51
|
Alvarez A, Lagos-Cabré R, Kong M, Cárdenas A, Burgos-Bravo F, Schneider P, Quest AFG, Leyton L. Integrin-mediated transactivation of P2X7R via hemichannel-dependent ATP release stimulates astrocyte migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2175-88. [PMID: 27235833 DOI: 10.1016/j.bbamcr.2016.05.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/29/2016] [Accepted: 05/23/2016] [Indexed: 01/09/2023]
Abstract
Our previous reports indicate that ligand-induced αVβ3 integrin and Syndecan-4 engagement increases focal adhesion formation and migration of astrocytes. Additionally, ligated integrins trigger ATP release through unknown mechanisms, activating P2X7 receptors (P2X7R), and the uptake of Ca(2+) to promote cell adhesion. However, whether the activation of P2X7R and ATP release are required for astrocyte migration and whether αVβ3 integrin and Syndecan-4 receptors communicate with P2X7R via ATP remains unknown. Here, cells were stimulated with Thy-1, a reported αVβ3 integrin and Syndecan-4 ligand. Results obtained indicate that ATP was released by Thy-1 upon integrin engagement and required the participation of phosphatidylinositol-3-kinase (PI3K), phospholipase-C gamma (PLCγ) and inositol trisphosphate (IP3) receptors (IP3R). IP3R activation leads to increased intracellular Ca(2+), hemichannel (Connexin-43 and Pannexin-1) opening, and ATP release. Moreover, silencing of the P2X7R or addition of hemichannel blockers precluded Thy-1-induced astrocyte migration. Finally, Thy-1 lacking the integrin-binding site did not stimulate ATP release, whereas Thy-1 mutated in the Syndecan-4-binding domain increased ATP release, albeit to a lesser extent and with delayed kinetics compared to wild-type Thy-1. Thus, hemichannels activated downstream of an αVβ3 integrin-PI3K-PLCγ-IP3R pathway are responsible for Thy-1-induced, hemichannel-mediated and Syndecan-4-modulated ATP release that transactivates P2X7Rs to induce Ca(2+) entry. These findings uncover a hitherto unrecognized role for hemichannels in the regulation of astrocyte migration via P2X7R transactivation induced by integrin-mediated ATP release.
Collapse
Affiliation(s)
- Alvaro Alvarez
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Biomedical Neuroscience Institute, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Raúl Lagos-Cabré
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Biomedical Neuroscience Institute, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Milene Kong
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Biomedical Neuroscience Institute, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Areli Cárdenas
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Biomedical Neuroscience Institute, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Francesca Burgos-Bravo
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Biomedical Neuroscience Institute, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Andrew F G Quest
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Advanced Center for Chronic Diseases, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Biomedical Neuroscience Institute, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Advanced Center for Chronic Diseases, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Biomedical Neuroscience Institute, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile.
| |
Collapse
|
52
|
Sugar T, Wassenhove-McCarthy DJ, Orr AW, Green J, van Kuppevelt TH, McCarthy KJ. N-sulfation of heparan sulfate is critical for syndecan-4-mediated podocyte cell-matrix interactions. Am J Physiol Renal Physiol 2016; 310:F1123-35. [PMID: 26936875 PMCID: PMC5002056 DOI: 10.1152/ajprenal.00603.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/26/2016] [Indexed: 12/23/2022] Open
Abstract
Previous research has shown that podocytes unable to assemble heparan sulfate on cell surface proteoglycan core proteins have compromised cell-matrix interactions. This report further explores the role of N-sulfation of intact heparan chains in podocyte-matrix interactions. For the purposes of this study, a murine model in which the enzyme N-deacetylase/N-sulfotransferase 1 (NDST1) was specifically deleted in podocytes and immortalized podocyte cell lines lacking NDST1 were developed and used to explore the effects of such a mutation on podocyte behavior in vitro. NDST1 is a bifunctional enzyme, ultimately responsible for N-sulfation of heparan glycosaminoglycans produced by cells. Immunostaining of glomeruli from mice whose podocytes were null for Ndst1 (Ndst1(-/-)) showed a disrupted pattern of localization for the cell surface proteoglycan, syndecan-4, and for α-actinin-4 compared with controls. The pattern of immunostaining for synaptopodin and nephrin did not show as significant alterations. In vitro studies showed that Ndst1(-/-) podocytes attached, spread, and migrated less efficiently than Ndst1(+/+) podocytes. Immunostaining in vitro for several markers for molecules involved in cell-matrix interactions showed that Ndst1(-/-) cells had decreased clustering of syndecan-4 and decreased recruitment of protein kinase-Cα, α-actinin-4, vinculin, and phospho-focal adhesion kinase to focal adhesions. Total intracellular phospho-focal adhesion kinase was decreased in Ndst1(-/-) compared with Ndst1(+/+) cells. A significant decrease in the abundance of activated integrin α5β1 on the cell surface of Ndst1(-/-) cells compared with Ndst1(+/+) cells was observed. These results serve to highlight the critical role of heparan sulfate N-sulfation in facilitating normal podocyte-matrix interactions.
Collapse
Affiliation(s)
- Terrel Sugar
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, Shreveport, Louisiana
| | | | - A Wayne Orr
- Department of Pathology, LSU Health Sciences Center, Shreveport, Louisiana; and
| | - Jonette Green
- Department of Pathology, LSU Health Sciences Center, Shreveport, Louisiana; and
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Kevin J McCarthy
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, Shreveport, Louisiana; Department of Pathology, LSU Health Sciences Center, Shreveport, Louisiana; and
| |
Collapse
|
53
|
Sialylation of vitronectin regulates stress fiber formation and cell spreading of dermal fibroblasts via a heparin-binding site. Glycoconj J 2016; 33:227-36. [PMID: 26979432 DOI: 10.1007/s10719-016-9660-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/10/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
Vitronectin (VN) plays an important role in tissue regeneration. We previously reported that VN from partial hepatectomized (PH) rats results in a decrease of sialylation of VN and de-sialylation of VN decreases the cell spreading of hepatic stellate cells. In this study, we analyzed the mechanism how sialylation of VN regulates the properties of mouse primary cultured dermal fibroblasts (MDF) and a dermal fibroblast cell line, Swiss 3T3 cells. At first, we confirmed that VN from PH rats or de-sialylated VN also decreased cell spreading in MDF and Swiss 3T3 cells. The de-sialylation suppressed stress fiber formation in Swiss 3T3 cells. Next, we analyzed the effect of the de-sialylation of VN on stress fiber formation in Swiss 3T3 cells. RGD peptide, an inhibitor for a cell binding site of VN, did not affect the cell attachment of Swiss 3T3 cells on untreated VN but significantly decreased it on de-sialylated VN, suggesting that the de-sialylation attenuates the binding activity of an RGD-independent binding site in VN. To analyze a candidate RGD-independent binding site, an inhibition experiment of stress fiber formation for a heparin binding site was performed. The addition of heparin and treatment of cells with heparinase decreased stress fiber formation in Swiss 3T3 cells. Furthermore, de-sialylation increased the binding activity of VN to heparin, as detected by surface plasmon resonance (SPR). These results demonstrate that sialylation of VN glycans regulates stress fiber formation and cell spreading of dermal fibroblast cells via a heparin binding site.
Collapse
|
54
|
Nunan R, Campbell J, Mori R, Pitulescu ME, Jiang WG, Harding KG, Adams RH, Nobes CD, Martin P. Ephrin-Bs Drive Junctional Downregulation and Actin Stress Fiber Disassembly to Enable Wound Re-epithelialization. Cell Rep 2015; 13:1380-1395. [PMID: 26549443 PMCID: PMC4660216 DOI: 10.1016/j.celrep.2015.09.085] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/12/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022] Open
Abstract
For a skin wound to successfully heal, the cut epidermal-edge cells have to migrate forward at the interface between scab and healthy granulation tissue. Much is known about how lead-edge cells migrate, but very little is known about the mechanisms that enable active participation by cells further back. Here we show that ephrin-B1 and its receptor EphB2 are both upregulated in vivo, just for the duration of repair, in the first 70 or so rows of epidermal cells, and this signal leads to downregulation of the molecular components of adherens and tight (but not desmosomal) junctions, leading to loosening between neighbors and enabling shuffle room among epidermal cells. Additionally, this signaling leads to the shutdown of actomyosin stress fibers in these same epidermal cells, which may act to release tension within the wound monolayer. If this signaling axis is perturbed, then disrupted healing is a consequence in mouse and man. Ephrin-B/EphBs are upregulated in the migrating wound epidermis in mouse and man Ephrin-B/EphB signaling drives junction loosening, thus enabling re-epithelialization Ephrin-B/EphB signaling also leads to dissolution of stress fibers and tension release In human chronic wounds ephrin-Bs are misregulated and may be a therapeutic target
Collapse
Affiliation(s)
- Robert Nunan
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Jessica Campbell
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Ryoichi Mori
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK; Department of Pathology, Nagasaki University, Nagasaki 852-8523, Japan
| | - Mara E Pitulescu
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany; Faculty of Medicine, University of Muenster, 48149 Muenster, Germany
| | - Wen G Jiang
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Keith G Harding
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany; Faculty of Medicine, University of Muenster, 48149 Muenster, Germany
| | - Catherine D Nobes
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Martin
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK; School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| |
Collapse
|
55
|
Heparan Sulfate Proteoglycans May Promote or Inhibit Cancer Progression by Interacting with Integrins and Affecting Cell Migration. BIOMED RESEARCH INTERNATIONAL 2015; 2015:453801. [PMID: 26558271 PMCID: PMC4628971 DOI: 10.1155/2015/453801] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/28/2015] [Accepted: 09/28/2015] [Indexed: 01/01/2023]
Abstract
The metastatic disease is one of the main consequences of tumor progression, being responsible for most cancer-related deaths worldwide. This review intends to present and discuss data on the relationship between integrins and heparan sulfate proteoglycans in health and cancer progression. Integrins are a family of cell surface transmembrane receptors, responsible for cell-matrix and cell-cell adhesion. Integrins' main functions include cell adhesion, migration, and survival. Heparan sulfate proteoglycans (HSPGs) are cell surface molecules that play important roles as cell receptors, cofactors, and overall direct or indirect contributors to cell organization. Both molecules can act in conjunction to modulate cell behavior and affect malignancy. In this review, we will discuss the different contexts in which various integrins, such as α5, αV, β1, and β3, interact with HSPGs species, such as syndecans and perlecans, affecting tissue homeostasis.
Collapse
|
56
|
Integrin endosomal signalling suppresses anoikis. Nat Cell Biol 2015; 17:1412-21. [PMID: 26436690 DOI: 10.1038/ncb3250] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022]
Abstract
Integrin-containing focal adhesions transmit extracellular signals across the plasma membrane to modulate cell adhesion, signalling and survival. Although integrins are known to undergo continuous endo/exocytic traffic, the potential impact of endocytic traffic on integrin-induced signals is unknown. Here, we demonstrate that integrin signalling is not restricted to cell-ECM adhesions and identify an endosomal signalling platform that supports integrin signalling away from the plasma membrane. We show that active focal adhesion kinase (FAK), an established marker of integrin-ECM downstream signalling, localizes with active integrins on endosomes. Integrin endocytosis positively regulates adhesion-induced FAK activation, which is early endosome antigen-1 and small GTPase Rab21 dependent. FAK binds directly to purified endosomes and becomes activated on them, suggesting a role for endocytosis in enhancing distinct integrin downstream signalling events. Finally, endosomal integrin signalling contributes to cancer-related processes such as anoikis resistance, anchorage independence and metastasis.
Collapse
|
57
|
Gopal S, Søgaard P, Multhaupt HAB, Pataki C, Okina E, Xian X, Pedersen ME, Stevens T, Griesbeck O, Park PW, Pocock R, Couchman JR. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J Cell Biol 2015; 210:1199-211. [PMID: 26391658 PMCID: PMC4586746 DOI: 10.1083/jcb.201501060] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023] Open
Abstract
Syndecans regulate members of the transient receptor potential family to control cytosolic calcium levels with impact on cell adhesion, junction formation, and neuronal guidance. Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan–TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan–TRPC axis therefore fine tunes cytoskeletal organization and cell behavior.
Collapse
Affiliation(s)
- Sandeep Gopal
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pernille Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Csilla Pataki
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elena Okina
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Xiaojie Xian
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mikael E Pedersen
- Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Troy Stevens
- Department of Pharmacology, Center for Lung Biology, University of South Alabama, Mobile, AL 36688 Department of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL 36688
| | - Oliver Griesbeck
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Pyong Woo Park
- Division of Newborn Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115 Division of Respiratory Diseases, Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Roger Pocock
- Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - John R Couchman
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
58
|
Wang Y, Arjonen A, Pouwels J, Ta H, Pausch P, Bange G, Engel U, Pan X, Fackler OT, Ivaska J, Grosse R. Formin-like 2 Promotes β1-Integrin Trafficking and Invasive Motility Downstream of PKCα. Dev Cell 2015; 34:475-83. [PMID: 26256210 DOI: 10.1016/j.devcel.2015.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/01/2015] [Accepted: 06/18/2015] [Indexed: 11/28/2022]
Abstract
Regulated turnover of integrin receptors is essential for cell adhesion and migration. Pathways selectively regulating β1-integrin recycling are implicated in cancer invasion and metastasis, yet proteins required for the internalization of this pro-invasive integrin remain to be identified. Here, we uncover formin-like 2 (FMNL2) as a critical regulator of β1-integrin internalization downstream of protein kinase C (PKC). PKCα associates with and phosphorylates FMNL2 at S1072 within its Diaphanous autoregulatory region, leading to the release of formin autoinhibition. Phosphorylation of FMNL2 triggers its rapid relocation and promotes its interaction with the cytoplasmic tails of the α-integrin subunits for β1-integrin endocytosis. FMNL2 drives β1-integrin internalization and invasive motility in a phosphorylation-dependent manner, while a FMNL2 mutant defective in actin assembly interferes with β1-integrin endocytosis and cancer cell invasion. Our data establish a role for FMNL2 in the regulation of β1-integrin and provide a mechanistic understanding of the function of FMNL2 in cancer invasiveness.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Pharmacology, University of Marburg, 35043 Marburg, Germany
| | - Antti Arjonen
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Jeroen Pouwels
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Haisen Ta
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Patrick Pausch
- LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, 35043 Marburg, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, 35043 Marburg, Germany
| | - Ulrike Engel
- Nikon Imaging Center and COS, University of Heidelberg, 69120 Heidelberg, Germany
| | - Xiaoyu Pan
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, Finland; Department of Biochemistry and Food Chemistry, University of Turku, 20520 Turku, Finland
| | - Robert Grosse
- Institute of Pharmacology, University of Marburg, 35043 Marburg, Germany.
| |
Collapse
|
59
|
Kim EY, Roshanravan H, Dryer SE. Syndecan-4 ectodomain evokes mobilization of podocyte TRPC6 channels and their associated pathways: An essential role for integrin signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2610-20. [PMID: 26193076 DOI: 10.1016/j.bbamcr.2015.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/11/2015] [Accepted: 07/17/2015] [Indexed: 01/24/2023]
Abstract
PodocyteTRPC6 channels have been implicated in glomerular diseases. Syndecan-4 (Sdc4) is a membrane proteoglycan that can be cleaved to release a soluble ectodomain capable of paracrine and autocrine signaling. We have confirmed that overexpression of Sdc4 core protein increases surface abundance of TRPC6 channels in cultured podocytes, whereas Sdc4 knockdown has the opposite effect. Exposure to soluble Sdc4 ectodomain also increased the surface abundance of TRPC6, and increased cationic currents evoked by a diacylglycerol analog in podocytes. Sdc4 ectodomain increased generation of reactive oxygen species (ROS), reduced activation of RhoA, increased activation of Rac1, increased nuclear abundance of NFATc1, and increased total β3-integrin. The effects of Sdc4 ectodomain on cell-surface TRPC6 were blocked by the ROS quencher TEMPOL, and by the Rac1 inhibitor NSC-23766, but were not blocked by inhibition of calcineurin-NFATc1 signaling. The Sdc4 core protein co-immunoprecipitates with β3-integrin in cultured podocytes. Moreover, effects of Sdc4 ectodomain on TRPC6, ROS generation, Rac1 and RhoA modulation, and NFATc1 activation were blocked by cilengitide, a selective inhibitor of outside-in signaling through αv-containing integrins. Exposure to TNF, or serum from three patients with recurrent FSGS in relapse, increased shedding of podocyte Sdc4 ectodomains into the surrounding medium. This was also observed after treating podocytes with the metalloproteinase ADAM17 or after overexpression of the Sdc4 core protein. Increased concentrations of Sdc4 ectodomain were detected in urine of rats during acute puromycin aminonucleoside nephrosis. Locally generated Sdc4 may play a role in regulating TRPC6 channels, and may contribute to glomerular pathology.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | - Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Division of Nephrology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
60
|
Echarri A, Del Pozo MA. Caveolae - mechanosensitive membrane invaginations linked to actin filaments. J Cell Sci 2015; 128:2747-58. [PMID: 26159735 DOI: 10.1242/jcs.153940] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An essential property of the plasma membrane of mammalian cells is its plasticity, which is required for sensing and transmitting of signals, and for accommodating the tensional changes imposed by its environment or its own biomechanics. Caveolae are unique invaginated membrane nanodomains that play a major role in organizing signaling, lipid homeostasis and adaptation to membrane tension. Caveolae are frequently associated with stress fibers, a major regulator of membrane tension and cell shape. In this Commentary, we discuss recent studies that have provided new insights into the function of caveolae and have shown that trafficking and organization of caveolae are tightly regulated by stress-fiber regulators, providing a functional link between caveolae and stress fibers. Furthermore, the tension in the plasma membrane determines the curvature of caveolae because they flatten at high tension and invaginate at low tension, thus providing a tension-buffering system. Caveolae also regulate multiple cellular pathways, including RhoA-driven actomyosin contractility and other mechanosensitive pathways, suggesting that caveolae could couple mechanotransduction pathways to actin-controlled changes in tension through their association with stress fibers. Therefore, we argue here that the association of caveolae with stress fibers could provide an important strategy for cells to deal with mechanical stress.
Collapse
Affiliation(s)
- Asier Echarri
- Integrin Signaling Laboratory, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain
| | - Miguel A Del Pozo
- Integrin Signaling Laboratory, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain
| |
Collapse
|
61
|
Olczyk P, Mencner Ł, Komosinska-Vassev K. Diverse Roles of Heparan Sulfate and Heparin in Wound Repair. BIOMED RESEARCH INTERNATIONAL 2015; 2015:549417. [PMID: 26236728 PMCID: PMC4508384 DOI: 10.1155/2015/549417] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/19/2015] [Indexed: 12/17/2022]
Abstract
Heparan sulfate (HS) and heparin (Hp) are linear polysaccharide chains composed of repeating (1→4) linked pyrosulfuric acid and 2-amino-2-deoxy glucopyranose (glucosamine) residue. Mentioned glycosaminoglycans chains are covalently O-linked to serine residues within the core proteins creating heparan sulfate/heparin proteoglycans (HSPG). The latter ones participate in many physiological and pathological phenomena impacting both the plethora of ligands such as cytokines, growth factors, and adhesion molecules and the variety of the ECM constituents. Moreover, HS/Hp determine the effective wound healing process. Initial growth of HS and Hp amount is pivotal during the early phase of tissue repair; however heparan sulfate and heparin also participate in further stages of tissue regeneration.
Collapse
Affiliation(s)
- Pawel Olczyk
- Department of Community Pharmacy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Łukasz Mencner
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
| | - Katarzyna Komosinska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
| |
Collapse
|
62
|
Williamson RC, Cowell CAM, Reville T, Roper JA, Rendall TCS, Bass MD. Coronin-1C Protein and Caveolin Protein Provide Constitutive and Inducible Mechanisms of Rac1 Protein Trafficking. J Biol Chem 2015; 290:15437-15449. [PMID: 25925950 PMCID: PMC4505459 DOI: 10.1074/jbc.m115.640367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Indexed: 02/05/2023] Open
Abstract
Sustained directional fibroblast migration requires both polarized activation of the protrusive signal, Rac1, and redistribution of inactive Rac1 from the rear of the cell so that it can be redistributed or degraded. In this work, we determine how alternative endocytic mechanisms dictate the fate of Rac1 in response to the extracellular matrix environment. We discover that both coronin-1C and caveolin retrieve Rac1 from similar locations at the rear and sides of the cell. We find that coronin-1C-mediated extraction, which is responsible for Rac1 recycling, is a constitutive process that maintains Rac1 protein levels within the cell. In the absence of coronin-1C, the effect of caveolin-mediated endocytosis, which targets Rac1 for proteasomal degradation, becomes apparent. Unlike constitutive coronin-1C-mediated trafficking, caveolin-mediated Rac1 endocytosis is induced by engagement of the fibronectin receptor syndecan-4. Such an inducible endocytic/degradation mechanism would predict that, in the presence of fibronectin, caveolin defines regions of the cell that are resistant to Rac1 activation but, in the absence of fibronectin leaves more of the membrane susceptible to Rac1 activation and protrusion. Indeed, we demonstrate that fibronectin-stimulated activation of Rac1 is accelerated in the absence of caveolin and that, when caveolin is knocked down, polarization of active Rac1 is lost in FRET experiments and culminates in shunting migration in a fibrous fibronectin matrix. Although the concept of polarized Rac1 activity in response to chemoattractants has always been apparent, our understanding of the balance between recycling and degradation explains how polarity can be maintained when the chemotactic gradient has faded.
Collapse
Affiliation(s)
- Rosalind C Williamson
- School of Biochemistry and University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Christopher A M Cowell
- School of Biochemistry and University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Thomas Reville
- School of Biochemistry and University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - James A Roper
- School of Biochemistry and University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Thomas C S Rendall
- Department of Engineering, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Mark D Bass
- School of Biochemistry and University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom; Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom.
| |
Collapse
|
63
|
Emerging properties of adhesion complexes: what are they and what do they do? Trends Cell Biol 2015; 25:388-97. [PMID: 25824971 DOI: 10.1016/j.tcb.2015.02.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/13/2015] [Accepted: 02/24/2015] [Indexed: 02/07/2023]
Abstract
The regulation of cell adhesion machinery is central to a wide variety of developmental and pathological processes and occurs primarily within integrin-associated adhesion complexes. Here, we review recent advances that have furthered our understanding of the composition, organisation, and dynamics of these complexes, and provide an updated view on their emerging functions. Key findings are that adhesion complexes contain both core and non-canonical components. As a result of the dramatic increase in the range of components observed in adhesion complexes by proteomics, we comment on newly emerging functions for adhesion signalling. We conclude that, from a cellular or tissue systems perspective, adhesion signalling should be viewed as an emergent property of both the core and non-canonical adhesion complex components.
Collapse
|
64
|
Lim HC, Multhaupt HAB, Couchman JR. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells. Mol Cancer 2015; 14:15. [PMID: 25623282 PMCID: PMC4326193 DOI: 10.1186/s12943-014-0279-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022] Open
Abstract
Background Cell surface proteoglycans interact with numerous regulators of cell behavior through their glycosaminoglycan chains. The syndecan family of transmembrane proteoglycans are virtually ubiquitous cell surface receptors that are implicated in the progression of some tumors, including breast carcinoma. This may derive from their regulation of cell adhesion, but roles for specific syndecans are unresolved. Methods The MDA-MB231 human breast carcinoma cell line was exposed to exogenous glycosaminoglycans and changes in cell behavior monitored by western blotting, immunocytochemistry, invasion and collagen degradation assays. Selected receptors including PAR-1 and syndecans were depleted by siRNA treatments to assess cell morphology and behavior. Immunohistochemistry for syndecan-2 and its interacting partner, caveolin-2 was performed on human breast tumor tissue arrays. Two-tailed paired t-test and one-way ANOVA with Tukey’s post-hoc test were used in the analysis of data. Results MDA-MB231 cells were shown to be highly sensitive to exogenous heparan sulfate or heparin, promoting increased spreading, focal adhesion and adherens junction formation with concomitantly reduced invasion and matrix degradation. The molecular basis for this effect was revealed to have two components. First, thrombin inhibition contributed to enhanced cell adhesion and reduced invasion. Second, a specific loss of cell surface syndecan-2 was noted. The ensuing junction formation was dependent on syndecan-4, whose role in promoting actin cytoskeletal organization is known. Syndecan-2 interacts with, and may regulate, caveolin-2. Depletion of either molecule had the same adhesion-promoting influence, along with reduced invasion, confirming a role for this complex in maintaining the invasive phenotype of mammary carcinoma cells. Finally, both syndecan-2 and caveolin-2 were upregulated in tissue arrays from breast cancer patients compared to normal mammary tissue. Moreover their expression levels were correlated in triple negative breast cancers. Conclusion Cell surface proteoglycans, notably syndecan-2, may be important regulators of breast carcinoma progression through regulation of cytoskeleton, cell adhesion and invasion.
Collapse
Affiliation(s)
- Hooi Ching Lim
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark. .,Current address: Stem Cell Center, Lund University, Lund, Sweden.
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
65
|
A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting. Nat Commun 2015; 6:6135. [PMID: 25609142 PMCID: PMC4317495 DOI: 10.1038/ncomms7135] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022] Open
Abstract
Integrin activation, which is regulated by allosteric changes in receptor conformation, enables cellular responses to the chemical, mechanical and topological features of the extracellular microenvironment. A global view of how activation state converts the molecular composition of the region proximal to integrins into functional readouts is, however, lacking. Here, using conformation-specific monoclonal antibodies, we report the isolation of integrin activation state-dependent complexes and their characterization by mass spectrometry. Quantitative comparisons, integrating network, clustering, pathway and image analyses, define multiple functional protein modules enriched in a conformation-specific manner. Notably, active integrin complexes are specifically enriched for proteins associated with microtubule-based functions. Visualization of microtubules on micropatterned surfaces and live cell imaging demonstrate that active integrins establish an environment that stabilizes microtubules at the cell periphery. These data provide a resource for the interrogation of the global molecular connections that link integrin activation to adhesion signalling. Integrins are activated by many extracellular cues and respond by assembling diverse signalling complexes. Byron et al. use activation state-specific antibodies to proteomically characterize these complexes, and provide insight into integrin-dependent microtubule stabilization.
Collapse
|
66
|
Koivisto L, Heino J, Häkkinen L, Larjava H. Integrins in Wound Healing. Adv Wound Care (New Rochelle) 2014; 3:762-783. [PMID: 25493210 DOI: 10.1089/wound.2013.0436] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 01/06/2023] Open
Abstract
Significance: Regulation of cell adhesions during tissue repair is fundamentally important for cell migration, proliferation, and protein production. All cells interact with extracellular matrix proteins with cell surface integrin receptors that convey signals from the environment into the nucleus, regulating gene expression and cell behavior. Integrins also interact with a variety of other proteins, such as growth factors, their receptors, and proteolytic enzymes. Re-epithelialization and granulation tissue formation are crucially dependent on the temporospatial function of multiple integrins. This review explains how integrins function in wound repair. Recent Advances: Certain integrins can activate latent transforming growth factor beta-1 (TGF-β1) that modulates wound inflammation and granulation tissue formation. Dysregulation of TGF-β1 function is associated with scarring and fibrotic disorders. Therefore, these integrins represent targets for therapeutic intervention in fibrosis. Critical Issues: Integrins have multifaceted functions and extensive crosstalk with other cell surface receptors and molecules. Moreover, in aberrant healing, integrins may assume different functions, further increasing the complexity of their functionality. Discovering and understanding the role that integrins play in wound healing provides an opportunity to identify the mechanisms for medical conditions, such as excessive scarring, chronic wounds, and even cancer. Future Directions: Integrin functions in acute and chronic wounds should be further addressed in models better mimicking human wounds. Application of any products in acute or chronic wounds will potentially alter integrin functions that need to be carefully considered in the design.
Collapse
Affiliation(s)
- Leeni Koivisto
- Laboratory of Periodontal Biology, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Lari Häkkinen
- Laboratory of Periodontal Biology, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Hannu Larjava
- Laboratory of Periodontal Biology, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
67
|
Syndecan 4 is required for endothelial alignment in flow and atheroprotective signaling. Proc Natl Acad Sci U S A 2014; 111:17308-13. [PMID: 25404299 DOI: 10.1073/pnas.1413725111] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Atherosclerotic plaque localization correlates with regions of disturbed flow in which endothelial cells (ECs) align poorly, whereas sustained laminar flow correlates with cell alignment in the direction of flow and resistance to atherosclerosis. We now report that in hypercholesterolemic mice, deletion of syndecan 4 (S4(-/-)) drastically increased atherosclerotic plaque burden with the appearance of plaque in normally resistant locations. Strikingly, ECs from the thoracic aortas of S4(-/-) mice were poorly aligned in the direction of the flow. Depletion of S4 in human umbilical vein endothelial cells (HUVECs) using shRNA also inhibited flow-induced alignment in vitro, which was rescued by re-expression of S4. This effect was highly specific, as flow activation of VEGF receptor 2 and NF-κB was normal. S4-depleted ECs aligned in cyclic stretch and even elongated under flow, although nondirectionally. EC alignment was previously found to have a causal role in modulating activation of inflammatory versus antiinflammatory pathways by flow. Consistent with these results, S4-depleted HUVECs in long-term laminar flow showed increased activation of proinflammatory NF-κB and decreased induction of antiinflammatory kruppel-like factor (KLF) 2 and KLF4. Thus, S4 plays a critical role in sensing flow direction to promote cell alignment and inhibit atherosclerosis.
Collapse
|
68
|
Kozyulina PY, Loskutov YV, Kozyreva VK, Rajulapati A, Ice RJ, Jones BC, Pugacheva EN. Prometastatic NEDD9 Regulates Individual Cell Migration via Caveolin-1-Dependent Trafficking of Integrins. Mol Cancer Res 2014; 13:423-38. [PMID: 25319010 DOI: 10.1158/1541-7786.mcr-14-0353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of the prometastatic protein, NEDD9, in breast cancer cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and colocalizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand-integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Reexpression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9-depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. IMPLICATIONS This study provides valuable new insight into the potential therapeutic benefit of NEDD9 depletion to reduce dissemination of tumor cells and discovers a new regulatory role of NEDD9 in promoting migration through modulation of CAV1-dependent trafficking of integrins.
Collapse
Affiliation(s)
- Polina Y Kozyulina
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia. Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Yuriy V Loskutov
- Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Varvara K Kozyreva
- Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Anuradha Rajulapati
- Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Ryan J Ice
- Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Brandon C Jones
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Elena N Pugacheva
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia. Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
69
|
Fiore VF, Ju L, Chen Y, Zhu C, Barker TH. Dynamic catch of a Thy-1–α5β1+syndecan-4 trimolecular complex. Nat Commun 2014; 5:4886. [DOI: 10.1038/ncomms5886] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/01/2014] [Indexed: 01/09/2023] Open
|
70
|
Wang Y, Chiu APL, Neumaier K, Wang F, Zhang D, Hussein B, Lal N, Wan A, Liu G, Vlodavsky I, Rodrigues B. Endothelial cell heparanase taken up by cardiomyocytes regulates lipoprotein lipase transfer to the coronary lumen after diabetes. Diabetes 2014; 63:2643-55. [PMID: 24608441 DOI: 10.2337/db13-1842] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
After diabetes, the heart has a singular reliance on fatty acid (FA) for energy production, which is achieved by increased coronary lipoprotein lipase (LPL) that breaks down circulating triglycerides. Coronary LPL originates from cardiomyocytes, and to translocate to the vascular lumen, the enzyme requires liberation from myocyte surface heparan sulfate proteoglycans (HSPGs), an activity that needs to be sustained after chronic hyperglycemia. We investigated the mechanism by which endothelial cells (EC) and cardiomyocytes operate together to enable continuous translocation of LPL after diabetes. EC were cocultured with myocytes, exposed to high glucose, and uptake of endothelial heparanase into myocytes was determined. Upon uptake, the effect of nuclear entry of heparanase was also investigated. A streptozotocin model of diabetes was used to expand our in vitro observations. In high glucose, EC-derived latent heparanase was taken up by cardiomyocytes by a caveolae-dependent pathway using HSPGs. This latent heparanase was converted into an active form in myocyte lysosomes, entered the nucleus, and upregulated gene expression of matrix metalloproteinase-9. The net effect was increased shedding of HSPGs from the myocyte surface, releasing LPL for its onwards translocation to the coronary lumen. EC-derived heparanase regulates the ability of the cardiomyocyte to send LPL to the coronary lumen. This adaptation, although acutely beneficial, could be catastrophic chronically because excess FA causes lipotoxicity. Inhibiting heparanase function could offer a new strategy for managing cardiomyopathy observed after diabetes.
Collapse
Affiliation(s)
- Ying Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Amy Pei-Ling Chiu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Katharina Neumaier
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Fulong Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Dahai Zhang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Andrea Wan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Beijing, China
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
71
|
Makino-Okamura C, Niki Y, Takeuchi S, Nishigori C, Declercq L, Yaroch DB, Saito N. Heparin inhibits melanosome uptake and inflammatory response coupled with phagocytosis through blocking PI3k/Akt and MEK/ERK signaling pathways in human epidermal keratinocytes. Pigment Cell Melanoma Res 2014; 27:1063-74. [DOI: 10.1111/pcmr.12287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/19/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Chieko Makino-Okamura
- Kobe Skin Research Department; Biosignal Research Center; Kobe University; Kobe Japan
| | - Yoko Niki
- Kobe Skin Research Department; Biosignal Research Center; Kobe University; Kobe Japan
| | - Seiji Takeuchi
- Division of Dermatology; Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| | - Chikako Nishigori
- Division of Dermatology; Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| | - Lieve Declercq
- Biological Research Department Europe & Asia; Estée Lauder Companies; Oevel Belgium
| | | | - Naoaki Saito
- Kobe Skin Research Department; Biosignal Research Center; Kobe University; Kobe Japan
| |
Collapse
|
72
|
Syndecan promotes axon regeneration by stabilizing growth cone migration. Cell Rep 2014; 8:272-83. [PMID: 25001284 DOI: 10.1016/j.celrep.2014.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 04/29/2014] [Accepted: 06/05/2014] [Indexed: 01/22/2023] Open
Abstract
Growth cones facilitate the repair of nervous system damage by providing the driving force for axon regeneration. Using single-neuron laser axotomy and in vivo time-lapse imaging, we show that syndecan, a heparan sulfate (HS) proteoglycan, is required for growth cone function during axon regeneration in C. elegans. In the absence of syndecan, regenerating growth cones form but are unstable and collapse, decreasing the effective growth rate and impeding regrowth to target cells. We provide evidence that syndecan has two distinct functions during axon regeneration: (1) a canonical function in axon guidance that requires expression outside the nervous system and depends on HS chains and (2) an intrinsic function in growth cone stabilization that is mediated by the syndecan core protein, independently of HS. Thus, syndecan is a regulator of a critical choke point in nervous system repair.
Collapse
|
73
|
The PDZ-binding domain of syndecan-2 inhibits LFA-1 high-affinity conformation. Cell Signal 2014; 26:1489-99. [DOI: 10.1016/j.cellsig.2014.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/16/2014] [Indexed: 01/13/2023]
|
74
|
Croisé P, Estay-Ahumada C, Gasman S, Ory S. Rho GTPases, phosphoinositides, and actin: a tripartite framework for efficient vesicular trafficking. Small GTPases 2014; 5:e29469. [PMID: 24914539 DOI: 10.4161/sgtp.29469] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rho GTPases are well known regulators of the actin cytoskeleton that act by binding and activating actin nucleators. They are therefore involved in many actin-based processes, including cell migration, cell polarity, and membrane trafficking. With the identification of phosphoinositide kinases and phosphatases as potential binding partners or effectors, Rho GTPases also appear to participate in the regulation of phosphoinositide metabolism. Since both actin dynamics and phosphoinositide turnover affect the efficiency and the fidelity of vesicle transport between cell compartments, Rho GTPases have emerged as critical players in membrane trafficking. Rho GTPase activity, actin remodeling, and phosphoinositide metabolism need to be coordinated in both space and time to ensure the progression of vesicles along membrane trafficking pathways. Although most molecular pathways are still unclear, in this review, we will highlight recent advances made in our understanding of how Rho-dependent signaling pathways organize actin dynamics and phosphoinositides and how phosphoinositides potentially provide negative feedback to Rho GTPases during endocytosis, exocytosis and membrane exchange between intracellular compartments.
Collapse
Affiliation(s)
- Pauline Croisé
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| | - Catherine Estay-Ahumada
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| | - Stéphane Gasman
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| | - Stéphane Ory
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| |
Collapse
|
75
|
Damoulakis G, Gambardella L, Rossman KL, Lawson CD, Anderson KE, Fukui Y, Welch HC, Der CJ, Stephens LR, Hawkins PT. P-Rex1 directly activates RhoG to regulate GPCR-driven Rac signalling and actin polarity in neutrophils. J Cell Sci 2014; 127:2589-600. [PMID: 24659802 DOI: 10.1242/jcs.153049] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) regulate the organisation of the actin cytoskeleton by activating the Rac subfamily of small GTPases. The guanine-nucleotide-exchange factor (GEF) P-Rex1 is engaged downstream of GPCRs and phosphoinositide 3-kinase (PI3K) in many cell types, and promotes tumorigenic signalling and metastasis in breast cancer and melanoma, respectively. Although P-Rex1-dependent functions have been attributed to its GEF activity towards Rac1, we show that P-Rex1 also acts as a GEF for the Rac-related GTPase RhoG, both in vitro and in GPCR-stimulated primary mouse neutrophils. Furthermore, loss of either P-Rex1 or RhoG caused equivalent reductions in GPCR-driven Rac activation and Rac-dependent NADPH oxidase activity, suggesting they both function upstream of Rac in this system. Loss of RhoG also impaired GPCR-driven recruitment of the Rac GEF DOCK2, and F-actin, to the leading edge of migrating neutrophils. Taken together, our results reveal a new signalling hierarchy in which P-Rex1, acting as a GEF for RhoG, regulates Rac-dependent functions indirectly through RhoG-dependent recruitment of DOCK2. These findings thus have broad implications for our understanding of GPCR signalling to Rho GTPases and the actin cytoskeleton.
Collapse
Affiliation(s)
- George Damoulakis
- Inositide laboratory, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Laure Gambardella
- Inositide laboratory, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Kent L Rossman
- Lineberger Comprehensive Cancer Center and Department of Pharmacology, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, North Carolina, USA
| | - Campbell D Lawson
- Inositide laboratory, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Karen E Anderson
- Inositide laboratory, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Yoshinori Fukui
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Heidi C Welch
- Inositide laboratory, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Channing J Der
- Lineberger Comprehensive Cancer Center and Department of Pharmacology, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, North Carolina, USA
| | - Len R Stephens
- Inositide laboratory, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Phillip T Hawkins
- Inositide laboratory, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
76
|
Eskova A, Knapp B, Matelska D, Reusing S, Arjonen A, Lisauskas T, Pepperkok R, Russell R, Eils R, Ivaska J, Kaderali L, Erfle H, Starkuviene V. An RNAi screen identifies KIF15 as a novel regulator of the endocytic trafficking of integrin. J Cell Sci 2014; 127:2433-47. [PMID: 24659801 DOI: 10.1242/jcs.137281] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
α2β1 integrin is one of the most important collagen-binding receptors, and it has been implicated in numerous thrombotic and immune diseases. α2β1 integrin is a potent tumour suppressor, and its downregulation is associated with increased metastasis and poor prognosis in breast cancer. Currently, very little is known about the mechanism that regulates the cell-surface expression and trafficking of α2β1 integrin. Here, using a quantitative fluorescence-microscopy-based RNAi assay, we investigated the impact of 386 cytoskeleton-associated or -regulatory genes on α2 integrin endocytosis and found that 122 of these affected the intracellular accumulation of α2 integrin. Of these, 83 were found to be putative regulators of α2 integrin trafficking and/or expression, with no observed effect on the internalization of epidermal growth factor (EGF) or transferrin. Further interrogation and validation of the siRNA screen revealed a role for KIF15, a microtubule-based molecular motor, as a significant inhibitor of the endocytic trafficking of α2 integrin. Our data suggest a novel role for KIF15 in mediating plasma membrane localization of the alternative clathrin adaptor Dab2, thus impinging on pathways that regulate α2 integrin internalization.
Collapse
Affiliation(s)
| | - Bettina Knapp
- Medical Faculty, Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Dorota Matelska
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Susanne Reusing
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Antti Arjonen
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | | | | | - Robert Russell
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Roland Eils
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany Integrative Bioinformatics and Systems Biology, DKFZ, BioQuant and Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Johanna Ivaska
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Lars Kaderali
- Medical Faculty, Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Holger Erfle
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
77
|
Fogh BS, Multhaupt HAB, Couchman JR. Protein kinase C, focal adhesions and the regulation of cell migration. J Histochem Cytochem 2014; 62:172-84. [PMID: 24309511 PMCID: PMC3935447 DOI: 10.1369/0022155413517701] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/21/2013] [Indexed: 12/18/2022] Open
Abstract
Cell adhesion to extracellular matrix is a complex process involving protrusive activity driven by the actin cytoskeleton, engagement of specific receptors, followed by signaling and cytoskeletal organization. Thereafter, contractile and endocytic/recycling activities may facilitate migration and adhesion turnover. Focal adhesions, or focal contacts, are widespread organelles at the cell-matrix interface. They arise as a result of receptor interactions with matrix ligands, together with clustering. Recent analysis shows that focal adhesions contain a very large number of protein components in their intracellular compartment. Among these are tyrosine kinases, which have received a great deal of attention, whereas the serine/threonine kinase protein kinase C has received much less. Here the status of protein kinase C in focal adhesions and cell migration is reviewed, together with discussion of its roles and potential substrates.
Collapse
Affiliation(s)
- Betina S Fogh
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | | |
Collapse
|
78
|
Abstract
Most single animal cells have an internal vector that determines where recycling membrane is added to the cell's surface. Because of the specific molecular composition of this added membrane, a dynamic asymmetry is formed on the surface of the cell. The consequences of this dynamic asymmetry are discussed, together with what they imply for how cells move. The polarity of a single-celled embryo, such as that of the nematode Caenorhabditis elegans, is explored in a similar framework.
Collapse
Affiliation(s)
- Mark S Bretscher
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| |
Collapse
|
79
|
Song J, Kim JS, Choi SS, Kim Y. Structural Effects of the GXXXG Motif on the Oligomer Formation of Transmembrane Domain of Syndecan-4. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.12.3577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
80
|
Baldwin AK, Cain SA, Lennon R, Godwin A, Merry CLR, Kielty CM. Epithelial-mesenchymal status influences how cells deposit fibrillin microfibrils. J Cell Sci 2013; 127:158-71. [PMID: 24190885 PMCID: PMC3874785 DOI: 10.1242/jcs.134270] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Here, we show that epithelial–mesenchymal status influences how cells deposit extracellular matrix. Retinal pigmented epithelial (RPE) cells that expressed high levels of E-cadherin and had cell–cell junctions rich in zona occludens (ZO)-1, β-catenin and heparan sulfate, required syndecan-4 but not fibronectin or protein kinase C α (PKCα) to assemble extracellular matrix (fibrillin microfibrils and perlecan). In contrast, RPE cells that strongly expressed mesenchymal smooth muscle α-actin but little ZO-1 or E-cadherin, required fibronectin (like fibroblasts) and PKCα, but not syndecan-4. Integrins α5β1 and/or α8β1 and actomyosin tension were common requirements for microfibril deposition, as was heparan sulfate biosynthesis. TGFβ, which stimulates epithelial–mesenchymal transition, altered gene expression and overcame the dependency on syndecan-4 for microfibril deposition in epithelial RPE cells, whereas blocking cadherin interactions disrupted microfibril deposition. Renal podocytes had a transitional phenotype with pericellular β-catenin but little ZO-1; they required syndecan-4 and fibronectin for efficient microfibril deposition. Thus, epithelial–mesenchymal status modulates microfibril deposition.
Collapse
Affiliation(s)
- Andrew K Baldwin
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
81
|
Taniguchi Ishikawa E, Chang KH, Nayak R, Olsson HA, Ficker AM, Dunn SK, Madhu MN, Sengupta A, Whitsett JA, Grimes HL, Cancelas JA. Klf5 controls bone marrow homing of stem cells and progenitors through Rab5-mediated β1/β2-integrin trafficking. Nat Commun 2013; 4:1660. [PMID: 23552075 PMCID: PMC3627399 DOI: 10.1038/ncomms2645] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 02/22/2013] [Indexed: 01/05/2023] Open
Abstract
Kruppel-like factor 5 (Klf5) regulates pluripotent stem cell self-renewal but its role in somatic stem cells is unknown. Here we show that Klf5 deficient haematopoietic stem cells and progenitors (HSC/P) fail to engraft after transplantation. This HSC/P defect is associated with impaired bone marrow homing and lodging and decreased retention in bone marrow, and with decreased adhesion to fibronectin and expression of membrane-bound β1/β2-integrins. In vivo inducible gain-of-function of Klf5 in HSCs increases HSC/P adhesion. The expression of Rab5 family members, mediators of β1/β2-integrin recycling in the early endosome, is decreased in Klf5Δ/Δ HSC/Ps. Klf5 binds directly to the promoter of Rab5a/b and overexpression of Rab5b rescues the expression of activated β1/β2-integrins, adhesion and bone marrow homing of Klf5Δ/Δ HSC/Ps. Altogether, these data indicate that Klf5 is indispensable for adhesion, homing, lodging and retention of HSC/Ps in the bone marrow through Rab5-dependent post-translational regulation of β1/β2 integrins.
Collapse
Affiliation(s)
- E Taniguchi Ishikawa
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0055, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Fortin Ensign SP, Mathews IT, Symons MH, Berens ME, Tran NL. Implications of Rho GTPase Signaling in Glioma Cell Invasion and Tumor Progression. Front Oncol 2013; 3:241. [PMID: 24109588 PMCID: PMC3790103 DOI: 10.3389/fonc.2013.00241] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/02/2013] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GB) is the most malignant of primary adult brain tumors, characterized by a highly locally invasive cell population, as well as abundant proliferative cells, neoangiogenesis, and necrosis. Clinical intervention with chemotherapy or radiation may either promote or establish an environment for manifestation of invasive behavior. Understanding the molecular drivers of invasion in the context of glioma progression may be insightful in directing new treatments for patients with GB. Here, we review current knowledge on Rho family GTPases, their aberrant regulation in GB, and their effect on GB cell invasion and tumor progression. Rho GTPases are modulators of cell migration through effects on actin cytoskeleton rearrangement; in non-neoplastic tissue, expression and activation of Rho GTPases are normally under tight regulation. In GB, Rho GTPases are deregulated, often via hyperactivity or overexpression of their activators, Rho GEFs. Downstream effectors of Rho GTPases have been shown to promote invasiveness and, importantly, glioma cell survival. The study of aberrant Rho GTPase signaling in GB is thus an important investigation of cell invasion as well as treatment resistance and disease progression.
Collapse
Affiliation(s)
- Shannon Patricia Fortin Ensign
- Cancer and Cell Biology Division, Translational Genomics Research Institute , Phoenix, AZ , USA ; Cancer Biology Graduate Interdisciplinary Program, University of Arizona , Tucson, AZ , USA
| | | | | | | | | |
Collapse
|
83
|
Abstract
Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast growth factor receptors (FGFR1-FGFR4) and its ability to independently activate signaling pathways upon ligand binding. As an FGFR co-receptor, syndecan-4 strengthens the duration and intensity of downstream signaling upon ligand binding; this is particularly evident with regard to mitogen-activated protein kinase (MAPK) signaling. In contrast, syndecan-4 also functions as an independent receptor for heparin-binding growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs). These signaling cascades affect canonical signaling components, such as the mammalian target of rapamycin (mTOR), AKT1 and the Rho family of GTPases. In combination with the integrin family of proteins, syndecan-4 is also able to form physical connections between the extracellular matrix (ECM) and cytoskeletal signaling proteins, and it has a key role in regulation of integrin turnover. This unique versatility of the interactions of syndecan-4 is characterized in this Cell Science at a Glance article and illustrated in the accompanying poster.
Collapse
Affiliation(s)
- Arye Elfenbein
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
84
|
The less-often-traveled surface of stem cells: caveolin-1 and caveolae in stem cells, tissue repair and regeneration. Stem Cell Res Ther 2013; 4:90. [PMID: 23899671 PMCID: PMC3854699 DOI: 10.1186/scrt276] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Stem cells are an important resource for tissue repair and regeneration. While a great deal of attention has focused on derivation and molecular regulation of stem cells, relatively little research has focused on how the subcellular structure and composition of the cell membrane influences stem cell activities such as proliferation, differentiation and homing. Caveolae are specialized membrane lipid rafts coated with caveolin scaffolding proteins, which can regulate cholesterol transport and the activity of cell signaling receptors and their downstream effectors. Caveolin-1 is involved in the regulation of many cellular processes, including growth, control of mitochondrial antioxidant levels, migration and senescence. These activities are of relevance to stem cell biology, and in this review evidence for caveolin-1 involvement in stem cell biology is summarized. Altered stem and progenitor cell populations in caveolin-1 null mice suggest that caveolin-1 can regulate stem cell proliferation, and in vitro studies with isolated stem cells suggest that caveolin-1 regulates stem cell differentiation. The available evidence leads us to hypothesize that caveolin-1 expression may stabilize the differentiated and undifferentiated stem cell phenotype, and transient downregulation of caveolin-1 expression may be required for transition between the two. Such regulation would probably be critical in regenerative applications of adult stem cells and during tissue regeneration. We also review here the temporal changes in caveolin-1 expression reported during tissue repair. Delayed muscle regeneration in transgenic mice overexpressing caveolin-1 as well as compromised cardiac, brain and liver tissue repair and delayed wound healing in caveolin-1 null mice suggest that caveolin-1 plays an important role in tissue repair, but that this role may be negative or positive depending on the tissue type and the nature of the repair process. Finally, we also discuss how caveolin-1 quiescence-inducing activities and effects on mitochondrial antioxidant levels may influence stem cell aging.
Collapse
|
85
|
Jacquemet G, Humphries MJ, Caswell PT. Role of adhesion receptor trafficking in 3D cell migration. Curr Opin Cell Biol 2013; 25:627-32. [PMID: 23797030 PMCID: PMC3759831 DOI: 10.1016/j.ceb.2013.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/13/2013] [Accepted: 05/31/2013] [Indexed: 01/28/2023]
Abstract
Adhesion receptor trafficking makes a major contribution to cell migration in 3D. Integrin and syndecan receptors synergise to control signals for migration. Specific integrin heterodimers perform different roles during migration.
This review discusses recent advances in our understanding of adhesion receptor trafficking in vitro, and extrapolates them as far as what is currently possible towards an understanding of migration in three dimensions in vivo. Our specific focus is the mechanisms for endocytosis and recycling of the two major classes of cell-matrix adhesion receptors, integrins and syndecans. We review the signalling networks that are employed to regulate trafficking and conversely the effects of trafficking on signalling itself. We then define the contribution that this element of the migration process makes to processes such as wound healing and tumour invasion.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | | | | |
Collapse
|
86
|
Escobedo N, Contreras O, Muñoz R, Farías M, Carrasco H, Hill C, Tran U, Pryor SE, Wessely O, Copp AJ, Larraín J. Syndecan 4 interacts genetically with Vangl2 to regulate neural tube closure and planar cell polarity. Development 2013; 140:3008-17. [PMID: 23760952 PMCID: PMC3699283 DOI: 10.1242/dev.091173] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Syndecan 4 (Sdc4) is a cell-surface heparan sulfate proteoglycan (HSPG) that regulates gastrulation, neural tube closure and directed neural crest migration in Xenopus development. To determine whether Sdc4 participates in Wnt/PCP signaling during mouse development, we evaluated a possible interaction between a null mutation of Sdc4 and the loop-tail allele of Vangl2. Sdc4 is expressed in multiple tissues, but particularly in the non-neural ectoderm, hindgut and otic vesicles. Sdc4;Vangl2Lp compound mutant mice have defective spinal neural tube closure, disrupted orientation of the stereocilia bundles in the cochlea and delayed wound healing, demonstrating a strong genetic interaction. In Xenopus, co-injection of suboptimal amounts of Sdc4 and Vangl2 morpholinos resulted in a significantly greater proportion of embryos with defective neural tube closure than each individual morpholino alone. To probe the mechanism of this interaction, we overexpressed or knocked down Vangl2 function in HEK293 cells. The Sdc4 and Vangl2 proteins colocalize, and Vangl2, particularly the Vangl2Lp mutant form, diminishes Sdc4 protein levels. Conversely, Vangl2 knockdown enhances Sdc4 protein levels. Overall HSPG steady-state levels were regulated by Vangl2, suggesting a molecular mechanism for the genetic interaction in which Vangl2Lp/+ enhances the Sdc4-null phenotype. This could be mediated via heparan sulfate residues, as Vangl2Lp/+ embryos fail to initiate neural tube closure and develop craniorachischisis (usually seen only in Vangl2Lp/Lp) when cultured in the presence of chlorate, a sulfation inhibitor. These results demonstrate that Sdc4 can participate in the Wnt/PCP pathway, unveiling its importance during neural tube closure in mammalian embryos.
Collapse
Affiliation(s)
- Noelia Escobedo
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340 Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Bridgewater RE, Norman JC, Caswell PT. Integrin trafficking at a glance. J Cell Sci 2013; 125:3695-701. [PMID: 23027580 DOI: 10.1242/jcs.095810] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rebecca E Bridgewater
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
88
|
Briñas L, Vassilopoulos S, Bonne G, Guicheney P, Bitoun M. Role of dynamin 2 in the disassembly of focal adhesions. J Mol Med (Berl) 2013; 91:803-9. [DOI: 10.1007/s00109-013-1040-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 11/29/2022]
|
89
|
Gvaramia D, Blaauboer ME, Hanemaaijer R, Everts V. Role of caveolin-1 in fibrotic diseases. Matrix Biol 2013; 32:307-15. [PMID: 23583521 DOI: 10.1016/j.matbio.2013.03.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 12/20/2022]
Abstract
Fibrosis underlies the pathogenesis of numerous diseases and leads to severe damage of vital body organs and, frequently, to death. Better understanding of the mechanisms resulting in fibrosis is essential for developing appropriate treatment solutions and is therefore of upmost importance. Recent evidence suggests a significant antifibrotic potential of an integral membrane protein, caveolin-1. While caveolin-1 has been widely studied for its role in the regulation of cell signaling and endocytosis, its possible implication in fibrosis remains largely unclear. In this review we survey involvement of caveolin-1 in various cellular processes and highlight different aspects of its antifibrotic activity. We hypothesize that caveolin-1 conveys a homeostatic function in the process of fibrosis by (a) regulating TGF-β1 and its downstream signaling; (b) regulating critical cellular processes involved in tissue repair, such as migration, adhesion and cellular response to mechanical stress; and (c) antagonizing profibrotic processes, such as proliferation. Finally, we consider this homeostatic function of caveolin-1 as a possible novel approach in treatment of fibroproliferative diseases.
Collapse
Affiliation(s)
- David Gvaramia
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
90
|
Brooks R, Williamson R, Bass M. Syndecan-4 independently regulates multiple small GTPases to promote fibroblast migration during wound healing. Small GTPases 2013; 3:73-9. [PMID: 22790193 PMCID: PMC3408980 DOI: 10.4161/sgtp.19301] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Upon wounding, syndecan-4 detects the appearance of fibronectin in the wound bed and mediates regulation of the small GTPases, Rac1, RhoA and RhoG. Cohesive regulation of these molecules results in cycles of membrane protrusion and cytoskeletal contraction, and triggers the endocytosis of α5β1-integrin, which collectively lead to immigration of fibroblasts into the wound bed. In this manuscript we identify the regulation of a fourth GTPase, Arf6 that is responsible for α5β1-integrin recycling and thereby completes the cycle of syndecan-4-regulated integrin trafficking. We demonstrate that each of the GTPase signals can be regulated by syndecan-4, but that they are independent of one another. By doing so we identify syndecan-4 as the coordinating center of pro-migratory signals.
Collapse
|
91
|
Syndecan-4 phosphorylation is a control point for integrin recycling. Dev Cell 2013; 24:472-85. [PMID: 23453597 PMCID: PMC3605578 DOI: 10.1016/j.devcel.2013.01.027] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/16/2013] [Accepted: 01/31/2013] [Indexed: 11/12/2022]
Abstract
Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration.
Collapse
|
92
|
Cordeiro JV, Jacinto A. The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat Rev Mol Cell Biol 2013; 14:249-62. [PMID: 23443750 DOI: 10.1038/nrm3541] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wound healing is an essential biological process that comprises sequential steps aimed at restoring the architecture and function of damaged cells and tissues. This process begins with conserved damage signals, such as Ca(2+), hydrogen peroxide (H2O2) and ATP, that diffuse through epithelial tissues and initiate immediate gene transcription-independent cellular effects, including cell shape changes, the formation of functional actomyosin structures and the recruitment of immune cells. These events integrate the ensuing transcription of specific wound response genes that further advance the wound healing response. The immediate importance of transcription-independent damage signals illustrates that healing a wound begins as soon as damage occurs.
Collapse
Affiliation(s)
- João V Cordeiro
- Centro de Estudos de Doenças Crónicas (CEDOC), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | | |
Collapse
|
93
|
Kong M, Muñoz N, Valdivia A, Alvarez A, Herrera-Molina R, Cárdenas A, Schneider P, Burridge K, Quest AFG, Leyton L. Thy-1-mediated cell-cell contact induces astrocyte migration through the engagement of αVβ3 integrin and syndecan-4. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1409-20. [PMID: 23481656 DOI: 10.1016/j.bbamcr.2013.02.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/29/2013] [Accepted: 02/15/2013] [Indexed: 01/06/2023]
Abstract
Cell adhesion to the extracellular matrix proteins occurs through interactions with integrins that bind to Arg-Gly-Asp (RGD) tripeptides, and syndecan-4, which recognizes the heparin-binding domain of other proteins. Both receptors trigger signaling pathways, including those that activate RhoGTPases such as RhoA and Rac1. This sequence of events modulates cell adhesion to the ECM and cell migration. Using a neuron-astrocyte model, we have reported that the neuronal protein Thy-1 engages αVβ3 integrin and syndecan-4 to induce RhoA activation and strong astrocyte adhesion to their underlying substrate. Thus, because cell-cell interactions and strong cell attachment to the matrix are considered antagonistic to cell migration, we hypothesized that Thy-1 stimulation of astrocytes should preclude cell migration. Here, we studied the effect of Thy-1 expressing neurons on astrocyte polarization and migration using a wound-healing assay and immunofluorescence analysis. Signaling molecules involved were studied by affinity precipitation, western blotting and the usage of specific antibodies. Intriguingly, Thy-1 interaction with its two receptors was found to increase astrocyte polarization and migration. The latter events required interactions of these receptors with both the RGD-like sequence and the heparin-binding domain of Thy-1. Additionally, prolonged Thy-1-receptor interactions inhibited RhoA activation while activating FAK, PI3K and Rac1. Therefore, sustained engagement of integrin and syndecan-4 with the neuronal surface protein Thy-1 induces astrocyte migration. Interestingly we identify here, a cell-cell interaction that despite initially inducing strong cell attachment, favors cell migration upon persistent stimulation by engaging the same signaling receptors and molecules as those utilized by the extracellular matrix proteins to stimulate cell movement.
Collapse
Affiliation(s)
- Milene Kong
- Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Lee MJ, Shin JO, Jung HS. Thy-1 knockdown retards wound repair in mouse skin. J Dermatol Sci 2013; 69:95-104. [DOI: 10.1016/j.jdermsci.2012.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/29/2012] [Accepted: 11/16/2012] [Indexed: 12/15/2022]
|
95
|
New insights into adhesion signaling in bone formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:1-68. [PMID: 23890379 DOI: 10.1016/b978-0-12-407695-2.00001-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mineralized tissues that are protective scaffolds in the most primitive species have evolved and acquired more specific functions in modern animals. These are as diverse as support in locomotion, ion homeostasis, and precise hormonal regulation. Bone formation is tightly controlled by a balance between anabolism, in which osteoblasts are the main players, and catabolism mediated by the osteoclasts. The bone matrix is deposited in a cyclic fashion during homeostasis and integrates several environmental cues. These include diffusible elements that would include estrogen or growth factors and physicochemical parameters such as bone matrix composition, stiffness, and mechanical stress. Therefore, the microenvironment is of paramount importance for controlling this delicate equilibrium. Here, we provide an overview of the most recent data highlighting the role of cell-adhesion molecules during bone formation. Due to the very large scope of the topic, we focus mainly on the role of the integrin receptor family during osteogenesis. Bone phenotypes of some deficient mice as well as diseases of human bones involving cell adhesion during this process are discussed in the context of bone physiology.
Collapse
|
96
|
Jin J, Sison K, Li C, Tian R, Wnuk M, Sung HK, Jeansson M, Zhang C, Tucholska M, Jones N, Kerjaschki D, Shibuya M, Fantus IG, Nagy A, Gerber HP, Ferrara N, Pawson T, Quaggin SE. Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell 2012; 151:384-99. [PMID: 23063127 DOI: 10.1016/j.cell.2012.08.037] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 08/02/2012] [Accepted: 08/31/2012] [Indexed: 01/06/2023]
Abstract
Vascular endothelial growth factor and its receptors, FLK1/KDR and FLT1, are key regulators of angiogenesis. Unlike FLK1/KDR, the role of FLT1 has remained elusive. FLT1 is produced as soluble (sFLT1) and full-length isoforms. Here, we show that pericytes from multiple tissues produce sFLT1. To define the biologic role of sFLT1, we chose the glomerular microvasculature as a model system. Deletion of Flt1 from specialized glomerular pericytes, known as podocytes, causes reorganization of their cytoskeleton with massive proteinuria and kidney failure, characteristic features of nephrotic syndrome in humans. The kinase-deficient allele of Flt1 rescues this phenotype, demonstrating dispensability of the full-length isoform. Using cell imaging, proteomics, and lipidomics, we show that sFLT1 binds to the glycosphingolipid GM3 in lipid rafts on the surface of podocytes, promoting adhesion and rapid actin reorganization. sFLT1 also regulates pericyte function in vessels outside of the kidney. Our findings demonstrate an autocrine function for sFLT1 to control pericyte behavior.
Collapse
Affiliation(s)
- Jing Jin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Syndecans are transmembrane heparan sulphate proteoglycans (HSPGs) that have gained increasing interest as regulators of a variety of tissue responses, including cartilage development and remodelling. These proteoglycans are composed of a core protein to which extracellular glycosaminoglycan (GAG) chains are attached. Through these GAG chains, syndecans can interact with a variety of extracellular matrix molecules and bind to a number of soluble mediators including morphogens, growth factors, chemokines and cytokines. The structure and post-translational modification of syndecan GAG chains seem to differ not only from cell to cell, but also during different stages of cellular differentiation, leading to a complexity of syndecan function that is unique among membrane-bound HSPGs. Unlike other membrane-bound HSPGs, syndecans contain intracellular signalling motifs that can initiate signalling mainly through protein kinase C. This Review summarizes our knowledge of the biology of syndecans and the mechanisms by which binding of molecules to syndecans exert different biological effects, particularly in the joints. On the basis of the structural and functional peculiarities of syndecans, we discuss the regulation of syndecans and their roles in the developing joint as well as during degenerative and inflammatory cartilage remodelling as understood from expression studies and functional analyses involving syndecan-deficient mice.
Collapse
Affiliation(s)
- Thomas Pap
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Domagkstraße 3, D-48149 Münster, Germany.
| | | |
Collapse
|
98
|
Ranzato E, Martinotti S, Burlando B. Epithelial mesenchymal transition traits in honey-driven keratinocyte wound healing: comparison among different honeys. Wound Repair Regen 2012; 20:778-85. [PMID: 22882448 DOI: 10.1111/j.1524-475x.2012.00825.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/08/2012] [Indexed: 01/21/2023]
Abstract
Honey has been used since ancient times for wound repair, but the subjacent mechanisms are almost unknown. We have tried to elucidate the modulatory role of honey in an in vitro model of HaCaT keratinocyte re-epithelialization by using acacia, buckwheat, and manuka honeys. Scratch wound and migration assays showed similar increases of re-epithelialization rates and chemoattractant effects in the presence of different types of honey (0.1%, v/v). However, the use of kinase and calcium inhibitors suggested the occurrence of different mechanisms. All honeys activated cyclin-dependent kinase 2, focal adhesion kinase, and rasGAP SH3 binding protein 1. However, vasodilator-stimulated phosphoprotein, integrin-β3, cdc25C, and p42/44 mitogen activated protein kinase showed variable activation pattern. Re-epithelialization recapitulates traits of epithelial-mesenchymal transition (EMT) and the induction of this process was evaluated by a polymerase chain reaction array, revealing marked differences among honeys. Manuka induced few significant changes in the expression of EMT-regulatory genes, while the other two honeys acted on a wider number of genes and partially showed a common profile of up- and down-regulation. In conclusion, our findings have shown that honey-driven wound repair goes through the activation of keratinocyte re-epithelialization, but the ability of inducing EMT varies sensibly among honeys, according to their botanical origin.
Collapse
Affiliation(s)
- Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, University of Piemonte Orientale Amedeo Avogadro, Alessandria, Italy.
| | | | | |
Collapse
|
99
|
Roper JA, Williamson RC, Bass MD. Syndecan and integrin interactomes: large complexes in small spaces. Curr Opin Struct Biol 2012; 22:583-90. [PMID: 22841476 PMCID: PMC3712168 DOI: 10.1016/j.sbi.2012.07.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/15/2012] [Accepted: 07/04/2012] [Indexed: 11/30/2022]
Abstract
The syndecan family of transmembrane proteoglycans cooperate with integrins to regulate both early and late events in adhesion formation. The heparan sulphate chains substituted on to the syndecan ectodomains are capable of engaging ligands over great distance, while the protein core spans the plasma membrane and initiates cytoplasmic signals through a short cytoplasmic tail. These properties create a spatial paradox. The volume of the heparan sulphate chains greatly exceeds that of the integrins with which it cooperates, while the short cytodomain must bind to multiple cytoplasmic factors, despite being long enough to bind only one or two. In this review we consider the structural rearrangements that a cell undertakes to overcome spatial restrictions and compare the interactomes of syndecans and integrins to gain insight into the composition of adhesions and how they are regulated over time.
Collapse
Affiliation(s)
- James A Roper
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
100
|
Pouwels J, Nevo J, Pellinen T, Ylänne J, Ivaska J. Negative regulators of integrin activity. J Cell Sci 2012; 125:3271-80. [PMID: 22822081 DOI: 10.1242/jcs.093641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Integrins are heterodimeric transmembrane adhesion receptors composed of α- and β-subunits. They are ubiquitously expressed and have key roles in a number of important biological processes, such as development, maintenance of tissue homeostasis and immunological responses. The activity of integrins, which indicates their affinity towards their ligands, is tightly regulated such that signals inside the cell cruicially regulate the switching between active and inactive states. An impaired ability to activate integrins is associated with many human diseases, including bleeding disorders and immune deficiencies, whereas inappropriate integrin activation has been linked to inflammatory disorders and cancer. In recent years, the molecular details of integrin 'inside-out' activation have been actively investigated. Binding of cytoplasmic proteins, such as talins and kindlins, to the cytoplasmic tail of β-integrins is widely accepted as being the crucial step in integrin activation. By contrast, much less is known with regard to the counteracting mechanism involved in switching integrins into an inactive conformation. In this Commentary, we aim to discuss the known mechanisms of integrin inactivation and the molecules involved.
Collapse
Affiliation(s)
- Jeroen Pouwels
- Centre for Biotechnology, University of Turku, Turku, Finland
| | | | | | | | | |
Collapse
|