51
|
Galindo CL, Kasasbeh E, Murphy A, Ryzhov S, Lenihan S, Ahmad FA, Williams P, Nunnally A, Adcock J, Song Y, Harrell FE, Tran TL, Parry TJ, Iaci J, Ganguly A, Feoktistov I, Stephenson MK, Caggiano AO, Sawyer DB, Cleator JH. Anti-remodeling and anti-fibrotic effects of the neuregulin-1β glial growth factor 2 in a large animal model of heart failure. J Am Heart Assoc 2014; 3:e000773. [PMID: 25341890 PMCID: PMC4323814 DOI: 10.1161/jaha.113.000773] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Neuregulin-1β (NRG-1β) is a growth factor critical for cardiac development and repair with therapeutic potential for heart failure. We previously showed that the glial growth factor 2 (GGF2) isoform of NRG-1β improves cardiac function in rodents after myocardial infarction (MI), but its efficacy in a large animal model of cardiac injury has not been examined. We therefore sought to examine the effects of GGF2 on ventricular remodeling, cardiac function, and global transcription in post-MI swine, as well as potential mechanisms for anti-remodeling effects. METHODS AND RESULTS MI was induced in anesthetized swine (n=23) by intracoronary balloon occlusion. At 1 week post-MI, survivors (n=13) received GGF2 treatment (intravenous, biweekly for 4 weeks; n=8) or were untreated (n=5). At 5 weeks post-MI, fractional shortening was higher (32.8% versus 25.3%, P=0.019), and left ventricular (LV) end-diastolic dimension lower (4.5 versus 5.3 cm, P=0.003) in GGF2-treated animals. Treatment altered expression of 528 genes, as measured by microarrays, including collagens, basal lamina components, and matricellular proteins. GGF2-treated pigs exhibited improvements in LV cardiomyocyte mitochondria and intercalated disk structures and showed less fibrosis, altered matrix structure, and fewer myofibroblasts (myoFbs), based on trichrome staining, electron microscopy, and immunostaining. In vitro experiments with isolated murine and rat cardiac fibroblasts demonstrate that NRG-1β reduces myoFbs, and suppresses TGFβ-induced phospho-SMAD3 as well as αSMA expression. CONCLUSIONS These results suggest that GGF2/NRG-1β prevents adverse remodeling after injury in part via anti-fibrotic effects in the heart.
Collapse
Affiliation(s)
- Cristi L Galindo
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Ehab Kasasbeh
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Abigail Murphy
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Sergey Ryzhov
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Sean Lenihan
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Farhaan A Ahmad
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Philip Williams
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Amy Nunnally
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Jamie Adcock
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Yanna Song
- Department of Biostatistics, Vanderbilt University, Nashville, TN (Y.S., F.E.H.)
| | - Frank E Harrell
- Department of Biostatistics, Vanderbilt University, Nashville, TN (Y.S., F.E.H.)
| | - Truc-Linh Tran
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - Tom J Parry
- Acorda Therapeutics, Ardsley, NY (T.J.P., J.I., A.G., A.O.C.)
| | - Jen Iaci
- Acorda Therapeutics, Ardsley, NY (T.J.P., J.I., A.G., A.O.C.)
| | | | - Igor Feoktistov
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | | | | | - Douglas B Sawyer
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.L.G., E.K., A.M., S.R., S.L., F.A.A., P.W., A.N., J.A., T.L.T., I.F., D.B.S.)
| | - John H Cleator
- Department of Pharmacology, Vanderbilt University, Nashville, TN (J.H.C.)
| |
Collapse
|
52
|
Zhao Y, Xiao M, Sun B, Zhang Z, Shen T, Duan X, Yu PB, Feng XH, Lin X. C-terminal domain (CTD) small phosphatase-like 2 modulates the canonical bone morphogenetic protein (BMP) signaling and mesenchymal differentiation via Smad dephosphorylation. J Biol Chem 2014; 289:26441-26450. [PMID: 25100727 PMCID: PMC4176200 DOI: 10.1074/jbc.m114.568964] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/05/2014] [Indexed: 01/10/2023] Open
Abstract
The bone morphogenetic protein (BMP) signaling pathway regulates a wide range of cellular responses in metazoans. A key step in the canonical BMP signaling is the phosphorylation and activation of transcription factors Smad1, Smad5, and Smad8 (collectively Smad1/5/8) by the type I BMP receptors. We previously identified PPM1A as a phosphatase toward dephosphorylation of all receptor-regulated Smads (R-Smads), including Smad1/5/8. Here we report another nuclear phosphatase named SCP4/CTDSPL2, belonging to the FCP/SCP family, as a novel Smad phosphatase in the nucleus. SCP4 physically interacts with and specifically dephosphorylates Smad1/5/8, and as a result attenuates BMP-induced transcriptional responses. Knockdown of SCP4 in multipotent mesenchymal C2C12 cells leads to increased expression of BMP target genes and consequently promotes BMP-induced osteogenic differentiation. Collectively, our results demonstrate that SCP4, as a Smad phosphatase, plays a critical role in BMP-induced signaling and cellular functions.
Collapse
Affiliation(s)
- Yulan Zhao
- Life Sciences Institute, and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mu Xiao
- Life Sciences Institute, and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Baoguo Sun
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030; Department of Molecular Physiology and Biophysics, and Baylor College of Medicine, Houston, Texas 77030
| | - Zhengmao Zhang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Tao Shen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030; Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, and
| | - Xueyan Duan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Paul Borchyung Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Xin-Hua Feng
- Life Sciences Institute, and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China,; Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030; Department of Molecular Physiology and Biophysics, and Baylor College of Medicine, Houston, Texas 77030; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030,.
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
53
|
Shen T, Sun C, Zhang Z, Xu N, Duan X, Feng XH, Lin X. Specific control of BMP signaling and mesenchymal differentiation by cytoplasmic phosphatase PPM1H. Cell Res 2014; 24:727-41. [PMID: 24732009 DOI: 10.1038/cr.2014.48] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/19/2014] [Accepted: 02/26/2014] [Indexed: 12/15/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily of structurally related signaling proteins that regulate a wide array of cellular functions. The key step in BMP signal transduction is the BMP receptor-mediated phosphorylation of transcription factors Smad1, 5, and 8 (collectively Smad1/5/8), which leads to the subsequent activation of BMP-induced gene transcription in the nucleus. In this study, we describe the identification and characterization of PPM1H as a novel cytoplasm-localized Smad1/5/8-specific phosphatase. PPM1H directly interacts with Smad1/5/8 through its Smad-binding domain, and dephosphorylates phospho-Smad1/5/8 (P-Smad1/5/8) in the cytoplasm. Ectopic expression of PPM1H attenuates BMP signaling, whereas loss of PPM1H activity or expression greatly enhances BMP-dependent gene regulation and mesenchymal differentiation. In conclusion, this study suggests that PPM1H acts as a gatekeeper to prevent excessive BMP signaling through dephosphorylation and subsequent nuclear exclusion of P-Smad1/5/8 proteins.
Collapse
Affiliation(s)
- Tao Shen
- 1] Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA [2] Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA [3] Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Chuang Sun
- 1] Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA [2] Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhengmao Zhang
- Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ningyi Xu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xueyan Duan
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin-Hua Feng
- 1] Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China [2] Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA [3] Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA [4] Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xia Lin
- Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
54
|
Xiao X, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L, Song Z, El-Gohary Y, Prasadan K, Shiota C, Gittes GK. M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proc Natl Acad Sci U S A 2014; 111:E1211-E1220. [PMID: 24639504 PMCID: PMC3977272 DOI: 10.1073/pnas.1321347111] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Determination of signaling pathways that regulate beta-cell replication is critical for beta-cell therapy. Here, we show that blocking pancreatic macrophage infiltration after pancreatic duct ligation (PDL) completely inhibits beta-cell proliferation. The TGFβ superfamily signaling inhibitor SMAD7 was significantly up-regulated in beta cells after PDL. Beta cells failed to proliferate in response to PDL in beta-cell-specific SMAD7 mutant mice. Forced expression of SMAD7 in beta cells by itself was sufficient to promote beta-cell proliferation in vivo. M2, rather than M1 macrophages, seem to be the inducers of SMAD7-mediated beta-cell proliferation. M2 macrophages not only release TGFβ1 to directly induce up-regulation of SMAD7 in beta cells but also release EGF to activate EGF receptor signaling that inhibits TGFβ1-activated SMAD2 nuclear translocation, resulting in TGFβ signaling inhibition. SMAD7 promotes beta-cell proliferation by increasing CyclinD1 and CyclinD2, and by inducing nuclear exclusion of p27. Our study thus reveals a molecular pathway to potentially increase beta-cell mass through enhanced SMAD7 activity induced by extracellular stimuli.
Collapse
Affiliation(s)
| | | | | | - John Wiersch
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Shane Fischbach
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Lauren Peirish
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Zewen Song
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Yousef El-Gohary
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Krishna Prasadan
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Chiyo Shiota
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - George K. Gittes
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| |
Collapse
|
55
|
Aschner Y, Khalifah AP, Briones N, Yamashita C, Dolgonos L, Young SK, Campbell MN, Riches DWH, Redente EF, Janssen WJ, Henson PM, Sap J, Vacaresse N, Kapus A, McCulloch CAG, Zemans RL, Downey GP. Protein tyrosine phosphatase α mediates profibrotic signaling in lung fibroblasts through TGF-β responsiveness. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1489-502. [PMID: 24650563 DOI: 10.1016/j.ajpath.2014.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/23/2013] [Accepted: 01/14/2014] [Indexed: 02/07/2023]
Abstract
Fibrotic lung diseases represent a diverse group of progressive and often fatal disorders with limited treatment options. Although the pathogenesis of these conditions remains incompletely understood, receptor type protein tyrosine phosphatase α (PTP-α encoded by PTPRA) has emerged as a key regulator of fibroblast signaling. We previously reported that PTP-α regulates cellular responses to cytokines and growth factors through integrin-mediated signaling and that PTP-α promotes fibroblast expression of matrix metalloproteinase 3, a matrix-degrading proteinase linked to pulmonary fibrosis. Here, we sought to determine more directly the role of PTP-α in pulmonary fibrosis. Mice genetically deficient in PTP-α (Ptpra(-/-)) were protected from pulmonary fibrosis induced by intratracheal bleomycin, with minimal alterations in the early inflammatory response or production of TGF-β. Ptpra(-/-) mice were also protected from pulmonary fibrosis induced by adenoviral-mediated expression of active TGF-β1. In reciprocal bone marrow chimera experiments, the protective phenotype tracked with lung parenchymal cells but not bone marrow-derived cells. Because fibroblasts are key contributors to tissue fibrosis, we compared profibrotic responses in wild-type and Ptpra(-/-) mouse embryonic and lung fibroblasts. Ptpra(-/-) fibroblasts exhibited hyporesponsiveness to TGF-β, manifested by diminished expression of αSMA, EDA-fibronectin, collagen 1A, and CTGF. Ptpra(-/-) fibroblasts exhibited markedly attenuated TGF-β-induced Smad2/3 transcriptional activity. We conclude that PTP-α promotes profibrotic signaling pathways in fibroblasts through control of cellular responsiveness to TGF-β.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Anthony P Khalifah
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Natalie Briones
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Cory Yamashita
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Respirology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Lior Dolgonos
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Scott K Young
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Megan N Campbell
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - David W H Riches
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | | | - William J Janssen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Peter M Henson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado; Department of Pediatrics, National Jewish Health, Denver, Colorado; Department of Immunology, University of Colorado, Aurora, Colorado
| | - Jan Sap
- Unit of Epigenetics and Cell Fate, UMR7216, University of Paris-Diderot, Paris, France
| | - Nathalie Vacaresse
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Andras Kapus
- Keenan Research Center, Li Ka Shing Knowledge Institute-St. Michael's Hospital, University of Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Ontario, Canada
| | | | - Rachel L Zemans
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Gregory P Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado; Department of Pediatrics, National Jewish Health, Denver, Colorado; Department of Immunology, University of Colorado, Aurora, Colorado.
| |
Collapse
|
56
|
Schaab C, Oppermann FS, Klammer M, Pfeifer H, Tebbe A, Oellerich T, Krauter J, Levis M, Perl AE, Daub H, Steffen B, Godl K, Serve H. Global phosphoproteome analysis of human bone marrow reveals predictive phosphorylation markers for the treatment of acute myeloid leukemia with quizartinib. Leukemia 2014; 28:716-9. [PMID: 24247654 PMCID: PMC3948157 DOI: 10.1038/leu.2013.347] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- C Schaab
- Evotec (München) GmbH, Am Klopferspitz 19a, Martinsried, Germany
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - F S Oppermann
- Evotec (München) GmbH, Am Klopferspitz 19a, Martinsried, Germany
| | - M Klammer
- Evotec (München) GmbH, Am Klopferspitz 19a, Martinsried, Germany
| | - H Pfeifer
- Department of Medicine, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - A Tebbe
- Evotec (München) GmbH, Am Klopferspitz 19a, Martinsried, Germany
| | - T Oellerich
- Department of Medicine, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J Krauter
- Department of Medicine, Hematology/Oncology, Medizinische Hochschule Hannover, Hannover, Germany
| | - M Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - A E Perl
- Hematologic Malignancies Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - H Daub
- Evotec (München) GmbH, Am Klopferspitz 19a, Martinsried, Germany
| | - B Steffen
- Department of Medicine, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - K Godl
- Evotec (München) GmbH, Am Klopferspitz 19a, Martinsried, Germany
| | - H Serve
- Department of Medicine, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
57
|
Alonso EN, Orozco M, Eloy Nieto A, Balogh GA. Genes related to suppression of malignant phenotype induced by Maitake D-Fraction in breast cancer cells. J Med Food 2014; 16:602-17. [PMID: 23875900 DOI: 10.1089/jmf.2012.0222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is already known that the Maitake (D-Fraction) mushroom is involved in stimulating the immune system and activating certain cells that attack cancer, including macrophages, T-cells, and natural killer cells. According to the U.S. National Cancer Institute, polysaccharide complexes present in Maitake mushrooms appear to have significant anticancer activity. However, the exact molecular mechanism of the Maitake antitumoral effect is still unclear. Previously, we have reported that Maitake (D-Fraction) induces apoptosis in breast cancer cells by activation of BCL2-antagonist/killer 1 (BAK1) gene expression. At the present work, we are identifying which genes are responsible for the suppression of the tumoral phenotype mechanism induced by Maitake (D-Fraction) in breast cancer cells. Human breast cancer MCF-7 cells were treated with and without increased concentrations of Maitake D-Fraction (36, 91, 183, 367 μg/mL) for 24 h. Total RNA were isolated and cDNA microarrays were hybridized containing 25,000 human genes. Employing the cDNA microarray analysis, we found that Maitake D-Fraction modified the expression of 4068 genes (2420 were upmodulated and 1648 were downmodulated) in MCF-7 breast cancer cells in a dose-dependent manner during 24 h of treatment. The present data shows that Maitake D-Fraction suppresses the breast tumoral phenotype through a putative molecular mechanism modifying the expression of certain genes (such as IGFBP-7, ITGA2, ICAM3, SOD2, CAV-1, Cul-3, NRF2, Cycline E, ST7, and SPARC) that are involved in apoptosis stimulation, inhibition of cell growth and proliferation, cell cycle arrest, blocking migration and metastasis of tumoral cells, and inducing multidrug sensitivity. Altogether, these results suggest that Maitake D-Fraction could be a potential new target for breast cancer chemoprevention and treatment.
Collapse
Affiliation(s)
- Eliana Noelia Alonso
- Science and Technology Center, Center of Renewable Natural Resources of the Semi-Arid Zone (CERZOS), National Scientific and Technical Research Council (CONICET), Bahia Blanca, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
58
|
Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M, Feng XH, Sawaya R, Medema RH, Hung MC, Huang S. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β-dependent cancer metastasis. J Clin Invest 2014; 124:564-79. [PMID: 24382352 DOI: 10.1172/jci71104] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 10/18/2013] [Indexed: 12/22/2022] Open
Abstract
A key feature of TGF-β signaling activation in cancer cells is the sustained activation of SMAD complexes in the nucleus; however, the drivers of SMAD activation are poorly defined. Here, using human and mouse breast cancer cell lines, we found that oncogene forkhead box M1 (FOXM1) interacts with SMAD3 to sustain activation of the SMAD3/SMAD4 complex in the nucleus. FOXM1 prevented the E3 ubiquitin-protein ligase transcriptional intermediary factor 1 γ (TIF1γ) from binding SMAD3 and monoubiquitinating SMAD4, which stabilized the SMAD3/SMAD4 complex. Loss of FOXM1 abolished TGF-β-induced SMAD3/SMAD4 formation. Moreover, the interaction of FOXM1 and SMAD3 promoted TGF-β/SMAD3-mediated transcriptional activity and target gene expression. We found that FOXM1/SMAD3 interaction was required for TGF-β-induced breast cancer invasion, which was the result of SMAD3/SMAD4-dependent upregulation of the transcription factor SLUG. Importantly, the function of FOXM1 in TGF-β-induced invasion was not dependent on FOXM1's transcriptional activity. Knockdown of SMAD3 diminished FOXM1-induced metastasis. Furthermore, FOXM1 levels correlated with activated TGF-β signaling and metastasis in human breast cancer specimens. Together, our data indicate that FOXM1 promotes breast cancer metastasis by increasing nuclear retention of SMAD3 and identify crosstalk between FOXM1 and TGF-β/SMAD3 pathways. This study highlights the critical interaction of FOXM1 and SMAD3 for controlling TGF-β signaling during metastasis.
Collapse
|
59
|
Feng Y, Wu H, Xu Y, Zhang Z, Liu T, Lin X, Feng XH. Zinc finger protein 451 is a novel Smad corepressor in transforming growth factor-β signaling. J Biol Chem 2013; 289:2072-83. [PMID: 24324267 DOI: 10.1074/jbc.m113.526905] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
ZNF451 is a transcriptional cofactor localized to promyelocytic leukemia bodies. Here, we present evidence demonstrating that ZNF451 physically interacts with Smad3/4 and functionally inhibits TGF-β signaling. Increased expression of ZNF451 attenuates TGF-β-induced growth inhibitory and gene transcriptional responses, whereas depletion of ZNF451 enhances TGF-β responses. Mechanistically, ZNF451 blocks the ability of Smad3/4 to recruit p300 in response to TGF-β, which causes reduction of histone H3K9 acetylation on the promoters of TGF-β target genes. Taken together, ZNF451 acts as a transcriptional corepressor for Smad3/4 and negatively regulates TGF-β signaling.
Collapse
Affiliation(s)
- Yili Feng
- From the Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China and
| | | | | | | | | | | | | |
Collapse
|
60
|
Sphingosine kinase 1 serves as a pro-viral factor by regulating viral RNA synthesis and nuclear export of viral ribonucleoprotein complex upon influenza virus infection. PLoS One 2013; 8:e75005. [PMID: 24137500 PMCID: PMC3796690 DOI: 10.1371/journal.pone.0075005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/07/2013] [Indexed: 01/07/2023] Open
Abstract
Influenza continues to pose a threat to humans by causing significant morbidity and mortality. Thus, it is imperative to investigate mechanisms by which influenza virus manipulates the function of host factors and cellular signal pathways. In this study, we demonstrate that influenza virus increases the expression and activation of sphingosine kinase (SK) 1, which in turn regulates diverse cellular signaling pathways. Inhibition of SK suppressed virus-induced NF-κB activation and markedly reduced the synthesis of viral RNAs and proteins. Further, SK blockade interfered with activation of Ran-binding protein 3 (RanBP3), a cofactor of chromosome region maintenance 1 (CRM1), to inhibit CRM1-mediated nuclear export of the influenza viral ribonucleoprotein complex. In support of this observation, SK inhibition altered the phosphorylation of ERK, p90RSK, and AKT, which is the upstream signal of RanBP3/CRM1 activation. Collectively, these results indicate that SK is a key pro-viral factor regulating multiple cellular signal pathways triggered by influenza virus infection.
Collapse
|
61
|
Bourgeois B, Gilquin B, Tellier-Lebègue C, Östlund C, Wu W, Pérez J, El Hage P, Lallemand F, Worman HJ, Zinn-Justin S. Inhibition of TGF-β signaling at the nuclear envelope: characterization of interactions between MAN1, Smad2 and Smad3, and PPM1A. Sci Signal 2013; 6:ra49. [PMID: 23779087 DOI: 10.1126/scisignal.2003411] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Signaling by transforming growth factor-β (TGF-β) is critical for various developmental processes and culminates in the activation of the transcription factors Smad2 and Smad3. MAN1, an integral protein of the inner nuclear membrane, inhibits TGF-β signaling by binding to Smad2 and Smad3. Depletion of the gene LEMD3 encoding MAN1 leads to developmental anomalies in mice, and heterozygous loss-of-function mutations in LEMD3 in humans cause sclerosing bone dysplasia. We modeled the three-dimensional structure of the MAN1-Smad2 complex from nuclear magnetic resonance and small-angle x-ray scattering data. As predicted by this model, we found that MAN1 competed in vitro and in cells with the transcription factor FAST1 (forkhead activin signal transducer 1) for binding to Smad2. The model further predicted that MAN1 bound to activated Smad2-Smad4 or Smad3-Smad4 complexes, which was confirmed by in vitro experiments; however, in cells, MAN1 bound only to Smad2 and Smad3 and not to the Smad4-containing complexes. Overexpression of MAN1 led to dephosphorylation of Smad2 and Smad3, thus hindering their recognition by Smad4, and MAN1 bound directly in vitro to the phosphatase PPM1A, which catalyzes the dephosphorylation of Smad2/3. These results demonstrate a nuclear envelope-localized mechanism of inactivating TGF-β signaling in which MAN1 competes with transcription factors for binding to Smad2 and Smad3 and facilitates their dephosphorylation by PPM1A.
Collapse
Affiliation(s)
- Benjamin Bourgeois
- Laboratoire de Biologie Structurale et Radiobiologie, URA CNRS 2096, CEA Saclay, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Takata R, Matsuda K, Sugimura J, Obara W, Fujioka T, Okihara K, Takaha N, Miki T, Ashida S, Inoue K, Tanikawa C, Shuin T, Sasaki S, Kojima Y, Kohri K, Kubo M, Yamaguchi M, Ohnishi Y, Nakamura Y. Impact of four loci on serum tamsulosin hydrochloride concentration. J Hum Genet 2012; 58:21-6. [PMID: 23151678 DOI: 10.1038/jhg.2012.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tamsulosin hydrochloride is one of the most potent drugs for treatment of benign prostatic hyperplasia (BPH), however, the efficacy of tamsulosin hydrochloride varies among individuals. In this study, we measured the maximum serum concentration (Cmax) of tamsulosin hydrochloride in 182 of BPH patients and found remarkable individual variability. To investigate the genetic factors that regulate pharmacokinetics of tamsulosin hydrochloride, we conducted a genome-wide association study in these 182 BPH patients. As a result, rs16902947 on chromosome 5p13.2, rs7779057 on 7q22.3, rs35681285 on 7p21.2 and rs2122469 on 8p21.3 indicated possible associations with Cmax of tamsulosin hydrochloride (P=1.29 × 10(-7), 2.15 × 10(-7), 4.35 × 10(-7) and 7.03 × 10(-7), respectively), although these single-nucleotide polymorphisms (SNPs) did not reach the genome-wide significance threshold after Bonferroni correction. As these associated SNPs showed additive effects on serum tamsulosin hydrochloride concentration, we defined the 'Cmax prediction index' based on genotypes of these SNPs. This index clearly associated with Cmax values (P=4.5 × 10(-6)), indicating the possible roles of these four variants in tamsulosin hydrochloride pharmacokinetics. Our findings would partially explain the variability of the response to the tamsulosin hydrochloride treatment.
Collapse
Affiliation(s)
- Ryo Takata
- Department of Urology, Iwate Medical University, Morioka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
The basic elements of the transforming growth factor-β (TGFβ) pathway were revealed more than a decade ago. Since then, the concept of how the TGFβ signal travels from the membrane to the nucleus has been enriched with additional findings, and its multifunctional nature and medical relevance have relentlessly come to light. However, an old mystery has endured: how does the context determine the cellular response to TGFβ? Solving this question is key to understanding TGFβ biology and its many malfunctions. Recent progress is pointing at answers.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| |
Collapse
|
64
|
Xu P, Liu J, Derynck R. Post-translational regulation of TGF-β receptor and Smad signaling. FEBS Lett 2012; 586:1871-84. [PMID: 22617150 DOI: 10.1016/j.febslet.2012.05.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 05/06/2012] [Accepted: 05/07/2012] [Indexed: 01/17/2023]
Abstract
TGF-β family signaling through Smads is conceptually a simple and linear signaling pathway, driven by sequential phosphorylation, with type II receptors activating type I receptors, which in turn activate R-Smads. Nevertheless, TGF-β family proteins induce highly complex programs of gene expression responses that are extensively regulated, and depend on the physiological context of the cells. Regulation of TGF-β signaling occurs at multiple levels, including TGF-β activation, formation, activation and destruction of functional TGF-β receptor complexes, activation and degradation of Smads, and formation of Smad transcription complexes at regulatory gene sequences that cooperate with a diverse set of DNA binding transcription factors and coregulators. Here we discuss recent insights into the roles of post-translational modifications and molecular interaction networks in the functions of receptors and Smads in TGF-β signal responses. These layers of regulation demonstrate how a simple signaling system can be coopted to exert exquisitely regulated, complex responses.
Collapse
Affiliation(s)
- Pinglong Xu
- Department of Cell and Tissue Biology, Programs in Cell Biology and Developmental Biology, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
65
|
Sundqvist A, Ten Dijke P, van Dam H. Key signaling nodes in mammary gland development and cancer: Smad signal integration in epithelial cell plasticity. Breast Cancer Res 2012; 14:204. [PMID: 22315972 PMCID: PMC3496114 DOI: 10.1186/bcr3066] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Smad proteins are the key intermediates of transforming growth factor-beta (TGF-β) signaling during development and in tissue homeostasis. Pertubations in TGF-β/Smad signaling have been implicated in cancer and other diseases. In the cell nucleus, Smad complexes trigger cell type- and context-specific transcriptional programs, thereby transmitting and integrating signals from a variety of ligands of the TGF-β superfamily and other stimuli in the cell microenvironment. The actual transcriptional and biological outcome of Smad activation critically depends on the genomic integrity and the modification state of genome and chromatin of the cell. The cytoplasmic and nuclear Smads can also modulate the activity of other signal transducers and enzymes such as microRNA-processing factors. In the case of breast cancer, the role of Smads in epithelial plasticity, tumor-stroma interactions, invasion, and metastasis seems of particular importance.
Collapse
Affiliation(s)
- Anders Sundqvist
- Ludwig Institute for Cancer Research, Uppsala University, Box 595, 75124, Uppsala, Sweden
| | | | | |
Collapse
|
66
|
Mechanism and regulation of nucleocytoplasmic trafficking of smad. Cell Biosci 2011; 1:40. [PMID: 22204445 PMCID: PMC3292837 DOI: 10.1186/2045-3701-1-40] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/28/2011] [Indexed: 11/24/2022] Open
Abstract
Smad proteins are the intracellular mediators of transforming growth factor β (TGF-β) signaling. Smads function as transcription factors and their activities require carboxyl-terminal phosphorylation by TGF-β receptor kinases which are embedded in the cell membrane. Therefore, the translocation of activated Smads from the cytoplasm into the nucleus is a rate-limiting step in TGF-β signal transduction into the nucleus. On the other hand, the export of Smads out of the nucleus turns off TGF-β effect. Such spatial control of Smad ensures a tight regulation of TGF-β target genes. Several cross-talk pathways have been shown to affect TGF-β signaling by impairing nuclear translocation of Smad, exemplifying the biological importance of the nuclear transport process. Many laboratories have investigated the underlying molecular mechanism of Smad nucleocytoplasmic translocation, combining genetics, biochemistry and sophisticated live cell imaging approaches. The last few years have witnessed the elucidation of several key players in Smad nuclear transport, most importantly the karyopherins that carry Smads across the nuclear envelope and nuclear pore proteins that facilitate the trans-nuclear envelope movement. The foundation is now set to further elucidate how the nuclear transport process is regulated and exploit such knowledge to manipulate TGF-β signaling. In this review we will discuss the current understanding of the molecular machinery responsible for nuclear import and export of Smads.
Collapse
|
67
|
Huang D, Wang Y, Wang L, Zhang F, Deng S, Wang R, Zhang Y, Huang K. Poly(ADP-ribose) polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell. PLoS One 2011; 6:e27123. [PMID: 22073128 PMCID: PMC3205050 DOI: 10.1371/journal.pone.0027123] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 10/11/2011] [Indexed: 12/31/2022] Open
Abstract
Background Transforming growth factor type-β (TGF-β)/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS) generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However, the underlying molecular mechanism is largely unknown. This study aims to investigate the influence of poly(ADP-ribose) polymerase 1 (PARP1), a downstream effector of ROS, on TGF-β signaling transduction through Smad3 pathway in rat vascular smooth muscle cells (VSMCs). Methods and Results TGF-β1 treatment promoted PARP1 activation through induction of ROS generation in rat VSMCs. TGF-β1-induced phosphorylation and nuclear accumulation of Smad3 was prevented by treatment of cells with PARP inhibitor, 3-aminobenzamide (3AB) or N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-2-(N,N-dimethylamino)acetami (PJ34), or PARP1 siRNA. TGF-β1 treatment promoted poly(ADP-ribosy)lation of Smad3 via activation of PARP1 in the nucleus. Poly(ADP-ribosy)lation enhanced Smad-Smad binding element (SBE) complex formation in nuclear extracts and increased DNA binding activity of Smad3. Pretreatment with 3AB, PJ34, or PARP1 siRNA prevented TGF-β1-induced Smad3 transactivation and expression of Smad3 target genes, including collagen Iα1, collagen IIIα1 and tissue inhibitor of metalloproteinase 1, in rat VSMCs. Conclusions PARP1 is indispensable for TGF-β1 induced Smad3 activation in rat VSMCs. Targeting PARP1 may be a promising therapeutic approach against vascular diseases induced by dysregulation of TGF-β/Smad3 pathway.
Collapse
MESH Headings
- Animals
- Benzamides/pharmacology
- Blotting, Southwestern
- Blotting, Western
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cells, Cultured
- Electrophoretic Mobility Shift Assay
- Enzyme Inhibitors/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Fluorescent Antibody Technique
- Immunoenzyme Techniques
- Immunoprecipitation
- Luciferases/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phenanthrenes/pharmacology
- Phosphorylation/drug effects
- Poly(ADP-ribose) Polymerase Inhibitors
- Poly(ADP-ribose) Polymerases/genetics
- Poly(ADP-ribose) Polymerases/metabolism
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/genetics
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Real-Time Polymerase Chain Reaction
- Signal Transduction/drug effects
- Smad3 Protein/genetics
- Smad3 Protein/metabolism
- Trans-Activators
- Transcription, Genetic
- Transfection
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Dan Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Central Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Deng
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Wang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
- * E-mail: (KH); (YZ)
| | - Kai Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
- * E-mail: (KH); (YZ)
| |
Collapse
|
68
|
Dai F, Shen T, Li Z, Lin X, Feng XH. PPM1A dephosphorylates RanBP3 to enable efficient nuclear export of Smad2 and Smad3. EMBO Rep 2011; 12:1175-81. [PMID: 21960005 PMCID: PMC3207100 DOI: 10.1038/embor.2011.174] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/23/2011] [Accepted: 07/27/2011] [Indexed: 01/31/2023] Open
Abstract
Smad2 and Smad3 (Smad2/3) are essential signal transducers and transcription factors in the canonical transforming growth factor-β (TGF-β) signalling pathway. Active Smad2/3 signalling in the nucleus is terminated by dephosphorylation and subsequent nuclear export of Smad2/3. Here we report that protein phosphatase PPM1A regulates the nuclear export of Smad2/3 through targeting nuclear exporter RanBP3. PPM1A directly interacted with and dephosphorylated RanBP3 at Ser 58 in vitro and in vivo. Consistently, RanBP3 phosphorylation was elevated in PPM1A-null mouse embryonic fibroblasts. Dephosphorylation of RanBP3 at Ser 58 promoted its ability to export Smad2/3 and terminate TGF-β responses. Our findings indicate the critical role of PPM1A in maximizing exporter activity of RanBP3 for efficient termination of canonical TGF-β signalling.
Collapse
Affiliation(s)
- Fangyan Dai
- Department of Molecular & Cellular Biology, Texas A&M Health Sciences Center, Houston, Texas 77030, USA
| | - Tao Shen
- Michael E. DeBakey Department of Surgery, Texas A&M Health Sciences Center, Houston, Texas 77030, USA
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, and Texas A&M Health Sciences Center, Houston, Texas 77030, USA
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas 77030, USA
| | - Zhaoyong Li
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Texas A&M Health Sciences Center, Houston, Texas 77030, USA
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, and Texas A&M Health Sciences Center, Houston, Texas 77030, USA
| | - Xin-Hua Feng
- Department of Molecular & Cellular Biology, Texas A&M Health Sciences Center, Houston, Texas 77030, USA
- Michael E. DeBakey Department of Surgery, Texas A&M Health Sciences Center, Houston, Texas 77030, USA
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, and Texas A&M Health Sciences Center, Houston, Texas 77030, USA
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
69
|
Nuclear transport: a switch for the oxidative stress-signaling circuit? JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:208650. [PMID: 22028962 PMCID: PMC3195498 DOI: 10.1155/2012/208650] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/05/2011] [Indexed: 01/01/2023]
Abstract
Imbalances in the formation and clearance of reactive oxygen species (ROS) can lead to oxidative stress and subsequent changes that affect all aspects of physiology. To limit and repair the damage generated by ROS, cells have developed a multitude of responses. A hallmark of these responses is the activation of signaling pathways that modulate the function of downstream targets in different cellular locations. To this end, critical steps of the stress response that occur in the nucleus and cytoplasm have to be coordinated, which makes the proper communication between both compartments mandatory. Here, we discuss the interdependence of ROS-mediated signaling and the transport of macromolecules across the nuclear envelope. We highlight examples of oxidant-dependent nuclear trafficking and describe the impact of oxidative stress on the transport apparatus. Our paper concludes by proposing a cellular circuit of ROS-induced signaling, nuclear transport and repair.
Collapse
|
70
|
Abstract
Transforming growth factor-β (TGF-β) family signaling regulates cell growth and differentiation of many different cell types and is widely involved in the regulation of homeostasis during both embryogenesis and adult life. Therefore, aberrant TGF-β family signal transduction is linked to congenital disorders, tumorigenicity, and fibrosis, which can be life-threatening. A specific receptor-ligand complex initiates transduction of TGF-β family signaling to the nucleus via intracellular signal molecules, mainly Smads, whereby a number of bioactivities such as wound healing, immunomodulation, apoptosis, and angiogenesis are controlled. To avoid an excess of TGF-β family signaling in cells, the duration and intensity of the TGF-β family signal appear to be subject to elaborate regulation. In this paper, we describe recent advances in the understanding of how TGF-β family signals are perturbed and terminated to maintain homeostasis in cells.
Collapse
Affiliation(s)
- Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | | |
Collapse
|
71
|
Inui M, Manfrin A, Mamidi A, Martello G, Morsut L, Soligo S, Enzo E, Moro S, Polo S, Dupont S, Cordenonsi M, Piccolo S. USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat Cell Biol 2011; 13:1368-75. [PMID: 21947082 DOI: 10.1038/ncb2346] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/17/2011] [Indexed: 12/12/2022]
Abstract
The TGFβ pathway is critical for embryonic development and adult tissue homeostasis. On ligand stimulation, TGFβ and BMP receptors phosphorylate receptor-activated SMADs (R-SMADs), which then associate with SMAD4 to form a transcriptional complex that regulates gene expression through specific DNA recognition. Several ubiquitin ligases serve as inhibitors of R-SMADs, yet no deubiquitylating enzyme (DUB) for these molecules has so far been identified. This has left unexplored the possibility that ubiquitylation of R-SMADs is reversible and engaged in regulating SMAD function, in addition to degradation. Here we identify USP15 as a DUB for R-SMADs. USP15 is required for TGFβ and BMP responses in mammalian cells and Xenopus embryos. At the biochemical level, USP15 primarily opposes R-SMAD monoubiquitylation, which targets the DNA-binding domains of R-SMADs and prevents promoter recognition. As such, USP15 is critical for the occupancy of endogenous target promoters by the SMAD complex. These data identify an additional layer of control by which the ubiquitin system regulates TGFβ biology.
Collapse
Affiliation(s)
- Masafumi Inui
- Department of Medical Biotechnologies, Section of Histology and Embryology, University of Padua, viale G. Colombo 3, 35100 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Gong K, Xing D, Li P, Hilgers RH, Hage FG, Oparil S, Chen YF. cGMP inhibits TGF-beta signaling by sequestering Smad3 with cytosolic beta2-tubulin in pulmonary artery smooth muscle cells. Mol Endocrinol 2011; 25:1794-803. [PMID: 21868450 DOI: 10.1210/me.2011-1009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Atrial natriuretic peptide (ANP) and TGF-β play counterregulatory roles in pulmonary vascular adaptation to chronic hypoxia. We have demonstrated that ANP-cyclic GMP (cGMP)-protein kinase G (PKG) signaling inhibits TGF-β signaling by blocking TGF-β-induced nuclear translocation of mothers against decapentaplegic homolog (Smad)3 in pulmonary artery smooth muscle cells (PASMC). The current study tested the novel hypothesis that activation of the ANP-cGMP-PKG pathway limits TGF-β-induced Smad3 nuclear translocation by enhancing Smad3 binding to cytosolic anchoring proteins in isolated pulmonary artery smooth muscle cells. Cells were pretreated with vehicle or cGMP and then exposed to TGF-β1 treatment. Cytosolic fractions were isolated and immunoprecipitated with a selective anti-Smad3 antibody. Differential proteomic analysis of the cytosolic Smad3-interacting proteins by two-dimensional differential in-gel electrophoresis and mass spectroscopy followed by coimmunoprecipitation and immunostaining demonstrated that Smad3 was bound to β2-tubulin in a TGF-β1/cGMP-dependent manner: binding of Smad3 to β2-tubulin was decreased by TGF-β1 and increased by cGMP treatment. A site-directed mutagenesis study demonstrated that mutating Smad3 at Thr388, but not Ser309, two potential sites of PKG-induced hyperphosphorylation, inhibited cGMP-induced Smad3 binding to β2-tubulin. Further, luciferase reporter analysis showed that muation of T388 in Smad3 abolished the inhibitory effect of cGMP on TGF-β1-induced plasminogen activator inhibitor-1 (PAI-1) transcription. In addition, disruption of β2-tubulin with the microtubule depolymerizers nocodazole and colchicine promoted Smad3 dissociation from β2-tubulin, increased both TGF-β1-induced Smad3 nuclear translocation and PAI-1 mRNA expression, and abolished the inhibitory effects of cGMP on these processes. In contrast, the microtubule stabilizers paclitaxel and epothilone B increased cytosolic Smad3 binding to β2-tubulin and enhanced the inhibitory effect of cGMP on Smad3 nuclear translocation and PAI-1 expression in response to TGF-β1. These provocative findings suggest that sequestering Smad3 by β2-tubulin in cytosol is a key mechanism by which ANP-cGMP-PKG signaling interferes with downstream signaling from TGF-β and thus protects against pulmonary arterial remodeling in response to hypoxia stress.
Collapse
Affiliation(s)
- Kaizheng Gong
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Major AT, Whiley PAF, Loveland KL. Expression of nucleocytoplasmic transport machinery: clues to regulation of spermatogenic development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1668-88. [PMID: 21420444 DOI: 10.1016/j.bbamcr.2011.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 02/22/2011] [Accepted: 03/11/2011] [Indexed: 12/14/2022]
Abstract
Spermatogenesis is one example of a developmental process which requires tight control of gene expression to achieve normal growth and sustain function. This review is based on the principle that events in spermatogenesis are controlled by changes in the distribution of proteins between the nuclear and cytoplasmic compartments. Through analysis of the regulated production of nucleocytoplasmic transport machinery in mammalian spermatogenesis, this review addresses the concept that access to the nucleus is tightly controlled to enable and prevent differentiation. A broad review of nuclear transport components is presented, outlining the different categories of machinery required for import, export and non-nuclear functions. In addition, the complexity of nomenclature is addressed by the provision of a concise yet comprehensive listing of information that will aid in comparative studies of different transport proteins and the genes which encode them. We review a suite of existing transcriptional analyses which identify common and distinct patterns of transport machinery expression, showing how these can be linked with key events in spermatogenic development. The additional importance of this for human fertility is considered, in light of data that identify which importin and nuclear transport machinery components are present in testicular cancer specimens, while also providing an indication of how their presence (and absence) may be considered as potential mediators of oncogenesis. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Andrew T Major
- Department of Anatomy and Developmental Biology, Monash University, Australia
| | | | | |
Collapse
|
74
|
Langer K, Dian C, Rybin V, Müller CW, Petosa C. Insights into the function of the CRM1 cofactor RanBP3 from the structure of its Ran-binding domain. PLoS One 2011; 6:e17011. [PMID: 21364925 PMCID: PMC3045386 DOI: 10.1371/journal.pone.0017011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/18/2011] [Indexed: 02/03/2023] Open
Abstract
Proteins bearing a leucine-rich nuclear export signal (NES) are exported from the nucleus by the transport factor CRM1, which forms a cooperative ternary complex with the NES-bearing cargo and with the small GTPase Ran. CRM1-mediated export is regulated by RanBP3, a Ran-interacting nuclear protein. Unlike the related proteins RanBP1 and RanBP2, which promote disassembly of the export complex in the cytosol, RanBP3 acts as a CRM1 cofactor, enhancing NES export by stabilizing the export complex in the nucleus. RanBP3 also alters the cargo selectivity of CRM1, promoting recognition of the NES of HIV-1 Rev and of other cargos while deterring recognition of the import adaptor protein Snurportin1. Here we report the crystal structure of the Ran-binding domain (RBD) from RanBP3 and compare it to RBD structures from RanBP1 and RanBP2 in complex with Ran and CRM1. Differences among these structures suggest why RanBP3 binds Ran with unusually low affinity, how RanBP3 modulates the cargo selectivity of CRM1, and why RanBP3 promotes assembly rather than disassembly of the export complex. The comparison of RBD structures thus provides an insight into the functional diversity of Ran-binding proteins.
Collapse
Affiliation(s)
- Karla Langer
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Cyril Dian
- Institut de Biologie Structurale Jean-Pierre Ebel, Unité Mixte de Recherche 5075 (Commissariat à L'Energie Atomique et aux Energies Alternatives/Centre National de la Recherche Scientifique/Université Joseph Fourier), Grenoble, France
| | - Vladimir Rybin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christoph W. Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carlo Petosa
- Institut de Biologie Structurale Jean-Pierre Ebel, Unité Mixte de Recherche 5075 (Commissariat à L'Energie Atomique et aux Energies Alternatives/Centre National de la Recherche Scientifique/Université Joseph Fourier), Grenoble, France
| |
Collapse
|
75
|
Wang W, Chen X, Li X, Wang L, Zhang H, He Y, Wang J, Zhao Y, Zhang B, Xu Y. Interference RNA-based silencing of endogenous SMAD4 in porcine granulosa cells resulted in decreased FSH-mediated granulosa cells proliferation and steroidogenesis. Reproduction 2011; 141:643-51. [PMID: 21292728 DOI: 10.1530/rep-10-0098] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
FSH plays a critical role in granulosa cell (GC) proliferation and steroidogenesis through modulation by factors including bone morphogenetic proteins family, which belongs to transforming growth factor β (TGFB) superfamily. TGFBs are the key factors in maintaining cell growth and differentiation in ovaries. However, the interaction of FSH and TGFB on the GCs' proliferation and steroidogenesis remains to be elucidated. In this study, we have investigated the role of SMAD4, a core molecule mediating the intracellular TGFB/SMAD signal transduction pathway, in FSH-mediated proliferation and steroidogenesis of porcine GCs. In this study, SMAD4 was knocked down using interference RNA in porcine GCs. Our results showed that SMAD4-siRNA causes specific inhibition of SMAD4 mRNA and protein expression after transfection. Knockdown of SMAD4 significantly inhibited FSH-induced porcine GC proliferation and estradiol production and changed the expression of cyclin D2, CDK2, CDK4, CYP19a1, and CYP11a1. Thus, these observations establish an important role of SMAD4 in the regulation of the response of porcine GCs to FSH.
Collapse
Affiliation(s)
- Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing 210095, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Wang W, Wang L, Li XX, Chen X, Zhang HY, He Y, Wang JJ, Zhao YY, Zhang BL, Xu YX. Effect of interrupted endogenous BMP/Smad signaling on growth and steroidogenesis of porcine granulosa cells. J Zhejiang Univ Sci B 2011; 11:719-27. [PMID: 20803776 DOI: 10.1631/jzus.b1000079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bone morphogenetic proteins (BMPs) play a critical role in the growth and steroidogenesis of granulosa cells (GCs). BMP signals act through membrane-bound heteromeric serine/threonine kinase receptors. Upon ligand binding, BMPs activate intracellular Smad proteins and regulate growth and apoptosis in various cell types. The objective of this study was to demonstrate the effects of BMP/Smad signal on growth and steroidogenesis of porcine GCs. A strategy of RNA interference (RNAi)-mediated 'gene silencing' of Smad4, a core molecule mediating the intracellular BMP/Smad signal transduction pathways, was used to interrupt endogenous BMP/Smad signaling. Results indicate that Smad4-small interfering RNA (siRNA) caused specific inhibition of Smad4 mRNA and protein expression after transfection. Interrupted endogenous BMP/Smad signaling significantly inhibited growth, and induced apoptosis of porcine GCs, while decreasing estradiol production. In addition, interrupted BMP/Smad signaling significantly (P<0.05) changed the expression of Cyclin D2, CDK4, Bcl-2, and Cyp19a1. These findings provide new insights into how BMP/Smad signaling regulates the growth and steroidogenesis of porcine GCs.
Collapse
Affiliation(s)
- Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
Nodal signals belong to the TGF-beta superfamily and are essential for the induction of mesoderm and endoderm and the determination of the left-right axis. Nodal signals can act as morphogens-they have concentration-dependent effects and can act at a distance from their source of production. Nodal and its feedback inhibitor Lefty form an activator/inhibitor pair that behaves similarly to postulated reaction-diffusion models of tissue patterning. Nodal morphogen activity is also regulated by microRNAs, convertases, TGF-beta signals, coreceptors, and trafficking factors. This article describes how Nodal morphogens pattern embryonic fields and discusses how Nodal morphogen signaling is modulated.
Collapse
|
78
|
Martinez GJ, Zhang Z, Reynolds JM, Tanaka S, Chung Y, Liu T, Robertson E, Lin X, Feng XH, Dong C. Smad2 positively regulates the generation of Th17 cells. J Biol Chem 2010; 285:29039-43. [PMID: 20667820 PMCID: PMC2937933 DOI: 10.1074/jbc.c110.155820] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/27/2010] [Indexed: 12/12/2022] Open
Abstract
Development of Foxp3(+) regulatory T cells and pro-inflammatory Th17 cells from naive CD4(+) T cells requires transforming growth factor-β (TGF-β) signaling. Although Smad4 and Smad3 have been previously shown to regulate Treg cell induction by TGF-β, they are not required in the development of Th17 cells. Thus, how TGF-β regulates Th17 cell differentiation remains unclear. In this study, we found that TGF-β-induced Foxp3 expression was significantly reduced in the absence of Smad2. More importantly, Smad2 deficiency led to reduced Th17 differentiation in vitro and in vivo. In the experimental autoimmune encephalomyelitis model, Smad2 deficiency in T cells significantly ameliorated disease severity and reduced generation of Th17 cells. Furthermore, we found that Smad2 associated with retinoid acid receptor-related orphan receptor-γt (RORγt) and enhanced RORγt-induced Th17 cell generation. These results demonstrate that Smad2 positively regulates the generation of inflammatory Th17 cells.
Collapse
Affiliation(s)
- Gustavo J. Martinez
- From the Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, and
- the Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Zhengmao Zhang
- the Department of Molecular and Cellular Biology and
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Joseph M. Reynolds
- From the Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, and
| | - Shinya Tanaka
- From the Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, and
| | - Yeonseok Chung
- From the Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, and
| | - Ting Liu
- the Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China, and
| | - Elizabeth Robertson
- the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Xin-Hua Feng
- the Department of Molecular and Cellular Biology and
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
- the Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China, and
| | - Chen Dong
- From the Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, and
- the Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
79
|
Abstract
Tight regulation of TGF-beta (transforming growth factor-beta) superfamily signalling is important for normal cellular functions and tissue homoeostasis. Since TGF-beta superfamily signalling pathways are activated by a short phosphorylation cascade, from receptor phosphorylation to subsequent phosphorylation and activation of downstream signal transducer R-Smads (receptor-activated Smads), reversible phosphorylation serves as a critical step to assure proper TGF-beta signalling. The present article will review the current progress on the understanding of dynamic phosphorylation in TGF-beta signalling and the essential role of protein phosphatases in this process.
Collapse
Affiliation(s)
- Ting Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Molecular & Cellular Biology, and Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
80
|
Dai F, Duan X, Liang YY, Lin X, Feng XH. Coupling of dephosphorylation and nuclear export of Smads in TGF-beta signaling. Methods Mol Biol 2010; 647:125-37. [PMID: 20694664 PMCID: PMC3153448 DOI: 10.1007/978-1-60761-738-9_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In eukaryotes, regulation of signaling mediators/effectors in the nucleus is one of the principal mechanisms that govern duration and strength of signaling. Smads are a family of structurally related intracellular proteins that serve as signaling effectors for transforming growth factor beta (TGF-beta) and TGF-beta-related proteins. Accumulating evidence demonstrates that Smads possess intrinsic nucleocytoplasmic shuttling capacity, which enables them to transmit TGF-beta signals from cell membrane to nucleus. We recently identified two important steps in the termination of nuclear Smad signaling. The first step is initiated by a serine/threonine phosphatase PPM1A that dephosphorylates Smad2/3 in the nucleus, thereby shutting down signaling capacity of phosphorylated Smad2/3. The second step involves nuclear export of dephosphorylated Smad2/3 with the aid of nuclear protein RanBP3 to terminate Smad signaling. This chapter introduces methods for examining nuclear export of Smad2/3 in TGF-beta signaling.
Collapse
Affiliation(s)
- Fangyan Dai
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX77030, USA
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX77030, USA
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030, USA
| | - Xueyan Duan
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX77030, USA
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX77030, USA
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030, USA
| | - Yao-Yun Liang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX77030, USA
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX77030, USA
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030, USA
| | - Xin-Hua Feng
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX77030, USA
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX77030, USA
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030, USA
| |
Collapse
|
81
|
Abstract
Transforming growth factor beta (TGFbeta) pathways are implicated in metazoan development, adult homeostasis and disease. TGFbeta ligands signal via receptor serine/threonine kinases that phosphorylate, and activate, intracellular Smad effectors as well as other signaling proteins. Oligomeric Smad complexes associate with chromatin and regulate transcription, defining the biological response of a cell to TGFbeta family members. Signaling is modulated by negative-feedback regulation via inhibitory Smads. We review here the mechanisms of TGFbeta signal transduction in metazoans and emphasize events crucial for embryonic development.
Collapse
|
82
|
Costello I, Biondi CA, Taylor JM, Bikoff EK, Robertson EJ. Smad4-dependent pathways control basement membrane deposition and endodermal cell migration at early stages of mouse development. BMC DEVELOPMENTAL BIOLOGY 2009; 9:54. [PMID: 19849841 PMCID: PMC2773778 DOI: 10.1186/1471-213x-9-54] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/22/2009] [Indexed: 01/04/2023]
Abstract
Background Smad4 mutant embryos arrest shortly after implantation and display a characteristic shortened proximodistal axis, a significantly reduced epiblast, as well as a thickened visceral endoderm layer. Conditional rescue experiments demonstrate that bypassing the primary requirement for Smad4 in the extra-embryonic endoderm allows the epiblast to gastrulate. Smad4-independent TGF-β signals are thus sufficient to promote mesoderm formation and patterning. To further analyse essential Smad4 activities contributed by the extra-embryonic tissues, and characterise Smad4 dependent pathways in the early embryo, here we performed transcriptional profiling of Smad4 null embryonic stem (ES) cells and day 4 embryoid bodies (EBs). Results Transcripts from wild-type versus Smad4 null ES cells and day 4 EBs were analysed using Illumina arrays. In addition to several known TGF-β/BMP target genes, we identified numerous Smad4-dependent transcripts that are mis-expressed in the mutants. As expected, mesodermal cell markers were dramatically down-regulated. We also observed an increase in non-canonical potency markers (Pramel7, Tbx3, Zscan4), germ cell markers (Aire, Tuba3a, Dnmt3l) as well as early endoderm markers (Dpp4, H19, Dcn). Additionally, expression of the extracellular matrix (ECM) remodelling enzymes Mmp14 and Mmp9 was decreased in Smad4 mutant ES and EB populations. These changes, in combination with increased levels of laminin alpha1, cause excessive basement membrane deposition. Similarly, in the context of the Smad4 null E6.5 embryos we observed an expanded basement membrane (BM) associated with the thickened endoderm layer. Conclusion Smad4 functional loss results in a dramatic shift in gene expression patterns and in the endodermal cell lineage causes an excess deposition of, or an inability to breakdown and remodel, the underlying BM layer. These structural abnormalities probably disrupt reciprocal signalling between the epiblast and overlying visceral endoderm required for gastrulation.
Collapse
Affiliation(s)
- Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|