51
|
Bowen AB, Bourke AM, Hiester BG, Hanus C, Kennedy MJ. Golgi-independent secretory trafficking through recycling endosomes in neuronal dendrites and spines. eLife 2017; 6:27362. [PMID: 28875935 PMCID: PMC5624785 DOI: 10.7554/elife.27362] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/30/2017] [Indexed: 12/13/2022] Open
Abstract
Neurons face the challenge of regulating the abundance, distribution and repertoire of integral membrane proteins within their immense, architecturally complex dendritic arbors. While the endoplasmic reticulum (ER) supports dendritic translation, most dendrites lack the Golgi apparatus (GA), an essential organelle for conventional secretory trafficking. Thus, whether secretory cargo is locally trafficked in dendrites through a non-canonical pathway remains a fundamental question. Here we define the dendritic trafficking itinerary for key synaptic molecules in rat cortical neurons. Following ER exit, the AMPA-type glutamate receptor GluA1 and neuroligin 1 undergo spatially restricted entry into the dendritic secretory pathway and accumulate in recycling endosomes (REs) located in dendrites and spines before reaching the plasma membrane. Surprisingly, GluA1 surface delivery occurred even when GA function was disrupted. Thus, in addition to their canonical role in protein recycling, REs also mediate forward secretory trafficking in neuronal dendrites and spines through a specialized GA-independent trafficking network. All cells must produce, sort and deliver molecular building blocks to the right places at the right time and in appropriate amounts. This is particularly important for neurons, which are the largest and most structurally complex cells in the body. A typical neuron consists of a cell body covered in branches called dendrites, plus a single cable-like structure known as an axon. Dendrites receive inputs from other neurons and relay the information to the cell body in the form of electrical signals. The cell body processes these electrical signals and the resulting signals then travel along the axon to terminals at the far-end. The axon terminals in turn pass the signals on to the dendrites of other neurons via junctions called synapses. For synapses to work correctly, the membranes surrounding the dendrites need to contain receptor proteins that can detect incoming signals. These proteins must be continually replenished, raising the question of how newly made receptor molecules are shuttled to the appropriate locations within the dendrites. A series of compartments called the Golgi complex play an important role in processing newly-made proteins in many different types of cells. As proteins pass through the Golgi, enzymes within the tunnel walls modify the proteins by adding or removing molecular groups. Therefore, it has been suggested that the route that the synapse receptor proteins take through the neuron to reach the dendrites always includes a visit to the Golgi. However, the Golgi complex in neurons is mostly confined to the cell body, raising the question of whether proteins that are locally produced within dendrites can make the journey to nearby synapses without visiting the Golgi complex. Bowen et al. used a microscope to follow the movements of synapse receptor proteins through neurons grown in a dish. The experiments show that proteins destined for the dendrites make a number of stops after leaving the cell body. However, some synaptic proteins reach the dendrites without passing through the Golgi at all, suggesting neurons are much less dependent on the Golgi to process newly-made proteins than other types of cells. Genetic mutations that prevent proteins from finding their way to their required destinations, or that disrupt the work of enzymes inside trafficking stations like the Golgi, cause numerous human diseases. Understanding how proteins travel to specific destinations inside healthy cells should also help reveal what happens when this process fails.
Collapse
Affiliation(s)
- Aaron B Bowen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
| | - Ashley M Bourke
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
| | - Brian G Hiester
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
| | - Cyril Hanus
- Center for Psychiatry and Neurosciences, University Paris-Descartes, Paris, France
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
52
|
Palmitic Acid-BSA enhances Amyloid-β production through GPR40-mediated dual pathways in neuronal cells: Involvement of the Akt/mTOR/HIF-1α and Akt/NF-κB pathways. Sci Rep 2017; 7:4335. [PMID: 28659580 PMCID: PMC5489526 DOI: 10.1038/s41598-017-04175-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/10/2017] [Indexed: 12/14/2022] Open
Abstract
The pathophysiological actions of fatty acids (FAs) on Alzheimer’s disease (AD), which are possibly mediated by genomic effects, are widely known; however, their non-genomic actions remain elusive. The aim of this study was to investigate the non-genomic mechanism of extra-cellular palmitic acid (PA) regulating beta-amyloid peptide (Aβ) production, which may provide a link between obesity and the occurrence of AD. In an obese mouse model, a high-fat diet (HFD) significantly increased the expression levels of APP and BACE1 as well as the AD pathology in the mouse brain. We further found that PA conjugated with bovine serum albumin (PA-BSA) increased the expression of APP and BACE1 and the production of Aβ through the G protein-coupled receptor 40 (GPR40) in SK-N-MC cells. PA-BSA coupling with GPR40 significantly induced Akt activation which is required for mTOR/p70S6K1-mediated HIF-1α expression and NF-κB phosphorylation facilitating the transcriptional activity of the APP and BACE1 genes. In addition, silencing of APP and BACE1 expression significantly decreased the production of Aβ in SK-N-MC cells treated with PA-BSA. In conclusion, these results show that extra-cellular PA coupled with GPR40 induces the expression of APP and BACE1 to facilitate Aβ production via the Akt-mTOR-HIF-1α and Akt-NF-κB pathways in SK-N-MC cells.
Collapse
|
53
|
Cartier-Michaud A, Bailly AL, Betzi S, Shi X, Lissitzky JC, Zarubica A, Sergé A, Roche P, Lugari A, Hamon V, Bardin F, Derviaux C, Lembo F, Audebert S, Marchetto S, Durand B, Borg JP, Shi N, Morelli X, Aurrand-Lions M. Genetic, structural, and chemical insights into the dual function of GRASP55 in germ cell Golgi remodeling and JAM-C polarized localization during spermatogenesis. PLoS Genet 2017; 13:e1006803. [PMID: 28617811 PMCID: PMC5472279 DOI: 10.1371/journal.pgen.1006803] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 05/05/2017] [Indexed: 01/01/2023] Open
Abstract
Spermatogenesis is a dynamic process that is regulated by adhesive interactions between germ and Sertoli cells. Germ cells express the Junctional Adhesion Molecule-C (JAM-C, encoded by Jam3), which localizes to germ/Sertoli cell contacts. JAM-C is involved in germ cell polarity and acrosome formation. Using a proteomic approach, we demonstrated that JAM-C interacted with the Golgi reassembly stacking protein of 55 kDa (GRASP55, encoded by Gorasp2) in developing germ cells. Generation and study of Gorasp2-/- mice revealed that knock-out mice suffered from spermatogenesis defects. Acrosome formation and polarized localization of JAM-C in spermatids were altered in Gorasp2-/- mice. In addition, Golgi morphology of spermatocytes was disturbed in Gorasp2-/- mice. Crystal structures of GRASP55 in complex with JAM-C or JAM-B revealed that GRASP55 interacted via PDZ-mediated interactions with JAMs and induced a conformational change in GRASP55 with respect of its free conformation. An in silico pharmacophore approach identified a chemical compound called Graspin that inhibited PDZ-mediated interactions of GRASP55 with JAMs. Treatment of mice with Graspin hampered the polarized localization of JAM-C in spermatids, induced the premature release of spermatids and affected the Golgi morphology of meiotic spermatocytes.
Collapse
Affiliation(s)
| | - Anne-Laure Bailly
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Stéphane Betzi
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Xiaoli Shi
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | | | - Ana Zarubica
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Arnauld Sergé
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Philippe Roche
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Adrien Lugari
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Véronique Hamon
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Florence Bardin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Carine Derviaux
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Frédérique Lembo
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Sylvie Marchetto
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Bénédicte Durand
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Institut NeuroMyoGène, Lyon, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Ning Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Xavier Morelli
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Michel Aurrand-Lions
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
- * E-mail:
| |
Collapse
|
54
|
Tang BL. Sec16 in conventional and unconventional exocytosis: Working at the interface of membrane traffic and secretory autophagy? J Cell Physiol 2017; 232:3234-3243. [PMID: 28160489 DOI: 10.1002/jcp.25842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 12/22/2022]
Abstract
Sec16 is classically perceived to be a scaffolding protein localized to the transitional endoplasmic reticulum (tER) or the ER exit sites (ERES), and has a conserved function in facilitating coat protein II (COPII) complex-mediated ER exit. Recent findings have, however, pointed toward a role for Sec16 in unconventional exocytosis of certain membrane proteins, such as the Cystic fibrosis transmembrane conductance regulator (CFTR) in mammalian cells, and possibly also α-integrin in certain contexts of Drosophila development. In this regard, Sec16 interacts with components of a recently deciphered pathway of stress-induced unconventional exocytosis, which is dependent on the tether protein Golgi reassembly stacking proteins (GRASPs) and the autophagy pathway. Intriguingly, Sec16 also appears to be post-translationally modified by autophagy-related signaling processes. Sec16 is known to be phosphorylated by the atypical extracellular signal regulated kinase 7 (Erk7) upon serum and amino acid starvation, both represent conditions that trigger autophagy. Recent work has also shown that Sec16 is phosphorylated, and thus regulated by the prominent autophagy-initiating Unc-51-like autophagy activating kinase 1 (Ulk1), as well as another autophagy modulator Leucine-rich repeat kinase 2 (Lrrk2). The picture emerging from Sec16's network of physical and functional interactors allows the speculation that Sec16 is situated (and may in yet undefined ways function) at the interface between COPII-mediated exocytosis of conventional vesicular traffic and the GRASP/autophagy-dependent mode of unconventional exocytosis.
Collapse
Affiliation(s)
- Bor Luen Tang
- Departmentof Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
55
|
Ibar C, Glavic Á. Drosophila p115 is required for Cdk1 activation and G2/M cell cycle transition. Mech Dev 2017; 144:191-200. [PMID: 28396045 DOI: 10.1016/j.mod.2017.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 03/28/2017] [Accepted: 04/07/2017] [Indexed: 11/25/2022]
Abstract
Golgi complex inheritance and its relationship with the cell cycle are central in cell biology. Golgi matrix proteins, known as golgins, are one of the components that underlie the shape and functionality of this organelle. In mammalian cells, golgins are phosphorylated during mitosis to allow fragmentation of the Golgi ribbon and they also participate in spindle dynamics; both processes are required for cell cycle progression. Little is known about the function of golgins during mitosis in metazoans in vivo. This is particularly significant in Drosophila, in which the Golgi architecture is distributed in numerous units scattered throughout the cytoplasm, in contrast with mammalian cells. We examined the function of the ER/cis-Golgi golgin p115 during the proliferative phase of the Drosophila wing imaginal disc. Knockdown of p115 decreased tissue size. This phenotype was not caused by programmed cell death or cell size reductions, but by a reduction in the final cell number due to an accumulation of cells at the G2/M transition. This phenomenon frequently allows mitotic bypass and re-replication of DNA. These outcomes are similar to those observed following the partial loss of function of positive regulators of Cdk1 in Drosophila. In agreement with this, Cdk1 activation was reduced upon p115 knockdown. Interestingly, these phenotypes were fully rescued by Cdk1 overexpression and partially rescued by Myt1 depletion, but not by String (also known as Cdc25) overexpression. Additionally, we confirmed the physical interaction between p115 and Cdk1, suggesting that the formation of a complex where both proteins are present is essential for the full activation of Cdk1 and thus the correct progression of mitosis in proliferating tissues.
Collapse
Affiliation(s)
- Consuelo Ibar
- FONDAP Center for Genome Regulation, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile.
| | - Álvaro Glavic
- FONDAP Center for Genome Regulation, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile.
| |
Collapse
|
56
|
Araujo TLS, Zeidler JD, Oliveira PVS, Dias MH, Armelin HA, Laurindo FRM. Protein disulfide isomerase externalization in endothelial cells follows classical and unconventional routes. Free Radic Biol Med 2017; 103:199-208. [PMID: 28034831 DOI: 10.1016/j.freeradbiomed.2016.12.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/09/2016] [Accepted: 12/17/2016] [Indexed: 12/22/2022]
Abstract
Extracellular protein disulfide isomerase (PDIA1) pool mediates thrombosis and vascular remodeling, however its externalization mechanisms remain unclear. We performed systematic pharmacological screening of secretory pathways affecting extracellular PDIA1 in endothelial cells (EC). We identified cell-surface (csPDIA1) and secreted non-particulated PDIA1 pools in EC. Such Golgi bypass also occurred for secreted PDIA1 in EC at baseline or after PMA, thrombin or ATP stimulation. Inhibitors of Type I, II and III unconventional routes, secretory lysosomes and recycling endosomes, including syntaxin-12 deletion, did not impair EC PDIA1 externalization. This suggests predominantly Golgi-independent unconventional secretory route(s), which were GRASP55-independent. Also, these data reinforce a vesicular-type traffic for PDIA1. We further showed that PDIA1 traffic is ATP-independent, while actin or tubulin cytoskeletal disruption markedly increased EC PDIA1 secretion. Clathrin inhibition enhanced extracellular soluble PDIA1, suggesting dynamic cycling. Externalized PDIA1 represents <2% of intracellular PDIA1. PDIA1 was robustly secreted by physiological levels of arterial laminar shear in EC and supported alpha 5 integrin thiol oxidation. Such results help clarify signaling and homeostatic mechanisms involved in multiple (patho)physiological extracellular PDIA1 functions.
Collapse
Affiliation(s)
- Thaís L S Araujo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo 05403-000, Brazil
| | - Julianna D Zeidler
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo 05403-000, Brazil
| | - Percíllia V S Oliveira
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo 05403-000, Brazil
| | - Matheus H Dias
- Instituto de Química, Universidade de São Paulo, Brazil; Laboratório Especial de Ciclo Celular (LECC), Center of Toxins, Immune-Response and Cell Signaling - CeTICS-Cepid, Instituto Butantan, Brazil
| | - Hugo A Armelin
- Instituto de Química, Universidade de São Paulo, Brazil; Laboratório Especial de Ciclo Celular (LECC), Center of Toxins, Immune-Response and Cell Signaling - CeTICS-Cepid, Instituto Butantan, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo 05403-000, Brazil.
| |
Collapse
|
57
|
Rabouille C. Pathways of Unconventional Protein Secretion. Trends Cell Biol 2016; 27:230-240. [PMID: 27989656 DOI: 10.1016/j.tcb.2016.11.007] [Citation(s) in RCA: 405] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/02/2023]
Abstract
Secretory proteins are conventionally transported through the endoplasmic reticulum to the Golgi and then to the plasma membrane where they are released into the extracellular space. However, numerous substrates also reach these destinations using unconventional pathways. Unconventional protein secretion (UPS) is complex and comprises cargos without a signal peptide or a transmembrane domain that can translocate across the plasma membrane, and cargos that reach the plasma membrane by bypassing the Golgi despite entering the endoplasmic reticulum (ER). With a few exceptions, unconventional secretion is largely triggered by stress. Here I review new results and concepts that are beginning to define these pathways.
Collapse
Affiliation(s)
- Catherine Rabouille
- Hubrecht Institute of the KNAW and UMC Utrecht, Utrecht, The Netherlands; Department of Cell Biology, UMC Utrecht, Utrecht, The Netherlands; Department of Cell Biology, UMC Groningen, Groningen, The Netherlands.
| |
Collapse
|
58
|
Staudt C, Gilis F, Boonen M, Jadot M. Molecular determinants that mediate the sorting of human ATG9A from the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2299-310. [PMID: 27316455 DOI: 10.1016/j.bbamcr.2016.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 11/15/2022]
Abstract
ATG9A is a multispanning membrane protein required for autophagosome formation. Under basal conditions, neosynthesized ATG9A proteins travel to the Golgi apparatus and cycle between the trans-Golgi network and endosomes. In the present work, we searched for molecular determinants involved in the subcellular trafficking of human ATG9A in HeLa cells using sequential deletions and point mutations. Deletion of amino acids L(340) to L(354) resulted in the retention of ATG9A in the endoplasmic reticulum. In addition, we found that substitution of the L(711)YM(713) sequence (located in the C-terminal region of ATG9A) by alanine residues severely impaired its transport through the Golgi apparatus. This defect could be corrected by oligomerization of the mutant protein with co-transfected wild-type ATG9A, suggesting that ATG9A oligomerization may help its sorting through biosynthetic compartments. Lastly, the study of the consequences of the LYM/AAA mutation on the intracellular trafficking of ATG9A highlighted that some newly synthesized ATG9A can bypass the Golgi apparatus to reach the plasma membrane. Taken together, these findings provide new insights into the intracellular pathways followed by ATG9A to reach different subcellular compartments, and into the intramolecular determinants that drive the sorting of this protein.
Collapse
Affiliation(s)
- Catherine Staudt
- URPhyM-Laboratoire de Chimie Physiologique, Université de Namur, Belgium
| | - Florentine Gilis
- URPhyM-Laboratoire de Chimie Physiologique, Université de Namur, Belgium
| | - Marielle Boonen
- URPhyM-Laboratoire de Chimie Physiologique, Université de Namur, Belgium
| | - Michel Jadot
- URPhyM-Laboratoire de Chimie Physiologique, Université de Namur, Belgium.
| |
Collapse
|
59
|
Mendes LFS, Garcia AF, Kumagai PS, de Morais FR, Melo FA, Kmetzsch L, Vainstein MH, Rodrigues ML, Costa-Filho AJ. New structural insights into Golgi Reassembly and Stacking Protein (GRASP) in solution. Sci Rep 2016; 6:29976. [PMID: 27436376 PMCID: PMC4951691 DOI: 10.1038/srep29976] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Among all proteins localized in the Golgi apparatus, a two-PDZ (PSD95/DlgA/Zo-1) domain protein plays an important role in the assembly of the cisternae. This Golgi Reassembly and Stacking Protein (GRASP) has puzzled researchers due to its large array of functions and relevance in Golgi functionality. We report here a biochemical and biophysical study of the GRASP55/65 homologue in Cryptococcus neoformans (CnGRASP). Bioinformatic analysis, static fluorescence and circular dichroism spectroscopies, calorimetry, small angle X-ray scattering, solution nuclear magnetic resonance, size exclusion chromatography and proteolysis assays were used to unravel structural features of the full-length CnGRASP. We detected the coexistence of regular secondary structures and large amounts of disordered regions. The overall structure is less compact than a regular globular protein and the high structural flexibility makes its hydrophobic core more accessible to solvent. Our results indicate an unusual behavior of CnGRASP in solution, closely resembling a class of intrinsically disordered proteins called molten globule proteins. To the best of our knowledge, this is the first structural characterization of a full-length GRASP and observation of a molten globule-like behavior in the GRASP family. The possible implications of this and how it could explain the multiple facets of this intriguing class of proteins are discussed.
Collapse
Affiliation(s)
- Luís F. S. Mendes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Assuero F. Garcia
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Patricia S. Kumagai
- Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Fabio R. de Morais
- Departamento de Física, Centro Multiusuário de Inovação Biomolecular, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio Mesquita, São José do Rio Preto, Brazil
| | - Fernando A. Melo
- Departamento de Física, Centro Multiusuário de Inovação Biomolecular, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio Mesquita, São José do Rio Preto, Brazil
| | - Livia Kmetzsch
- Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilene H. Vainstein
- Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcio L. Rodrigues
- Fundação Oswaldo Cruz - Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio J. Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
60
|
Kortvely E, Hauck SM, Behler J, Ho N, Ueffing M. The unconventional secretion of ARMS2. Hum Mol Genet 2016; 25:3143-3151. [DOI: 10.1093/hmg/ddw162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 11/13/2022] Open
|
61
|
Kim J, Noh SH, Piao H, Kim DH, Kim K, Cha JS, Chung WY, Cho HS, Kim JY, Lee MG. Monomerization and ER Relocalization of GRASP Is a Requisite for Unconventional Secretion of CFTR. Traffic 2016; 17:733-53. [DOI: 10.1111/tra.12403] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Jiyoon Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute; Yonsei University College of Medicine; Seoul 120-752 Korea
| | - Shin Hye Noh
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute; Yonsei University College of Medicine; Seoul 120-752 Korea
| | - He Piao
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute; Yonsei University College of Medicine; Seoul 120-752 Korea
| | - Dong Hee Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute; Yonsei University College of Medicine; Seoul 120-752 Korea
| | - Kuglae Kim
- Department of Systems Biology; Yonsei University College of Life Science and Biotechnology; Seoul 120-749 Korea
| | - Jeong Seok Cha
- Department of Systems Biology; Yonsei University College of Life Science and Biotechnology; Seoul 120-749 Korea
| | - Woo Young Chung
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute; Yonsei University College of Medicine; Seoul 120-752 Korea
| | - Hyun-Soo Cho
- Department of Systems Biology; Yonsei University College of Life Science and Biotechnology; Seoul 120-749 Korea
| | - Joo Young Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute; Yonsei University College of Medicine; Seoul 120-752 Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute; Yonsei University College of Medicine; Seoul 120-752 Korea
| |
Collapse
|
62
|
Curwin AJ, Brouwers N, Alonso Y Adell M, Teis D, Turacchio G, Parashuraman S, Ronchi P, Malhotra V. ESCRT-III drives the final stages of CUPS maturation for unconventional protein secretion. eLife 2016; 5. [PMID: 27115345 PMCID: PMC4868542 DOI: 10.7554/elife.16299] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/25/2016] [Indexed: 01/05/2023] Open
Abstract
The unconventional secretory pathway exports proteins that bypass the endoplasmic reticulum. In Saccharomyces cerevisiae, conditions that trigger Acb1 secretion via this pathway generate a Grh1 containing compartment composed of vesicles and tubules surrounded by a cup-shaped membrane and collectively called CUPS. Here we report a quantitative assay for Acb1 secretion that reveals requirements for ESCRT-I, -II, and -III but, surprisingly, without the involvement of the Vps4 AAA-ATPase. The major ESCRT-III subunit Snf7 localizes transiently to CUPS and this was accelerated in vps4Δ cells, correlating with increased Acb1 secretion. Microscopic analysis suggests that, instead of forming intraluminal vesicles with the help of Vps4, ESCRT-III/Snf7 promotes direct engulfment of preexisting Grh1 containing vesicles and tubules into a saccule to generate a mature Acb1 containing compartment. This novel multivesicular / multilamellar compartment, we suggest represents the stable secretory form of CUPS that is competent for the release of Acb1 to cells exterior. DOI:http://dx.doi.org/10.7554/eLife.16299.001 Cells produce thousands of different proteins with a variety of different roles in the body. Some proteins, for example the hormone insulin, perform roles outside of the cell and are released from cells in a process that has several stages. In the first step, newly-made insulin and many other “secretory” proteins enter a compartment called the endoplasmic reticulum. Once inside, these proteins can then be loaded into other compartments and transported to the edge of the cell. There is another class of secretory proteins that are released from the cell without first entering the endoplasmic reticulum, in a process termed “unconventional protein secretion”. A protein called Acb1 is released from yeast cells in this manner. Previous research identified a compartment that might be involved in this process. However, it is not clear how this compartment (named CUPS) forms, and what role it plays in unconventional protein secretion. Curwin et al. investigated how CUPS form in yeast cells, and whether the compartment contains Acb1 proteins. The experiments reveal that after CUPS form they need to mature into a form that is involved in the release of Acb1 proteins from the cell. This maturation process involves some, but not all, of the same genes as those involved in producing another type of compartment in cells called a multivesicular body. Acb1 is only found in the mature CUPS and multivesicular bodies are not involved in the release of this protein from the cell. Curwin et al.’s findings shed some light on how Acb1 and other secretory proteins can be released from cells without involving the endoplasmic reticulum. Future challenges are to reveal how CUPS capture cargo and find out how Acb1 leaves the CUPS to exit the cell. DOI:http://dx.doi.org/10.7554/eLife.16299.002
Collapse
Affiliation(s)
- Amy J Curwin
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Nathalie Brouwers
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Manuel Alonso Y Adell
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - David Teis
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriele Turacchio
- Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
| | | | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vivek Malhotra
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
63
|
Taverna E, Mora-Bermúdez F, Strzyz PJ, Florio M, Icha J, Haffner C, Norden C, Wilsch-Bräuninger M, Huttner WB. Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells. Sci Rep 2016; 6:21206. [PMID: 26879757 PMCID: PMC4754753 DOI: 10.1038/srep21206] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022] Open
Abstract
Apical radial glia (aRG), the stem cells in developing neocortex, are unique bipolar epithelial cells, extending an apical process to the ventricle and a basal process to the basal lamina. Here, we report novel features of the Golgi apparatus, a central organelle for cell polarity, in mouse aRGs. The Golgi was confined to the apical process but not associated with apical centrosome(s). In contrast, in aRG-derived, delaminating basal progenitors that lose apical polarity, the Golgi became pericentrosomal. The aRG Golgi underwent evolutionarily conserved, accordion-like compression and extension concomitant with cell cycle-dependent nuclear migration. Importantly, in line with endoplasmic reticulum but not Golgi being present in the aRG basal process, its plasma membrane contained glycans lacking Golgi processing, consistent with direct ER-to-cell surface membrane traffic. Our study reveals hitherto unknown complexity of neural stem cell polarity, differential Golgi contribution to their specific architecture, and fundamental Golgi re-organization upon cell fate change.
Collapse
Affiliation(s)
- Elena Taverna
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Felipe Mora-Bermúdez
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Paulina J Strzyz
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Marta Florio
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Jaroslav Icha
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Christiane Haffner
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Caren Norden
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | | | - Wieland B Huttner
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
64
|
Abstract
Originally identified as Golgi stacking factors in vitro, the Golgi reassembly stacking protein (GRASP) family has been shown to act as membrane tethers with multiple cellular roles. As an update to previous comprehensive reviews of the GRASP family (Giuliani et al., 2011; Vinke et al., 2011; Jarvela and Linstedt, 2012), we outline here the latest findings concerning their diverse roles. New insights into the mechanics of GRASP-mediated tethering come from recent crystal structures. The models of how GRASP65 and GRASP55 tether membranes relate directly to their role in Golgi ribbon formation in mammalian cells and the unlinking of the ribbon at the onset of mitosis. However, it is also clear that GRASPs act outside the Golgi with roles at the ER and ER exit sites (ERES). Furthermore, the proteins of this family display other roles upon cellular stress, especially in mediating unconventional secretion of both transmembrane proteins (Golgi bypass) and cytoplasmic proteins (through secretory autophagosomes).
Collapse
Affiliation(s)
- Catherine Rabouille
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC UtrechtUtrecht, Netherlands; The Department of Cell Biology, University Medical Center UtrechtUtrecht, Netherlands
| | - Adam D Linstedt
- Department of Biological Sciences, Carnegie Mellon University Pittsburgh, PA, USA
| |
Collapse
|
65
|
Abstract
Unconventional protein secretion (UPS) describes secretion pathways that bypass one or several of the canonical secretion pit-stops on the way to the plasma membrane, and/or involve the secretion of leaderless proteins. So far, alternatives to conventional secretion were primarily observed and studied in yeast and animal cells. The sessile lifestyle of plants brings with it unique restraints on how they adapt to adverse conditions and environmental challenges. Recently, attention towards unconventional secretion pathways in plant cells has substantially increased, with the large number of leaderless proteins identified through proteomic studies. While UPS pathways in plants are certainly not yet exhaustively researched, an emerging notion is that induction of UPS pathways is correlated with pathogenesis and stress responses. Given the multitude UPS events observed, comprehensively organizing the routes proteins take to the apoplast in defined UPS categories is challenging. With the establishment of a larger collection of studied plant proteins taking these UPS pathways, a clearer picture of endomembrane trafficking as a whole will emerge. There are several novel enabling technologies, such as vesicle proteomics and chemical genomics, with great potential for dissecting secretion pathways, providing information about the cargo that travels along them and the conditions that induce them.
Collapse
Affiliation(s)
- Destiny J Davis
- Department of Plant Sciences, University of California, Asmundson Hall, One Shields Avenue, Davis, CA, 95616, USA
| | - Byung-Ho Kang
- Center for Organelle Biogenesis and Function, School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Angelo S Heringer
- Department of Plant Sciences, University of California, Asmundson Hall, One Shields Avenue, Davis, CA, 95616, USA
| | - Thomas E Wilkop
- Department of Plant Sciences, University of California, Asmundson Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Asmundson Hall, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
66
|
Abstract
All eukaryotic cells secrete a range of proteins in a constitutive or regulated manner through the conventional or canonical exocytic/secretory pathway characterized by vesicular traffic from the endoplasmic reticulum, through the Golgi apparatus, and towards the plasma membrane. However, a number of proteins are secreted in an unconventional manner, which are insensitive to inhibitors of conventional exocytosis and use a route that bypasses the Golgi apparatus. These include cytosolic proteins such as fibroblast growth factor 2 (FGF2) and interleukin-1β (IL-1β), and membrane proteins that are known to also traverse to the plasma membrane by a conventional process of exocytosis, such as α integrin and the cystic fibrosis transmembrane conductor (CFTR). Mechanisms underlying unconventional protein secretion (UPS) are actively being analyzed and deciphered, and these range from an unusual form of plasma membrane translocation to vesicular processes involving the generation of exosomes and other extracellular microvesicles. In this chapter, we provide an overview on what is currently known about UPS in animal cells.
Collapse
Affiliation(s)
- Fanny Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.
| |
Collapse
|
67
|
Secreted Acb1 Contributes to the Yeast-to-Hypha Transition in Cryptococcus neoformans. Appl Environ Microbiol 2015; 82:1069-1079. [PMID: 26637591 DOI: 10.1128/aem.03691-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 01/30/2023] Open
Abstract
Adaptation to stress by eukaryotic pathogens is often accompanied by a transition in cellular morphology. The human fungal pathogen Cryptococcus neoformans is known to switch between the yeast and the filamentous form in response to amoebic predation or during mating. As in the classic dimorphic fungal pathogens, the morphotype is associated with the ability of cryptococci to infect various hosts. Many cryptococcal factors and environmental stimuli, including pheromones (small peptides) and nutrient limitation, are known to induce the yeast-to-hypha transition. We recently discovered that secreted matricellular proteins could also act as intercellular signals to promote the yeast-to-hypha transition. Here we show that the secreted acyl coenzyme A (acyl-CoA)-binding protein Acb1 plays an important role in enhancing this morphotype transition. Acb1 does not possess a signal peptide. Its extracellular secretion and, consequently, its function in filamentation are dependent on an unconventional GRASP (Golgi reassembly stacking protein)-dependent secretion pathway. Surprisingly, intracellular recruitment of Acb1 to the secretory vesicles is independent of Grasp. In addition to Acb1, Grasp possibly controls the secretion of other cargos, because the graspΔ mutant, but not the acb1Δ mutant, is defective in capsule production and macrophage phagocytosis. Nonetheless, Acb1 is likely the major or the sole effector of Grasp in terms of filamentation. Furthermore, we found that the key residue of Acb1 for acyl binding, Y80, is critical for the proper subcellular localization and secretion of Acb1 and for cryptococcal morphogenesis.
Collapse
|
68
|
Bahl S, Parashar S, Malhotra H, Raje M, Mukhopadhyay A. Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania. J Biol Chem 2015; 290:29993-30005. [PMID: 26499792 DOI: 10.1074/jbc.m115.670018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania.
Collapse
Affiliation(s)
- Surbhi Bahl
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | - Smriti Parashar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | | | - Manoj Raje
- the Institute of Microbial Technology, Chandigarh 160036, India
| | - Amitabha Mukhopadhyay
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| |
Collapse
|
69
|
Tatomer DC, Rizzardi LF, Curry KP, Witkowski AM, Marzluff WF, Duronio RJ. Drosophila Symplekin localizes dynamically to the histone locus body and tricellular junctions. Nucleus 2015; 5:613-25. [PMID: 25493544 DOI: 10.4161/19491034.2014.990860] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The scaffolding protein Symplekin is part of multiple complexes involved in generating and modifying the 3' end of mRNAs, including cleavage-polyadenylation, histone pre-mRNA processing and cytoplasmic polyadenylation. To study these functions in vivo, we examined the localization of Symplekin during development and generated mutations of the Drosophila Symplekin gene. Mutations in Symplekin that reduce Symplekin protein levels alter the efficiency of both poly A(+) and histone mRNA 3' end formation resulting in lethality or sterility. Histone mRNA synthesis takes place at the histone locus body (HLB) and requires a complex composed of Symplekin and several polyadenylation factors that associates with the U7 snRNP. Symplekin is present in the HLB in the early embryo when Cyclin E/Cdk2 is active and histone genes are expressed and is absent from the HLB in cells that have exited the cell cycle. During oogenesis, Symplekin is preferentially localized to HLBs during S-phase in endoreduplicating follicle cells when histone mRNA is synthesized. After the completion of endoreplication, Symplekin accumulates in the cytoplasm, in addition to the nucleoplasm, and localizes to tricellular junctions of the follicle cell epithelium. This localization depends on the RNA binding protein ypsilon schachtel. CPSF-73 and a number of mRNAs are localized at this same site, suggesting that Symplekin participates in cytoplasmic polyadenylation at tricellular junctions.
Collapse
Key Words
- CTD, RNA polymerase II C-terminal domain
- Drosophila
- HCC, histone cleavage complex
- HDE, histone downstream element
- HLB, histone locus body
- Madm, MLF1-adaptor molecule
- PAP, poly (A) polymerase
- PAS, poly A signal
- RNA processing, Symplekin
- Rp49, ribosomal protein L32
- SL, stem loop
- SLBP, stem loop binding protein
- Sym, Symplekin
- cas, castor
- gene expression
- histone mRNA
- nuclear bodies
- sop, ribosomal protein S2
- yps, ypsilon schachtel
Collapse
Affiliation(s)
- Deirdre C Tatomer
- a Department of Biology ; University of North Carolina ; Chapel Hill , NC USA
| | | | | | | | | | | |
Collapse
|
70
|
Sherrard KM, Fehon RG. The transmembrane protein Crumbs displays complex dynamics during follicular morphogenesis and is regulated competitively by Moesin and aPKC. Development 2015; 142:1869-78. [PMID: 25926360 DOI: 10.1242/dev.115329] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 03/23/2015] [Indexed: 01/05/2023]
Abstract
The transmembrane protein Crumbs (Crb) functions in apical polarity and epithelial integrity. To better understand its role in epithelial morphogenesis, we examined Crb localization and dynamics in the late follicular epithelium of Drosophila. Crb was unexpectedly dynamic during middle-to-late stages of egg chamber development, being lost from the marginal zone (MZ) in stage 9 before abruptly returning at the end of stage 10b, then undergoing a pulse of endocytosis in stage 12. The reappearance of MZ Crb is necessary to maintain an intact adherens junction and MZ. Although Crb has been proposed to interact through its juxtamembrane domain with Moesin (Moe), a FERM domain protein that regulates the cortical actin cytoskeleton, the functional significance of this interaction is poorly understood. We found that whereas the Crb juxtamembrane domain was not required for adherens junction integrity, it was necessary for MZ localization of Moe, aPKC and F-actin. Furthermore, Moe and aPKC functioned antagonistically, suggesting that Moe limits Crb levels by reducing its interactions with the apical Par network. Additionally, Moe mutant cells lost Crb from the apical membrane and accumulated excess Crb at the MZ, suggesting that Moe regulates Crb distribution at the membrane. Together, these studies reveal reciprocal interactions between Crb, Moe and aPKC during cellular morphogenesis.
Collapse
Affiliation(s)
- Kristin M Sherrard
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 E. 58th Street, Chicago, IL 60637, USA
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 E. 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
71
|
Wang ZH, Rabouille C, Geisbrecht ER. Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle. Biol Open 2015; 4:636-48. [PMID: 25862246 PMCID: PMC4434815 DOI: 10.1242/bio.201511551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drosophila Clueless (Clu) and its conserved orthologs are known for their role in the prevention of mitochondrial clustering. Here, we uncover a new role for Clu in the delivery of integrin subunits in muscle tissue. In clu mutants, αPS2 integrin, but not βPS integrin, abnormally accumulates in a perinuclear endoplasmic reticulum (ER) subdomain, a site that mirrors the endogenous localization of Clu. Loss of components essential for mitochondrial distribution do not phenocopy the clu mutant αPS2 phenotype. Conversely, RNAi knockdown of the DrosophilaGolgi reassembly and stacking protein GRASP55/65 (dGRASP) recapitulates clu defects, including the abnormal accumulation of αPS2 and larval locomotor activity. Both Clu and dGRASP proteins physically interact and loss of Clu displaces dGRASP from ER exit sites, suggesting that Clu cooperates with dGRASP for the exit of αPS2 from a perinuclear subdomain in the ER. We also found that Clu and dGRASP loss of function leads to ER stress and that the stability of the ER exit site protein Sec16 is severely compromised in the clu mutants, thus explaining the ER accumulation of αPS2. Remarkably, exposure of clu RNAi larvae to chemical chaperones restores both αPS2 delivery and functional ER exit sites. We propose that Clu together with dGRASP prevents ER stress and therefore maintains Sec16 stability essential for the functional organization of perinuclear early secretory pathway. This, in turn, is essential for integrin subunit αPS2 ER exit in Drosophila larval myofibers.
Collapse
Affiliation(s)
- Zong-Heng Wang
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA
| | - Catherine Rabouille
- Hubrecht Institute-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands The Department of Cell Biology, UMC Utrecht, 3584 CX Utrecht, The Netherlands
| | - Erika R Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
72
|
Zhang K, Tan J, Xu M, Su J, Hu R, Chen Y, Xuan F, Yang R, Cui H. A novel granulocyte-specific α integrin is essential for cellular immunity in the silkworm Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2014; 71:61-67. [PMID: 25450560 DOI: 10.1016/j.jinsphys.2014.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
Haemocytes play crucial roles in immune responses and survival in insects. Specific cell markers have proven effective in clarifying the function and haematopoiesis of haemocytes. The silkworm Bombyx mori is a good model for studying insect haemocytes; however, little is known about haemocyte-specific markers or their functions in silkworm. In this study, we identified the α subunit of integrin, BmintegrinαPS3, as being specifically and highly expressed in silkworm haemocytes. Immunofluorescence analysis validated the specificity of BmintegrinαPS3 in larval granulocytes. Further analyses indicated that haemocytes dispersed from haematopoietic organs (HPOs) into the circulating haemolymph could differentiate into granulocytes. In addition, the processes of encapsulation and phagocytosis were controlled by larval granulocytes. Our work demonstrated that BmintegrinαPS3 could be used as a specific marker for granulocytes and could be applied to future molecular cell biology studies.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Juan Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Man Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jingjing Su
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Renjian Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Yibiao Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Fan Xuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Rui Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
73
|
Abstract
It is unclear how unconventional secretion interplays with conventional secretion for the normal maintenance and renewal of membrane structures. The photoreceptor sensory cilium is recognized for fast membrane renewal, for which rhodopsin and peripherin/rds (P/rds) play critical roles. Here, we provide evidence that P/rds is targeted to the cilia by an unconventional secretion pathway. When expressed in ciliated hTERT-RPE1 human cell line, P/rd is localized to cilia. Cilium trafficking of P/rds was sustained even when the Golgi functions, including trans-Golgi-mediated conventional secretion, were inhibited by the small molecules brefeldin A, 30N12, and monensin. The unconventional cilia targeting of P/rds is dependent on COPII-mediated exit from the ER, but appears to be independent of GRASP55-mediated secretion. The regions in the C-terminal tail of P/rds are essential for this unconventional trafficking. In the absence of the region required for cilia targeting, P/rds was prohibited from entering the secretory pathways and was retained in the Golgi apparatus. A region essential for this Golgi retention was also found in the C-terminal tail of P/rds and supported the cilia targeting of P/rds mediated by unconventional secretion. In ciliated cells, including bovine and Xenopus laevis rod photoreceptors, P/rds was robustly sensitive to endoglycosidase H, which is consistent with its bypassing the medial Golgi and traversing the unconventional secretory pathway. Because rhodopsin is known to traffic through conventional secretion, this study of P/rds suggests that both conventional secretion and unconventional secretion need to cooperate for the renewal of the photoreceptor sensory cilium.
Collapse
|
74
|
Giuliani G, Giuliani F, Volk T, Rabouille C. The Drosophila RNA-binding protein HOW controls the stability of dgrasp mRNA in the follicular epithelium. Nucleic Acids Res 2014; 42:1970-86. [PMID: 24217913 PMCID: PMC3919595 DOI: 10.1093/nar/gkt1118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 11/14/2022] Open
Abstract
Post-transcriptional regulation of RNA stability and localization underlies a wide array of developmental processes, such as axon guidance and epithelial morphogenesis. In Drosophila, ectopic expression of the classically Golgi peripheral protein dGRASP at the plasma membrane is achieved through its mRNA targeting at key developmental time-points, in a process critical to follicular epithelium integrity. However, the trans-acting factors that tightly regulate the spatio-temporal dynamics of dgrasp are unknown. Using an in silico approach, we identified two putative HOW Response Elements (HRE1 and HRE2) within the dgrasp open reading frame for binding to Held Out Wings (HOW), a member of the Signal Transduction and Activation of RNA family of RNA-binding proteins. Using RNA immunoprecipitations, we confirmed this by showing that the short cytoplasmic isoform of HOW binds directly to dgrasp HRE1. Furthermore, HOW loss of function in vivo leads to a significant decrease in dgrasp mRNA levels. We demonstrate that HRE1 protects dgrasp mRNA from cytoplasmic degradation, but does not mediate its targeting. We propose that this binding event promotes the formation of ribonucleoprotein particles that ensure dgrasp stability during transport to the basal plasma membrane, thus enabling the local translation of dgrasp for its roles at non-Golgi locations.
Collapse
Affiliation(s)
- Giuliano Giuliani
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel and The Department of Cell Biology, UMC Utrecht, The Netherlands
| | - Fabrizio Giuliani
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel and The Department of Cell Biology, UMC Utrecht, The Netherlands
| | - Talila Volk
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel and The Department of Cell Biology, UMC Utrecht, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel and The Department of Cell Biology, UMC Utrecht, The Netherlands
| |
Collapse
|
75
|
Optimized RNA ISH, RNA FISH and protein-RNA double labeling (IF/FISH) in Drosophila ovaries. Nat Protoc 2013; 8:2158-79. [PMID: 24113787 DOI: 10.1038/nprot.2013.136] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In situ hybridization (ISH) is a powerful technique for detecting nucleic acids in cells and tissues. Here we describe three ISH procedures that are optimized for Drosophila ovaries: whole-mount, digoxigenin-labeled RNA ISH; RNA fluorescent ISH (FISH); and protein immunofluorescence (IF)-RNA FISH double labeling (IF/FISH). Each procedure balances conflicting requirements for permeabilization, fixation and preservation of antigenicity to detect RNA and protein expression with high resolution and sensitivity. The ISH protocol uses alkaline phosphatase-conjugated digoxigenin antibodies followed by a color reaction, whereas FISH detection involves tyramide signal amplification (TSA). To simultaneously preserve antigens for protein detection and enable RNA probe penetration for IF/FISH, we perform IF before FISH and use xylenes and detergents to permeabilize the tissue rather than proteinase K, which can damage the antigens. ISH and FISH take 3 d to perform, whereas IF/FISH takes 5 d. Probe generation takes 1 or 2 d to perform.
Collapse
|
76
|
Malhotra V. Unconventional protein secretion: an evolving mechanism. EMBO J 2013; 32:1660-4. [PMID: 23665917 DOI: 10.1038/emboj.2013.104] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/12/2013] [Indexed: 11/09/2022] Open
Abstract
The process by which proteins are secreted without entering the classical endoplasmic reticulum (ER)-Golgi complex pathway, in eukaryotic cells, is conveniently called unconventional protein secretion. Recent studies on one such protein called Acb1 have revealed a number of components involved in its secretion. Interestingly, conditions that promote the secretion of Acb1 trigger the biogenesis of a new compartment called CUPS (Compartment for Unconventional Protein Secretion). CUPS form near the ER exit site but lack ER-specific proteins. Other proteins that share some of the features common with the secretion of Acb1 are interleukin-1β and tissue transglutaminase. Here I will review recent advances made in the field and propose a new model for unconventional protein secretion.
Collapse
|
77
|
Where do they come from and where do they go: candidates for regulating extracellular vesicle formation in fungi. Int J Mol Sci 2013; 14:9581-603. [PMID: 23644887 PMCID: PMC3676800 DOI: 10.3390/ijms14059581] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/11/2013] [Accepted: 04/17/2013] [Indexed: 01/23/2023] Open
Abstract
In the past few years, extracellular vesicles (EVs) from at least eight fungal species were characterized. EV proteome in four fungal species indicated putative biogenesis pathways and suggested interesting similarities with mammalian exosomes. Moreover, as observed for mammalian exosomes, fungal EVs were demonstrated to be immunologically active. Here we review the seminal and most recent findings related to the production of EVs by fungi. Based on the current literature about secretion of fungal molecules and biogenesis of EVs in eukaryotes, we focus our discussion on a list of cellular proteins with the potential to regulate vesicle biogenesis in the fungi.
Collapse
|
78
|
Kempf A, Schwab ME. Nogo-A Represses Anatomical and Synaptic Plasticity in the Central Nervous System. Physiology (Bethesda) 2013; 28:151-63. [DOI: 10.1152/physiol.00052.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nogo-A was initially discovered as a myelin-associated growth inhibitory protein limiting axonal regeneration after central nervous system (CNS) injury. This review summarizes current knowledge on how myelin and neuronal Nogo-A and its receptors exert physiological functions ranging from the regulation of growth suppression to synaptic plasticity in the developing and adult intact CNS.
Collapse
Affiliation(s)
- Anissa Kempf
- Brain Research Institute, University of Zurich, and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich, and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
79
|
Drakakaki G, Dandekar A. Protein secretion: how many secretory routes does a plant cell have? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 203-204:74-8. [PMID: 23415330 DOI: 10.1016/j.plantsci.2012.12.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/18/2012] [Accepted: 12/26/2012] [Indexed: 05/19/2023]
Abstract
Conventional protein secretion is mediated by the endomembrane system. Secreted proteins are inserted into the endomembrane system through a N-terminal signal peptide and follow the endoplasmic reticulum to the Golgi trafficking pathway en route to the plasma membrane or the extracellular apoplastic space. In mammalian and yeast cells, unconventional secretion has been identified and relatively well studied. Also in plants, evidence of unconventional secretion mechanisms is accumulating. The ever-increasing number of leaderless proteins identified in proteomic studies indicates the importance of unconventional protein secretion in plants. Novel approaches, such as chemical genomics and vesicle proteomics might be able to provide new insights into unconventional protein secretion in plants.
Collapse
Affiliation(s)
- Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis 95616, USA
| | | |
Collapse
|
80
|
Jiang S, Dupont N, Castillo EF, Deretic V. Secretory versus degradative autophagy: unconventional secretion of inflammatory mediators. J Innate Immun 2013; 5:471-9. [PMID: 23445716 DOI: 10.1159/000346707] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/27/2012] [Indexed: 12/29/2022] Open
Abstract
Autophagy (macroautophagy) is often defined as a degradative process and a tributary of the lysosomal pathway. In this context, autophagy carries out cytoplasmic quality control and nutritional functions by removing defunct or disused organelles, particulate targets and invading microbes, and by bulk digestion of the cytoplasm. However, recent studies indicate that autophagy surprisingly affects multiple secretory pathways. Autophagy participates in extracellular delivery of a number of cytosolic proteins that do not enter the conventional secretory pathway via the Golgi apparatus but are instead unconventionally secreted directly from the cytosol. In mammalian cells, a prototypical example of this manifestation of autophagy is the unconventional secretion of a major proinflammatory cytokine, IL-1β. This review examines the concept of secretory autophagy and compares and contrasts the role of autophagy in the secretion of IL-1α and IL-1β. Although IL-1α and IL-1β have closely related extracellular inflammatory functions, they differ in intracellular activation, secretory mechanisms and how they are affected by autophagy. This example indicates that the role of autophagy in secretion is more complex, at least in mammalian cells, than the simplistic view that autophagosomes provide carriers for unconventional secretion of cytosolic proteins.
Collapse
Affiliation(s)
- Shanya Jiang
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
81
|
Zacharogianni M, Rabouille C. Trafficking along the secretory pathway in Drosophila cell line and tissues: a light and electron microscopy approach. Methods Cell Biol 2013; 118:35-49. [PMID: 24295299 DOI: 10.1016/b978-0-12-417164-0.00003-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past, Drosophila has been used for molecular and developmental biology studies that have led to many important conceptual advances. In the last decade, this model organism has also been utilized to address cell biology issues, in particular those related to membrane traffic through the secretory pathway. This has confirmed that the functional organization of the secretory pathway is conserved and it allowed further integrating secretion to signaling and development. Furthermore, Drosophila tissue culture S2 cells have been the basis of many RNAi screens, some addressing aspects of the functional organization of the secretory pathway and others identifying proteins of the secretory pathway in seemingly unrelated processes. Taken together, studying the protein trafficking and the organization of the secretory pathway both in S2 cells and in tissues has become important. Here, we review light and electron microscopy techniques applied to Drosophila that allow gaining insight into the secretory pathway, and can easily be extended to other cell biology-related fields.
Collapse
Affiliation(s)
- Margarita Zacharogianni
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | | |
Collapse
|
82
|
Rabouille C, Malhotra V, Nickel W. Diversity in unconventional protein secretion. J Cell Sci 2012; 125:5251-5. [DOI: 10.1242/jcs.103630] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Catherine Rabouille
- Hubrecht Institute for, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Vivek Malhotra
- Centre for Genomic Regulation, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| |
Collapse
|
83
|
Improving N-terminal protein annotation of Plasmodium species based on signal peptide prediction of orthologous proteins. Malar J 2012; 11:375. [PMID: 23153225 PMCID: PMC3529677 DOI: 10.1186/1475-2875-11-375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Signal peptide is one of the most important motifs involved in protein trafficking and it ultimately influences protein function. Considering the expected functional conservation among orthologs it was hypothesized that divergence in signal peptides within orthologous groups is mainly due to N-terminal protein sequence misannotation. Thus, discrepancies in signal peptide prediction of orthologous proteins were used to identify misannotated proteins in five Plasmodium species. METHODS Signal peptide (SignalP) and orthology (OrthoMCL) were combined in an innovative strategy to identify orthologous groups showing discrepancies in signal peptide prediction among their protein members (Mixed groups). In a comparative analysis, multiple alignments for each of these groups and gene models were visually inspected in search of misannotated proteins and, whenever possible, alternative gene models were proposed. Thresholds for signal peptide prediction parameters were also modified to reduce their impact as a possible source of discrepancy among orthologs. Validation of new gene models was based on RT-PCR (few examples) or on experimental evidence already published (ApiLoc). RESULTS The rate of misannotated proteins was significantly higher in Mixed groups than in Positive or Negative groups, corroborating the proposed hypothesis. A total of 478 proteins were reannotated and change of signal peptide prediction from negative to positive was the most common. Reannotations triggered the conversion of almost 50% of all Mixed groups, which were further reduced by optimization of signal peptide prediction parameters. CONCLUSIONS The methodological novelty proposed here combining orthology and signal peptide prediction proved to be an effective strategy for the identification of proteins showing wrongly N-terminal annotated sequences, and it might have an important impact in the available data for genome-wide searching of potential vaccine and drug targets and proteins involved in host/parasite interactions, as demonstrated for five Plasmodium species.
Collapse
|
84
|
Medioni C, Mowry K, Besse F. Principles and roles of mRNA localization in animal development. Development 2012; 139:3263-76. [PMID: 22912410 DOI: 10.1242/dev.078626] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Intracellular targeting of mRNAs has long been recognized as a means to produce proteins locally, but has only recently emerged as a prevalent mechanism used by a wide variety of polarized cell types. Localization of mRNA molecules within the cytoplasm provides a basis for cell polarization, thus underlying developmental processes such as asymmetric cell division, cell migration, neuronal maturation and embryonic patterning. In this review, we describe and discuss recent advances in our understanding of both the regulation and functions of RNA localization during animal development.
Collapse
Affiliation(s)
- Caroline Medioni
- Institute of Biology Valrose, University of Nice-Sophia Antipolis/UMR7277 CNRS/UMR1091 INSERM, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | |
Collapse
|
85
|
Numb/Numbl-Opo antagonism controls retinal epithelium morphogenesis by regulating integrin endocytosis. Dev Cell 2012; 23:782-95. [PMID: 23041384 DOI: 10.1016/j.devcel.2012.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 06/04/2012] [Accepted: 09/06/2012] [Indexed: 12/25/2022]
Abstract
Polarized trafficking of adhesion receptors plays a pivotal role in controlling cellular behavior during morphogenesis. Particularly, clathrin-dependent endocytosis of integrins has long been acknowledged as essential for cell migration. However, little is known about the contribution of integrin trafficking to epithelial tissue morphogenesis. Here we show how the transmembrane protein Opo, previously described for its essential role during optic cup folding, plays a fundamental role in this process. Through interaction with the PTB domain of the clathrin adaptors Numb and Numbl via an integrin-like NPxF motif, Opo antagonizes Numb/Numbl function and acts as a negative regulator of integrin endocytosis in vivo. Accordingly, numb/numbl gain-of-function experiments in teleost embryos mimic the retinal malformations observed in opo mutants. We propose that developmental regulator Opo enables polarized integrin localization by modulating Numb/Numbl, thus directing the basal constriction that shapes the vertebrate retina epithelium.
Collapse
|
86
|
Ding Y, Wang J, Wang J, Stierhof YD, Robinson DG, Jiang L. Unconventional protein secretion. TRENDS IN PLANT SCIENCE 2012; 17:606-15. [PMID: 22784825 DOI: 10.1016/j.tplants.2012.06.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 05/11/2023]
Abstract
It is generally believed that protein secretion or exocytosis is achieved via a conventional ER (endoplasmic reticulum)-Golgi-TGN (trans-Golgi network)-PM (plasma membrane) pathway in the plant endomembrane system. However, such signal peptide (SP)-dependent protein secretion cannot explain the increasing number of SP-lacking proteins which are found outside of the PM in plant cells. The process by which such leaderless secretory proteins (LSPs) gain access to the cell exterior is termed unconventional protein secretion (UPS) and has been well-studied in animal and yeast cells, but largely ignored by the plant community. Here, we review the evidence for UPS in plants especially in regard to the recently discovered EXPO (exocyst-positive-organelle).
Collapse
Affiliation(s)
- Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology, the Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
87
|
Chua CEL, Lim YS, Lee MG, Tang BL. Non-classical membrane trafficking processes galore. J Cell Physiol 2012; 227:3722-30. [DOI: 10.1002/jcp.24082] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
88
|
Xu Q, Yu X, Liu J, Zhao H, Wang P, Hu S, Chen J, Zhang W, Hu J. Ostrinia furnacalis integrin β1 may be involved in polymerization of actin to modulate spreading and encapsulation of plasmatocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:438-445. [PMID: 22343085 DOI: 10.1016/j.dci.2012.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 05/31/2023]
Abstract
Insect hemocytes must change their state from non-adhesive to adhesive when they spread on or encapsulate foreign invaders. Although integrin β has been reported to play an important role in hemocyte spreading and encapsulation in several insects, how it is involved in the encapsulation process is still unclear. Here we report that integrin β1 of Ostrinia furnacalis (Ofint β1) may modulate plasmatocyte spreading by regulating polymerization of F-actin and further affecting formation of capsules. In the Sephadex A-25 bead-injected larvae, hemocytes forming capsules expressed approximately ten times more Ofint β1 than hemocytes that are free in circulation in hemolymph. When the expression of Ofint β1 in hemocytes was inhibited by dsRNA of Ofint β1 (dsINT), polymerization of F-actin in hemocytes, especially in plasmatocytes, was significantly decreased, spreading of plasmatocytes was inhibited, and encapsulation rate of Sephadex beads was also significantly decreased. Furthermore, hemocytes formed individual aggregates on beads in the dsINT injected larvae, while hemocytes formed complete capsules surrounding the beads in the control larvae; and most of the hemocytes on the beads in the dsINT-injected larvae assumed round forms rather than spread forms. Based on these results, we speculate that integrins on cellular membranes may modulate hemocyte spreading by regulating polymerization of F-actin and further affecting encapsulation of foreign objects.
Collapse
Affiliation(s)
- Qiuyun Xu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Tracing putative trafficking of the glycolytic enzyme enolase via SNARE-driven unconventional secretion. EUKARYOTIC CELL 2012; 11:1075-82. [PMID: 22753847 DOI: 10.1128/ec.00075-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycolytic enzymes are cytosolic proteins, but they also play important extracellular roles in cell-cell communication and infection. We used Saccharomyces cerevisiae to analyze the secretory pathway of some of these enzymes, including enolase, phosphoglucose isomerase, triose phosphate isomerase, and fructose 1,6-bisphosphate aldolase. Enolase, phosphoglucose isomerase, and an N-terminal 28-amino-acid-long fragment of enolase were secreted in a sec23-independent manner. The enhanced green fluorescent protein (EGFP)-conjugated enolase fragment formed cellular foci, some of which were found at the cell periphery. Therefore, we speculated that an overview of the secretory pathway could be gained by investigating the colocalization of the enolase fragment with intracellular proteins. The DsRed-conjugated enolase fragment colocalized with membrane proteins at the cis-Golgi complex, nucleus, endosome, and plasma membrane, but not the mitochondria. In addition, the secretion of full-length enolase was inhibited in a knockout mutant of the intracellular SNARE protein-coding gene TLG2. Our results suggest that enolase is secreted via a SNARE-dependent secretory pathway in S. cerevisiae.
Collapse
|
90
|
Modular organization of the mammalian Golgi apparatus. Curr Opin Cell Biol 2012; 24:467-74. [PMID: 22726585 DOI: 10.1016/j.ceb.2012.05.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/29/2012] [Indexed: 02/07/2023]
Abstract
The Golgi apparatus is essential for post-translational modifications and sorting of proteins in the secretory pathway. In addition, it further performs a broad range of specialized functions. This functional diversity is achieved by combining basic morphological modules of cisternae into higher ordered structures. Linking cisternae into stacks that are further connected through tubules into a continuous Golgi ribbon greatly increases its efficiency and expands its repertoire of functions. During cell division, the different modules of the Golgi are inherited by different mechanisms to maintain its functional and morphological composition.
Collapse
|
91
|
Deretic V, Jiang S, Dupont N. Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol 2012; 22:397-406. [PMID: 22677446 DOI: 10.1016/j.tcb.2012.04.008] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/28/2022]
Abstract
Autophagy is a cell biological process ubiquitous to all eukaryotic cells, often referred to as a catabolic, lysosomal degradative pathway. However, current studies in mammalian systems suggest that autophagy plays an unexpectedly broad biogenesis role in protein trafficking and secretion. Autophagy supports alternative trafficking pathways for delivery of integral membrane proteins to the plasma membrane and affects secretion, including the constitutive, regulated and unconventional secretion pathways. Autophagy-based unconventional secretion, termed here 'autosecretion', is one of the pathways enabling leaderless cytosolic proteins to exit the cell without entering the endoplasmic reticulum (ER)-to-Golgi secretory pathway. In this review, we discuss the emerging underlying mechanisms of how autophagy affects different facets of secretion. We also describe the physiological roles of autosecretory cargos that are often associated with inflammatory processes and also play a role in the formation of specialized tissues and in tissue remodeling, expanding the immediate sphere of influence of autophagy from the intracellular to the extracellular space.
Collapse
Affiliation(s)
- Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|
92
|
Prydz K, Tveit H, Vedeler A, Saraste J. Arrivals and departures at the plasma membrane: direct and indirect transport routes. Cell Tissue Res 2012; 352:5-20. [DOI: 10.1007/s00441-012-1409-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/14/2012] [Indexed: 12/21/2022]
|
93
|
Bruns C, McCaffery JM, Curwin AJ, Duran JM, Malhotra V. Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. ACTA ACUST UNITED AC 2011; 195:979-92. [PMID: 22144692 PMCID: PMC3241719 DOI: 10.1083/jcb.201106098] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel membrane structure called CUPS is assembled during the secretion of unconventional cargo such as Acb1. The endoplasmic reticulum (ER)–Golgi-independent, unconventional secretion of Acb1 requires many different proteins. They include proteins necessary for the formation of autophagosomes, proteins necessary for the fusion of membranes with the endosomes, proteins of the multivesicular body pathway, and the cell surface target membrane SNARE Sso1, thereby raising the question of what achieves the connection between these diverse proteins and Acb1 secretion. In the present study, we now report that, upon starvation in Saccharomyces cerevisiae, Grh1 is collected into unique membrane structures near Sec13-containing ER exit sites. Phosphatidylinositol 3 phosphate, the ESCRT (endosomal sorting complex required for transport) protein Vps23, and the autophagy-related proteins Atg8 and Atg9 are recruited to these Grh1-containing membranes, which lack components of the Golgi apparatus and the endosomes, and which we call a novel compartment for unconventional protein secretion (CUPS). We describe the cellular proteins required for the biogenesis of CUPS, which we believe is the sorting station for Acb1’s release from the cells.
Collapse
Affiliation(s)
- Caroline Bruns
- Department of Cell and Developmental Biology, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
94
|
Zhang H, Zhang L, Gao B, Fan H, Jin J, Botella MA, Jiang L, Lin J. Golgi apparatus-localized synaptotagmin 2 is required for unconventional secretion in Arabidopsis. PLoS One 2011; 6:e26477. [PMID: 22140429 PMCID: PMC3225361 DOI: 10.1371/journal.pone.0026477] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 09/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Most secretory proteins contain signal peptides that direct their sorting to the ER and secreted via the conventional ER/Golgi transport pathway, while some signal-peptide-lacking proteins have been shown to export through ER/Golgi independent secretory pathways. Hygromycin B is an aminoglycoside antibiotic produced by Streptomyces hygroscopicus that is active against both prokaryotic and eukaryotic cells. The hygromycin phosphotransferase (HYG(R)) can phosphorylate and inactivate the hygromycin B, and has been widely used as a positive selective marker in the construction of transgenic plants. However, the localization and trafficking of HYG(R) in plant cells remain unknown. Synaptotagmins (SYTs) are involved in controlling vesicle endocytosis and exocytosis as calcium sensors in animal cells, while their functions in plant cells are largely unclear. METHODOLOGY/PRINCIPAL FINDINGS We found Arabidopsis synaptotagmin SYT2 was localized on the Golgi apparatus by immunofluorescence and immunogold labeling. Surprisingly, co-expression of SYT2 and HYG(R) caused hypersensitivity of the transgenic Arabidopsis plants to hygromycin B. HYG(R), which lacks a signal sequence, was present in the cytoplasm as well as in the extracellular space in HYG(R)-GFP transgenic Arabidopsis plants and its secretion is not sensitive to brefeldin A treatment, suggesting it is not secreted via the conventional secretory pathway. Furthermore, we found that HYG(R)-GFP was truncated at carboxyl terminus of HYG(R) shortly after its synthesis, and the cells deficient SYT2 failed to efficiently truncate HYG(R)-GFP,resulting in HYG(R)-GFP accumulated in prevacuoles/vacuoles, indicating that SYT2 was involved in HYG(R)-GFP trafficking and secretion. CONCLUSION/SIGNIFICANCE These findings reveal for the first time that SYT2 is localized on the Golgi apparatus and regulates HYG(R)-GFP secretion via the unconventional protein transport from the cytosol to the extracelluar matrix in plant cells.
Collapse
Affiliation(s)
- Haiyan Zhang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Liang Zhang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijng, China
| | - Bin Gao
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hai Fan
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jingbo Jin
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Miguel A. Botella
- Departamento de Biología Moleculary Bioquímica, Universidad de Málaga, Málaga, Spain
| | - Liwen Jiang
- Department of Biology and Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinxing Lin
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
95
|
Gee HY, Noh SH, Tang BL, Kim KH, Lee MG. Rescue of ΔF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway. Cell 2011; 146:746-60. [PMID: 21884936 DOI: 10.1016/j.cell.2011.07.021] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/04/2011] [Accepted: 07/08/2011] [Indexed: 12/14/2022]
Abstract
The most prevalent disease-causing mutation of CFTR is the deletion of Phe508 (ΔF508), which leads to defects in conventional Golgi-mediated exocytosis and cell surface expression. We report that ΔF508-CFTR surface expression can be rescued in vitro and in vivo by directing it to an unconventional GRASP-dependent secretion pathway. An integrated molecular and physiological analysis indicates that mechanisms associated with ER stress induce cell surface trafficking of the ER core-glycosylated wild-type and ΔF508-CFTR via the GRASP-dependent pathway. Phosphorylation of a specific site of GRASP and the PDZ-based interaction between GRASP and CFTR are critical for this unconventional surface trafficking. Remarkably, transgenic expression of GRASP in ΔF508-CFTR mice restores CFTR function and rescues mouse survival without apparent toxicity. These findings provide insight into how unconventional protein secretion is activated, and offer a potential therapeutic strategy for the treatment of cystic fibrosis and perhaps diseases stemming from other misfolded proteins.
Collapse
Affiliation(s)
- Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | |
Collapse
|
96
|
Unravelling secretion in Cryptococcus neoformans: more than one way to skin a cat. Mycopathologia 2011; 173:407-18. [PMID: 21898146 DOI: 10.1007/s11046-011-9468-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/22/2011] [Indexed: 01/10/2023]
Abstract
Secretion pathways in fungi are essential for the maintenance of cell wall architecture and for the export of a number of virulence factors. In the fungal pathogen, Cryptococcus neoformans, much evidence supports the existence of more than one route taken by secreted molecules to reach the cell periphery and extracellular space, and a significant degree of crosstalk between conventional and non-conventional secretion routes. The need for such complexity may be due to differences in the nature of the exported cargo, the spatial and temporal requirements for constitutive and non-constitutive protein secretion, and/or as a means of compensating for the extra burden on the secretion machinery imposed by the elaboration of the polysaccharide capsule. This review focuses on the role of specific components of the C. neoformans secretion machinery in protein and/or polysaccharide export, including Sec4, Sec6, Sec14, Golgi reassembly and stacking protein and extracellular exosome-like vesicles. We also address what is known about traffic of the lipid, glucosylceramide, a target of therapeutic antibodies and an important regulator of C. neoformans pathogenicity, and the role of signalling pathways in the regulation of secretion.
Collapse
|
97
|
Giuliani F, Grieve A, Rabouille C. Unconventional secretion: a stress on GRASP. Curr Opin Cell Biol 2011; 23:498-504. [DOI: 10.1016/j.ceb.2011.04.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/14/2011] [Accepted: 04/18/2011] [Indexed: 01/02/2023]
|
98
|
Kmetzsch L, Joffe LS, Staats CC, de Oliveira DL, Fonseca FL, Cordero RJB, Casadevall A, Nimrichter L, Schrank A, Vainstein MH, Rodrigues ML. Role for Golgi reassembly and stacking protein (GRASP) in polysaccharide secretion and fungal virulence. Mol Microbiol 2011; 81:206-18. [PMID: 21542865 PMCID: PMC3124575 DOI: 10.1111/j.1365-2958.2011.07686.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Secretion of virulence factors is a critical mechanism for the establishment of cryptococcosis, a disease caused by the yeast pathogen Cryptococcus neoformans. One key virulence strategy of C. neoformans is the release of glucuronoxylomannan (GXM), a capsule-associated immune-modulatory polysaccharide that reaches the extracellular space through secretory vesicles. Golgi reassembly and stacking protein (GRASP) is required for unconventional protein secretion mechanisms in different eukaryotic cells, but its role in polysaccharide secretion is unknown. This study demonstrates that a C. neoformans functional mutant of a GRASP orthologue had attenuated virulence in an animal model of cryptococcosis, in comparison with wild-type (WT) and reconstituted cells. Mutant cells manifested altered Golgi morphology, failed to produce typical polysaccharide capsules and showed a reduced ability to secrete GXM both in vitro and during animal infection. Isolation of GXM from cultures of WT, reconstituted or mutant strains revealed that the GRASP orthologue mutant produced polysaccharides with reduced dimensions. The mutant was also more efficiently associated to and killed by macrophages than WT and reconstituted cells. These results demonstrate that GRASP, a protein involved in unconventional protein secretion, is also required for polysaccharide secretion and virulence in C. neoformans.
Collapse
Affiliation(s)
- Lívia Kmetzsch
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Luna S. Joffe
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Brazil
- Instituto de Bioquímica Médica, Programa de Glicobiologia, Universidade Federal do Rio de Janeiro, 21941-902, Brazil
| | - Charley C. Staats
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Débora L. de Oliveira
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Brazil
| | - Fernanda L. Fonseca
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Brazil
| | - Radames J. B. Cordero
- Department of Microbiology and Immunology Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Arturo Casadevall
- Department of Microbiology and Immunology Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
- Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Leonardo Nimrichter
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Brazil
| | - Augusto Schrank
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Marilene H. Vainstein
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Marcio L. Rodrigues
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
99
|
Abstract
The eukaryotic Golgi apparatus is characterized by a stack of flattened cisternae that are surrounded by transport vesicles. The organization and function of the Golgi require Golgi matrix proteins, including GRASPs and golgins, which exist primarily as fiber-like bridges between Golgi cisternae or between cisternae and vesicles. In this review, we highlight recent findings on Golgi matrix proteins, including their roles in maintaining the Golgi structure, vesicle tethering, and novel, unexpected functions. These new discoveries further our understanding of the molecular mechanisms that maintain the structure and the function of the Golgi, as well as its relationship with other cellular organelles such as the centrosome.
Collapse
Affiliation(s)
- Yi Xiang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1048, USA
| | | |
Collapse
|
100
|
M6 membrane protein plays an essential role in Drosophila oogenesis. PLoS One 2011; 6:e19715. [PMID: 21603606 PMCID: PMC3095610 DOI: 10.1371/journal.pone.0019715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 04/14/2011] [Indexed: 12/03/2022] Open
Abstract
We had previously shown that the transmembrane glycoprotein M6a, a member of the proteolipid protein (PLP) family, regulates neurite/filopodium outgrowth, hence, M6a might be involved in neuronal remodeling and differentiation. In this work we focused on M6, the only PLP family member present in Drosophila, and ortholog to M6a. Unexpectedly, we found that decreased expression of M6 leads to female sterility. M6 is expressed in the membrane of the follicular epithelium in ovarioles throughout oogenesis. Phenotypes triggered by M6 downregulation in hypomorphic mutants included egg collapse and egg permeability, thus suggesting M6 involvement in eggshell biosynthesis. In addition, RNAi-mediated M6 knockdown targeted specifically to follicle cells induced an arrest of egg chamber development, revealing that M6 is essential in oogenesis. Interestingly, M6-associated phenotypes evidenced abnormal changes of the follicle cell shape and disrupted follicular epithelium in mid- and late-stage egg chambers. Therefore, we propose that M6 plays a role in follicular epithelium maintenance involving membrane cell remodeling during oogenesis in Drosophila.
Collapse
|