51
|
Interactions between Amyloid-Β Proteins and Human Brain Pericytes: Implications for the Pathobiology of Alzheimer's Disease. J Clin Med 2020; 9:jcm9051490. [PMID: 32429102 PMCID: PMC7290583 DOI: 10.3390/jcm9051490] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is the most common cause of dementia, especially among aging populations. Despite advances in AD research, the underlying cause and the discovery of disease-modifying treatments have remained elusive. Two key features of AD pathology are the aberrant deposition of amyloid beta (amyloid-β or Aβ) proteins in the brain parenchyma and Aβ toxicity in brain pericytes of the neurovascular unit/blood–brain barrier (NVU/BBB). This toxicity induces oxidative stress in pericytes and leads to capillary constriction. The interaction between pericytes and Aβ proteins results in the release of endothelin-1 in the pericytes. Endothelin-1 interacts with ETA receptors to cause pericyte contraction. This pericyte-mediated constriction of brain capillaries can cause chronic hypoperfusion of the brain microvasculature, subsequently leading to the neurodegeneration and cognitive decline observed in AD patients. The interaction between Aβ proteins and brain pericytes is largely unknown and requires further investigation. This review provides an updated overview of the interaction between Aβ proteins with pericytes, one the most significant and often forgotten cellular components of the BBB and the inner blood–retinal barrier (IBRB). The IBRB has been shown to be a window into the central nervous system (CNS) that could allow the early diagnosis of AD pathology in the brain and the BBB using modern photonic imaging systems such as optical coherence tomography (OCT) and two-photon microscopy. In this review, I explore the regulation of Aβ proteins in the brain parenchyma, their role in AD pathobiology, and their association with pericyte function. This review discusses Aβ proteins and pericytes in the ocular compartment of AD patients as well as strategies to rescue or protect pericytes from the effects of Aβ proteins, or to replace them with healthy cells.
Collapse
|
52
|
Thies KA, Hammer AM, Hildreth BE, Steck SA, Spehar JM, Kladney RD, Geisler JA, Das M, Russell LO, Bey JF, Bolyard CM, Pilarski R, Trimboli AJ, Cuitiño MC, Koivisto CS, Stover DG, Schoenfield L, Otero J, Godbout JP, Chakravarti A, Ringel MD, Ramaswamy B, Li Z, Kaur B, Leone G, Ostrowski MC, Sizemore ST, Sizemore GM. Stromal Platelet-Derived Growth Factor Receptor-β Signaling Promotes Breast Cancer Metastasis in the Brain. Cancer Res 2020; 81:606-618. [PMID: 32327406 DOI: 10.1158/0008-5472.can-19-3731] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/25/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022]
Abstract
Platelet-derived growth factor receptor-beta (PDGFRβ) is a receptor tyrosine kinase found in cells of mesenchymal origin such as fibroblasts and pericytes. Activation of this receptor is dependent on paracrine ligand induction, and its preferred ligand PDGFB is released by neighboring epithelial and endothelial cells. While expression of both PDGFRβ and PDGFB has been noted in patient breast tumors for decades, how PDGFB-to-PDGFRβ tumor-stroma signaling mediates breast cancer initiation, progression, and metastasis remains unclear. Here we demonstrate this paracrine signaling pathway that mediates both primary tumor growth and metastasis, specifically, metastasis to the brain. Elevated levels of PDGFB accelerated orthotopic tumor growth and intracranial growth of mammary tumor cells, while mesenchymal-specific expression of an activating mutant PDGFRβ (PDGFRβD849V) exerted proproliferative signals on adjacent mammary tumor cells. Stromal expression of PDGFRβD849V also promoted brain metastases of mammary tumor cells expressing high PDGFB when injected intravenously. In the brain, expression of PDGFRβD849V was observed within a subset of astrocytes, and aged mice expressing PDGFRβD849V exhibited reactive gliosis. Importantly, the PDGFR-specific inhibitor crenolanib significantly reduced intracranial growth of mammary tumor cells. In a tissue microarray comprised of 363 primary human breast tumors, high PDGFB protein expression was prognostic for brain metastases, but not metastases to other sites. Our results advocate the use of mice expressing PDGFRβD849V in their stromal cells as a preclinical model of breast cancer-associated brain metastases and support continued investigation into the clinical prognostic and therapeutic use of PDGFB-to-PDGFRβ signaling in women with breast cancer. SIGNIFICANCE: These studies reveal a previously unknown role for PDGFB-to-PDGFRβ paracrine signaling in the promotion of breast cancer brain metastases and support the prognostic and therapeutic clinical utility of this pathway for patients.See related article by Wyss and colleagues, p. 594.
Collapse
Affiliation(s)
- Katie A Thies
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Anisha M Hammer
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Blake E Hildreth
- O'Neal Comprehensive Cancer Center, University of Alabama-Birmingham, Birmingham, Alabama.,Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama-Birmingham, Birmingham, Alabama
| | - Sarah A Steck
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Jonathan M Spehar
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Raleigh D Kladney
- Department of Medicine, Molecular Oncology Division, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer A Geisler
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Manjusri Das
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Luke O Russell
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Neurological Surgery, The Ohio State University, Columbus, Ohio
| | - Jerome F Bey
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Chelsea M Bolyard
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Neurological Surgery, The Ohio State University, Columbus, Ohio
| | - Robert Pilarski
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Division of Human Genetics, The Ohio State University, Columbus, Ohio
| | - Anthony J Trimboli
- The Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Maria C Cuitiño
- The Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Christopher S Koivisto
- The Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Daniel G Stover
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Lynn Schoenfield
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Jose Otero
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, Columbus, Ohio.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| | - Arnab Chakravarti
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Matthew D Ringel
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Bhuvaneswari Ramaswamy
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Zaibo Li
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Gustavo Leone
- The Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Michael C Ostrowski
- The Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Steven T Sizemore
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Gina M Sizemore
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. .,Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
53
|
Sun C, Sakashita H, Kim J, Tang Z, Upchurch GM, Yao L, Berry WL, Griffin TM, Olson LE. Mosaic Mutant Analysis Identifies PDGFRα/PDGFRβ as Negative Regulators of Adipogenesis. Cell Stem Cell 2020; 26:707-721.e5. [PMID: 32229310 DOI: 10.1016/j.stem.2020.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/26/2019] [Accepted: 03/06/2020] [Indexed: 01/01/2023]
Abstract
Adipocyte progenitors (APs) express platelet-derived growth factor receptors (PDGFRs), PDGFRα and PDGFRβ. Elevated PDGFRα signaling inhibits adipogenesis and promotes fibrosis; however, the function of PDGFRs in APs remains unclear. We combined lineage tracing and functional analyses in a sequential dual-recombinase approach that creates mosaic Pdgfr mutant cells by Cre/lox recombination with a linked Flp/frt reporter to track individual cell fates. Using mosaic lineage labeling, we show that adipocytes are derived from the Pdgfra lineage during postnatal growth and adulthood. In contrast, adipocytes are only derived from the mosaic Pdgfrb lineage during postnatal growth. Functionally, postnatal mosaic deletion of PDGFRα enhances adipogenesis and adult deletion enhances β3-adrenergic-receptor-induced beige adipocyte formation. Mosaic deletion of PDGFRβ also enhances white, brown, and beige adipogenesis. These data show that both PDGFRs are cell-autonomous inhibitors of adipocyte differentiation and implicate downregulation of PDGF signaling as a critical event in the transition from AP to adipocyte.
Collapse
Affiliation(s)
- Chengyi Sun
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hiromi Sakashita
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jang Kim
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Zifeng Tang
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - G Michael Upchurch
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Longbiao Yao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - William L Berry
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lorin E Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
54
|
Buhl EM, Djudjaj S, Klinkhammer BM, Ermert K, Puelles VG, Lindenmeyer MT, Cohen CD, He C, Borkham‐Kamphorst E, Weiskirchen R, Denecke B, Trairatphisan P, Saez‐Rodriguez J, Huber TB, Olson LE, Floege J, Boor P. Dysregulated mesenchymal PDGFR-β drives kidney fibrosis. EMBO Mol Med 2020; 12:e11021. [PMID: 31943786 PMCID: PMC7059015 DOI: 10.15252/emmm.201911021] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
Kidney fibrosis is characterized by expansion and activation of platelet-derived growth factor receptor-β (PDGFR-β)-positive mesenchymal cells. To study the consequences of PDGFR-β activation, we developed a model of primary renal fibrosis using transgenic mice with PDGFR-β activation specifically in renal mesenchymal cells, driving their pathological proliferation and phenotypic switch toward myofibroblasts. This resulted in progressive mesangioproliferative glomerulonephritis, mesangial sclerosis, and interstitial fibrosis with progressive anemia due to loss of erythropoietin production by fibroblasts. Fibrosis induced secondary tubular epithelial injury at later stages, coinciding with microinflammation, and aggravated the progression of hypertensive and obstructive nephropathy. Inhibition of PDGFR activation reversed fibrosis more effectively in the tubulointerstitium compared to glomeruli. Gene expression signatures in mice with PDGFR-β activation resembled those found in patients. In conclusion, PDGFR-β activation alone is sufficient to induce progressive renal fibrosis and failure, mimicking key aspects of chronic kidney disease in humans. Our data provide direct proof that fibrosis per se can drive chronic organ damage and establish a model of primary fibrosis allowing specific studies targeting fibrosis progression and regression.
Collapse
Affiliation(s)
- Eva M Buhl
- Institute of PathologyRWTH University of AachenAachenGermany
- Division of NephrologyRWTH University of AachenAachenGermany
- Electron Microscopy FacilityRWTH University of AachenAachenGermany
| | - Sonja Djudjaj
- Institute of PathologyRWTH University of AachenAachenGermany
| | | | - Katja Ermert
- Institute of PathologyRWTH University of AachenAachenGermany
| | - Victor G Puelles
- Division of NephrologyRWTH University of AachenAachenGermany
- III. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of NephrologyMonash Health, and Center for Inflammatory DiseasesMonash UniversityMelbourneVic.Australia
| | - Maja T Lindenmeyer
- III. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Clemens D Cohen
- Nephrological CenterMedical Clinic and Policlinic IVUniversity of MunichMunichGermany
| | - Chaoyong He
- Cardiovascular Biology ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- State Key Laboratory of Natural MedicinesDepartment of PharmacologyChina Pharmaceutical UniversityNanjingChina
| | - Erawan Borkham‐Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical ChemistryRWTH University of AachenAachenGermany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical ChemistryRWTH University of AachenAachenGermany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research (IZKF)RWTH University of AachenAachenGermany
| | - Panuwat Trairatphisan
- Faculty of MedicineInstitute for Computational BiomedicineHeidelberg University, and Heidelberg University HospitalHeidelbergGermany
| | - Julio Saez‐Rodriguez
- Faculty of MedicineInstitute for Computational BiomedicineHeidelberg University, and Heidelberg University HospitalHeidelbergGermany
| | - Tobias B Huber
- III. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Lorin E Olson
- Cardiovascular Biology ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Jürgen Floege
- Division of NephrologyRWTH University of AachenAachenGermany
| | - Peter Boor
- Institute of PathologyRWTH University of AachenAachenGermany
- Division of NephrologyRWTH University of AachenAachenGermany
| |
Collapse
|
55
|
Bourassa P, Tremblay C, Schneider JA, Bennett DA, Calon F. Brain mural cell loss in the parietal cortex in Alzheimer's disease correlates with cognitive decline and TDP-43 pathology. Neuropathol Appl Neurobiol 2020; 46:458-477. [PMID: 31970820 DOI: 10.1111/nan.12599] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
AIMS Brain mural cells (BMC), smooth muscle cells and pericytes, interact closely with endothelial cells and modulate numerous cerebrovascular functions. A loss of BMC function is suspected to play a role in the pathophysiology of Alzheimer's Disease (AD). METHODS BMC markers, namely smooth muscle alpha actin (α-SMA) for smooth muscle cells, as well as platelet-derived growth factor receptor β (PDGFRβ) and aminopeptidase N (ANPEP or CD13) for pericytes, were assessed by Western immunoblotting in microvessel extracts from the parietal cortex of 60 participants of the Religious Orders study, with ages at death ranging from 75 to 98 years old. RESULTS Participants clinically diagnosed with AD had lower vascular levels of α-SMA, PDGFRβ and CD13. These reductions were correlated with lower cognitive scores for global cognition, episodic and semantic memory, perceptual speed and visuospatial ability. In addition, α-SMA, PDGFRβ and CD13 were negatively correlated with vascular Aβ40 concentrations. Vascular levels of BMC markers were also inversely correlated with insoluble cleaved phosphorylated transactive response DNA binding protein 43 (TDP-43) (25 kDa) and positively correlated with soluble cleaved phosphorylated TDP-43 (35 kDa) in cortical homogenates, suggesting strong association between BMC loss and cleaved phosphorylated TDP-43 aggregation. CONCLUSIONS The results of this study highlight a loss of BMC in AD. The associations between α-SMA, PDGFRβ and CD13 vascular levels with cognitive scores, TDP-43 aggregation and cerebrovascular accumulation of Aβ in the parietal cortex suggest that BMC loss contributes to both AD symptoms and pathology, further strengthening the link between cerebrovascular defects and dementia.
Collapse
Affiliation(s)
- P Bourassa
- Faculté de pharmacie, Université Laval, Québec, QC, Canada.,Axe Neurosciences, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - C Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - J A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - D A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - F Calon
- Faculté de pharmacie, Université Laval, Québec, QC, Canada.,Axe Neurosciences, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| |
Collapse
|
56
|
Schaffenrath J, Keller A. New Insights in the Complexity and Functionality of the Neurovascular Unit. Handb Exp Pharmacol 2020; 273:33-57. [PMID: 33582883 DOI: 10.1007/164_2020_424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The neurovascular unit (NVU) encompasses all brain cells and underlines that neurons, glia and brain vasculature are in intimate physical and functional association. Brain function is dependent on blood flow and local increases in blood flow in response to neural activity - functional hyperaemia takes place at the NVU. Although this is a vital function of the NVU, many studies have demonstrated that the NVU also performs other tasks. Blood vessels in the brain, which are composed of multiple cell types, are essential for correct brain development. They constitute the niche for brain stem cells, sense the environment and communicate changes to neural tissue, and control the immune quiescence of the CNS. In this brief chapter we will discuss new insights into the biology of NVU, which have further revealed the heterogeneity and complexity of the vascular tree and its neurovascular associations.
Collapse
Affiliation(s)
- Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland.
| |
Collapse
|
57
|
Payne LB, Zhao H, James CC, Darden J, McGuire D, Taylor S, Smyth JW, Chappell JC. The pericyte microenvironment during vascular development. Microcirculation 2019; 26:e12554. [PMID: 31066166 PMCID: PMC6834874 DOI: 10.1111/micc.12554] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
Abstract
Vascular pericytes provide critical contributions to the formation and integrity of the blood vessel wall within the microcirculation. Pericytes maintain vascular stability and homeostasis by promoting endothelial cell junctions and depositing extracellular matrix (ECM) components within the vascular basement membrane, among other vital functions. As their importance in sustaining microvessel health within various tissues and organs continues to emerge, so does their role in a number of pathological conditions including cancer, diabetic retinopathy, and neurological disorders. Here, we review vascular pericyte contributions to the development and remodeling of the microcirculation, with a focus on the local microenvironment during these processes. We discuss observations of their earliest involvement in vascular development and essential cues for their recruitment to the remodeling endothelium. Pericyte involvement in the angiogenic sprouting context is also considered with specific attention to crosstalk with endothelial cells such as through signaling regulation and ECM deposition. We also address specific aspects of the collective cell migration and dynamic interactions between pericytes and endothelial cells during angiogenic sprouting. Lastly, we discuss pericyte contributions to mechanisms underlying the transition from active vessel remodeling to the maturation and quiescence phase of vascular development.
Collapse
Affiliation(s)
- Laura Beth Payne
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
| | - Huaning Zhao
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061, USA
| | - Carissa C. James
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jordan Darden
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - David McGuire
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sarah Taylor
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
| | - James W. Smyth
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Department of Biological Sciences, College of Science, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061, USA
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - John C. Chappell
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061, USA
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
58
|
Doherty L, Yu J, Wang X, Hankenson KD, Kalajzic I, Sanjay A. A PDGFRβ-PI3K signaling axis mediates periosteal cell activation during fracture healing. PLoS One 2019; 14:e0223846. [PMID: 31665177 PMCID: PMC6821073 DOI: 10.1371/journal.pone.0223846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
Insufficient and delayed fracture healing remain significant public health problems with limited therapeutic options. Phosphoinositide 3-kinase (PI3K) signaling, a major pathway involved in regulation of fracture healing, promotes proliferation, migration, and differentiation of osteoprogenitors. We have recently reported that knock-in mice with a global increase in PI3K signaling (gCblYF) show enhanced femoral fracture healing characterized by an extraordinary periosteal response to injury. Interestingly, of all growth factor receptors involved in fracture healing, PI3K directly binds only to PDGFR. Given these findings, we hypothesized a PDGFR-PI3K interaction is necessary for mediating robust periosteal cell activation following fracture. In this study, we isolated primary periosteal cells from gCblYF mice to analyze cross-talk between the PDGFRβ and PI3K signaling pathways. We found PDGFRβ signaling contributes to robust Akt phosphorylation in periosteal cells in comparison with other growth factor signaling pathways. Additionally, we performed femoral fractures on gCblYF mice with a conditional removal of PDGFRβ in mesenchymal progenitors using inducible alpha smooth muscle actin (αSMA) CreERT2 mice. Our studies showed that depletion of PDGFRβ signaling within these progenitors in the early phase of fracture healing significantly abrogates PI3K-mediated periosteal activation and proliferation three days after fracture. Combined, these results suggest that PDGFRβ signaling through PI3K is necessary for robust periosteal activation in the earliest phases of fracture healing.
Collapse
Affiliation(s)
- Laura Doherty
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, United States of America
| | - Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, United States of America
| | - Xi Wang
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, United States of America
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, School of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, United States of America
| | - Archana Sanjay
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
59
|
Arango-Lievano M, Boussadia B, De Terdonck LDT, Gault C, Fontanaud P, Lafont C, Mollard P, Marchi N, Jeanneteau F. Topographic Reorganization of Cerebrovascular Mural Cells under Seizure Conditions. Cell Rep 2019; 23:1045-1059. [PMID: 29694884 DOI: 10.1016/j.celrep.2018.03.110] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 01/04/2018] [Accepted: 03/22/2018] [Indexed: 12/27/2022] Open
Abstract
Reorganization of the neurovascular unit has been suggested in the epileptic brain, although the dynamics and functional significance remain unclear. Here, we tracked the in vivo dynamics of perivascular mural cells as a function of electroencephalogram (EEG) activity following status epilepticus. We segmented the cortical vascular bed to provide a size- and type-specific analysis of mural cell plasticity topologically. We find that mural cells are added and removed from veins, arterioles, and capillaries after seizure induction. Loss of mural cells is proportional to seizure severity and vascular pathology (e.g., rigidity, perfusion, and permeability). Treatment with platelet-derived growth factor subunits BB (PDGF-BB) reduced mural cell loss, vascular pathology, and epileptiform EEG activity. We propose that perivascular mural cells play a pivotal role in seizures and are potential targets for reducing pathophysiology.
Collapse
Affiliation(s)
- Margarita Arango-Lievano
- Departments of Neuroscience & Physiology, Laboratory of Stress Hormones & Plasticity, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France.
| | - Badreddine Boussadia
- Department of Neuroscience, Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France
| | - Lucile Du Trieu De Terdonck
- Departments of Neuroscience & Physiology, Laboratory of Stress Hormones & Plasticity, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France
| | - Camille Gault
- Departments of Neuroscience & Physiology, Laboratory of Stress Hormones & Plasticity, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France
| | - Pierre Fontanaud
- Department of Physiology, Laboratory of Networks and Rhythms in Endocrine Glands, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France
| | - Chrystel Lafont
- Department of Physiology, Laboratory of Networks and Rhythms in Endocrine Glands, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France
| | - Patrice Mollard
- Department of Physiology, Laboratory of Networks and Rhythms in Endocrine Glands, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France
| | - Nicola Marchi
- Department of Neuroscience, Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France.
| | - Freddy Jeanneteau
- Departments of Neuroscience & Physiology, Laboratory of Stress Hormones & Plasticity, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France.
| |
Collapse
|
60
|
Koo SC, Janeway KA, Harris MH, Fryer CJ, Aster JC, Al-Ibraheemi A, Church AJ. A Distinctive Genomic and Immunohistochemical Profile for NOTCH3 and PDGFRB in Myofibroma With Diagnostic and Therapeutic Implications. Int J Surg Pathol 2019; 28:128-137. [DOI: 10.1177/1066896919876703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction. Myofibromas are rare tumors of pericytic lineage, typically affecting children, and are sometimes aggressive. A subset of sporadic and familial myofibromas have activating variants in PDGFRB. The relationship of myofibroma and PDGFRB to the NOTCH pathway has not yet been described. Methods. Ten myofibroma cases were sequenced with a targeted panel of 447 genes, including copy number variation and selected fusions. Immunohistochemical analysis of total NOTCH3 and activated NOTCH3 was assessed for all 10 myofibroma cases, and a series of histologic mimics (n = 20). Results. Alterations identified by next-generation sequencing included PDGFRB sequence variants in 8/10 cases (80%), a NOTCH3 variant in 1/10 cases (10%), and a NOTCH2 variant in 1/10 cases (10%). All 10 cases also showed a pattern of low-amplitude (1.5- to 2-fold) copy number alterations including gains in PDGFRB and NOTCH3. Ten of 10 myofibromas (100%) showed cytoplasmic staining for total NOTCH3 and 9 of 10 cases (90%) showed nuclear staining for activated NOTCH3. Within the control cohort of histologic mimics, 3 of 3 nodular fasciitis cases (100%) were positive for activated and total NOTCH3, and the remaining 17 cases were negative for pan NOTCH3, while 3 of 3 desmoid-type fibromatosis cases (100%) showed patchy weak nuclear staining for activated NOTCH3. Discussion. Our findings suggest a common pathway of PDGFRB/NOTCH3 activation in myofibromas, even in cases that lack PDGFRB sequence variants. These results support the pericytic lineage of myofibroma. Identification of the characteristic genomic alterations or immunohistochemical staining pattern may facilitate a difficult pathologic diagnosis, and support the use of targeted treatments.
Collapse
Affiliation(s)
- Selene C. Koo
- Boston Children’s Hospital, Boston, MA, USA
- Nationwide Children’s Hospital, Columbus, OH, USA
| | - Katherine A. Janeway
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
61
|
Baek J, Lee E, Lotz MK, D'Lima DD. Bioactive proteins delivery through core-shell nanofibers for meniscal tissue regeneration. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 23:102090. [PMID: 31493556 DOI: 10.1016/j.nano.2019.102090] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/07/2019] [Accepted: 08/27/2019] [Indexed: 12/29/2022]
Abstract
Mimicking the ultrastructural morphology of the meniscus with nanofiber scaffolds, coupled with controlled growth-factor delivery to the appropriate cells, can help engineer tissue with the potential to grow, mature, and regenerate after in vivo implantation. We electrospun nanofibers encapsulating platelet-derived growth factor (PDGF-BB), which is a potent mitogen and chemoattractant in a core of serum albumin contained within a shell of polylactic acid. We controlled the local PDGF-BB release by adding water-soluble polyethylene glycol to the polylactic acid shell to serve as a porogen. The novel core-shell nanofibers generated 3D scaffolds with an interconnected macroporous structure, with appropriate mechanical properties and with high cell compatibility. Incorporating PDGF-BB increased cell viability, proliferation, and infiltration, and upregulated key genes involved in meniscal extracellular matrix synthesis in human meniscal and synovial cells. Our results support proof of concept that these core-shell nanofibers can create a cell-favorable nanoenvironment and can serve as a system for sustained release of bioactive factors.
Collapse
Affiliation(s)
- Jihye Baek
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA; Department of Molecular Medicine, Scripps Research, La Jolla, CA.
| | - Emily Lee
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA; Department of Molecular Medicine, Scripps Research, La Jolla, CA.
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA.
| | - Darryl D D'Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA; Department of Molecular Medicine, Scripps Research, La Jolla, CA.
| |
Collapse
|
62
|
Yoshida Y, Kabara M, Kano K, Horiuchi K, Hayasaka T, Tomita Y, Takehara N, Minoshima A, Aonuma T, Maruyama K, Nakagawa N, Azuma N, Hasebe N, Kawabe JI. Capillary-resident EphA7 + pericytes are multipotent cells with anti-ischemic effects through capillary formation. Stem Cells Transl Med 2019; 9:120-130. [PMID: 31471947 PMCID: PMC6954719 DOI: 10.1002/sctm.19-0148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
The presence of pericytes (PCs) with multipotency and broad distribution along capillary suggests that microvasculature plays a role not only as a duct for blood fluid transport but also as a stem cell niche that contributes to tissue maintenance and regeneration. The lack of an appropriate marker for multipotent PCs still limits our understanding of their pathophysiological roles. We identified the novel marker EphA7 to detect multipotent PCs using microarray analysis of an immortalized PC library. PCs were isolated from microvessels of mouse subcutaneous adipose tissues, then EphA7+ PCs called capillary stem cells (CapSCs) were separated from EphA7− control PCs (ctPCs) using fluorescence‐activated cell sorting system. CapSCs had highly multipotency that enabled them to differentiate into mesenchymal and neuronal lineages compared with ctPCs. CapSCs also differentiated into endothelial cells and PCs to form capillary‐like structures by themselves. Transplantation of CapSCs into ischemic tissues significantly improved blood flow recovery in hind limb ischemia mouse model due to vascular formation compared with that of ctPCs and adipose stromal cells. These data demonstrate that EphA7 identifies a subpopulation of multipotent PCs that have high angiogenesis and regenerative potency and are an attractive target for regenerative therapies.
Collapse
Affiliation(s)
- Yuri Yoshida
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan.,Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Maki Kabara
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| | - Kohei Kano
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan.,Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Kiwamu Horiuchi
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan.,Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Taiki Hayasaka
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan.,Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Yui Tomita
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan.,Department of Radiology, Asahikawa Medical University, Asahikawa, Japan
| | - Naofumi Takehara
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Akiho Minoshima
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Tatsuya Aonuma
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Keisuke Maruyama
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Naoki Nakagawa
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuyoshi Azuma
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Naoyuki Hasebe
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan.,Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Jun-Ichi Kawabe
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
63
|
Whitesell TR, Chrystal PW, Ryu JR, Munsie N, Grosse A, French CR, Workentine ML, Li R, Zhu LJ, Waskiewicz A, Lehmann OJ, Lawson ND, Childs SJ. foxc1 is required for embryonic head vascular smooth muscle differentiation in zebrafish. Dev Biol 2019; 453:34-47. [PMID: 31199900 DOI: 10.1016/j.ydbio.2019.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/29/2019] [Accepted: 06/09/2019] [Indexed: 11/15/2022]
Abstract
Vascular smooth muscle of the head derives from neural crest, but developmental mechanisms and early transcriptional drivers of the vSMC lineage are not well characterized. We find that in early development, the transcription factor foxc1b is expressed in mesenchymal cells that associate with the vascular endothelium. Using timelapse imaging, we observe that foxc1b expressing mesenchymal cells differentiate into acta2 expressing vascular mural cells. We show that in zebrafish, while foxc1b is co-expressed in acta2 positive smooth muscle cells that associate with large diameter vessels, it is not co-expressed in capillaries where pdgfrβ positive pericytes are located. In addition to being an early marker of the lineage, foxc1 is essential for vSMC differentiation; we find that foxc1 loss of function mutants have defective vSMC differentiation and that early genetic ablation of foxc1b or acta2 expressing populations blocks vSMC differentiation. Furthermore, foxc1 is expressed upstream of acta2 and is required for acta2 expression in vSMCs. Using RNA-Seq we determine an enriched intersectional gene expression profile using dual expression of foxc1b and acta2 to identify novel vSMC markers. Taken together, our data suggests that foxc1 is a marker of vSMCs and plays a critical functional role in promoting their differentiation.
Collapse
Affiliation(s)
- Thomas R Whitesell
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - Paul W Chrystal
- Departments of Ophthalmology, and Medical Genetics, University of Alberta, Edmonton, Alberta, Canada; Department of Biological Sciences, CW405, Biological Sciences Bldg., 11455, Saskatchewan Dr., University of Alberta, Edmonton, AB, T6G 2E9, Canada; Women & Children's Health Research Institute, ECHA 4-081, 11405 87, Ave NW, University of Alberta, Edmonton, AB, T6G 1C9, Canada; Neurosciences and Mental Health Institute, 4-120 Katz Group Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jae-Ryeon Ryu
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - Nicole Munsie
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - Ann Grosse
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA, 01605
| | - Curtis R French
- Department of Biological Sciences, CW405, Biological Sciences Bldg., 11455, Saskatchewan Dr., University of Alberta, Edmonton, AB, T6G 2E9, Canada; Women & Children's Health Research Institute, ECHA 4-081, 11405 87, Ave NW, University of Alberta, Edmonton, AB, T6G 1C9, Canada; Neurosciences and Mental Health Institute, 4-120 Katz Group Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Matthew L Workentine
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - Rui Li
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA, 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA, 01605; Program in Bioinformatics and Integrative Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA, 01605
| | - Andrew Waskiewicz
- Department of Biological Sciences, CW405, Biological Sciences Bldg., 11455, Saskatchewan Dr., University of Alberta, Edmonton, AB, T6G 2E9, Canada; Women & Children's Health Research Institute, ECHA 4-081, 11405 87, Ave NW, University of Alberta, Edmonton, AB, T6G 1C9, Canada; Neurosciences and Mental Health Institute, 4-120 Katz Group Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Ordan J Lehmann
- Departments of Ophthalmology, and Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA, 01605
| | - Sarah J Childs
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1.
| |
Collapse
|
64
|
Tang R, Mei X, Wang YC, Cui XB, Zhang G, Li W, Chen SY. LncRNA GAS5 regulates vascular smooth muscle cell cycle arrest and apoptosis via p53 pathway. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2516-2525. [PMID: 31167125 DOI: 10.1016/j.bbadis.2019.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
Abstract
Vascular remodeling is a pathological process following cardiovascular intervention. Vascular smooth muscle cells (VSMC) play a critical role in the vascular remodeling. Long noncoding RNAs (lncRNA) are a class of gene regulators functioning through various mechanisms in physiological and pathological conditions. By using cultured VSMC and rat carotid artery balloon injury model, we found that lncRNA growth arrest specific 5 (GAS5) serves as a negative regulator for VSMC survival in vascular remodeling. By manipulating GAS5 expression via adenoviral overexpression or short hairpin RNA knockdown, we found that GAS5 suppresses VSMC proliferation while promoting cell cycle arrest and inducing cell apoptosis. Mechanistically, GAS5 directly binds to p53 and p300, stabilizes p53-p300 interaction, and thus regulates VSMC cell survival via induction of p53-downstream target genes. Importantly, local delivery of GAS5 via adenoviral vector suppresses balloon injury-induced neointima formation along with an increased expression of p53 and apoptosis in neointimal SMCs. Our study demonstrated for the first time that GAS5 negatively impacts VSMC survival via activation the p53 pathway during vascular remodeling.
Collapse
Affiliation(s)
- Rui Tang
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States of America
| | - Xiaohan Mei
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States of America
| | - Yung-Chun Wang
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States of America
| | - Xiao-Bing Cui
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States of America
| | - Gui Zhang
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States of America
| | - Wenjing Li
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States of America
| | - Shi-You Chen
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States of America.
| |
Collapse
|
65
|
Di Stefano AB, Massihnia D, Grisafi F, Castiglia M, Toia F, Montesano L, Russo A, Moschella F, Cordova A. Adipose tissue, angiogenesis and angio-MIR under physiological and pathological conditions. Eur J Cell Biol 2019; 98:53-64. [DOI: 10.1016/j.ejcb.2018.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/06/2023] Open
|
66
|
Karasozen Y, Osbun JW, Parada CA, Busald T, Tatman P, Gonzalez-Cuyar LF, Hale CJ, Alcantara D, O'Driscoll M, Dobyns WB, Murray M, Kim LJ, Byers P, Dorschner MO, Ferreira M. Somatic PDGFRB Activating Variants in Fusiform Cerebral Aneurysms. Am J Hum Genet 2019; 104:968-976. [PMID: 31031011 PMCID: PMC6506794 DOI: 10.1016/j.ajhg.2019.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
The role of somatic genetic variants in the pathogenesis of intracranial-aneurysm formation is unknown. We identified a 23-year-old man with progressive, right-sided intracranial aneurysms, ipsilateral to an impressive cutaneous phenotype. The index individual underwent a series of genetic evaluations for known connective-tissue disorders, but the evaluations were unrevealing. Paired-sample exome sequencing between blood and fibroblasts derived from the diseased areas detected a single novel variant predicted to cause a p.Tyr562Cys (g.149505130T>C [GRCh37/hg19]; c.1685A>G) change within the platelet-derived growth factor receptor β gene (PDGFRB), a juxtamembrane-coding region. Variant-allele fractions ranged from 18.75% to 53.33% within histologically abnormal tissue, suggesting post-zygotic or somatic mosaicism. In an independent cohort of aneurysm specimens, we detected somatic-activating PDGFRB variants in the juxtamembrane domain or the kinase activation loop in 4/6 fusiform aneurysms (and 0/38 saccular aneurysms; Fisher's exact test, p < 0.001). PDGFRB-variant, but not wild-type, patient cells were found to have overactive auto-phosphorylation with downstream activation of ERK, SRC, and AKT. The expression of discovered variants demonstrated non-ligand-dependent auto-phosphorylation, responsive to the kinase inhibitor sunitinib. Somatic gain-of-function variants in PDGFRB are a novel mechanism in the pathophysiology of fusiform cerebral aneurysms and suggest a potential role for targeted therapy with kinase inhibitors.
Collapse
Affiliation(s)
- Yigit Karasozen
- Department of Neurosurgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Joshua W Osbun
- Department of Neurosurgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Carolina Angelica Parada
- Department of Neurosurgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Tina Busald
- Department of Neurosurgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Philip Tatman
- Department of Neurosurgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Luis F Gonzalez-Cuyar
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Christopher J Hale
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Diana Alcantara
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RH, UK
| | - Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RH, UK
| | - William B Dobyns
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington 98195, USA; Department of Neurology, University of Washington School of Medicine, Seattle, Washington 98195, USA; Center for Integrative Brain Research, Seattle Children's Hospital, Seattle, Washington 98105, USA
| | - Mitzi Murray
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA; Department of Medicine, Division of Genetics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Louis J Kim
- Department of Neurosurgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Peter Byers
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA; Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA; Department of Medicine, Division of Genetics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Michael O Dorschner
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA; Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Manuel Ferreira
- Department of Neurosurgery, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| |
Collapse
|
67
|
Zhao H, Chappell JC. Microvascular bioengineering: a focus on pericytes. J Biol Eng 2019; 13:26. [PMID: 30984287 PMCID: PMC6444752 DOI: 10.1186/s13036-019-0158-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/15/2019] [Indexed: 12/26/2022] Open
Abstract
Capillaries within the microcirculation are essential for oxygen delivery and nutrient/waste exchange, among other critical functions. Microvascular bioengineering approaches have sought to recapitulate many key features of these capillary networks, with an increasing appreciation for the necessity of incorporating vascular pericytes. Here, we briefly review established and more recent insights into important aspects of pericyte identification and function within the microvasculature. We then consider the importance of including vascular pericytes in various bioengineered microvessel platforms including 3D culturing and microfluidic systems. We also discuss how vascular pericytes are a vital component in the construction of computational models that simulate microcirculation phenomena including angiogenesis, microvascular biomechanics, and kinetics of exchange across the vessel wall. In reviewing these topics, we highlight the notion that incorporating pericytes into microvascular bioengineering applications will increase their utility and accelerate the translation of basic discoveries to clinical solutions for vascular-related pathologies.
Collapse
Affiliation(s)
- Huaning Zhao
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, 2 Riverside Circle, Roanoke, VA 24016 USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061 USA
| | - John C Chappell
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, 2 Riverside Circle, Roanoke, VA 24016 USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061 USA.,3Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016 USA
| |
Collapse
|
68
|
Gogiraju R, Bochenek ML, Schäfer K. Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure. Front Cardiovasc Med 2019; 6:20. [PMID: 30895179 PMCID: PMC6415587 DOI: 10.3389/fcvm.2019.00020] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells are, by number, one of the most abundant cell types in the heart and active players in cardiac physiology and pathology. Coronary angiogenesis plays a vital role in maintaining cardiac vascularization and perfusion during physiological and pathological hypertrophy. On the other hand, a reduction in cardiac capillary density with subsequent tissue hypoxia, cell death and interstitial fibrosis contributes to the development of contractile dysfunction and heart failure, as suggested by clinical as well as experimental evidence. Although the molecular causes underlying the inadequate (with respect to the increased oxygen and energy demands of the hypertrophied cardiomyocyte) cardiac vascularization developing during pathological hypertrophy are incompletely understood. Research efforts over the past years have discovered interesting mediators and potential candidates involved in this process. In this review article, we will focus on the vascular changes occurring during cardiac hypertrophy and the transition toward heart failure both in human disease and preclinical models. We will summarize recent findings in transgenic mice and experimental models of cardiac hypertrophy on factors expressed and released from cardiomyocytes, pericytes and inflammatory cells involved in the paracrine (dys)regulation of cardiac angiogenesis. Moreover, we will discuss major signaling events of critical angiogenic ligands in endothelial cells and their possible disturbance by hypoxia or oxidative stress. In this regard, we will particularly highlight findings on negative regulators of angiogenesis, including protein tyrosine phosphatase-1B and tumor suppressor p53, and how they link signaling involved in cell growth and metabolic control to cardiac angiogenesis. Besides endothelial cell death, phenotypic conversion and acquisition of myofibroblast-like characteristics may also contribute to the development of cardiac fibrosis, the structural correlate of cardiac dysfunction. Factors secreted by (dysfunctional) endothelial cells and their effects on cardiomyocytes including hypertrophy, contractility and fibrosis, close the vicious circle of reciprocal cell-cell interactions within the heart during pathological hypertrophy remodeling.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Center for Cardiology, Cardiology I, Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| | - Magdalena L Bochenek
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| | - Katrin Schäfer
- Center for Cardiology, Cardiology I, Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| |
Collapse
|
69
|
Bertrand L, Cho HJ, Toborek M. Blood-brain barrier pericytes as a target for HIV-1 infection. Brain 2019; 142:502-511. [PMID: 30668645 PMCID: PMC6391611 DOI: 10.1093/brain/awy339] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/19/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Pericytes are multifunctional cells wrapped around endothelial cells via cytoplasmic processes that extend along the abluminal surface of the endothelium. The interactions between endothelial cells and pericytes of the blood-brain barrier are necessary for proper formation, development, stabilization, and maintenance of the blood-brain barrier. Blood-brain barrier pericytes regulate paracellular flow between cells, transendothelial fluid transport, maintain optimal chemical composition of the surrounding microenvironment, and protect endothelial cells from potential harmful substances. Thus, dysfunction or loss of blood-brain barrier pericytes is an important factor in the pathogenesis of several diseases that are associated with microvascular instability. Importantly, recent research indicates that blood-brain barrier pericytes can be a target of HIV-1 infection able to support productive HIV-1 replication. In addition, blood-brain barrier pericytes are prone to establish a latent infection, which can be reactivated by a mixture of histone deacetylase inhibitors in combination with TNF. HIV-1 infection of blood-brain barrier pericytes has been confirmed in a mouse model of HIV-1 infection and in human post-mortem samples of HIV-1-infected brains. Overall, recent evidence indicates that blood-brain barrier pericytes can be a previously unrecognized HIV-1 target and reservoir in the brain.
Collapse
Affiliation(s)
- Luc Bertrand
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hyung Joon Cho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA,Correspondence to: Michal Toborek Department of Biochemistry and Molecular Biology University of Miami School of Medicine Gautier Bldg., Room 528 1011 NW 15th Street Miami, FL 33136, USA E-mail:
| |
Collapse
|
70
|
Liu S, Yang LS, Ding ZF, Liang YH, Wang XY. [Congenital infiltrating lipomatosis of face with seizures: a case report]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:109-112. [PMID: 30854831 DOI: 10.7518/hxkq.2019.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Congenital infiltrating lipomatosis of the face is a rare disorder resulting from overgrowth of adipose tissues. This condition presents gradually with swelling along with age, hypertrophy of adjacent bones, and tooth abnormalities. This study reports a case of congenital infiltrating lipomatosis of face with seizures and reviews relevant literature on the etiology, clinical symptom, diagnosis, and treatment of this condition.
Collapse
Affiliation(s)
- Shan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li-Sa Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhang-Fan Ding
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-Hao Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Yi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
71
|
Wang X, Matthews BG, Yu J, Novak S, Grcevic D, Sanjay A, Kalajzic I. PDGF Modulates BMP2-Induced Osteogenesis in Periosteal Progenitor Cells. JBMR Plus 2019; 3:e10127. [PMID: 31131345 PMCID: PMC6524680 DOI: 10.1002/jbm4.10127] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/23/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
BMPs are used in various clinical applications to promote bone formation. The limited success of the BMPs in clinical settings and supraphysiological doses required for their effects prompted us to evaluate the influence of other signaling molecules, specifically platelet‐derived growth factor (PDGF) on BMP2‐induced osteogenesis. Periosteal cells make a major contribution to fracture healing. We detected broad expression of PDGF receptor beta (PDGFRβ) within the intact periosteum and healing callus during fracture repair. In vitro, periosteum‐derived progenitor cells were highly responsive to PDGF as demonstrated by increased proliferation and decreased apoptosis. However, PDGF blocked BMP2‐induced osteogenesis by inhibiting the canonical BMP2/Smad pathway and downstream target gene expression. This effect is mediated via PDGFRβ and involves ERK1/2 MAPK and PI3K/AKT signaling pathways. Therapeutic targeting of the PDGFRβ pathway in periosteum‐mediated bone repair might have profound implications in the treatment of bone disease in the future. © 2018 The Authors JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xi Wang
- Department of Reconstructive Sciences UConn Health Farmington CT USA
| | - Brya G Matthews
- Department of Reconstructive Sciences UConn Health Farmington CT USA.,Department of Molecular Medicine and Pathology University of Auckland Auckland New Zealand
| | - Jungeun Yu
- Department of Orthopedic Surgery UConn Health Farmington CT USA
| | - Sanja Novak
- Department of Reconstructive Sciences UConn Health Farmington CT USA
| | - Danka Grcevic
- Department of Physiology and Immunology School of Medicine University of Zagreb Zagreb Croatia
| | - Archana Sanjay
- Department of Orthopedic Surgery UConn Health Farmington CT USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences UConn Health Farmington CT USA
| |
Collapse
|
72
|
Pericytes in Primary Familial Brain Calcification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:247-264. [PMID: 31147881 DOI: 10.1007/978-3-030-16908-4_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pericytes are perivascular cells along capillaries that are critical for the development of a functional vascular bed in the central nervous system and other organs. Pericyte functions in the adult brain are less well understood. Pericytes have been suggested to mediate functional hyperemia at the capillary level, regulate the blood-brain barrier and to give rise to scar tissue after spinal cord injury. Furthermore, pericyte loss has been suggested to precede cognitive decline in mouse models of Alzheimer's disease. Despite this observation, there is no convincing causality between pericyte loss and the pathogenesis of Alzheimer's disease. However, recent loss-of-function mutations in PDGFB and PDGFRB genes have implicated pericytes as the principle cell type affected in primary familiar brain calcification (PFBC), a neuropsychiatric disorder with dominant inheritance. Here we review the role of the PDGFB/PDGFRB signaling pathway in pericyte development and briefly discuss homeostatic functions of pericytes in the brain. We provide an overview of recent studies with mouse models of PFBC and discuss suggested pathogenic mechanisms for PFBC with special reference to pericytes.
Collapse
|
73
|
Abstract
AIMS AND OBJECTIVES Children suffering from intestinal failure (IF) endure considerable morbidity and overall have poor survival rates, complicated by the shortage of organs available for transplantation. Therefore, new therapeutic approaches are pivotal if outcomes are to be improved. Over the past years, tissue engineering (TE) has emerged as a possible alternative treatment for many congenital and acquired conditions. TE aims at creating bioengineered organs by means of combining scaffolds with appropriate cell types, which in the intestine are organised within a multilayer structure. In order to generate functional intestine, this cellular diversity and organisation will need to be recreated. While the cells for the epithelial, neural and vascular compartments have been well defined, so far, less attention has been put on the muscular compartment. More recently, mesoangioblasts (MABs) have been identified as a novel source for tissue regeneration since they are able to give rise to vascular and other mesodermal derivatives. To date MABs have not been successfully isolated from intestinal tissue. Therefore, our aim was to demonstrate the possibility of isolating MABs from adult mouse small intestine. MATERIALS AND METHODS All experiments were carried out using small intestinal tissues from C57BL/6J mice. We applied an established protocol for MAB isolation from the isolated neuromuscular layer of the small intestine. Cultured cells were stained for Ki67 to assess proliferation rates as well as for a panel of pericyte markers to determine their phenotype. RESULTS Cells were successfully isolated from gut biopsies. Cultured cells showed good proliferative capacity and positivity for at least three pericytes markers found in vessels of the gut neuromuscular wall: neuron-glial antigen 2, alkaline phosphatase and platelet-derived growth factor β. CONCLUSION This proof-of-principle study lays the foundation for further characterization of MABs as a possible cell source for intestinal smooth muscle regeneration and TE.
Collapse
|
74
|
Zheng X, Hu X, Zhang W. The phenotype of vascular smooth muscle cells co-cultured with endothelial cells is modulated by PDGFR-β/IQGAP1 signaling in LPS-induced intravascular injury. Int J Med Sci 2019; 16:1149-1156. [PMID: 31523178 PMCID: PMC6743276 DOI: 10.7150/ijms.34749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
Background Sepsis, a leading cause of death in intensive care units, is generally associated with vascular dysfunction. However, its pathophysiological process has not been fully clarified, lacking in-depth knowledge of its pathophysiological process may hinder the improvement of diagnosis and therapy for sepsis. Hence, as the key parts of the vascular wall, the interaction between endothelial cells (ECs) and smooth muscle cells (SMCs) under septic situation need to be further studied. Methods ECs and SMCs were co-cultured using Transwell plates. Lipopolysaccharide (LPS) was used to induce sepsis. A scratch-wound assay was used to assess cell migration, and western blotting was used to assess the level of redifferentiation of SMCs as well as the expression of PDGFR-β and IQGAP1. Results Co-culture with ECs reduced the redifferentiation of SMCs induced by LPS (10 μg/ml), which was characterized by increased migration ability and decreased expression of contractile proteins (e.g., SM22 and α-SMA). The production of TNF-α could decrease the level of PDGFR-β in SMCs. Treatment of SMCs with the PDGFR-β inhibitor imatinib (5 μM) was able to counteract LPS-induced SMC redifferentiation and reduce IQGAP1 protein expression, especially when SMCs were co-cultured with ECs. Conclusion The phenotype of vascular SMCs co-cultured with ECs was modulated by IQGAP1 through the PDGFR-β pathway, which may lead to vascular remodeling and homeostasis in LPS-induced intravascular injury. This pathway could be a novel target for the treatment of vascular damage.
Collapse
Affiliation(s)
- Xia Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| | - Xiaotong Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| | - Wang Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| |
Collapse
|
75
|
Bonney S, Dennison BJC, Wendlandt M, Siegenthaler JA. Retinoic Acid Regulates Endothelial β-catenin Expression and Pericyte Numbers in the Developing Brain Vasculature. Front Cell Neurosci 2018; 12:476. [PMID: 30568578 PMCID: PMC6290079 DOI: 10.3389/fncel.2018.00476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/21/2018] [Indexed: 01/24/2023] Open
Abstract
The acquisition of brain vascular properties, like tight junctions and pericytes, to form the blood-brain barrier (BBB) is crucial for a properly functioning central nervous system (CNS). Endothelial WNT signaling is a known driver of brain vascular development and BBB properties, however, it is unclear how endothelial WNT signaling is regulated. We recently showed that mouse embryos with disruptions in endothelial retinoic acid (RA) signaling have ectopic WNT signaling in the brain vasculature. Using immunohistochemistical analysis, we show that increased vascular WNT signaling in RA mutants (Pdgfbicre; dnRAR403-flox and Rdh10 mutants) is associated with elevated expression of the WNT transcriptional effector, β-catenin, in the brain endothelium. In vitro immunocytochemistry and proximity ligation studies in brain endothelial cells reveal that RA, through its receptor RARα, regulates β-catenin expression in brain endothelial cells via transcriptional suppression and phosphorylation events that targets β-catenin for proteasomal degradation, the latter dependent on PKCα. We find that one function of RA in regulating vascular WNT signaling is to modulate the pericyte numbers in the developing brain vasculature. RA-mediated regulation of vascular WNT signaling could be needed to prevent over-recruitment of pericytes that might impair endothelial-pericyte interactions crucial for vascular stability.
Collapse
Affiliation(s)
- Stephanie Bonney
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States.,Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Aurora, CO, United States
| | - Brenna J C Dennison
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States.,Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Aurora, CO, United States
| | - Megan Wendlandt
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Julie A Siegenthaler
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| |
Collapse
|
76
|
Lu W, Li X. PDGFs and their receptors in vascular stem/progenitor cells: Functions and therapeutic potential in retinal vasculopathy. Mol Aspects Med 2018; 62:22-32. [DOI: 10.1016/j.mam.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
|
77
|
Varghese JF, Patel R, Yadav UCS. Novel Insights in the Metabolic Syndrome-induced Oxidative Stress and Inflammation-mediated Atherosclerosis. Curr Cardiol Rev 2018; 14:4-14. [PMID: 28990536 PMCID: PMC5872260 DOI: 10.2174/1573403x13666171009112250] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/09/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
Context: Atherosclerosis is a progressive pathological process and a leading cause of mor-tality worldwide. Clinical research and epidemiological studies state that atherosclerosis is caused by an amalgamation of metabolic and inflammatory deregulation involving three important pathological events including Endothelial Dysfunction (ED), Foam Cell Formation (FCF), and Vascular Smooth Muscle Cells (VSMCs) proliferation and migration. Objectives: Research in recent years has identified Metabolic Syndrome (MS), which involves factors such as obesity, insulin resistance, dyslipidemia and diabetes, to be responsible for the pathophysiol-ogy of atherosclerosis. These factors elevate oxidative stress and inflammation-induced key signalling molecules and various microRNAs (miRs). In present study, we have reviewed recently identified molecular targets in the pathophysiology of atherosclerosis. Methods: Scientific literature obtained from databases such as university library, PubMed and Google along with evidences from published experimental work in relevant journals has been sum-marized in this review article. Results: The molecular events and cell signalling implicated in atherogenic processes of ED, FCF and VSMCs hyperplasia are sequential and progressive, and involve cross talks at many levels. Specific molecules such as transcription factors, inflammatory cytokines and chemokines and miRs have been identified playing crucial role in most of the events leading to atherosclerosis. Conclusion: Studies associated with MS induced oxidative stress- and inflammation- mediated sig-nalling pathways along with critical miRs help in better understanding of the pathophysiology of ath-erosclerosis. Several key molecules discussed in this review could be potent target for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Johnna F Varghese
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat - 382030, India
| | - Rohit Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat - 382030, India
| | - Umesh C S Yadav
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat - 382030, India
| |
Collapse
|
78
|
Pellegata AF, Tedeschi AM, De Coppi P. Whole Organ Tissue Vascularization: Engineering the Tree to Develop the Fruits. Front Bioeng Biotechnol 2018; 6:56. [PMID: 29868573 PMCID: PMC5960678 DOI: 10.3389/fbioe.2018.00056] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering aims to regenerate and recapitulate a tissue or organ that has lost its function. So far successful clinical translation has been limited to hollow organs in which rudimental vascularization can be achieved by inserting the graft into flaps of the omentum or muscle fascia. This technique used to stimulate vascularization of the graft takes advantage of angiogenesis from existing vascular networks. Vascularization of the engineered graft is a fundamental requirement in the process of engineering more complex organs, as it is crucial for the efficient delivery of nutrients and oxygen following in-vivo implantation. To achieve vascularization of the organ many different techniques have been investigated and exploited. The most promising results have been obtained by seeding endothelial cells directly into decellularized scaffolds, taking advantage of the channels remaining from the pre-existing vascular network. Currently, the main hurdle we need to overcome is achieving a fully functional vascular endothelium, stable over a long time period of time, which is engineered using a cell source that is clinically suitable and can generate, in vitro, a yield of cells suitable for the engineering of human sized organs. This review will give an overview of the approaches that have recently been investigated to address the issue of vascularization in the field of tissue engineering of whole organs, and will highlight the current caveats and hurdles that should be addressed in the future.
Collapse
Affiliation(s)
- Alessandro F Pellegata
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Alfonso M Tedeschi
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,SNAPS, Great Ormond Street Hospital for Children NHS Foundation Trust, University College London, London, United Kingdom
| |
Collapse
|
79
|
Azim K, Akkermann R, Cantone M, Vera J, Jadasz JJ, Küry P. Transcriptional Profiling of Ligand Expression in Cell Specific Populations of the Adult Mouse Forebrain That Regulates Neurogenesis. Front Neurosci 2018; 12:220. [PMID: 29740265 PMCID: PMC5925963 DOI: 10.3389/fnins.2018.00220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/20/2018] [Indexed: 11/16/2022] Open
Abstract
In the adult central nervous system (CNS), the subventricular zone (SVZ) of the forebrain is the largest and most active source of neural stem cells (NSCs) that generates mainly neurons and few glial cells lifelong. A large body of evidence has shed light on the distinct families of signaling ligands (i.e., morphogens, growth factors, secreted molecules that alter signaling pathways) in regulating NSC biology. However, most of the research has focused on the mRNA expression of individual or few signaling ligands and their pathway components in specific cell types of the CNS in the context of neurogenesis. A single unifying study that underlines the expression of such molecules comprehensively in different cell types in spatial contexts has not yet been reported. By using whole genome transcriptome datasets of individual purified cell specific populations of the adult CNS, the SVZ niche, NSCs, glial cells, choroid plexus, and performing a bioinformatic meta-analysis of signaling ligands, their expression in the forebrain was uncovered. Therein, we report that a large plethora of ligands are abundantly expressed in the SVZ niche, largely from the vasculature than from other sources that may regulate neurogenesis. Intriguingly, this sort of analysis revealed a number of ligands with unknown functions in neurogenesis contexts that warrants further investigations. This study therefore serves as a framework for investigators in the field for understanding the expression patterns of signaling ligands and pathways regulating neurogenesis.
Collapse
Affiliation(s)
- Kasum Azim
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Rainer Akkermann
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martina Cantone
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Janusz J Jadasz
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
80
|
Schoettl T, Fischer IP, Ussar S. Heterogeneity of adipose tissue in development and metabolic function. ACTA ACUST UNITED AC 2018. [PMID: 29514879 DOI: 10.1242/jeb.162958] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adipose tissue is a central metabolic organ. Unlike other organs, adipose tissue is compartmentalized into individual depots and distributed throughout the body. These different adipose depots show major functional differences and risk associations for developing metabolic syndrome. Recent advances in lineage tracing demonstrate that individual adipose depots are composed of adipocytes that are derived from distinct precursor populations, giving rise to different populations of energy-storing white adipocytes. Moreover, distinct lineages of energy-dissipating brown and beige adipocytes exist in discrete depots or within white adipose tissue depots. In this Review, we discuss developmental and functional heterogeneity, as well as sexual dimorphism, between and within individual adipose tissue depots. We highlight current data relating to the differences between subcutaneous and visceral white adipose tissue in the development of metabolic dysfunction, with special emphasis on adipose tissue expansion and remodeling of the extracellular matrix. Moreover, we provide a detailed overview of adipose tissue development as well as the consensus and controversies relating to adult adipocyte precursor populations.
Collapse
Affiliation(s)
- Theresa Schoettl
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany.,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ingrid P Fischer
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany.,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany
| | - Siegfried Ussar
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany .,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|
81
|
Di Carlo SE, Peduto L. The perivascular origin of pathological fibroblasts. J Clin Invest 2018; 128:54-63. [PMID: 29293094 DOI: 10.1172/jci93558] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ability to repair tissues is essential for the survival of organisms. In chronic settings, the failure of the repair process to terminate results in overproduction of collagen, a pathology known as fibrosis, which compromises organ recovery and impairs function. The origin of the collagen-overproducing cell has been debated for years. Here we review recent insights gained from the use of lineage tracing approaches in several organs. The resulting evidence points toward specific subsets of tissue-resident mesenchymal cells, mainly localized in a perivascular position, as the major source for collagen-producing cells after injury. We discuss these findings in view of the functional heterogeneity of mesenchymal cells of the perivascular niche, which have essential vascular, immune, and regenerative functions that need to be preserved for efficient repair.
Collapse
|
82
|
Abstract
Fibrosis is part of a tissue repair response to injury, defined as increased deposition of extracellular matrix. In some instances, fibrosis is beneficial; however, in the majority of diseases fibrosis is detrimental. Virtually all chronic progressive diseases are associated with fibrosis, representing a huge number of patients worldwide. Fibrosis occurs in all organs and tissues, becomes irreversible with time and further drives loss of tissue function. Various cells types initiate and perpetuate pathological fibrosis by paracrine activation of the principal cellular executors of fibrosis, i.e. stromal mesenchymal cells like fibroblasts, pericytes and myofibroblasts. Multiple pathways are involved in fibrosis, platelet-derived growth factor (PDGF)-signaling being one of the central mediators. Stromal mesenchymal cells express both PDGF receptors (PDGFR) α and β, activation of which drives proliferation, migration and production of extracellular matrix, i.e. the principal processes of fibrosis. Here, we review the role of PDGF signaling in organ fibrosis, with particular focus on the more recently described ligands PDGF-C and -D. We discuss the potential challenges, opportunities and open questions in using PDGF as a potential target for anti-fibrotic therapies.
Collapse
Affiliation(s)
| | - Jürgen Floege
- Division of Nephrology, RWTH University of Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, Germany; Division of Nephrology, RWTH University of Aachen, Germany.
| |
Collapse
|
83
|
Mazzeo A, Arroba AI, Beltramo E, Valverde AM, Porta M. Somatostatin protects human retinal pericytes from inflammation mediated by microglia. Exp Eye Res 2017; 164:46-54. [DOI: 10.1016/j.exer.2017.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/03/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
|
84
|
Leaf IA, Duffield JS. What can target kidney fibrosis? Nephrol Dial Transplant 2017; 32:i89-i97. [PMID: 28391346 DOI: 10.1093/ndt/gfw388] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/04/2016] [Indexed: 11/14/2022] Open
Abstract
Fibrosis, a characteristic of all chronic kidney diseases, is now recognized to be an independent predictor of disease progression. Deposition of pathological matrix in the walls of glomerular capillaries, the interstitial space and around arterioles both predicts and contributes to functional demise of the nephron and its surrounding vasculature. Recent identification of the major cell populations of fibroblast precursors in the kidney interstitium as pericytes and tissue-resident mesenchymal stem cells, and in the glomerulus as podocytes, parietal epithelial and mesangial cells, has enabled the study of the fibrogenic process in much greater depth directly in the fibroblast precursors. These cells are not only matrix-producing cells, but are also important innate immune surveillance cells that regulate the inflammatory process, exacerbate tissue damage by release of radicals and cytokines, and contribute to parenchymal and microvascular dysfunction by aberrant wound-healing responses. Innate immune signaling in fibroblasts and their precursors is intimately intertwined with the process of fibrogenesis. In addition, genomic and genetic studies also point to defective responses in loci close to genes involved in solute transport, metabolism, autophagy, protein handling and vascular homeostasis, principally in the epithelium and endothelium, as upstream drivers of the fibrotic process, indicating that cellular crosstalk is vital for development of fibrosis. As we move beyond TGFβ inhibition as a central target for fibrosis, targeting innate immune signaling and metabolic dysfunction appear increasingly tenable alternative targets for novel therapies.
Collapse
Affiliation(s)
- Irina A Leaf
- Research & Development, Biogen, Cambridge, MA, USA
| | - Jeremy S Duffield
- Research & Development, Biogen, Cambridge, MA, USA.,University of Washington, Seattle, WA, USA
| |
Collapse
|
85
|
He F, Soriano P. Dysregulated PDGFRα signaling alters coronal suture morphogenesis and leads to craniosynostosis through endochondral ossification. Development 2017; 144:4026-4036. [PMID: 28947535 DOI: 10.1242/dev.151068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/15/2017] [Indexed: 01/02/2023]
Abstract
Craniosynostosis is a prevalent human birth defect characterized by premature fusion of calvarial bones. In this study, we show that tight regulation of endogenous PDGFRα activity is required for normal calvarium development in the mouse and that dysregulated PDGFRα activity causes craniosynostosis. Constitutive activation of PDGFRα leads to expansion of cartilage underlying the coronal sutures, which contribute to suture closure through endochondral ossification, in a process regulated in part by PI3K/AKT signaling. Our results thus identify a novel mechanism underlying calvarial development in craniosynostosis.
Collapse
Affiliation(s)
- Fenglei He
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
86
|
He C, Medley SC, Kim J, Sun C, Kwon HR, Sakashita H, Pincu Y, Yao L, Eppard D, Dai B, Berry WL, Griffin TM, Olson LE. STAT1 modulates tissue wasting or overgrowth downstream from PDGFRβ. Genes Dev 2017; 31:1666-1678. [PMID: 28924035 PMCID: PMC5647937 DOI: 10.1101/gad.300384.117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/21/2017] [Indexed: 12/17/2022]
Abstract
In this study, He et al. investigated how gain-of-function PDGFRβ mutations cause human disease, specifically whether PDGFRB mutations alone are responsible for genetic diseases characterized by musculoskeletal wasting or overgrowth. Using a genetic approach, their findings suggest a molecular mechanism by which STAT1 suppresses PDGFRβ-driven fibrosis and bone growth. Platelet-derived growth factor (PDGF) acts through two conserved receptor tyrosine kinases: PDGFRα and PDGFRβ. Gain-of-function mutations in human PDGFRB have been linked recently to genetic diseases characterized by connective tissue wasting (Penttinen syndrome) or overgrowth (Kosaki overgrowth syndrome), but it is unclear whether PDGFRB mutations alone are responsible. Mice with constitutive PDGFRβ signaling caused by a kinase domain mutation (D849V) develop lethal autoinflammation. Here we used a genetic approach to investigate the mechanism of autoinflammation in Pdgfrb+/D849V mice and test the hypothesis that signal transducer and activator of transcription 1 (STAT1) mediates this phenotype. We show that Pdgfrb+/D849V mice with Stat1 knockout (Stat1−/−Pdgfrb+/D849V) are rescued from autoinflammation and have improved life span compared with Stat1+/−Pdgfrb+/D849V mice. Furthermore, PDGFRβ–STAT1 signaling suppresses PDGFRβ itself. Thus, Stat1−/−Pdgfrb+/D849V fibroblasts exhibit increased PDGFRβ signaling, and mice develop progressive overgrowth, a distinct phenotype from the wasting seen in Stat1+/−Pdgfrb+/D849V mice. Deletion of interferon receptors (Ifnar1 or Ifngr1) does not rescue wasting in Pdgfrb+/D849V mice, indicating that interferons are not required for autoinflammation. These results provide functional evidence that elevated PDGFRβ signaling causes tissue wasting or overgrowth reminiscent of human genetic syndromes and that the STAT1 pathway is a crucial modulator of this phenotypic spectrum.
Collapse
Affiliation(s)
- Chaoyong He
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.,State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Shayna C Medley
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Jang Kim
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Chengyi Sun
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Hae Ryong Kwon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Hiromi Sakashita
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Yair Pincu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Longbiao Yao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Danielle Eppard
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Bojie Dai
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - William L Berry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Lorin E Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
87
|
Shen EM, McCloskey KE. Development of Mural Cells: From In Vivo Understanding to In Vitro Recapitulation. Stem Cells Dev 2017; 26:1020-1041. [DOI: 10.1089/scd.2017.0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Edwin M. Shen
- Graduate Program in Biological Engineering and Small-scale Technologies
| | - Kara E. McCloskey
- Graduate Program in Biological Engineering and Small-scale Technologies
- School of Engineering, University of California, Merced, Merced, California
| |
Collapse
|
88
|
Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 2017; 19:771-83. [PMID: 27227366 DOI: 10.1038/nn.4288] [Citation(s) in RCA: 784] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/29/2016] [Indexed: 12/12/2022]
Abstract
Pericytes are vascular mural cells embedded in the basement membrane of blood microvessels. They extend their processes along capillaries, pre-capillary arterioles and post-capillary venules. CNS pericytes are uniquely positioned in the neurovascular unit between endothelial cells, astrocytes and neurons. They integrate, coordinate and process signals from their neighboring cells to generate diverse functional responses that are critical for CNS functions in health and disease, including regulation of the blood-brain barrier permeability, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, neuroinflammation and stem cell activity. Here we examine the key signaling pathways between pericytes and their neighboring endothelial cells, astrocytes and neurons that control neurovascular functions. We also review the role of pericytes in CNS disorders including rare monogenic diseases and complex neurological disorders such as Alzheimer's disease and brain tumors. Finally, we discuss directions for future studies.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Department of Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.,Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Shiva Ayyadurai
- Systems Biology Group, CytoSolve Research Division, Cambridge, Massachusetts, USA
| | - Berislav V Zlokovic
- Department of Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.,Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
89
|
Dias Moura Prazeres PH, Sena IFG, Borges IDT, de Azevedo PO, Andreotti JP, de Paiva AE, de Almeida VM, de Paula Guerra DA, Pinheiro Dos Santos GS, Mintz A, Delbono O, Birbrair A. Pericytes are heterogeneous in their origin within the same tissue. Dev Biol 2017; 427:6-11. [PMID: 28479340 PMCID: PMC6076854 DOI: 10.1016/j.ydbio.2017.05.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
Pericytes heterogeneity is based on their morphology, distribution, and markers. It is well known that pericytes from different organs may have distinct embryonic sources. Yamazaki et al. (2017) using several transgenic mouse model reveal by cell-lineage tracing that pericytes are even more heterogeneous than previously appreciated. This study shows that pericytes from within the same tissue may be heterogeneous in their origin. Remarkably, a subpopulation of embryonic dermal pericytes derives from the hematopoietic lineage, an unexpected source. Reconstructing the lineage of pericytes is central to understanding development, and also for the diagnosis and treatment of diseases in which pericytes play important roles.
Collapse
Affiliation(s)
| | | | | | | | - Julia Peres Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Emília de Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
90
|
Jiang Y, Berry DC, Jo A, Tang W, Arpke RW, Kyba M, Graff JM. A PPARγ transcriptional cascade directs adipose progenitor cell-niche interaction and niche expansion. Nat Commun 2017. [PMID: 28649987 PMCID: PMC5490270 DOI: 10.1038/ncomms15926] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Adipose progenitor cells (APCs) reside in a vascular niche, located within the perivascular compartment of adipose tissue blood vessels. Yet, the signals and mechanisms that govern adipose vascular niche formation and APC niche interaction are unknown. Here we show that the assembly and maintenance of the adipose vascular niche is controlled by PPARγ acting within APCs. PPARγ triggers a molecular hierarchy that induces vascular sprouting, APC vessel niche affinity and APC vessel occupancy. Mechanistically, PPARγ transcriptionally activates PDGFRβ and VEGF. APC expression and activation of PDGFRβ promotes the recruitment and retention of APCs to the niche. Pharmacologically, targeting PDGFRβ disrupts APC niche contact thus blocking adipose tissue expansion. Moreover, enhanced APC expression of VEGF stimulates endothelial cell proliferation and expands the adipose niche. Consequently, APC niche communication and retention are boosted by VEGF thereby impairing adipogenesis. Our data indicate that APCs direct adipose tissue niche expansion via a PPARγ-initiated PDGFRβ and VEGF transcriptional axis. Adipocyte progenitor cells (APCs) are found tethered to adipose tissue blood vessel walls and can differentiate into adipocytes. Here the authors show that PPARγ controls angiogenesis by stimulating APC–blood vessel interaction and retention via a transcriptional network that includes PDGFRβ and VEGF.
Collapse
Affiliation(s)
- Yuwei Jiang
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Daniel C Berry
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ayoung Jo
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Wei Tang
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Robert W Arpke
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jonathan M Graff
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
91
|
Makino K, Makino T, Stawski L, Mantero JC, Lafyatis R, Simms R, Trojanowska M. Blockade of PDGF Receptors by Crenolanib Has Therapeutic Effect in Patient Fibroblasts and in Preclinical Models of Systemic Sclerosis. J Invest Dermatol 2017; 137:1671-1681. [PMID: 28433542 DOI: 10.1016/j.jid.2017.03.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/21/2017] [Accepted: 03/10/2017] [Indexed: 01/02/2023]
Abstract
Systemic sclerosis (SSc) is a multi-organ fibrotic disease with few treatment options. Activated fibroblasts are the key effector cells in SSc responsible for the excessive production of collagen and the development of fibrosis. Platelet-derived growth factor (PDGF), a potent mitogen for cells of mesenchymal origin, has been implicated in the activation of SSc fibroblasts. Our aim was to examine the therapeutic potential of crenolanib, an inhibitor of PDGF receptor signaling, in cultured fibroblasts and in angiotensin II-induced skin and heart fibrosis. Crenolanib effectively inhibited proliferation and migration of SSc and healthy control fibroblasts and attenuated basal and transforming growth factor-β-induced expression of CCN2/CTGF and periostin. In contrast to healthy control fibroblasts, SSc fibroblasts proliferated in response to PDGFAA, whereas a combination of PDGFAA and CCN2 was required to elicit a similar response in healthy control fibroblasts. PDGF receptor α mRNA correlated with CCN2 and other fibrotic markers in the skin of SSc patients. In mice challenged with angiotensin II, PDGF receptor α-positive cells were increased in the skin and heart. These PDGF receptor α-positive cells co-localized with PDGF receptor β, procollagen, and periostin. Treatment with crenolanib attenuated the skin and heart fibrosis. Our data indicate that inhibition of PDGF signaling presents an attractive therapeutic approach for SSc.
Collapse
Affiliation(s)
- Katsunari Makino
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Tomoko Makino
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Lukasz Stawski
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Julio C Mantero
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Robert Simms
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
92
|
Kazlauskas A. PDGFs and their receptors. Gene 2017; 614:1-7. [PMID: 28267575 DOI: 10.1016/j.gene.2017.03.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 01/28/2023]
Abstract
The platelet-derived growth factor (PDGF)/PDGFR receptor (PDGFR) family is essential for a vast array of physiological processes such as migration and proliferation of percityes that contribute to the formation and proper function of blood vessels. While ligand-dependent de-repression of the PDGFR's kinase activity is the major mode by which the PDGFR is activated, there are additional mechanisms to activate PDGFRs. Deregulated PDGFR activity contributes to various pathological conditions, and hence the PDGF/PDGFR family members are viable therapeutic targets. An increased appreciation of which PDGFR contributes to pathology, biomarkers that indicate the amplitude and mode of activation, and receptor-specific antagonists are necessary for the development of next-generation therapies that target the PDGF/PDGFR family.
Collapse
Affiliation(s)
- Andrius Kazlauskas
- Schepens Eye Research Institute, Massachusetts Eye and Ear Institute, 20 Staniford St, Boston, MA 02114, United States.
| |
Collapse
|
93
|
Yan JF, Huang WJ, Zhao JF, Fu HY, Zhang GY, Huang XJ, Lv BD. The platelet-derived growth factor receptor/STAT3 signaling pathway regulates the phenotypic transition of corpus cavernosum smooth muscle in rats. PLoS One 2017; 12:e0172191. [PMID: 28245285 PMCID: PMC5330473 DOI: 10.1371/journal.pone.0172191] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/01/2017] [Indexed: 01/09/2023] Open
Abstract
Erectile dysfunction (ED) is a common clinical disease that is difficult to treat. We previously found that hypoxia modulates the phenotype of primary corpus cavernosum smooth muscle cells (CCSMCs) in rats, but the underlying molecular mechanism is still unknown. Platelet-derived growth factor receptor (PDGFR)-related signaling pathways are correlated with cell phenotypic transition, but research has been focused more on vascular smooth muscle and tracheal smooth muscle and less on CCSMCs. Here, we investigated the role of PDGFR-related signaling pathways in penile CCSMCs, which were successfully isolated from rats and cultured in vitro. PDGF-BB at 5, 10, or 20 ng/ml altered CCSMC morphology from the original elongated, spindle shape to a broader shape and promoted the synthetic phenotype and expression of the related proteins vimentin and collagen-I, while inhibiting the contractile phenotype and expression of the related proteins smooth muscle (SM) α-actin (α-SMA) and desmin. Inhibition of PDGFR activity via siRNA or the PDGFR inhibitor crenolanib inhibited vimentin and collagen-I expression, increased α-SMA and desmin expression, and considerably inhibited serine-threonine protein kinase (AKT) and signal transducer and activator of transcription 3 (STAT3) phosphorylation. STAT3 knockdown promoted the contractile phenotype, inhibited vimentin and collagen-I expression, and increased α-SMA and desmin expression, whereas AKT knockdown did not affect phenotype-associated proteins. STAT3 overexpression in CCSMC cells weakened the suppressive effect of PDGFR inhibition on the morphology and phenotypic transformation induced by PDGF-BB. Through activation of the PDGFR/STAT3 signaling pathway, PDGF promoted the synthetic phenotype transition; thus, regulation of this pathway might contribute to ED therapy.
Collapse
Affiliation(s)
- Jun-Feng Yan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wen-Jie Huang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian-Feng Zhao
- Department of Urology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui-Ying Fu
- Andrology Laboratory on Integration of Chinese and Western Medicine, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine, Hangzhou, China
- Central Laboratory, The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gao-Yue Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao-Jun Huang
- Department of Urology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo-Dong Lv
- Department of Urology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- Andrology Laboratory on Integration of Chinese and Western Medicine, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine, Hangzhou, China
- * E-mail:
| |
Collapse
|
94
|
Pikor NB, Cupovic J, Onder L, Gommerman JL, Ludewig B. Stromal Cell Niches in the Inflamed Central Nervous System. THE JOURNAL OF IMMUNOLOGY 2017; 198:1775-1781. [DOI: 10.4049/jimmunol.1601566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/19/2016] [Indexed: 11/19/2022]
|
95
|
Pericytes: The Role of Multipotent Stem Cells in Vascular Maintenance and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1079:69-86. [PMID: 29282647 DOI: 10.1007/5584_2017_138] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Blood vessels consist of an inner endothelial cell layer lining the vessel wall and perivascular pericytes, also known as mural cells, which envelop the vascular tube surface. Pericytes have recently been recognized for their central role in blood vessel formation. Pericytes are multipotent cells that are heterogeneous in their origin, function, morphology and surface markers. Similar to other types of stem cells, pericytes act as a repair system in response to injury by maintaining the structural integrity of blood vessels. Several studies have shown that blood vessels lacking pericytes become hyperdilated and haemorrhagic, leading to vascular complications ranging from diabetic retinopathy to embryonic death. The role of pericytes is not restricted to the formation and development of the vasculature: they have been shown to possess stem cell-like characteristics and may differentiate into cell types from different lineages. Recent discoveries regarding the contribution of pericytes to tumour metastasis and the maintenance of tumour vascular supply and angiogenesis have led researchers to propose targeting pericytes with anti-angiogenic therapies. In this review, we will examine the different physiological roles of pericytes, their differentiation potential, and how they interact with surrounding cells to ensure the integrity of blood vessel formation and maintenance.
Collapse
|
96
|
Ieronimakis N, Hays A, Prasad A, Janebodin K, Duffield JS, Reyes M. PDGFRα signalling promotes fibrogenic responses in collagen-producing cells in Duchenne muscular dystrophy. J Pathol 2016; 240:410-424. [PMID: 27569721 PMCID: PMC5113675 DOI: 10.1002/path.4801] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/15/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022]
Abstract
Fibrosis is a characteristic of Duchenne muscular dystrophy (DMD), yet the cellular and molecular mechanisms responsible for DMD fibrosis are poorly understood. Utilizing the Collagen1a1-GFP transgene to identify cells producing Collagen-I matrix in wild-type mice exposed to toxic injury or those mutated at the dystrophin gene locus (mdx) as a model of DMD, we studied mechanisms of skeletal muscle injury/repair and fibrosis. PDGFRα is restricted to Sca1+, CD45- mesenchymal progenitors. Fate-mapping experiments using inducible CreER/LoxP somatic recombination indicate that these progenitors expand in injury or DMD to become PDGFRα+, Col1a1-GFP+ matrix-forming fibroblasts, whereas muscle fibres do not become fibroblasts but are an important source of the PDGFRα ligand, PDGF-AA. While in toxin injury/repair of muscle PDGFRα, signalling is transiently up-regulated during the regenerative phase in the DMD model and in human DMD it is chronically overactivated. Conditional expression of the constitutively active PDGFRα D842V mutation in Collagen-I+ fibroblasts, during injury/repair, hindered the repair phase and instead promoted fibrosis. In DMD, treatment of mdx mice with crenolanib, a highly selective PDGFRα/β tyrosine kinase inhibitor, reduced fibrosis, improved muscle strength, and was associated with decreased activity of Src, a downstream effector of PDGFRα signalling. These observations are consistent with a model in which PDGFRα activation of mesenchymal progenitors normally regulates repair of the injured muscle, but in DMD persistent and excessive activation of this pathway directly drives fibrosis and hinders repair. The PDGFRα pathway is a potential new target for treatment of progressive DMD. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Animals
- Benzimidazoles/pharmacology
- Benzimidazoles/therapeutic use
- Cells, Cultured
- Collagen Type I/biosynthesis
- Disease Models, Animal
- Dystrophin/genetics
- Enzyme Inhibitors/pharmacology
- Fibroblasts/drug effects
- Fibroblasts/pathology
- Fibrosis
- Male
- Mice, Transgenic
- Muscle Strength/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Mutation
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/physiology
- Regeneration/drug effects
- Regeneration/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
| | - Aislinn Hays
- Department of PathologyAlbert Einstein College of MedicineNYUSA
| | - Amalthiya Prasad
- Department of Pathology, School of MedicineUniversity of WashingtonWAUSA
| | | | - Jeremy S Duffield
- Department of Pathology, School of MedicineUniversity of WashingtonWAUSA
- Department of Medicine, School of MedicineUniversity of WashingtonWAUSA
- Discovery ResearchBiogen IncCambridgeMAUSA
| | - Morayma Reyes
- Department of PathologyAlbert Einstein College of MedicineNYUSA
- Montefiore Medical CenterBronxNYUSA
| |
Collapse
|
97
|
Sá da Bandeira D, Casamitjana J, Crisan M. Pericytes, integral components of adult hematopoietic stem cell niches. Pharmacol Ther 2016; 171:104-113. [PMID: 27908803 DOI: 10.1016/j.pharmthera.2016.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The interest in perivascular cells as a niche for adult hematopoietic stem cells (HSCs) is significantly growing. In the adult bone marrow (BM), perivascular cells and HSCs cohabit. Among perivascular cells, pericytes are precursors of mesenchymal stem/stromal cells (MSCs) that are capable of differentiating into osteoblasts, adipocytes and chondrocytes. In situ, pericytes are recognised by their localisation to the abluminal side of the blood vessel wall and closely associated with endothelial cells, in combination with the expression of markers such as CD146, neural glial 2 (NG2), platelet derived growth factor receptor β (PDGFRβ), α-smooth muscle actin (α-SMA), nestin (Nes) and/or leptin receptor (LepR). However, not all pericytes share a common phenotype: different immunophenotypes can be associated with distinct mesenchymal features, including hematopoietic support. In adult BM, arteriolar and sinusoidal pericytes control HSC behaviour, maintenance, quiescence and trafficking through paracrine effects. Different groups identified and characterized hematopoietic supportive pericyte subpopulations using various markers and mouse models. In this review, we summarize recent work performed by others to understand the role of the perivascular niche in the biology of HSCs in adults, as well as their importance in the development of therapies.
Collapse
Affiliation(s)
- D Sá da Bandeira
- BHF Centre for Cardiovascular Science, MRC Scottish Centre for Regenerative Medicine, The Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - J Casamitjana
- BHF Centre for Cardiovascular Science, MRC Scottish Centre for Regenerative Medicine, The Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - M Crisan
- BHF Centre for Cardiovascular Science, MRC Scottish Centre for Regenerative Medicine, The Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
98
|
Cai W, Liu H, Zhao J, Chen LY, Chen J, Lu Z, Hu X. Pericytes in Brain Injury and Repair After Ischemic Stroke. Transl Stroke Res 2016; 8:107-121. [PMID: 27837475 DOI: 10.1007/s12975-016-0504-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 01/02/2023]
Abstract
Pericytes are functional components of the neurovascular unit (NVU). They provide support to other NVU components and maintain normal physiological functions of the blood-brain barrier (BBB). The brain ischemia and reperfusion result in pathological alterations in pericytes. The intimate anatomical and functional interactions between pericytes and other NVU components play pivotal roles in the progression of stroke pathology. In this review, we depict the biology and functions of pericytes in the normal brain and discuss their effects in brain injury and repair after ischemia/reperfusion. Since ischemic stroke occurs mostly in elderly people, we also review age-related changes in pericytes and how these changes predispose aged brains to ischemic/reperfusion injury. Strategies targeting pericyte responses after ischemia and reperfusion may provide new therapies for ischemic stroke.
Collapse
Affiliation(s)
- Wei Cai
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA.,Department of Neurology, The Third Affiliated Hospital of Sun Yatsen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Huan Liu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Jingyan Zhao
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Lily Y Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Jun Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yatsen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China.
| | - Xiaoming Hu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
99
|
Tang R, Zhang G, Chen SY. Smooth Muscle Cell Proangiogenic Phenotype Induced by Cyclopentenyl Cytosine Promotes Endothelial Cell Proliferation and Migration. J Biol Chem 2016; 291:26913-26921. [PMID: 27821588 DOI: 10.1074/jbc.m116.741967] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/27/2016] [Indexed: 12/19/2022] Open
Abstract
Vascular smooth muscle cells (SMCs) and endothelial cells (ECs) are in close contact with blood vessels. SMC phenotypes can be altered during pathological vascular remodeling. However, how SMC phenotypes affect EC properties remains largely unknown. In this study, we found that PDGF-BB-induced synthetic SMCs suppressed EC proliferation and migration while exhibiting increased expression of anti-angiogenic factors, such as endostatin, and decreased pro-angiogenic factors, including CXC motif ligand 1 (CXCL1). Cyclopentenyl cytosine (CPEC), a CTP synthase inhibitor that has been reported previously to inhibit SMC proliferation and injury-induced neointima formation, induced SMC redifferentiation. Interestingly, CPEC-conditioned SMC culture medium promoted EC proliferation and migration because of an increase in CXCL1 along with decreased endostatin production in SMCs. Addition of recombinant endostatin protein or blockade of CXCL1 with a neutralizing antibody suppressed the EC proliferation and migration induced by CPEC-conditioned SMC medium. Mechanistically, CPEC functions as a cytosine derivate to stimulate adenosine receptors A1 and A2a, which further activate downstream cAMP and Akt signaling, leading to the phosphorylation of cAMP response element binding protein and, consequently, SMC redifferentiation. These data provided proof of a novel concept that synthetic SMC exhibits an anti-angiogenic SMC phenotype, whereas contractile SMC shows a pro-angiogenic phenotype. CPEC appears to be a potent stimulator for switching the anti-angiogenic SMC phenotype to the pro-angiogenic phenotype, which may be essential for CPEC to accelerate re-endothelialization for vascular repair during injury-induced vascular wall remodeling.
Collapse
Affiliation(s)
- Rui Tang
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602
| | - Gui Zhang
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
100
|
Navarro R, Compte M, Álvarez-Vallina L, Sanz L. Immune Regulation by Pericytes: Modulating Innate and Adaptive Immunity. Front Immunol 2016; 7:480. [PMID: 27867386 PMCID: PMC5095456 DOI: 10.3389/fimmu.2016.00480] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/20/2016] [Indexed: 01/22/2023] Open
Abstract
Pericytes (PC) are mural cells that surround endothelial cells in small blood vessels. PC have traditionally been credited with structural functions, being essential for vessel maturation and stabilization. However, an accumulating body of evidence suggests that PC also display immune properties. They can respond to a series of pro-inflammatory stimuli and are able to sense different types of danger due to their expression of functional pattern-recognition receptors, contributing to the onset of innate immune responses. In this context, PC not only secrete a variety of chemokines but also overexpress adhesion molecules such as ICAM-1 and VCAM-1 involved in the control of immune cell trafficking across vessel walls. In addition to their role in innate immunity, PC are involved in adaptive immunity. It has been reported that interaction with PC anergizes T cells, which is attributed, at least in part, to the expression of PD-L1. As components of the tumor microenvironment, PC can also modulate the antitumor immune response. However, their role is complex, and further studies will be required to better understand the crosstalk of PC with immune cells in order to consider them as potential therapeutic targets. In any case, PC will be looked at with new eyes by immunologists from now on.
Collapse
Affiliation(s)
- Rocío Navarro
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda , Madrid , Spain
| | - Marta Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda , Madrid , Spain
| | - Luis Álvarez-Vallina
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain; Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda , Madrid , Spain
| |
Collapse
|