependent, suggesting growth was regulated through multiple pathways. Col-X deposition was rescued in PTH-treated sterna in the presence of PI3K or MAPK inhibitors, but not with the PKA inhibitor. All three inhibitors moderately disrupted Col-II and Col-IX deposition. These results suggest that PTH can activate multiple pathways during chondrocyte differentiation.
Collapse
Affiliation(s)
- Erik Kern Harrington
- Department of Biomedical Sciences, Texas A&M Health Sciences Center, Dallas, 75246, USA
| | | | | | | |
Collapse
|
63
|
Martínez-Frías ML, de Frutos CA, Bermejo E, Nieto MA. Review of the recently defined molecular mechanisms underlying thanatophoric dysplasia and their potential therapeutic implications for achondroplasia. Am J Med Genet A 2009; 152A:245-55. [DOI: 10.1002/ajmg.a.33188] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
64
|
Schibler L, Gibbs L, Benoist-Lasselin C, Decraene C, Martinovic J, Loget P, Delezoide AL, Gonzales M, Munnich A, Jais JP, Legeai-Mallet L. New insight on FGFR3-related chondrodysplasias molecular physiopathology revealed by human chondrocyte gene expression profiling. PLoS One 2009; 4:e7633. [PMID: 19898608 PMCID: PMC2764091 DOI: 10.1371/journal.pone.0007633] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/03/2009] [Indexed: 11/18/2022] Open
Abstract
Endochondral ossification is the process by which the appendicular skeleton, facial bones, vertebrae and medial clavicles are formed and relies on the tight control of chondrocyte maturation. Fibroblast growth factor receptor (FGFR)3 plays a role in bone development and maintenance and belongs to a family of proteins which differ in their ligand affinities and tissue distribution. Activating mutations of the FGFR3 gene lead to craniosynostosis and multiple types of skeletal dysplasia with varying degrees of severity: thanatophoric dysplasia (TD), achondroplasia and hypochondroplasia. Despite progress in the characterization of FGFR3-mediated regulation of cartilage development, many aspects remain unclear. The aim and the novelty of our study was to examine whole gene expression differences occurring in primary human chondrocytes isolated from normal cartilage or pathological cartilage from TD-affected fetuses, using Affymetrix technology. The phenotype of the primary cells was confirmed by the high expression of chondrocytic markers. Altered expression of genes associated with many cellular processes was observed, including cell growth and proliferation, cell cycle, cell adhesion, cell motility, metabolic pathways, signal transduction, cell cycle process and cell signaling. Most of the cell cycle process genes were down-regulated and consisted of genes involved in cell cycle progression, DNA biosynthesis, spindle dynamics and cytokinesis. About eight percent of all modulated genes were found to impact extracellular matrix (ECM) structure and turnover, especially glycosaminoglycan (GAG) and proteoglycan biosynthesis and sulfation. Altogether, the gene expression analyses provide new insight into the consequences of FGFR3 mutations in cell cycle regulation, onset of pre-hypertrophic differentiation and concomitant metabolism changes. Moreover, impaired motility and ECM properties may also provide clues about growth plate disorganization. These results also suggest that many signaling pathways may be directly or indirectly altered by FGFR3 and confirm the crucial role of FGFR3 in the control of growth plate development.
Collapse
Affiliation(s)
- Laurent Schibler
- Unité U781, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes-Hôpital Necker, Paris, France
- Unité Mixte de Recherche 1313, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Linda Gibbs
- Unité U781, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes-Hôpital Necker, Paris, France
- 4Clinics, Waterloo, Belgique
| | - Catherine Benoist-Lasselin
- Unité U781, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes-Hôpital Necker, Paris, France
| | | | - Jelena Martinovic
- Service de Fœtopathologie, Hôpital Necker, Université Paris Descartes, Paris, France
| | - Philippe Loget
- Centre Pluridisciplinaire de Diagnostic Prénatal de Rennes, Hôpital de Rennes, Rennes, France
| | - Anne-Lise Delezoide
- Service de Biologie du développement, Hôpital Robert Debré, Université Paris Diderot, Paris, France
| | - Marie Gonzales
- Service de Génétique et d'Embryologie Médicales, Hôpital Armand Trousseau, Université Pierre et Marie Curie, Paris, France
| | - Arnold Munnich
- Unité U781, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes-Hôpital Necker, Paris, France
| | - Jean-Philippe Jais
- Service de Biostatistique et Informatique Médicale, Hôpital Necker, Université Paris Descartes, Paris, France
| | - Laurence Legeai-Mallet
- Unité U781, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes-Hôpital Necker, Paris, France
- * E-mail:
| |
Collapse
|
65
|
Horton WA, Degnin CR. FGFs in endochondral skeletal development. Trends Endocrinol Metab 2009; 20:341-8. [PMID: 19716710 DOI: 10.1016/j.tem.2009.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/10/2009] [Accepted: 04/14/2009] [Indexed: 12/31/2022]
Abstract
The mammalian skeleton forms and grows through two developmental pathways: membranous ossification, which gives rise to calvarial bones and the distal clavicle, and endochondral ossification, which is responsible for the bones of the limbs, girdles, vertebrae, face, base of the skull and the medial clavicle. The regulation of both pathways is extremely complex, and the rules that govern it are still emerging. However, it has become clear that fibroblast growth factors (FGFs) and their cognate receptors (FGFRs) play essential roles. This review focuses on the roles of FGFs and FGFRs in endochondral skeletal development, with special attention given to concepts that have emerged in the past few years.
Collapse
Affiliation(s)
- William A Horton
- Research Center, Shriners Hospital for Children, and Molecular & Medical Genetics, Oregon Health & Sciences University, Portland, OR 97239, USA.
| | | |
Collapse
|
66
|
Hinton RJ, Serrano M, So S. Differential gene expression in the perichondrium and cartilage of the neonatal mouse temporomandibular joint. Orthod Craniofac Res 2009; 12:168-77. [PMID: 19627518 PMCID: PMC2734273 DOI: 10.1111/j.1601-6343.2009.01450.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our goal was to discover genes differentially expressed in the perichondrium (PC) of the mandibular condylar cartilage (MCC) that might enhance regenerative medicine or orthopaedic therapies directed at the tissues of the temporomandibular joint. We used targeted gene arrays (osteogenesis, stem cell) to identify genes preferentially expressed in the PC and the cartilaginous (C) portions of the MCC in 2-day-old mice. Genes with higher expression in the PC sample related to growth factor ligand-receptor interactions [FGF-13 (6.4x), FGF-18 (4x), NCAM (2x); PGDF receptors, transforming growth factor (TGF)-beta and IGF-1], the Notch isoforms (especially Notch 3 and 4) and their ligands or structural proteins/proteoglycans [collagen XIV (21x), collagen XVIII (4x), decorin (2.5x)]. Genes with higher expression in the C sample consisted mostly of known cartilage-specific genes [aggrecan (11x), procollagens X (33x), XI (14x), IX (4.5x), Sox 9 (4.4x) and Indian hedgehog (6.7x)]. However, the functional or structural roles of several genes that were expressed at higher levels in the PC sample are unclear [myogenic factor (Myf) 9 (9x), tooth-related genes such as tuftelin (2.5x) and dentin sialophosphoprotein (1.6x), VEGF-B (2x) and its receptors (3-4x) and sclerostin (1.7x)]. FGF, Notch and TGF-beta signalling may be important regulators of MCC proliferation and differentiation; the relatively high expression of genes such as Myf6 and VEGF-B and its receptors suggests a degree of unsuspected plasticity in PC cells.
Collapse
Affiliation(s)
- R J Hinton
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246, USA.
| | | | | |
Collapse
|
67
|
Haraguchi M. The role of the transcriptional regulator snail in cell detachment, reattachment and migration. Cell Adh Migr 2009; 3:259-63. [PMID: 19287205 PMCID: PMC2712805 DOI: 10.4161/cam.3.3.8259] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 02/23/2009] [Indexed: 11/19/2022] Open
Abstract
In order to metastasize, cancer cells must first detach from the primary tumor, migrate, invade through tissues and attach to a second site. The transcription factor snail is an important mediator of epithelial-mesenchymal transitions and is involved in tumor progression. Recent data have provided evidence for a requirement for snail expression in metastatic dissemination. Although very little is known about the molecular mechanisms governing metastatic dissemination, we review the possible roles of snail expression in this process. We also review the regulation of snail expression.
Collapse
Affiliation(s)
- Misako Haraguchi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan.
| |
Collapse
|
68
|
Hong S, Derfoul A, Pereira-Mouries L, Hall DJ. A novel domain in histone deacetylase 1 and 2 mediates repression of cartilage-specific genes in human chondrocytes. FASEB J 2009; 23:3539-52. [PMID: 19561124 DOI: 10.1096/fj.09-133215] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The role of histone deacetylase 1 and 2 (HDAC1 and HDAC2) in regulating cartilage-specific gene expression was explored in primary human chondrocytes. HDAC1 and HDAC2 protein levels were elevated in chondrocytes from osteoarthritic patients, consistent with a down-regulation of some cartilage marker genes. When expressed in these cells, HDAC1 and HDAC2 repressed aggrecan and collagen 2(alpha1) expression but differed in their repression of collagen 9(alpha1), collagen 11(alpha1), dermatopontin, and cartilage oligomeric matrix protein (COMP). To identify the basis of these differences between HDAC1 and HDAC2, their carboxy-terminal domains (CTDs) were deleted, which led to proteins that retained enzymatic activity but were unable to repress cartilage gene expression. Further, exchange of the CTDs between HDAC1 and HDAC2 led to proteins that were enzymatically active but displayed altered target gene specificity, indicating that these CTDs can function independently of HDAC enzymatic activity, to target the HDACs to specific genes. The Snail transcription factor was identified as a mediator of HDAC1 and HDAC2 repression of the collagen 2(alpha1) gene, via its interaction with the HDAC1 and 2 CTDs. The data indicate that the CTD serves a novel function within HDAC1 and HDAC2, to mediate repression of cartilage-specific gene expression in human chondrocytes.
Collapse
Affiliation(s)
- Sohee Hong
- Cartilage Molecular Genetics Group, Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
69
|
Barrallo-Gimeno A, Nieto MA. Evolutionary history of the Snail/Scratch superfamily. Trends Genet 2009; 25:248-52. [DOI: 10.1016/j.tig.2009.04.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 04/06/2009] [Accepted: 04/08/2009] [Indexed: 01/09/2023]
|
70
|
Domowicz MS, Cortes M, Henry JG, Schwartz NB. Aggrecan modulation of growth plate morphogenesis. Dev Biol 2009; 329:242-57. [PMID: 19268444 PMCID: PMC2810547 DOI: 10.1016/j.ydbio.2009.02.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 02/02/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
Chick and mouse embryos with heritable deficiencies of aggrecan exhibit severe dwarfism and premature death, demonstrating the essential involvement of aggrecan in development. The aggrecan-deficient nanomelic (nm) chick mutant E12 fully formed growth plate (GP) is devoid of matrix and exhibits markedly altered cytoarchitecture, proliferative capacity, and degree of cell death. While differentiation of chondroblasts to pre-hypertrophic chondrocytes (IHH expression) is normal up to E6, the extended periosteum expression pattern of PTCH (a downstream effector of IHH) indicates altered propagation of IHH signaling, as well as accelerated down-regulation of FGFR3 expression, decreased BrdU incorporation and higher levels of ERK phosphorylation, all indicating early effects on FGF signaling. By E7 reduced IHH expression and premature expression of COL10A1 foreshadow the acceleration of hypertrophy observed at E12. By E8, exacerbated co-expression of IHH and COL10A1 lead to delayed separation and establishment of the two GPs in each element. By E9, increased numbers of cells express P-SMAD1/5/8, indicating altered BMP signaling. These results indicate that the IHH, FGF and BMP signaling pathways are altered from the very beginning of GP formation in the absence of aggrecan, thereby inducing premature hypertrophic chondrocyte maturation, leading to the nanomelic long bone growth disorder.
Collapse
Affiliation(s)
- Miriam S. Domowicz
- Departments of Pediatrics and Biochemistry & Molecular Biology Committee on Developmental Biology The University of Chicago Chicago, IL 60637
| | - Mauricio Cortes
- Departments of Pediatrics and Biochemistry & Molecular Biology Committee on Developmental Biology The University of Chicago Chicago, IL 60637
| | - Judith G. Henry
- Departments of Pediatrics and Biochemistry & Molecular Biology Committee on Developmental Biology The University of Chicago Chicago, IL 60637
| | - Nancy B. Schwartz
- Departments of Pediatrics and Biochemistry & Molecular Biology Committee on Developmental Biology The University of Chicago Chicago, IL 60637
| |
Collapse
|
71
|
de Frutos CA, Dacquin R, Vega S, Jurdic P, Machuca-Gayet I, Nieto MA. Snail1 controls bone mass by regulating Runx2 and VDR expression during osteoblast differentiation. EMBO J 2009; 28:686-96. [PMID: 19197242 PMCID: PMC2647771 DOI: 10.1038/emboj.2009.23] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 01/13/2009] [Indexed: 01/25/2023] Open
Abstract
Bone undergoes continuous remodelling throughout adult life, and the equilibrium between bone formation by osteoblasts and bone resorption by osteoclasts defines the final bone mass. Here we show that Snail1 regulates this balance by controlling osteoblast differentiation. Snail1 is necessary for the early steps of osteoblast development, and it must be downregulated for their final differentiation. At the molecular level, Snail1 controls bone mass by repressing the transcription of both the osteoblast differentiation factor Runx2 and the vitamin D receptor (VDR) genes in osteoblasts. Sustained activation of Snail1 in transgenic mice provokes deficient osteoblast differentiation, which, together with the loss of vitamin D signalling in the bone, also impairs osteoclastogenesis. Indeed, the mineralisation of the bone matrix is severely affected, leading to hypocalcemia-independent osteomalacia. Our data show that the impact of Snail1 activity on the osteoblast population regulates the course of bone cells differentiation and ensures normal bone remodelling.
Collapse
|
72
|
Shaping embryos in Barcelona. Nat Cell Biol 2009; 11:3-6. [PMID: 19122590 DOI: 10.1038/ncb0109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Morphogenesis and Cell Behaviour meeting held this fall in Barcelona explored the role of forces, adhesion and oscillations in embryonic morphogenesis. It highlighted the impact of new microscopy methods and modelling approaches on the most recent advances of the field.
Collapse
|