51
|
Hu TX, Yu M, Zhao J. Comparative transcriptional analysis reveals differential gene expression between asymmetric and symmetric zygotic divisions in tobacco. PLoS One 2011; 6:e27120. [PMID: 22069495 PMCID: PMC3206072 DOI: 10.1371/journal.pone.0027120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 10/11/2011] [Indexed: 11/24/2022] Open
Abstract
Asymmetric cell divisions occur widely during many developmental processes in plants. In most angiosperms, the first zygotic cell division is asymmetric resulting in two daughter cells of unequal size and with distinct fates. However, the critical molecular mechanisms regulating this division remain unknown. Previously we showed that treatment of tobacco zygotes with beta-glucosyl Yariv (βGlcY) could dramatically alter the first zygotic asymmetric division to produce symmetric two-celled proembryos. In the present study, we isolated zygotes and two-celled asymmetric proembryos in vivo by micromanipulation, and obtained symmetric, two-celled proembryos by in vitro cell cultures. Using suppression-subtractive hybridization (SSH) and macroarray analysis differential gene expression between the zygote and the asymmetric and symmetric two-celled proembryos was investigated. After sequencing of the differentially expressed clones, a total of 1610 EST clones representing 685 non-redundant transcripts were obtained. Gene ontology (GO) term analysis revealed that these transcripts include those involved in physiological processes such as response to stimulus, regulation of gene expression, and localization and formation of anatomical structures. A homology search against known genes from Arabidopsis indicated that some of the above transcripts are involved in asymmetric cell division and embryogenesis. Quantitative real-time PCR confirmed the up- or down-regulation of the selected candidate transcripts during zygotic division. A few of these transcripts were expressed exclusively in the zygote, or in either type of the two-celled proembryos. Expression analyses of select genes in different tissues and organs also revealed potential roles of these transcripts in fertilization, seed maturation and organ development. The putative roles of few of the identified transcripts in the regulation of zygotic division are discussed. Further functional work on these candidate transcripts will provide important information for understanding asymmetric zygotic division, generation of apical-basal polarity and cell fate decisions during early embryogenesis.
Collapse
Affiliation(s)
- Tian-Xiang Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Miao Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
52
|
Pillitteri LJ, Peterson KM, Horst RJ, Torii KU. Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis. THE PLANT CELL 2011; 23:3260-75. [PMID: 21963668 PMCID: PMC3203429 DOI: 10.1105/tpc.111.088583] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 09/10/2011] [Accepted: 09/18/2011] [Indexed: 05/18/2023]
Abstract
The balance between maintenance and differentiation of stem cells is a central question in developmental biology. Development of stomata in Arabidopsis thaliana begins with de novo asymmetric divisions producing meristemoids, proliferating precursor cells with stem cell-like properties. The transient and asynchronous nature of the meristemoid has made it difficult to study its molecular characteristics. Synthetic combination of stomatal differentiation mutants due to loss- or gain-of-function mutations in SPEECHLESS, MUTE, and SCREAM create seedlings with an epidermis overwhelmingly composed of pavement cells, meristemoids, or stomata, respectively. Through transcriptome analysis, we define and characterize the molecular signatures of meristemoids. The reporter localization studies of meristemoid-enriched proteins reveals pathways not previously associated with stomatal development. We identified a novel protein, POLAR, and demonstrate through time-lapse live imaging that it exhibits transient polar localization and segregates unevenly during meristemoid asymmetric divisions. The polar localization of POLAR requires BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE. Comparative bioinformatic analysis of the transcriptional profiles of a meristemoid with shoot and root apical meristems highlighted cytokinin signaling and the ERECTA family receptor-like kinases in the broad regulation of stem cell populations. Our work reveals molecular constituents of stomatal stem cells and illuminates a common theme among stem cell populations in plants.
Collapse
Affiliation(s)
- Lynn Jo Pillitteri
- Department of Biology, University of Washington, Seattle, Washington 98195
- Biology Department, Western Washington University, Bellingham, Washington 98225
| | - Kylee M. Peterson
- Department of Biology, University of Washington, Seattle, Washington 98195
| | - Robin J. Horst
- Department of Biology, University of Washington, Seattle, Washington 98195
| | - Keiko U. Torii
- Department of Biology, University of Washington, Seattle, Washington 98195
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Tokyo 102-0075 Japan
- Address correspondence to
| |
Collapse
|
53
|
Kasili R, Huang CC, Walker JD, Simmons LA, Zhou J, Faulk C, Hülskamp M, Larkin JC. BRANCHLESS TRICHOMES links cell shape and cell cycle control in Arabidopsis trichomes. Development 2011; 138:2379-88. [PMID: 21558384 DOI: 10.1242/dev.058982] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endoreplication, also called endoreduplication, is a modified cell cycle in which DNA is repeatedly replicated without subsequent cell division. Endoreplication is often associated with increased cell size and specialized cell shapes, but the mechanism coordinating DNA content with shape and size remains obscure. Here we identify the product of the BRANCHLESS TRICHOMES (BLT) gene, a protein of hitherto unknown function that has been conserved throughout angiosperm evolution, as a link in coordinating cell shape and nuclear DNA content in endoreplicated Arabidopsis trichomes. Loss-of-function mutations in BLT were found to enhance the multicellular trichome phenotype of mutants in the SIAMESE (SIM) gene, which encodes a repressor of endoreplication. Epistasis and overexpression experiments revealed that BLT encodes a key regulator of trichome branching. Additional experiments showed that BLT interacts both genetically and physically with STICHEL, another key regulator of trichome branching. Although blt mutants have normal trichome DNA content, overexpression of BLT results in an additional round of endoreplication, and blt mutants uncouple DNA content from morphogenesis in mutants with increased trichome branching, further emphasizing its role in linking cell shape and endoreplication.
Collapse
Affiliation(s)
- Remmy Kasili
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803-1715, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Boyd JS, Mittelmeier TM, Dieckmann CL. New insights into eyespot placement and assembly in Chlamydomonas. BIOARCHITECTURE 2011; 1:196-199. [PMID: 22069514 DOI: 10.4161/bioa.1.4.17697] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 08/04/2011] [Accepted: 08/06/2011] [Indexed: 12/29/2022]
Abstract
Aspects of cellular architecture, such as cytoskeletal asymmetry cues, play critical roles in directing the placement of organelles and establishing the sites of their formation. In the model green alga Chlamydomonas, the photosensory eyespot occupies a defined position in relation to the flagella and microtubule cytoskeleton. Investigations into the cellular mechanisms of eyespot placement and assembly have aided our understanding of the interplay between cytoskeletal and plastid components of the cell. The eyespot, which must be assembled anew after each cell division, is a multi-layered organelle consisting of stacks of carotenoid-filled pigment granules in the chloroplast and rhodopsin photoreceptors in the plasma membrane. Placement of the eyespot is determined on both the latitudinal and longitudinal axes of the cell by the daughter four-membered (D4) microtubule rootlet. Recent findings have contributed to the hypothesis that the eyespot photoreceptor molecules are directed from the Golgi to the daughter hemisphere of the cell and trafficked along the D4 microtubule rootlet. EYE2, a chloroplast-envelope protein, forms an elliptical patch together with the photoreceptors and establishes the site for assembly of the pigment granule arrays in the chloroplast, connecting the positioning information of the cytoskeleton to assembly of the pigment granule arrays in the chloroplast.
Collapse
Affiliation(s)
- Joseph S Boyd
- Department of Molecular and Cellular Biology; University of Arizona; Tucson, AZ USA
| | | | | |
Collapse
|
55
|
Mittelmeier TM, Boyd JS, Lamb MR, Dieckmann CL. Asymmetric properties of the Chlamydomonas reinhardtii cytoskeleton direct rhodopsin photoreceptor localization. J Cell Biol 2011; 193:741-53. [PMID: 21555459 PMCID: PMC3166873 DOI: 10.1083/jcb.201009131] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 04/06/2011] [Indexed: 11/22/2022] Open
Abstract
The eyespot of the unicellular green alga Chlamydomonas reinhardtii is a photoreceptive organelle required for phototaxis. Relative to the anterior flagella, the eyespot is asymmetrically positioned adjacent to the daughter four-membered rootlet (D4), a unique bundle of acetylated microtubules extending from the daughter basal body toward the posterior of the cell. Here, we detail the relationship between the rhodopsin eyespot photoreceptor Channelrhodopsin 1 (ChR1) and acetylated microtubules. In wild-type cells, ChR1 was observed in an equatorial patch adjacent to D4 near the end of the acetylated microtubules and along the D4 rootlet. In cells with cytoskeletal protein mutations, supernumerary ChR1 patches remained adjacent to acetylated microtubules. In mlt1 (multieyed) mutant cells, supernumerary photoreceptor patches were not restricted to the D4 rootlet, and more anterior eyespots correlated with shorter acetylated microtubule rootlets. The data suggest a model in which photoreceptor localization is dependent on microtubule-based trafficking selective for the D4 rootlet, which is perturbed in mlt1 mutant cells.
Collapse
Affiliation(s)
- Telsa M. Mittelmeier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Joseph S. Boyd
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Mary Rose Lamb
- Department of Biology, University of Puget Sound, Tacoma, WA 98416
| | - Carol L. Dieckmann
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
56
|
Bukharina TA, Furman DP. Asymmetric cell division in the morphogenesis of Drosophila melanogaster macrochaetae. Russ J Dev Biol 2011. [DOI: 10.1134/s1062360411010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
57
|
Abstract
The division of eukaryotic cells involves the assembly of complex cytoskeletal structures to exert the forces required for chromosome segregation and cytokinesis. In plants, empirical evidence suggests that tensional forces within the cytoskeleton cause cells to divide along the plane that minimizes the surface area of the cell plate (Errera's rule) while creating daughter cells of equal size. However, exceptions to Errera's rule cast doubt on whether a broadly applicable rule can be formulated for plant cell division. Here, we show that the selection of the plane of division involves a competition between alternative configurations whose geometries represent local area minima. We find that the probability of observing a particular division configuration increases inversely with its relative area according to an exponential probability distribution known as the Gibbs measure. Moreover, a comparison across land plants and their most recent algal ancestors confirms that the probability distribution is widely conserved and independent of cell shape and size. Using a maximum entropy formulation, we show that this empirical division rule is predicted by the dynamics of the tense cytoskeletal elements that lead to the positioning of the preprophase band. Based on the fact that the division plane is selected from the sole interaction of the cytoskeleton with cell shape, we posit that the new rule represents the default mechanism for plant cell division when internal or external cues are absent.
Collapse
|
58
|
Oh SA, Twell D, Park SK. SIDECAR POLLEN suggests a plant-specific regulatory network underlying asymmetric microspore division in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2011; 6:416-9. [PMID: 21364317 PMCID: PMC3142426 DOI: 10.4161/psb.6.3.14385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 12/06/2010] [Indexed: 05/19/2023]
Abstract
Asymmetric cell division is a universal strategy to generate diverse cell types necessary for patterning and proliferation of all eukaryotes. The development of haploid male gametophytes (pollen grains) in flowering plants is a remarkable example in which division asymmetry governs the functional specialization and germline differentiation essential for double fertilization. The male gametophyte is patterned via two mitotic divisions resulting in three highly differentiated daughter cells at maturity, a vegetative cell and two sperm cells. The first asymmetric division segregates a unique male germ cell from an undetermined haploid microspore and is executed in an elaborate sequence of cellular events. However the molecular mechanisms governing the division asymmetry in microspores are poorly understood. Recently we studied the phenotype of sidecar pollen (scp) mutants in detail, and demonstrated a requirement of SCP for both the correct timing and orientation of microspore division. SCP is a microspore-specific member of the LOB/AS2 domain family (LBD27/ASL29) showing that a plant-specific regulator plays a key role in oriented division of polarized microspores. Identification of SCP will serve as a new platform to further explore the largely unknown molecular networks regulating division asymmetry in microspores that establishes the male germline in flowering plants.
Collapse
Affiliation(s)
- Sung Aeong Oh
- Division of Plant Biosciences; Kyungpook National University; Daegu, South Korea
| | - David Twell
- Department of Biology; University of Leicester; Leicester, UK
| | - Soon Ki Park
- Division of Plant Biosciences; Kyungpook National University; Daegu, South Korea
| |
Collapse
|
59
|
Hachez C, Ohashi-Ito K, Dong J, Bergmann DC. Differentiation of Arabidopsis guard cells: analysis of the networks incorporating the basic helix-loop-helix transcription factor, FAMA. PLANT PHYSIOLOGY 2011; 155:1458-72. [PMID: 21245191 PMCID: PMC3046599 DOI: 10.1104/pp.110.167718] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nearly all extant land plants possess stomata, the epidermal structures that mediate gas exchange between the plant and the environment. The developmental pathways, cell division patterns, and molecules employed in the generation of these structures are simple examples of processes used in many developmental contexts. One specific module is a set of "master regulator" basic helix-loop-helix transcription factors that regulate individual consecutive steps in stomatal development. Here, we profile transcriptional changes in response to inducible expression of Arabidopsis (Arabidopsis thaliana) FAMA, a basic helix-loop-helix protein whose actions during the final stage in stomatal development regulate both cell division and cell fate. Genes identified by microarray and candidate approaches were then further analyzed to test specific hypothesis about the activity of FAMA, the shape of its regulatory network, and to create a new set of stomata-specific or stomata-enriched reporters.
Collapse
|
60
|
De Smet I, Beeckman T. Asymmetric cell division in land plants and algae: the driving force for differentiation. Nat Rev Mol Cell Biol 2011; 12:177-88. [PMID: 21346731 DOI: 10.1038/nrm3064] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Asymmetric cell division generates two cells with different fates and has an important role in plant development. It produces distinct cell types and new organs, and maintains stem cell niches. To handle the constraints of having immobile cells, plants possess numerous unique features to obtain asymmetry, such as specific regulators of intrinsic polarity. Although several components have not yet been identified, new findings, together with knowledge from different developmental systems, now allow us to take an important step towards a mechanistic overview of asymmetric cell division in plants and algae. Strikingly, several key regulators are used for different developmental processes, and common mechanisms can be recognized.
Collapse
Affiliation(s)
- Ive De Smet
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK.
| | | |
Collapse
|
61
|
Jeong S, Bayer M, Lukowitz W. Taking the very first steps: from polarity to axial domains in the early Arabidopsis embryo. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1687-97. [PMID: 21172809 DOI: 10.1093/jxb/erq398] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Arabidopsis embryos follow a predictable sequence of cell divisions, facilitating a genetic analysis of their early development. Both asymmetric divisions and cell-to-cell communication are probably involved in generating specific gene expression domains along the main axis within the first few division cycles. The function of these domains is not always understood, but recent work suggests that they may serve as a basis for organizing polar auxin flux. Auxin acts as systemic signal throughout the life cycle and, in the embryo, has been demonstrated to direct formation of the main axis and root initiation at the globular stage. At about the same time, root versus shoot fates are imposed on the incipient meristems by the expression of antagonistic regulators at opposite poles of the embryo. Some of the key features of the embryonic patterning process have emerged over the past few years and may provide the elements of a coherent conceptual framework.
Collapse
Affiliation(s)
- Sangho Jeong
- Department of Plant Biology, University of Georgia, Athens, GA 30602-7271, USA
| | | | | |
Collapse
|
62
|
Zhao P, Shi DQ, Yang WC. Patterning the embryo in higher plants: Emerging pathways and challenges. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1119-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
63
|
Agarwal P, Kapoor S, Tyagi AK. Transcription factors regulating the progression of monocot and dicot seed development. Bioessays 2011; 33:189-202. [PMID: 21319185 DOI: 10.1002/bies.201000107] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Seed development in this paper has been classified into the three landmark stages of cell division, organ initiation and maturation, based on morphological changes, and the available literature. The entire process proceeds at the behest of an interplay of various specific and general transcription factors (TFs). Monocots and dicots utilize overlapping, as well as distinct, TF networks during the process of seed development. The known TFs in rice and Arabidopsis have been chronologically categorized into the three stages. The main regulators of seed development contain B3 or HAP3 domains. These interact with bZIP and AP2 TFs. Other TFs that play an indispensable role during the process contain homeobox-, NAC-, MYB-, or ARF-domains. This paper is a comprehensive analysis of the TFs essential for seed development and their interactions. An understanding of this interplay will not only help unravel an integrated developmental process, but will also pave the way for biotechnological applications.
Collapse
Affiliation(s)
- Pinky Agarwal
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | | |
Collapse
|
64
|
Rasmussen CG, Humphries JA, Smith LG. Determination of symmetric and asymmetric division planes in plant cells. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:387-409. [PMID: 21391814 DOI: 10.1146/annurev-arplant-042110-103802] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The cellular organization of plant tissues is determined by patterns of cell division and growth coupled with cellular differentiation. Cells proliferate mainly via symmetric division, whereas asymmetric divisions are associated with initiation of new developmental patterns and cell types. Division planes in both symmetrically and asymmetrically dividing cells are established through the action of a cortical preprophase band (PPB) of cytoskeletal filaments, which is disassembled upon transition to metaphase, leaving behind a cortical division site (CDS) to which the cytokinetic phragmoplast is later guided to position the cell plate. Recent progress has been made in understanding PPB formation and function as well as the nature and function of the CDS. In asymmetrically dividing cells, division plane establishment is governed by cell polarity. Recent work is beginning to shed light on polarization mechanisms in asymmetrically dividing cells, with receptor-like proteins and potential downstream effectors emerging as important players in this process.
Collapse
Affiliation(s)
- Carolyn G Rasmussen
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
65
|
Liu B, Ho CMK, Lee YRJ. Microtubule Reorganization during Mitosis and Cytokinesis: Lessons Learned from Developing Microgametophytes in Arabidopsis Thaliana. FRONTIERS IN PLANT SCIENCE 2011; 2:27. [PMID: 22639587 PMCID: PMC3355579 DOI: 10.3389/fpls.2011.00027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 06/21/2011] [Indexed: 05/13/2023]
Abstract
In angiosperms, mitosis and cytokinesis take place in the absence of structurally defined microtubule-organizing centers and the underlying mechanisms are largely unknown. In the spindle and phragmoplast, microtubule reorganization depends on microtubule-interacting factors like the γ-tubulin complex. Because of their critical functions in cell division, loss-of-function mutations in the corresponding genes are often homozygous or sporophytic lethal. However, a number of mutations like gem1, gcp2, and nedd1 can be maintained in heterozygous mutants in Arabidopsis thaliana. When mutant microspores produced by a heterozygous parent undergo pollen mitosis I, they are amenable for phenotypic characterization by fluorescence microscopy. The results would allow us to pinpoint at specific functions of particular proteins in microtubule reorganization that are characteristic to specific stages of mitosis and cytokinesis. Conclusions made in the developing microgametophytes can be extrapolated to somatic cells regarding mechanisms that regulate nuclear migration, spindle pole formation, phragmoplast assembly, and cell division plane determination.
Collapse
Affiliation(s)
- Bo Liu
- Department of Plant Biology, University of CaliforniaDavis, CA, USA
- *Correspondence: Bo Liu, Department of Plant Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA. e-mail:
| | | | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of CaliforniaDavis, CA, USA
| |
Collapse
|
66
|
Umbrasaite J, Schweighofer A, Kazanaviciute V, Magyar Z, Ayatollahi Z, Unterwurzacher V, Choopayak C, Boniecka J, Murray JAH, Bogre L, Meskiene I. MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis. PLoS One 2010; 5:e15357. [PMID: 21203456 PMCID: PMC3009721 DOI: 10.1371/journal.pone.0015357] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 11/15/2010] [Indexed: 12/21/2022] Open
Abstract
In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK) signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C) that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells.
Collapse
Affiliation(s)
- Julija Umbrasaite
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Alois Schweighofer
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Vaiva Kazanaviciute
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
- Institute of Biotechnology, University of Vilnius, Vilnius, Lithuania
| | - Zoltan Magyar
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
- Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Zahra Ayatollahi
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | | | - Chonnanit Choopayak
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Justyna Boniecka
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - James A. H. Murray
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Laszlo Bogre
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Irute Meskiene
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
- Institute of Biotechnology, University of Vilnius, Vilnius, Lithuania
| |
Collapse
|
67
|
Oh SA, Park KS, Twell D, Park SK. The SIDECAR POLLEN gene encodes a microspore-specific LOB/AS2 domain protein required for the correct timing and orientation of asymmetric cell division. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:839-50. [PMID: 21105930 DOI: 10.1111/j.1365-313x.2010.04374.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cellular patterning and differentiation in plants depend on the balance of asymmetric and symmetric divisions. Patterning of the male gametophyte (pollen grains) in flowering plants requires asymmetric division of the microspore followed by a symmetric division of the germ cell to produce three highly differentiated cells: a single vegetative cell and two sperm cells. In Arabidopsis sidecar pollen (scp) mutants a proportion of microspores first divide symmetrically, and then go on to produce 'four-celled' pollen with an extra vegetative cell; however, details of the timing and origin of phenotypic defects in scp and the identity of the SCP gene have remained obscure. Comparative analysis of the original hypomorphic scp-1 allele and a T-DNA-induced null allele, scp-2, revealed that in the absence of SCP, microspores undergo normal nuclear positioning, but show delayed entry into mitosis, increased cell expansion and alterations in the orientation of nuclear division. We identified the SCP gene to encode a male gametophyte-specific LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES 2-like (LBD/ASL) protein that is expressed in microspore nuclei in a tightly regulated phase-specific manner. Therefore, our study demonstrates that the correct patterning of male gametophyte depends on the activity of a nuclear LBD/ASL family protein that is essential for the correct timing and orientation of asymmetric microspore division.
Collapse
Affiliation(s)
- Sung Aeong Oh
- Division of Plant Biosciences, Kyungpook National University, Daegu 702-701, South Korea
| | | | | | | |
Collapse
|
68
|
Paciorek T, Bergmann DC. The secret to life is being different: asymmetric divisions in plant development. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:661-669. [PMID: 20970370 DOI: 10.1016/j.pbi.2010.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/02/2010] [Accepted: 09/23/2010] [Indexed: 05/30/2023]
Abstract
Asymmetric cell divisions (ACDs) are used to create organismal form and cellular diversity during plant development. In several embryonic and postembryonic contexts, genes that specify cell fates and networks that provide positional information have been identified. The cellular mechanisms that translate this information into a physically ACD, however, are still obscure. In this review we examine the cell polarization events that precede asymmetric divisions in plants. Using principles derived from studies of other organisms and from postmitotic polarity generation in plants, we endeavor to provide a framework of what is known, what is on the horizon and what is critically needed to develop a rigorous mechanistic understanding of ACDs in plants.
Collapse
Affiliation(s)
- Tomasz Paciorek
- Biology Department, 371 Serra Mall, Stanford University, Stanford, CA 94305-5020, USA
| | | |
Collapse
|
69
|
Xie Z, Lee E, Lucas JR, Morohashi K, Li D, Murray JA, Sack FD, Grotewold E. Regulation of cell proliferation in the stomatal lineage by the Arabidopsis MYB FOUR LIPS via direct targeting of core cell cycle genes. THE PLANT CELL 2010; 22:2306-21. [PMID: 20675570 PMCID: PMC2929110 DOI: 10.1105/tpc.110.074609] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 07/10/2010] [Accepted: 07/19/2010] [Indexed: 05/18/2023]
Abstract
Stomata, which are epidermal pores surrounded by two guard cells, develop from a specialized stem cell lineage and function in shoot gas exchange. The Arabidopsis thaliana FOUR LIPS (FLP) and MYB88 genes encode closely related and atypical two-MYB-repeat proteins, which when mutated result in excess divisions and abnormal groups of stomata in contact. Consistent with a role in transcription, we show here that FLP and MYB88 are nuclear proteins with DNA binding preferences distinct from other known MYBs. To identify possible FLP/MYB88 transcriptional targets, we used chromatin immunoprecitation (ChIP) followed by hybridization to Arabidopsis whole genome tiling arrays. These ChIP-chip data indicate that FLP/MYB88 target the upstream regions especially of cell cycle genes, including cyclins, cyclin-dependent kinases (CDKs), and components of the prereplication complex. In particular, we show that FLP represses the expression of the mitosis-inducing factor CDKB1;1, which, along with CDKB1;2, is specifically required both for the last division in the stomatal pathway and for cell overproliferation in flp mutants. We propose that FLP and MYB88 together integrate patterning with the control of cell cycle progression and terminal differentiation through multiple and direct cell cycle targets. FLP recognizes a distinct cis-regulatory element that overlaps with that of the cell cycle activator E2F-DP in the CDKB1;1 promoter, suggesting that these MYBs may also modulate E2F-DP pathways.
Collapse
Affiliation(s)
- Zidian Xie
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, Ohio, 43210
| | - EunKyoung Lee
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, Ohio, 43210
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jessica R. Lucas
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, Ohio, 43210
| | - Kengo Morohashi
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, Ohio, 43210
- Plant Biotechnology Center, Ohio State University, Columbus, Ohio, 43210
| | - Dongmei Li
- Department of Statistics, Ohio State University, Columbus, Ohio, 43210
| | - James A.H. Murray
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, United Kingdom
| | - Fred D. Sack
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, Ohio, 43210
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Erich Grotewold
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, Ohio, 43210
- Plant Biotechnology Center, Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
70
|
Metzinger CA, Bergmann DC. Plant asymmetric cell division regulators: pinch-hitting for PARs? F1000 BIOLOGY REPORTS 2010; 2. [PMID: 20948808 PMCID: PMC2948360 DOI: 10.3410/b2-25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Like animals, plants use asymmetric cell divisions to create pattern and diversity. Due to a rigid cell wall and lack of cell migrations, these asymmetric divisions incur the additional constraints of being locked into their initial orientations. How do plants specify and carry out asymmetric divisions? Intercellular communication has been suspected for some time and recent developments identify these signals as well as point to segregated determinants and proteins with PAR-like functions as parts of the answer.
Collapse
Affiliation(s)
- Carrie A Metzinger
- Department of Biology, 371 Serra Mall, Stanford University Stanford, CA, 94305-5020 USA
| | | |
Collapse
|
71
|
Hunt L, Gray JE. BASL and EPF2 act independently to regulate asymmetric divisions during stomatal development. PLANT SIGNALING & BEHAVIOR 2010; 5:278-80. [PMID: 20220310 PMCID: PMC2881277 DOI: 10.4161/psb.5.3.10704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 05/28/2023]
Abstract
The initiation of stomatal development in the developing Arabidopsis epidermis is characterized by an asymmetric 'entry' division in which a small cell, known as a meristemoid, and a larger daughter cell is formed. The meristemoid may undergo further asymmetric divisions, regenerating a meristemoid each time, before differentiating into a guard mother cell which divides symmetrically to form a pair of guard cells surrounding a stomatal pore. Recently EPF2 and BASL have emerged as regulators of these asymmetric divisions and here we present results indicating that these two factors operate independently to control stomatal development.
Collapse
Affiliation(s)
- Lee Hunt
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
72
|
Neumüller RA, Knoblich JA. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 2009; 23:2675-99. [PMID: 19952104 DOI: 10.1101/gad.1850809] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell division is commonly thought to involve the equal distribution of cellular components into the two daughter cells. During many cell divisions, however, proteins, membrane compartments, organelles, or even DNA are asymmetrically distributed between the two daughter cells. Here, we review the various types of asymmetries that have been described in yeast and in animal cells. Asymmetric segregation of protein determinants is particularly relevant for stem cell biology. We summarize the relevance of asymmetric cell divisions in various stem cell systems and discuss why defects in asymmetric cell division can lead to the formation of tumors.
Collapse
Affiliation(s)
- Ralph A Neumüller
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | | |
Collapse
|
73
|
Bosch TCG, Anton-Erxleben F, Hemmrich G, Khalturin K. The Hydra polyp: nothing but an active stem cell community. Dev Growth Differ 2009; 52:15-25. [PMID: 19891641 DOI: 10.1111/j.1440-169x.2009.01143.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hydra is a powerful stem cell model because its potential immortality and extensive regeneration capacity is due to the presence of three distinct stem cell lineages. All three lineages conform to a well-defined spatial distribution across the whole body column of the polyp. Stem cell function in Hydra is controlled by extracellular cues and intrinsic genetic programs. This review focuses on the elusive stem cell niche of the epithelial layers. Based on a comparison of the differences between, and commonalities among, stem cells and stem cell niches in Hydra and other invertebrates and vertebrates, we propose that the whole body column of the polyp may be considered a stem cell "niche" in which stem cell populations are established and signals ensuring the proper balance between stem cells and progenitor cells are integrated. We show that, at over 500 million years old, Hydra offers an early glimpse of the regulatory potential of stem cell niches.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | | | | | | |
Collapse
|