51
|
Gok MO, Speer NO, Henne WM, Friedman JR. ER-localized phosphatidylethanolamine synthase plays a conserved role in lipid droplet formation. Mol Biol Cell 2022; 33:ar11. [PMID: 34818062 PMCID: PMC8886813 DOI: 10.1091/mbc.e21-11-0558-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The asymmetric distribution of phospholipids in membranes is a fundamental principle of cellular compartmentalization and organization. Phosphatidylethanolamine (PE), a nonbilayer phospholipid that contributes to organelle shape and function, is synthesized at several subcellular localizations via semiredundant pathways. Previously, we demonstrated in budding yeast that the PE synthase Psd1, which primarily operates on the mitochondrial inner membrane, is additionally targeted to the ER. While ER-localized Psd1 is required to support cellular growth in the absence of redundant pathways, its physiological function is unclear. We now demonstrate that ER-localized Psd1 sublocalizes on the ER to lipid droplet (LD) attachment sites and show it is specifically required for normal LD formation. We also find that the role of phosphatidylserine decarboxylase (PSD) enzymes in LD formation is conserved in other organisms. Thus we have identified PSD enzymes as novel regulators of LDs and demonstrate that both mitochondria and LDs in yeast are organized and shaped by the spatial positioning of a single PE synthesis enzyme.
Collapse
Affiliation(s)
- Mehmet Oguz Gok
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Natalie Ortiz Speer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - W Mike Henne
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jonathan R Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
52
|
Chen S, Roberts MA, Chen CY, Markmiller S, Wei HG, Yeo GW, Granneman JG, Olzmann JA, Ferro-Novick S. VPS13A and VPS13C Influence Lipid Droplet Abundance. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:25152564221125613. [PMID: 36147729 PMCID: PMC9491623 DOI: 10.1177/25152564221125613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022]
Abstract
Lipid transfer proteins mediate the exchange of lipids between closely apposed membranes at organelle contact sites and play key roles in lipid metabolism, membrane homeostasis, and cellular signaling. A recently discovered novel family of lipid transfer proteins, which includes the VPS13 proteins (VPS13A-D), adopt a rod-like bridge conformation with an extended hydrophobic groove that enables the bulk transfer of membrane lipids for membrane growth. Loss of function mutations in VPS13A and VPS13C cause chorea acanthocytosis and Parkinson's disease, respectively. VPS13A and VPS13C localize to multiple organelle contact sites, including endoplasmic reticulum (ER) - lipid droplet (LD) contact sites, but the functional roles of these proteins in LD regulation remains mostly unexplored. Here we employ CRISPR-Cas9 genome editing to generate VPS13A and VPS13C knockout cell lines in U-2 OS cells via deletion of exon 2 and introduction of an early frameshift. Analysis of LD content in these cell lines revealed that loss of either VPS13A or VPS13C results in reduced LD abundance under oleate-stimulated conditions. These data implicate two lipid transfer proteins, VPS13A and VPS13C, in LD regulation.
Collapse
Affiliation(s)
- Shuliang Chen
- Department of Cellular and Molecular
Medicine, University of California San
Diego, La Jolla, CA, USA
| | - Melissa A. Roberts
- Department of Molecular and Cell
Biology, University of California,
Berkeley, CA, USA
- Department of Nutritional Sciences and
Toxicology, University of California,
Berkeley, CA, USA
| | - Chun-Yuan Chen
- Department of Cellular and Molecular
Medicine, University of California San
Diego, La Jolla, CA, USA
| | - Sebastian Markmiller
- Department of Cellular and Molecular
Medicine, University of California San
Diego, La Jolla, CA, USA
| | - Hong-Guang Wei
- Center for Integrative Metabolic and
Endocrine Research, Wayne State University School of
Medicine, Detroit, MI, USA
| | - Gene W. Yeo
- Department of Cellular and Molecular
Medicine, University of California San
Diego, La Jolla, CA, USA
| | - James G. Granneman
- Center for Integrative Metabolic and
Endocrine Research, Wayne State University School of
Medicine, Detroit, MI, USA
| | - James A. Olzmann
- Department of Molecular and Cell
Biology, University of California,
Berkeley, CA, USA
- Department of Nutritional Sciences and
Toxicology, University of California,
Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco,
CA, USA
| | - Susan Ferro-Novick
- Department of Cellular and Molecular
Medicine, University of California San
Diego, La Jolla, CA, USA
| |
Collapse
|
53
|
Chorlay A, Forêt L, Thiam AR. Origin of gradients in lipid density and surface tension between connected lipid droplet and bilayer. Biophys J 2021; 120:5491-5503. [PMID: 34808099 DOI: 10.1016/j.bpj.2021.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022] Open
Abstract
We combined theory and experiments to depict physical parameters modulating the phospholipid (PL) density and tension equilibrium between a bilayer and an oil droplet in contiguity. This situation is encountered during a neutral lipid (NL) droplet formation in the endoplasmic reticulum. We set up macroscopic and microscopic models to uncover free parameters and the origin of molecular interactions controlling the PL densities of the droplet monolayer and the bilayer. The established physical laws and predictions agreed with experiments performed with droplet-embedded vesicles. We found that the droplet monolayer is always by a few percent (∼10%) less packed with PLs than the bilayer. Such a density gradient arises from PL-NL interactions on the droplet, which are lower than PL-PL trans interactions in the bilayer, i.e., interactions between PLs belonging to different leaflets of the bilayer. Finally, despite the pseudo-surface tension for the water/PL acyl chains in the bilayer being higher than the water/NL surface tension, the droplet monolayer always has a higher surface tension than the bilayer because of its lower PL density. Thus, a PL density gradient is mandatory to maintain the mechanical and thermodynamic equilibrium of the droplet-bilayer continuity. Our study sheds light on the origin of the molecular interactions responsible for the unique surface properties of lipid droplets compared with cellular bilayer membranes.
Collapse
Affiliation(s)
- Aymeric Chorlay
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Lionel Forêt
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France.
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
54
|
Campomanes P, Prabhu J, Zoni V, Vanni S. Recharging your fats: CHARMM36 parameters for neutral lipids triacylglycerol and diacylglycerol. BIOPHYSICAL REPORTS 2021; 1:None. [PMID: 34939045 PMCID: PMC8651513 DOI: 10.1016/j.bpr.2021.100034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022]
Abstract
Neutral lipids (NLs) are an abundant class of cellular lipids. They are characterized by the total lack of charged chemical groups in their structure, and, as a consequence, they play a major role in intracellular lipid storage. NLs that carry a glycerol backbone, such as triacylglycerols (TGs) and diacylglycerols (DGs), are also involved in the biosynthetic pathway of cellular phospholipids, and they have recently been the subject of numerous structural investigations by means of atomistic molecular dynamics simulations. However, conflicting results on the physicochemical behavior of NLs were observed depending on the nature of the atomistic force field used. Here, we show that current phospholipid-derived CHARMM36 parameters for DGs and TGs cannot adequately reproduce interfacial properties of these NLs because of excessive hydrophilicity at the glycerol-ester region. By following a CHARMM36-consistent parameterization strategy, we develop improved parameters for both TGs and DGs that are compatible with both cutoff-based and particle mesh Ewald schemes for the treatment of Lennard-Jones interactions. We show that our improved parameters can reproduce interfacial properties of NLs and their behavior in more complex lipid assemblies. We discuss the implications of our findings in the context of intracellular lipid storage and NLs’ cellular activity.
Collapse
Affiliation(s)
- Pablo Campomanes
- Chemin du Musée 10, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Janak Prabhu
- Chemin du Musée 10, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Valeria Zoni
- Chemin du Musée 10, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stefano Vanni
- Chemin du Musée 10, Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
55
|
Park S, Im W, Pastor RW. Developing initial conditions for simulations of asymmetric membranes: a practical recommendation. Biophys J 2021; 120:5041-5059. [PMID: 34653389 DOI: 10.1016/j.bpj.2021.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/09/2021] [Accepted: 10/08/2021] [Indexed: 01/03/2023] Open
Abstract
It has been proposed that the surface tension difference between leaflets (or differential stress) in asymmetric bilayers is generally nonvanishing. This implies that there is no unique approach to generate initial conditions for simulations of asymmetric bilayers in the absence of experimentally derived constraints. Current generation methods include individual area per lipid (APL) based, leaflet surface area (SA) matching, and zero leaflet tension based (0-DS). This work adds a bilayer-based approach that aims for achieving partial chemical equilibrium by interleaflet switching of selected lipids via P21 periodic boundary conditions. Based on a recently proposed theoretical framework, we obtained expressions for tensions in asymmetric bilayers from both the bending and area strains. We also developed a quantitative measure for the energetic penalty from the differential stress. The impacts of APL-, SA-, and 0-DS-based approaches on mechanical properties are assessed for two different asymmetric bilayers. The lateral pressure profile and its moments differ significantly for each method, whereas the area compressibility modulus is relatively insensitive. Application of P21 periodic boundary conditions (APL/P21, SA/P21, and 0-DS/P21) results in better agreement in mechanical properties between asymmetric bilayers generated by APL-, SA-, and 0-DS-based approaches, in which changes are the smallest for bilayers from the SA-based method. The estimated differential stress from the theory shows good agreement with that from the simulations. These simulation results and the good agreement between the predicted and observed differential stress further support the theoretical framework in which bilayer mechanical properties are outcomes of the interplay between intrinsic bending and asymmetric lipid packing. Based on the simulation results and theoretical predictions, the SA/P21-based, or at least the SA-based (when the differential stress is small), approach is recommended as a practical method for developing initial conditions for asymmetric bilayer simulations.
Collapse
Affiliation(s)
- Sooyhung Park
- Department of Biological Sciences, Bethlehem, Pennsylvania; Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania.
| | - Wonpil Im
- Department of Biological Sciences, Bethlehem, Pennsylvania; Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
56
|
Hello from the other side: Membrane contact of lipid droplets with other organelles and subsequent functional implications. Prog Lipid Res 2021; 85:101141. [PMID: 34793861 DOI: 10.1016/j.plipres.2021.101141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Lipid droplets (LDs) are ubiquitous organelles that play crucial roles in response to physiological and environmental cues. The identification of several neutral lipid synthesizing and regulatory protein complexes have propelled significant advance on the mechanisms of LD biogenesis in the endoplasmic reticulum (ER). Increasing evidence suggests that distinct proteins and regulatory factors, which localize to membrane contact sites (MCS), are involved not only in interorganellar lipid exchange and transport, but also function in other important cellular processes, including autophagy, mitochondrial dynamics and inheritance, ion signaling and inter-regulation of these MCS. More and more tethers and molecular determinants are associated to MCS and to a diversity of cellular and pathophysiological processes, demonstrating the dynamics and importance of these junctions in health and disease. The conjugation of lipids with proteins in supramolecular complexes is known to be paramount for many biological processes, namely membrane biosynthesis, cell homeostasis, regulation of organelle division and biogenesis, and cell growth. Ultimately, this physical organization allows the contact sites to function as crucial metabolic hubs that control the occurrence of chemical reactions. This leads to biochemical and metabolite compartmentalization for the purposes of energetic efficiency and cellular homeostasis. In this review, we will focus on the structural and functional aspects of LD-organelle interactions and how they ensure signaling exchange and metabolites transfer between organelles.
Collapse
|
57
|
Wang M, Yi X. Bulging-to-Budding Transition of Lipid Droplets Confined within Vesicle Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12867-12873. [PMID: 34709829 DOI: 10.1021/acs.langmuir.1c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid droplets (LDs) are intracellular organelles that act as reservoirs for energy homeostasis and phospholipid balance between supply and consumption. In comparison with extensive studies on LD biogenesis from a biological viewpoint, little is known about the mechanical interaction between LDs and vesicles. Here we perform a systematic theoretical study on the budding and morphological evolution of an artificial LD embedded within the lipid membrane of a pressurized vesicle. It is found that LD bulging and budding depend on the bending rigidity and spontaneous curvature of the vesicle membrane, LD-vesicle interfacial interaction energy strength and size ratio, and osmotic pressure of the vesicle. Beyond critical interfacial interaction strength, the embedded LD undergoes a discontinuous shape transition from a lens-shaped bulge to a spherical protrusion connecting to the nearly spherical vesicle lumen via an infinitesimally small monolayer neck. Moreover, a positive monolayer spontaneous curvature promotes budding transition. As the vesicle becomes smaller, higher cost of the monolayer stretching energy is required for an LD to achieve budding transition. Budding phase diagrams distinguishing the embedded and budding states of the LD-vesicle complex accounting for osmotic pressure and interfacial interaction strength are established with the budding transition boundary displaying a nonmonotonic feature. Our results reveal how embedded LDs overcome soft membrane confinement and protrude, and provide fundamental insights into the clustering of nanoparticles between vesicle monolayers.
Collapse
Affiliation(s)
- Meng Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xin Yi
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
58
|
Ajjaji D, Ben M'barek K, Boson B, Omrane M, Gassama-Diagne A, Blaud M, Penin F, Diaz E, Ducos B, Cosset FL, Thiam AR. Hepatitis C virus core protein uses triacylglycerols to fold onto the endoplasmic reticulum membrane. Traffic 2021; 23:63-80. [PMID: 34729868 DOI: 10.1111/tra.12825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/16/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Lipid droplets (LDs) are involved in viral infections, but exactly how remains unclear. Here, we study the hepatitis C virus (HCV) whose core capsid protein binds to LDs but is also involved in the assembly of virions at the endoplasmic reticulum (ER) bilayer. We found that the amphipathic helix-containing domain of core, D2, senses triglycerides (TGs) rather than LDs per se. In the absence of LDs, D2 can bind to the ER membrane but only if TG molecules are present in the bilayer. Accordingly, the pharmacological inhibition of the diacylglycerol O-acyltransferase enzymes, mediating TG synthesis in the ER, inhibits D2 association with the bilayer. We found that TG molecules enable D2 to fold into alpha helices. Sequence analysis reveals that D2 resembles the apoE lipid-binding region. Our data support that TG in LDs promotes the folding of core, which subsequently relocalizes to contiguous ER regions. During this motion, core may carry TG molecules to these regions where HCV lipoviroparticles likely assemble. Consistent with this model, the inhibition of Arf1/COPI, which decreases LD surface accessibility to proteins and ER-LD material exchange, severely impedes the assembly of virions. Altogether, our data uncover a critical function of TG in the folding of core and HCV replication and reveals, more broadly, how TG accumulation in the ER may provoke the binding of soluble amphipathic helix-containing proteins to the ER bilayer.
Collapse
Affiliation(s)
- Dalila Ajjaji
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, Paris, 75005, France
| | - Kalthoum Ben M'barek
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, Paris, 75005, France
| | - Bertrand Boson
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Mohyeddine Omrane
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, Paris, 75005, France
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, Villejuif, France.,Université Paris-Sud, UMR-S 1193, Villejuif, France
| | - Magali Blaud
- Université de Paris, CiTCoM, CNRS, Paris, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, UMR 5086, CNRS, Labex Ecofect, University of Lyon, Lyon, France
| | - Elise Diaz
- High Throughput qPCR Core Facility of the ENS, IBENS, PSL Research University, Paris, France
| | - Bertrand Ducos
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, Paris, 75005, France.,High Throughput qPCR Core Facility of the ENS, IBENS, PSL Research University, Paris, France
| | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, Paris, 75005, France
| |
Collapse
|
59
|
Klug YA, Deme JC, Corey RA, Renne MF, Stansfeld PJ, Lea SM, Carvalho P. Mechanism of lipid droplet formation by the yeast Sei1/Ldb16 Seipin complex. Nat Commun 2021; 12:5892. [PMID: 34625558 PMCID: PMC8501077 DOI: 10.1038/s41467-021-26162-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/21/2021] [Indexed: 11/09/2022] Open
Abstract
Lipid droplets (LDs) are universal lipid storage organelles with a core of neutral lipids, such as triacylglycerols, surrounded by a phospholipid monolayer. This unique architecture is generated during LD biogenesis at endoplasmic reticulum (ER) sites marked by Seipin, a conserved membrane protein mutated in lipodystrophy. Here structural, biochemical and molecular dynamics simulation approaches reveal the mechanism of LD formation by the yeast Seipin Sei1 and its membrane partner Ldb16. We show that Sei1 luminal domain assembles a homooligomeric ring, which, in contrast to other Seipins, is unable to concentrate triacylglycerol. Instead, Sei1 positions Ldb16, which concentrates triacylglycerol within the Sei1 ring through critical hydroxyl residues. Triacylglycerol recruitment to the complex is further promoted by Sei1 transmembrane segments, which also control Ldb16 stability. Thus, we propose that LD assembly by the Sei1/Ldb16 complex, and likely other Seipins, requires sequential triacylglycerol-concentrating steps via distinct elements in the ER membrane and lumen.
Collapse
Affiliation(s)
- Yoel A Klug
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Justin C Deme
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Mike F Renne
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
60
|
Pyc M, Gidda SK, Seay D, Esnay N, Kretzschmar FK, Cai Y, Doner NM, Greer MS, Hull JJ, Coulon D, Bréhélin C, Yurchenko O, de Vries J, Valerius O, Braus GH, Ischebeck T, Chapman KD, Dyer JM, Mullen RT. LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet biogenesis in Arabidopsis. THE PLANT CELL 2021; 33:3076-3103. [PMID: 34244767 PMCID: PMC8462815 DOI: 10.1093/plcell/koab179] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/26/2021] [Indexed: 05/19/2023]
Abstract
Cytoplasmic lipid droplets (LDs) are evolutionarily conserved organelles that store neutral lipids and play critical roles in plant growth, development, and stress responses. However, the molecular mechanisms underlying their biogenesis at the endoplasmic reticulum (ER) remain obscure. Here we show that a recently identified protein termed LD-associated protein [LDAP]-interacting protein (LDIP) works together with both endoplasmic reticulum-localized SEIPIN and the LD-coat protein LDAP to facilitate LD formation in Arabidopsis thaliana. Heterologous expression in insect cells demonstrated that LDAP is required for the targeting of LDIP to the LD surface, and both proteins are required for the production of normal numbers and sizes of LDs in plant cells. LDIP also interacts with SEIPIN via a conserved hydrophobic helix in SEIPIN and LDIP functions together with SEIPIN to modulate LD numbers and sizes in plants. Further, the co-expression of both proteins is required to restore normal LD production in SEIPIN-deficient yeast cells. These data, combined with the analogous function of LDIP to a mammalian protein called LD Assembly Factor 1, are discussed in the context of a new model for LD biogenesis in plant cells with evolutionary connections to LD biogenesis in other eukaryotes.
Collapse
Affiliation(s)
| | | | - Damien Seay
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138, USA
| | - Nicolas Esnay
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Franziska K. Kretzschmar
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, 37077 Göttingen, Germany
| | | | - Nathan M. Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - J. Joe Hull
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138, USA
| | - Denis Coulon
- Université de Bordeaux, Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, UMR5200, F-33140 Villenave d’Ornon, France
| | - Claire Bréhélin
- Université de Bordeaux, Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, UMR5200, F-33140 Villenave d’Ornon, France
| | | | - Jan de Vries
- Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences and Campus Institute Data Science, Department of Applied Bioinformatics, University of Göttingen, 37077 Göttingen, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, Department for Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany
| | - Gerhard H. Braus
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, Department for Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, 37077 Göttingen, Germany
| | - Kent D. Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | | | | |
Collapse
|
61
|
Caruso B, Wilke N, Perillo MA. Triglyceride Lenses at the Air-Water Interface as a Model System for Studying the Initial Stage in the Biogenesis of Lipid Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10958-10970. [PMID: 34491757 DOI: 10.1021/acs.langmuir.1c01359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid droplets (LD) are intracellular structures consisting of an apolar lipid core, composed mainly of triglycerides (TG) and steryl esters, coated by a lipid-protein mixed monolayer. The mechanisms underlying LD biogenesis at the endoplasmic reticulum membrane are a matter of many current investigations. Although models explaining the budding-off of protuberances of phase-segregated TG inside bilayers have been proposed recently, the assumption of such initial blisters needs further empirical support. Here, we study mixtures of egg phosphatidylcholine (EPC) and TG at the air-water interface in order to describe some physical properties and topographic stability of TG bulk structures in contact with interfaces. Brewster angle microscopy images revealed the appearance of microscopic collapsed structures (CS) with highly reproducible lateral size (∼1 μm lateral radius) not varying with lateral packing changes and being highly stable at surface pressures (π) beyond collapse. By surface spectral fluorescence microscopy, we were able to characterize the solvatochromism of Nile Red both in monolayers and inside CS. This allowed to conclude that CS corresponded to a phase of liquid TG and to characterize them as lenses forming a three-phase (oil-water-air) system. Thereby, the thicknesses of the lenses could be determined, observing that they were dramatically flattened when EPC was present (6-12 nm compared to 30-50 nm for lenses on EPC/TG and TG films, respectively). Considering the shape of lenses, the interfacial tensions, and the Neumann's triangle, this experimental approach allows one to estimate the oil-water interfacial tension acting at each individual microscopic lens and at varying compression states of the surrounding monolayer. Thus, lenses formed on air-water Langmuir films can serve to assess variables of relevance to the initial step of LD biogenesis, such as the degree of dispersion of excluded-TG phase and shape, spatial distribution, and oil-water interfacial tension of lenses.
Collapse
Affiliation(s)
- B Caruso
- Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química, Cátedra de Química BiológicaUniversidad Nacional de Córdoba, X5016GCA Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET, X5016GCA Córdoba, Argentina
| | - N Wilke
- Facultad de Ciencias Químicas,. Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, X5016GCA Córdoba, Argentina
- Centro de Investigaciones en Quimica Biológica de Córdoba (CIQUIBIC), CONICET, X5016GCA Córdoba, Argentina
| | - M A Perillo
- Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química, Cátedra de Química BiológicaUniversidad Nacional de Córdoba, X5016GCA Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET, X5016GCA Córdoba, Argentina
| |
Collapse
|
62
|
Abstract
Lipid droplets (LDs) are endoplasmic reticulum-derived organelles that consist of a core of neutral lipids encircled by a phospholipid monolayer decorated with proteins. As hubs of cellular lipid and energy metabolism, LDs are inherently involved in the etiology of prevalent metabolic diseases such as obesity and nonalcoholic fatty liver disease. The functions of LDs are regulated by a unique set of associated proteins, the LD proteome, which includes integral membrane and peripheral proteins. These proteins control key activities of LDs such as triacylglycerol synthesis and breakdown, nutrient sensing and signal integration, and interactions with other organelles. Here we review the mechanisms that regulate the composition of the LD proteome, such as pathways that mediate selective and bulk LD protein degradation and potential connections between LDs and cellular protein quality control.
Collapse
Affiliation(s)
- Melissa A Roberts
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA;
| | - James A Olzmann
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA; .,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
63
|
Zembroski AS, Xiao C, Buhman KK. The Roles of Cytoplasmic Lipid Droplets in Modulating Intestinal Uptake of Dietary Fat. Annu Rev Nutr 2021; 41:79-104. [PMID: 34283920 DOI: 10.1146/annurev-nutr-110320-013657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary fat absorption is required for health but also contributes to hyperlipidemia and metabolic disease when dysregulated. One step in the process of dietary fat absorption is the formation of cytoplasmic lipid droplets (CLDs) in small intestinal enterocytes; these CLDs serve as dynamic triacylglycerol storage organelles that influence the rate at which dietary fat is absorbed. Recent studies have uncovered novel factors regulating enterocyte CLD metabolism that in turn influence the absorption of dietary fat. These include peroxisome proliferator-activated receptor α activation, compartmentalization of different lipid pools, the gut microbiome, liver X receptor and farnesoid X receptor activation, obesity, and physiological factors stimulating CLD mobilization. Understanding how enterocyte CLD metabolism is regulated is key in modulating the absorption of dietary fat in the prevention of hyperlipidemia and its associated metabolic disorders. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alyssa S Zembroski
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
64
|
Rao MJ, Goodman JM. Seipin: harvesting fat and keeping adipocytes healthy. Trends Cell Biol 2021; 31:912-923. [PMID: 34215489 DOI: 10.1016/j.tcb.2021.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 01/17/2023]
Abstract
Seipin is a key protein in the assembly of cytoplasmic lipid droplets (cLDs) and their maintenance at endoplasmic reticulum (ER)-LD junctions; the absence of seipin results in generalized lipodystrophy. How seipin mediates LD dynamics and prevents lipodystrophy are not well understood. New evidence suggests that seipin attracts triglyceride monomers from the ER to sites of droplet formation. By contrast, seipin may not be directly involved in the assembly of nuclear LDs and may actually suppress their formation at a distance. Seipin promotes adipogenesis, but lipodystrophy may also involve postadipogenic effects. We hypothesize that among these are a cycle of runaway lipolysis and lipotoxicity caused by aberrant LDs, resulting in a depletion of fat stores and a failure of adipose and other cells to thrive.
Collapse
Affiliation(s)
- Monala Jayaprakash Rao
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX 75390-9041, USA
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX 75390-9041, USA.
| |
Collapse
|
65
|
Kim S, Voth GA. Physical Characterization of Triolein and Implications for Its Role in Lipid Droplet Biogenesis. J Phys Chem B 2021; 125:6874-6888. [PMID: 34139844 DOI: 10.1021/acs.jpcb.1c03559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipid droplets (LDs) are neutral lipid-storing organelles surrounded by a phospholipid (PL) monolayer. At present, how LDs are formed in the endoplasmic reticulum (ER) bilayer is poorly understood. In this study, we present a revised all-atom (AA) triolein (TG) model, the main constituent of the LD core, and characterize its properties in a bilayer membrane to demonstrate the implications of its behavior in LD biogenesis. In bilayer simulations, TG resides at the surface, adopting PL-like conformations (denoted in this work as SURF-TG). Free energy sampling simulation results estimate the barrier for TG relocating from the bilayer surface to the bilayer center to be ∼2 kcal/mol in the absence of an oil lens. SURF-TG is able to modulate membrane properties by increasing PL ordering, decreasing bending modulus, and creating local negative curvature. The other neutral lipid, dioleoyl-glycerol (DAG), also reduces the membrane bending modulus and populates negative curvature regions. A phenomenological coarse-grained (CG) model is also developed to observe larger-scale SURF-TG-mediated membrane deformation. CG simulations confirm that TG nucleates between the bilayer leaflets at a critical concentration when SURF-TG is evenly distributed. However, when one monolayer contains more SURF-TG, the membrane bends toward the other leaflet, followed by TG nucleation if a concentration is higher than the critical threshold. The central conclusion of this study is that SURF-TG is a negative curvature inducer, as well as a membrane modulator. To this end, a model is proposed in which the accumulation of SURF-TG in the luminal leaflet bends the ER bilayer toward the cytosolic side, followed by TG nucleation.
Collapse
Affiliation(s)
- Siyoung Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
66
|
Xia X, Wang R, Hu Y, Liu W, Liu T, Sun W, Fan J, Peng X. A Novel Photosensitizer for Lipid Droplet-Location Photodynamic Therapy. Front Chem 2021; 9:701771. [PMID: 34195177 PMCID: PMC8236597 DOI: 10.3389/fchem.2021.701771] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022] Open
Abstract
Lipid droplets (LDs), an extremely important cellular organelle, are responsible for the storage of neutral lipids in multiple biological processes, which could be a potential target site for photodynamic therapy (PDT) of cancer. Herein, a lipid droplet–targeted photosensitizer (BODSeI) is developed, allowing for fluorescence imaging–guided PDT. Owing to the location of lipid droplets, BODSeI demonstrates enhanced PDT efficiency with an extremely low IC50 value (around 125 nM). Besides, BODSeI shows good biocompatibility and high photostability. Therefore, BODSeI is promising for droplet-location PDT, which may trigger wide interest for exploring the pathway of lipid droplet–location PDT.
Collapse
Affiliation(s)
- Xiang Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Yingqi Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - WeiJian Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Ting Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| |
Collapse
|
67
|
Singh A, Sen P. Lipid droplet: A functionally active organelle in monocyte to macrophage differentiation and its inflammatory properties. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158981. [PMID: 34119681 DOI: 10.1016/j.bbalip.2021.158981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Abstract
Lipid droplets (LDs) perform several important functions like inflammatory responses, membrane trafficking, acts as secondary messengers, etc. rather than simply working as an energy reservoir. LDs have been implicated as a controlling factor in the progression of atherosclerosis followed by foam cell formation that derives from macrophages during the differentiation process. However, the role of LDs in monocyte differentiation or its further immunological function is still an area that mandates in-depth investigation. We report that LD dynamics is important for differentiation of monocytes and is absolutely required for sustained and prolonged functional activity of differentiated macrophages. In THP-1 cell line model system, we elucidated that increase in total LD content in monocyte by external lipid supplements, can induce monocyte differentiation independent of classical stimuli, PMA. Differential expression of PLIN2 and ATGL during the event, together with abrogation of de novo lipogenesis further confirmed the fact. Besides, an increase in LD content by free fatty acid supplement was able to exert a synergistic effect with PMA on differentiation and phagocytic activity compared to when they are used alone. Additionally, we have shown Rab5a to play a vital role in LDs biosynthesis/maturation in monocytes and thereby directly affecting differentiation of monocytes into macrophages via AKT pathway. Thus our study reveals the multi-faceted function of LDs during the process of monocyte to macrophage differentiation and thereby helping to maintain the functional activity.
Collapse
Affiliation(s)
- Arpana Singh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
68
|
Wang M, Yi X. Bulging and budding of lipid droplets from symmetric and asymmetric membranes: competition between membrane elastic energy and interfacial energy. SOFT MATTER 2021; 17:5319-5328. [PMID: 33881134 DOI: 10.1039/d1sm00245g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipid droplets are ubiquitous intracellular organelles regulating the storage and hydrolysis of neutral lipids, and play key roles in cellular metabolism and other functions such as protein trafficking and coordinating with immune responses. Though lipid droplets are widely observed in eukaryotic organisms, it remains unclear how and what aspects of mechanical interaction between the neutral lipids and lipid membranes contribute to the bulging and budding of nascent lipid droplets from the endoplasmic reticulum, and particularly effects of membrane asymmetry and spontaneous curvature on lipid droplet formation are not theoretically rationalized. Here we conduct a comprehensive theoretical study on the mechanical behaviors of lipid droplets embedded in between two lipid monolayers of the same or different mechanical properties, and indicate that the membrane bending rigidity, tension and spontaneous curvature, lipid droplet size, and interfacial energy between the neutral lipids and covering lipid leaflets collectively play key roles in regulating the growth and budding transition of lipid droplets. It is found that the embedded neutral lipids beyond a critical volume could undergo a discontinuous shape transition from a lens-like configuration to a budding state with a spherical bulge configuration. Moreover, a positive lipid monolayer spontaneous curvature and smaller monolayer bending rigidity and tension facilitate the budding transition. Budding phase diagrams accounting for these characteristic interaction states are established. Based on the membrane theory at small deformation before budding and the assumption of spherical configuration after budding, we obtain analytical solutions on the bulge profiles, which can be used to estimate the value of interfacial energy. Our results uncover the fundamental mechanics of the lipid droplet formation and budding, and are of broad interest to the studies of echogenic liposome stability and cellular incorporation of nanoparticles.
Collapse
Affiliation(s)
- Meng Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Xin Yi
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
69
|
Chartschenko E, Hugenroth M, Akhtar I, Droste A, Kolkhof P, Bohnert M, Beller M. CG32803 is the fly homolog of LDAF1 and influences lipid storage in vivo. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103512. [PMID: 33307187 DOI: 10.1016/j.ibmb.2020.103512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/05/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The Seipin protein is a conserved key component in the biogenesis of lipid droplets (LDs). Recently, a cooperation between human Seipin and the Lipid droplet assembly factor 1 (LDAF1) was described. LDAF1 physically interacts with Seipin and the holocomplex safeguards regular LD biogenesis. The function of LDAF1 proteins outside mammals is less clear. In yeast, the lipid droplet organization (LDO) proteins, which also cooperate with Seipin, are the putative homologs of LDAF1. While certain functional aspects are shared between the LDO and mammalian LDAF1 proteins, the relationship between the proteins is under debate. Here, we identify the Drosophila melanogaster protein CG32803, which we re-named to dmLDAF1, as an insect member of this protein family. dmLDAF1 decorates LDs in cultured cells and in vivo and the protein is linked to the fly and mouse Seipin proteins. Altering the dmLDAF1 abundance affects LD size, number and overall lipid storage amounts. Our results suggest that the LDAF1 proteins thus fulfill an evolutionarily conserved function in the biogenesis and biology of LDs.
Collapse
Affiliation(s)
- Eugenia Chartschenko
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany; Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Marie Hugenroth
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, Münster, 48149, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, 48149, Germany
| | - Irfan Akhtar
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany; Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Andrea Droste
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany; Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Petra Kolkhof
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany; Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, Münster, 48149, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, 48149, Germany
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany; Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany.
| |
Collapse
|
70
|
Khaddaj R, Mari M, Cottier S, Reggiori F, Schneiter R. The surface of lipid droplets constitutes a barrier for endoplasmic reticulum-resident integral membrane proteins. J Cell Sci 2021; 135:268334. [PMID: 34028531 DOI: 10.1242/jcs.256206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets (LDs) are globular subcellular structures that store neutral lipids. LDs are closely associated with the endoplasmic reticulum (ER) and are limited by a phospholipid monolayer harboring a specific set of proteins. Most of these proteins associate with LDs through either an amphipathic helix or a membrane-embedded hairpin motif. Here, we address the question of whether integral membrane proteins can localize to the surface of LDs. To test this, we fused perilipin 3 (PLIN3), a mammalian LD-targeted protein, to ER-resident proteins. The resulting fusion proteins localized to the periphery of LDs in both yeast and mammalian cells. This peripheral LD localization of the fusion proteins, however, was due to a redistribution of the ER around LDs, as revealed by bimolecular fluorescence complementation between ER- and LD-localized partners. A LD-tethering function of PLIN3-containing membrane proteins was confirmed by fusing PLIN3 to the cytoplasmic domain of an outer mitochondrial membrane protein, OM14. Expression of OM14-PLIN3 induced a close apposition between LDs and mitochondria. These data indicate that the ER-LD junction constitutes a barrier for ER-resident integral membrane proteins.
Collapse
Affiliation(s)
- Rasha Khaddaj
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Muriel Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Stéphanie Cottier
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
71
|
Roberts MA, Segura-Roman A, Olzmann JA. Organelle Biogenesis: ER Shape Influences Lipid Droplet Nucleation. Curr Biol 2021; 30:R770-R773. [PMID: 32634419 DOI: 10.1016/j.cub.2020.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid droplets (LDs) are neutral lipid storage organelles assembled at the endoplasmic reticulum (ER). A new study reveals that the high membrane curvature of ER tubules catalyzes the nucleation of a neutral lipid lens, an early step in LD biogenesis.
Collapse
Affiliation(s)
- Melissa A Roberts
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ashley Segura-Roman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94720, USA.
| |
Collapse
|
72
|
Tadepalle N, Rugarli EI. Lipid Droplets in the Pathogenesis of Hereditary Spastic Paraplegia. Front Mol Biosci 2021; 8:673977. [PMID: 34041268 PMCID: PMC8141572 DOI: 10.3389/fmolb.2021.673977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are genetically heterogeneous conditions caused by the progressive dying back of the longest axons in the central nervous system, the corticospinal axons. A wealth of data in the last decade has unraveled disturbances of lipid droplet (LD) biogenesis, maturation, turnover and contact sites in cellular and animal models with perturbed expression and function of HSP proteins. As ubiquitous organelles that segregate neutral lipid into a phospholipid monolayer, LDs are at the cross-road of several processes including lipid metabolism and trafficking, energy homeostasis, and stress signaling cascades. However, their role in brain cells, especially in neurons remains enigmatic. Here, we review experimental findings linking LD abnormalities to defective function of proteins encoded by HSP genes, and discuss arising questions in the context of the pathogenesis of HSP.
Collapse
Affiliation(s)
- Nimesha Tadepalle
- Molecular and Cell Biology Laboratory, Salk Institute of Biological Sciences, La Jolla, CA, United States
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Center for Molecular Medicine (CMMC),Cologne, Germany
| |
Collapse
|
73
|
Zhou J, Zhang Y, Wu J, Qiao M, Xu Z, Peng X, Mei S. Proteomic and lipidomic analyses reveal saturated fatty acids, phosphatidylinositol, phosphatidylserine, and associated proteins contributing to intramuscular fat deposition. J Proteomics 2021; 241:104235. [PMID: 33894376 DOI: 10.1016/j.jprot.2021.104235] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
Intramuscular fat (IMF) content is an important factor in porcine meat quality. Previous studies have screened multiple candidate genes related to IMF deposition, but the lipids that affect IMF deposition and their lipid-protein network remain unknown. In this study, we performed proteomic and lipidomic analyses of the longissimus dorsi (LD) muscle from high-IMF (IMFH) and low-IMF (IMF-L) groups of Xidu black pigs. Eighty-eight proteins and 143 lipids were differentially abundant between the groups. The differentially abundant proteins were found to be involved in cholesterol metabolism, the PPAR signaling pathway, and ferroptosis. The triacylglycerols (TAGs) upregulated in the IMF-H group were mainly shown to be synthesized by saturated fatty acids (SFAs), while the downregulated TAGs were mainly synthesized by polyunsaturated fatty acids (PUFAs). All differentially abundant phosphatidylinositols (PIs) and phosphatidylserines (PSs) were found to be upregulated in the IMF-H group. A correlation analysis of the proteomic and lipidomic revealed candidate proteins (APOA4, VDAC3, PRNP, CTSB, GSPT1) related to TAG, PI, and PS lipids. These results revealed differences in proteins and lipids between the IMF-H and IMF-L groups, which represent new candidate proteins and lipids that should be investigated to determine the molecular mechanisms controlling IMF deposition in pigs. SIGNIFICANCE: Intramuscular fat (IMF) is a key factor affecting meat quality, and meat with a higher IMF content can have a better flavor. In this study, proteomic results show that the ferroptosis pathway, including the PRNP, VDAC3 and CP proteins, affects IMF deposition. Lipid composition is the key factor affecting IMF deposition, but there are few reports on this. In this study, through lipidomic analysis, we suggest that saturated fatty acid (SFA), phosphatidylinositol (PI), and phosphatidylserine (PS) may contribute to IMF deposition. A correlation analysis reveals the potential regulatory network between lipids and proteins. This study clarifies the difference in protein and lipid compositions in longissimus dorsi (LD) muscle with high and low IMF contents. This information suggests that it would be beneficial to increase the intramuscular fat content of pork not only from a genetic perspective but also from a nutritional perspective.
Collapse
Affiliation(s)
- Jiawei Zhou
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Yu Zhang
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Junjing Wu
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Mu Qiao
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Zhong Xu
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Xianwen Peng
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Shuqi Mei
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China.
| |
Collapse
|
74
|
Guéguen N, Le Moigne D, Amato A, Salvaing J, Maréchal E. Lipid Droplets in Unicellular Photosynthetic Stramenopiles. FRONTIERS IN PLANT SCIENCE 2021; 12:639276. [PMID: 33968100 PMCID: PMC8100218 DOI: 10.3389/fpls.2021.639276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The Heterokonta or Stramenopile phylum comprises clades of unicellular photosynthetic species, which are promising for a broad range of biotechnological applications, based on their capacity to capture atmospheric CO2 via photosynthesis and produce biomolecules of interest. These molecules include triacylglycerol (TAG) loaded inside specific cytosolic bodies, called the lipid droplets (LDs). Understanding TAG production and LD biogenesis and function in photosynthetic stramenopiles is therefore essential, and is mostly based on the study of a few emerging models, such as the pennate diatom Phaeodactylum tricornutum and eustigmatophytes, such as Nannochloropsis and Microchloropsis species. The biogenesis of cytosolic LD usually occurs at the level of the endoplasmic reticulum. However, stramenopile cells contain a complex plastid deriving from a secondary endosymbiosis, limited by four membranes, the outermost one being connected to the endomembrane system. Recent cell imaging and proteomic studies suggest that at least some cytosolic LDs might be associated to the surface of the complex plastid, via still uncharacterized contact sites. The carbon length and number of double bonds of the acyl groups contained in the TAG molecules depend on their origin. De novo synthesis produces long-chain saturated or monounsaturated fatty acids (SFA, MUFA), whereas subsequent maturation processes lead to very long-chain polyunsaturated FA (VLC-PUFA). TAG composition in SFA, MUFA, and VLC-PUFA reflects therefore the metabolic context that gave rise to the formation of the LD, either via an early partitioning of carbon following FA de novo synthesis and/or a recycling of FA from membrane lipids, e.g., plastid galactolipids or endomembrane phosphor- or betaine lipids. In this review, we address the relationship between cytosolic LDs and the complex membrane compartmentalization within stramenopile cells, the metabolic routes leading to TAG accumulation, and the physiological conditions that trigger LD production, in response to various environmental factors.
Collapse
|
75
|
Giménez-Andrés M, Emeršič T, Antoine-Bally S, D'Ambrosio JM, Antonny B, Derganc J, Čopič A. Exceptional stability of a perilipin on lipid droplets depends on its polar residues, suggesting multimeric assembly. eLife 2021; 10:61401. [PMID: 33856341 PMCID: PMC8064757 DOI: 10.7554/elife.61401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/14/2021] [Indexed: 12/23/2022] Open
Abstract
Numerous proteins target lipid droplets (LDs) through amphipathic helices (AHs). It is generally assumed that AHs insert bulky hydrophobic residues in packing defects at the LD surface. However, this model does not explain the targeting of perilipins, the most abundant and specific amphipathic proteins of LDs, which are weakly hydrophobic. A striking example is Plin4, whose gigantic and repetitive AH lacks bulky hydrophobic residues. Using a range of complementary approaches, we show that Plin4 forms a remarkably immobile and stable protein layer at the surface of cellular or in vitro generated oil droplets, and decreases LD size. Plin4 AH stability on LDs is exquisitely sensitive to the nature and distribution of its polar residues. These results suggest that Plin4 forms stable arrangements of adjacent AHs via polar/electrostatic interactions, reminiscent of the organization of apolipoproteins in lipoprotein particles, thus pointing to a general mechanism of AH stabilization via lateral interactions.
Collapse
Affiliation(s)
- Manuel Giménez-Andrés
- Institut Jacques Monod, CNRS, Université de Paris, Paris, France.,Université Paris-Saclay, Saint-Aubin, France
| | - Tadej Emeršič
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Juan Martin D'Ambrosio
- Institut Jacques Monod, CNRS, Université de Paris, Paris, France.,CRBM, University of Montpellier and CNRS, Montpellier, France
| | - Bruno Antonny
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | - Jure Derganc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Chair of Microprocess Engineering and Technology - COMPETE, University of Ljubljana, Ljubljana, Slovenia
| | - Alenka Čopič
- Institut Jacques Monod, CNRS, Université de Paris, Paris, France.,CRBM, University of Montpellier and CNRS, Montpellier, France
| |
Collapse
|
76
|
Choudhary V, Schneiter R. A Unique Junctional Interface at Contact Sites Between the Endoplasmic Reticulum and Lipid Droplets. Front Cell Dev Biol 2021; 9:650186. [PMID: 33898445 PMCID: PMC8060488 DOI: 10.3389/fcell.2021.650186] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Lipid droplets (LDs) constitute compartments dedicated to the storage of metabolic energy in the form of neutral lipids. LDs originate from the endoplasmic reticulum (ER) with which they maintain close contact throughout their life cycle. These ER-LD junctions facilitate the exchange of both proteins and lipids between these two compartments. In recent years, proteins that are important for the proper formation of LDs and localize to ER-LD junctions have been identified. This junction is unique as it is generally believed to invoke a transition from the ER bilayer membrane to a lipid monolayer that delineates LDs. Proper formation of this junction requires the ordered assembly of proteins and lipids at specialized ER subdomains. Without such a well-ordered assembly of LD biogenesis factors, neutral lipids are synthesized throughout the ER membrane, resulting in the formation of aberrant LDs. Such ectopically formed LDs impact ER and lipid homeostasis, resulting in different types of lipid storage diseases. In response to starvation, the ER-LD junction recruits factors that tether the vacuole to these junctions to facilitate LD degradation. In addition, LDs maintain close contacts with peroxisomes and mitochondria for metabolic channeling of the released fatty acids toward beta-oxidation. In this review, we discuss the function of different components that ensure proper functioning of LD contact sites, their role in lipogenesis and lipolysis, and their relation to lipid storage diseases.
Collapse
Affiliation(s)
- Vineet Choudhary
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
77
|
Zoni V, Khaddaj R, Lukmantara I, Shinoda W, Yang H, Schneiter R, Vanni S. Seipin accumulates and traps diacylglycerols and triglycerides in its ring-like structure. Proc Natl Acad Sci U S A 2021; 118:e2017205118. [PMID: 33674387 PMCID: PMC7958289 DOI: 10.1073/pnas.2017205118] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets (LDs) are intracellular organelles responsible for lipid storage, and they emerge from the endoplasmic reticulum (ER) upon the accumulation of neutral lipids, mostly triglycerides (TG), between the two leaflets of the ER membrane. LD biogenesis takes place at ER sites that are marked by the protein seipin, which subsequently recruits additional proteins to catalyze LD formation. Deletion of seipin, however, does not abolish LD biogenesis, and its precise role in controlling LD assembly remains unclear. Here, we use molecular dynamics simulations to investigate the molecular mechanism through which seipin promotes LD formation. We find that seipin clusters TG, as well as its precursor diacylglycerol, inside its unconventional ring-like oligomeric structure and that both its luminal and transmembrane regions contribute to this process. This mechanism is abolished upon mutations of polar residues involved in protein-TG interactions into hydrophobic residues. Our results suggest that seipin remodels the membrane of specific ER sites to prime them for LD biogenesis.
Collapse
Affiliation(s)
- Valeria Zoni
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Rasha Khaddaj
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Ivan Lukmantara
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Chikusa-ku, 464-8603 Nagoya, Japan
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Roger Schneiter
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland;
| |
Collapse
|
78
|
Kumanski S, Viart BT, Kossida S, Moriel-Carretero M. Lipid Droplets Are a Physiological Nucleoporin Reservoir. Cells 2021; 10:472. [PMID: 33671805 PMCID: PMC7926788 DOI: 10.3390/cells10020472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid Droplets (LD) are dynamic organelles that originate in the Endoplasmic Reticulum and mostly bud off toward the cytoplasm, where they store neutral lipids for energy and protection purposes. LD also have diverse proteins on their surface, many of which are necessary for the their correct homeostasis. However, these organelles also act as reservoirs of proteins that can be made available elsewhere in the cell. In this sense, they act as sinks that titrate key regulators of many cellular processes. Among the specialized factors that reside on cytoplasmic LD are proteins destined for functions in the nucleus, but little is known about them and their impact on nuclear processes. By screening for nuclear proteins in publicly available LD proteomes, we found that they contain a subset of nucleoporins from the Nuclear Pore Complex (NPC). Exploring this, we demonstrate that LD act as a physiological reservoir, for nucleoporins, that impacts the conformation of NPCs and hence their function in nucleo-cytoplasmic transport, chromatin configuration, and genome stability. Furthermore, our in silico modeling predicts a role for LD-released fatty acids in regulating the transit of nucleoporins from LD through the cytoplasm and to nuclear pores.
Collapse
Affiliation(s)
- Sylvain Kumanski
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France;
| | - Benjamin T. Viart
- International ImMunoGeneTics Information System (IMGT®), Institut de Génétique Humaine (IGH), Université de Montpellier, Centre National de la Recherche Scientifique, 34396 Montpellier CEDEX 05, France; (B.T.V.); (S.K.)
| | - Sofia Kossida
- International ImMunoGeneTics Information System (IMGT®), Institut de Génétique Humaine (IGH), Université de Montpellier, Centre National de la Recherche Scientifique, 34396 Montpellier CEDEX 05, France; (B.T.V.); (S.K.)
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France;
| |
Collapse
|
79
|
Santinho A, Chorlay A, Foret L, Thiam AR. Fat inclusions strongly alter membrane mechanics. Biophys J 2021; 120:607-617. [PMID: 33460598 PMCID: PMC7896029 DOI: 10.1016/j.bpj.2021.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/04/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Neutral lipids (NLs) are apolar oil molecules synthesized in the endoplasmic reticulum bilayer upon diverse biological stimuli. NLs synthesized are released in the hydrophobic core of the bilayer. At a critical concentration, NLs condense by phase separation and nucleate a lipid droplet (LD). After an LD forms, a fraction of NLs can be present in the bilayer but at a concentration below that of the nucleation. Here, we study whether and how the accumulation of NLs alters a lipid bilayer's mechanical properties. In synthetic systems, we found that NLs proffer unusual bilayer stretching capacities, especially in the presence of negatively curved phospholipids. This impact becomes spectacular when an LD is contiguous with the bilayer and supplies it with NLs. The tested NLs markedly decrease the bilayer area expansion modulus and significantly increase lysis tension but had opposite effects on membrane bending rigidity. Our data unveil how NL molecules modify overall membrane mechanics, the alteration of which may be linked to pathologies or anticancer treatments targeting NLs.
Collapse
Affiliation(s)
- Alexandre Santinho
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Aymeric Chorlay
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Lionel Foret
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
80
|
Wang L, Liu J, Miao Z, Pan Q, Cao W. Lipid droplets and their interactions with other organelles in liver diseases. Int J Biochem Cell Biol 2021; 133:105937. [PMID: 33529713 DOI: 10.1016/j.biocel.2021.105937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 02/01/2023]
Abstract
Lipid droplets are cellular organelles used for lipid storage with a hydrophobic core of neutral lipids enclosed by a phospholipid monolayer. Besides presenting as giant single organelles in fat tissue, lipid droplets are also widely present as a multitude of small structures in hepatocytes, where they play key roles in health and disease of the liver. In addition to lipid storage, lipid droplets are also directly involved in lipid metabolism, membrane biosynthesis, cell signaling, inflammation, pathogen-host interaction and cancer development. In addition, they interact with other cellular organelles to regulate cellular biology. It is fair to say that the exact functions of lipid droplets in cellular physiology remain largely obscure. Thus prompted, here we aim to analyze the corpus of contemporary biomedical literature to create a framework as to how the role of lipid droplets in hepatocyte physiology and pathophysiology should be understood. The resulting framework should help understanding the interaction of lipid droplets with other organelles in important liver diseases, including fatty liver disease, viral hepatitis and liver cancer and direct further research directions.
Collapse
Affiliation(s)
- Ling Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Jiaye Liu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Zhijiang Miao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| | - Wanlu Cao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
81
|
Zoni V, Khaddaj R, Campomanes P, Thiam AR, Schneiter R, Vanni S. Pre-existing bilayer stresses modulate triglyceride accumulation in the ER versus lipid droplets. eLife 2021; 10:e62886. [PMID: 33522484 PMCID: PMC7895522 DOI: 10.7554/elife.62886] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Cells store energy in the form of neutral lipids (NLs) packaged into micrometer-sized organelles named lipid droplets (LDs). These structures emerge from the endoplasmic reticulum (ER) at sites marked by the protein seipin, but the mechanisms regulating their biogenesis remain poorly understood. Using a combination of molecular simulations, yeast genetics, and fluorescence microscopy, we show that interactions between lipids' acyl-chains modulate the propensity of NLs to be stored in LDs, in turn preventing or promoting their accumulation in the ER membrane. Our data suggest that diacylglycerol, which is enriched at sites of LD formation, promotes the packaging of NLs into LDs, together with ER-abundant lipids, such as phosphatidylethanolamine. On the opposite end, short and saturated acyl-chains antagonize fat storage in LDs and promote accumulation of NLs in the ER. Our results provide a new conceptual understanding of LD biogenesis in the context of ER homeostasis and function.
Collapse
Affiliation(s)
- Valeria Zoni
- University of Fribourg, Department of BiologyFribourgSwitzerland
| | - Rasha Khaddaj
- University of Fribourg, Department of BiologyFribourgSwitzerland
| | - Pablo Campomanes
- University of Fribourg, Department of BiologyFribourgSwitzerland
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Roger Schneiter
- University of Fribourg, Department of BiologyFribourgSwitzerland
| | - Stefano Vanni
- University of Fribourg, Department of BiologyFribourgSwitzerland
| |
Collapse
|
82
|
Prasanna X, Salo VT, Li S, Ven K, Vihinen H, Jokitalo E, Vattulainen I, Ikonen E. Seipin traps triacylglycerols to facilitate their nanoscale clustering in the endoplasmic reticulum membrane. PLoS Biol 2021; 19:e3000998. [PMID: 33481779 PMCID: PMC7857593 DOI: 10.1371/journal.pbio.3000998] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 02/03/2021] [Accepted: 11/02/2020] [Indexed: 11/19/2022] Open
Abstract
Seipin is a disk-like oligomeric endoplasmic reticulum (ER) protein important for lipid droplet (LD) biogenesis and triacylglycerol (TAG) delivery to growing LDs. Here we show through biomolecular simulations bridged to experiments that seipin can trap TAGs in the ER bilayer via the luminal hydrophobic helices of the protomers delineating the inner opening of the seipin disk. This promotes the nanoscale sequestration of TAGs at a concentration that by itself is insufficient to induce TAG clustering in a lipid membrane. We identify Ser166 in the α3 helix as a favored TAG occupancy site and show that mutating it compromises the ability of seipin complexes to sequester TAG in silico and to promote TAG transfer to LDs in cells. While the S166D-seipin mutant colocalizes poorly with promethin, the association of nascent wild-type seipin complexes with promethin is promoted by TAGs. Together, these results suggest that seipin traps TAGs via its luminal hydrophobic helices, serving as a catalyst for seeding the TAG cluster from dissolved monomers inside the seipin ring, thereby generating a favorable promethin binding interface.
Collapse
Affiliation(s)
- Xavier Prasanna
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Veijo T. Salo
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Shiqian Li
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Katharina Ven
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Helena Vihinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- * E-mail:
| |
Collapse
|
83
|
Reinisch KM, Chen XW, Melia TJ. "VTT"-domain proteins VMP1 and TMEM41B function in lipid homeostasis globally and locally as ER scramblases. ACTA ACUST UNITED AC 2021; 4. [PMID: 34447902 DOI: 10.1177/25152564211024494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent studies have identified the metazoan ER-resident proteins, TMEM41B and VMP1, and so structurally related VTT-domain proteins, as glycerolipid scramblases.
Collapse
Affiliation(s)
- Karin M Reinisch
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Center for Life Sciences, Peking University, Beijing, 100871
| | - Thomas J Melia
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
84
|
Chorlay A, Thiam AR. Neutral lipids regulate amphipathic helix affinity for model lipid droplets. J Cell Biol 2020; 219:133864. [PMID: 32328636 PMCID: PMC7147095 DOI: 10.1083/jcb.201907099] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/14/2019] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Cellular lipid droplets (LDs) have a neutral lipid core shielded from the aqueous environment by a phospholipid monolayer containing proteins. These proteins define the biological functions of LDs, and most of them bear amphipathic helices (AH), which can selectively target to LDs, or to LD subsets. How such binding preference happens remains poorly understood. Here, we found that artificial LDs made of different neutral lipids but presenting equal phospholipid packing densities differentially recruit AHs. Varying the phospholipid density shifts the binding levels, but the differential recruitment is unchanged. We found that the binding level of AHs is defined by their interaction preference with neutral lipids and ability to decrease surface tension. The phospholipid packing level regulates mainly the amount of neutral lipid accessible. Therefore, it is the hydrophobic nature of the phospholipid packing voids that controls the binding level of AHs. Our data bring us a major step closer to understanding the binding selectivity of AHs to lipid membranes.
Collapse
Affiliation(s)
- Aymeric Chorlay
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, Centre National de la Recherche Scientifique, Sorbonne Université, Université de Paris, Paris, France
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, Centre National de la Recherche Scientifique, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
85
|
Thiam AR, Ikonen E. Lipid Droplet Nucleation. Trends Cell Biol 2020; 31:108-118. [PMID: 33293168 DOI: 10.1016/j.tcb.2020.11.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
All living organisms can make lipid droplets (LDs), intracellular oil-in-water droplets, surrounded by a phospholipid and protein monolayer. LDs are at the nexus of cellular lipid metabolism and function in diverse biological processes. During the past decade, multidisciplinary approaches have shed light on LD assembly steps from the endoplasmic reticulum (ER): nucleation, growth, budding, and formation of a separate organelle. However, the molecular mechanisms underpinning these steps remain elusive. In this review, we focus on the nucleation step, defining where and how LD assembly is initiated. We present how membrane biophysical and physicochemical properties control this step and how proteins act on it to orchestrate LD biogenesis.
Collapse
Affiliation(s)
- Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland.
| |
Collapse
|
86
|
New friends for seipin — Implications of seipin partner proteins in the life cycle of lipid droplets. Semin Cell Dev Biol 2020; 108:24-32. [DOI: 10.1016/j.semcdb.2020.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/20/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
|
87
|
Cao Z, Wang X, Huang X, Mak HY. Are endoplasmic reticulum subdomains shaped by asymmetric distribution of phospholipids? Evidence from a C. elegans model system. Bioessays 2020; 43:e2000199. [PMID: 33169432 DOI: 10.1002/bies.202000199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
Physical contact between organelles are widespread, in part to facilitate the shuttling of protein and lipid cargoes for cellular homeostasis. How do protein-protein and protein-lipid interactions shape organelle subdomains that constitute contact sites? The endoplasmic reticulum (ER) forms extensive contacts with multiple organelles, including lipid droplets (LDs) that are central to cellular fat storage and mobilization. Here, we focus on ER-LD contacts that are highlighted by the conserved protein seipin, which promotes LD biogenesis and expansion. Seipin is enriched in ER tubules that form cage-like structures around a subset of LDs. Such enrichment is strongly dependent on polyunsaturated and cyclopropane fatty acids. Based on these findings, we speculate on molecular events that lead to the formation of seipin-positive peri-LD cages in which protein movement is restricted. We hypothesize that asymmetric distribution of specific phospholipids distinguishes cage membrane tubules from the bulk ER.
Collapse
Affiliation(s)
- Zhe Cao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiaowei Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
88
|
Barbosa AD, Siniossoglou S. New kid on the block: lipid droplets in the nucleus. FEBS J 2020; 287:4838-4843. [PMID: 32243071 DOI: 10.1111/febs.15307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/30/2022]
Abstract
The regulation of lipid homeostasis is essential for normal cell physiology, and its disruption can lead to disease. Lipid droplets (LDs) are ubiquitous organelles dedicated to storing nonpolar lipids that are used for metabolic energy production or membrane biogenesis. LDs normally emerge from, and associate with, the endoplasmic reticulum and interact with other cytoplasmic organelles to deliver the stored lipids. Recently, LDs were found to reside also at the inner side of the nuclear envelope and inside the nucleus in yeast and mammalian cells. This unexpected finding raises fundamental questions about the nature of the inner nuclear membrane, its connection with the endoplasmic reticulum and the pathways of LD formation. In this viewpoint, we will highlight recent developments relating to these questions and discuss possible roles of LDs in nuclear physiology.
Collapse
Affiliation(s)
- Antonio D Barbosa
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Symeon Siniossoglou
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
89
|
Teixeira V, Maciel P, Costa V. Leading the way in the nervous system: Lipid Droplets as new players in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158820. [PMID: 33010453 DOI: 10.1016/j.bbalip.2020.158820] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
Lipid droplets (LDs) are ubiquitous fat storage organelles composed of a neutral lipid core, comprising triacylglycerols (TAG) and sterol esters (SEs), surrounded by a phospholipid monolayer membrane with several decorating proteins. Recently, LD biology has come to the foreground of research due to their importance for energy homeostasis and cellular stress response. As aberrant LD accumulation and lipid depletion are hallmarks of numerous diseases, addressing LD biogenesis and turnover provides a new framework for understanding disease-related mechanisms. Here we discuss the potential role of LDs in neurodegeneration, while making some predictions on how LD imbalance can contribute to pathophysiology in the brain.
Collapse
Affiliation(s)
- Vitor Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vítor Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
90
|
Lema I, Araújo JR, Rolhion N, Demignot S. Jejunum: The understudied meeting place of dietary lipids and the microbiota. Biochimie 2020; 178:124-136. [PMID: 32949677 DOI: 10.1016/j.biochi.2020.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Although the jejunum is the main intestinal compartment responsible for lipid digestion and absorption, most of the studies assessing the impact of dietary lipids on the intestinal microbiota have been performed in the ileum, colon and faeces. This lack of interest in the jejunum is due to the much lower number of microbes present in this intestinal region and to the difficulty in accessing its lumen, which requires invasive methods. Recently, several recent publications highlighted that the whole jejunal microbiota or specific bacterial members are able to modulate lipid absorption and metabolism in enterocytes. This information reveals new strategies in the development of bacterial- and metabolite-based therapeutic interventions or nutraceutical recommendations to treat or prevent metabolic-related disorders, including obesity, cardiovascular diseases and malnutrition. This review is strictly focused on the following triad: dietary lipids, the jejunal epithelium and the jejunal microbiota. First, we will describe each member of the triad: the structure and functions of the jejunum, the composition of the jejunal microbiota, and dietary lipid handling by enterocytes and by microorganisms. Then, we will present the mechanisms leading to lipid malabsorption in small intestinal bacterial overgrowth (SIBO), a disease in which the jejunal microbiota is altered and which highlights the strong interactions among this triad. We will finally review the recent literature about the interactions among members of the triad, which should encourage research teams to further explore the mechanisms by which specific microbial strains or metabolites, alone or in concert, can mediate, control or modulate lipid absorption in the jejunum.
Collapse
Affiliation(s)
- Ingrid Lema
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, UMR_S 938, F-75012, Paris, France; EPHE, PSL University, F-75014, Paris, France
| | - João Ricardo Araújo
- Nutrition and Metabolism, NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal; Center for Health Technology Services Research (CINTESIS), Oporto, Portugal
| | - Nathalie Rolhion
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, UMR_S 938, F-75012, Paris, France
| | - Sylvie Demignot
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, UMR_S 938, F-75012, Paris, France; EPHE, PSL University, F-75014, Paris, France.
| |
Collapse
|
91
|
Salo VT, Hölttä-Vuori M, Ikonen E. Seipin-Mediated Contacts as Gatekeepers of Lipid Flux at the Endoplasmic Reticulum–Lipid Droplet Nexus. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2515256420945820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lipid droplets (LDs) are dynamic cellular hubs of lipid metabolism. While LDs contact a plethora of organelles, they have the most intimate relationship with the endoplasmic reticulum (ER). Indeed, LDs are initially assembled at specialized ER subdomains, and recent work has unraveled an increasing array of proteins regulating ER-LD contacts. Among these, seipin, a highly conserved lipodystrophy protein critical for LD growth and adipogenesis, deserves special attention. Here, we review recent insights into the role of seipin in LD biogenesis and as a regulator of ER-LD contacts. These studies have also highlighted the evolving concept of ER and LDs as a functional continuum for lipid partitioning and pinpointed a role for seipin at the ER-LD nexus in controlling lipid flux between these compartments.
Collapse
Affiliation(s)
- Veijo T. Salo
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Maarit Hölttä-Vuori
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
92
|
Triacylglycerols sequester monotopic membrane proteins to lipid droplets. Nat Commun 2020; 11:3944. [PMID: 32769983 PMCID: PMC7414839 DOI: 10.1038/s41467-020-17585-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/08/2020] [Indexed: 01/05/2023] Open
Abstract
Triacylglycerols (TG) are synthesized at the endoplasmic reticulum (ER) bilayer and packaged into organelles called lipid droplets (LDs). LDs are covered by a single phospholipid monolayer contiguous with the ER bilayer. This connection is used by several monotopic integral membrane proteins, with hydrophobic membrane association domains (HDs), to diffuse between the organelles. However, how proteins partition between ER and LDs is not understood. Here, we employed synthetic model systems and found that HD-containing proteins strongly prefer monolayers and returning to the bilayer is unfavorable. This preference for monolayers is due to a higher affinity of HDs for TG over membrane phospholipids. Protein distribution is regulated by PC/PE ratio via alterations in monolayer packing and HD-TG interaction. Thus, HD-containing proteins appear to non-specifically accumulate to the LD surface. In cells, protein editing mechanisms at the ER membrane would be necessary to prevent unspecific relocation of HD-containing proteins to LDs. Triacylglycerols (TG) are synthesized at the endoplasmic reticulum (ER) bilayer and packaged into monolayer lipid droplets (LDs), but how proteins partition between ER and LDs is poorly understood. Here authors use synthetic model systems and find that proteins containing hydrophobic membrane association domains strongly prefer monolayers and that returning to the bilayer is unfavorable.
Collapse
|
93
|
Choudhary V, El Atab O, Mizzon G, Prinz WA, Schneiter R. Seipin and Nem1 establish discrete ER subdomains to initiate yeast lipid droplet biogenesis. J Cell Biol 2020; 219:e201910177. [PMID: 32349126 PMCID: PMC7337503 DOI: 10.1083/jcb.201910177] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/26/2020] [Accepted: 04/03/2020] [Indexed: 02/03/2023] Open
Abstract
Lipid droplets (LDs) are fat storage organelles that originate from the endoplasmic reticulum (ER). Relatively little is known about how sites of LD formation are selected and which proteins/lipids are necessary for the process. Here, we show that LDs induced by the yeast triacylglycerol (TAG)-synthases Lro1 and Dga1 are formed at discrete ER subdomains defined by seipin (Fld1), and a regulator of diacylglycerol (DAG) production, Nem1. Fld1 and Nem1 colocalize to ER-LD contact sites. We find that Fld1 and Nem1 localize to ER subdomains independently of each other and of LDs, but both are required for the subdomains to recruit the TAG-synthases and additional LD biogenesis factors: Yft2, Pex30, Pet10, and Erg6. These subdomains become enriched in DAG. We conclude that Fld1 and Nem1 are both necessary to recruit proteins to ER subdomains where LD biogenesis occurs.
Collapse
Affiliation(s)
- Vineet Choudhary
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ola El Atab
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Giulia Mizzon
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - William A. Prinz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
94
|
Santinho A, Salo VT, Chorlay A, Li S, Zhou X, Omrane M, Ikonen E, Thiam AR. Membrane Curvature Catalyzes Lipid Droplet Assembly. Curr Biol 2020; 30:2481-2494.e6. [PMID: 32442467 DOI: 10.1016/j.cub.2020.04.066] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/24/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
Abstract
Lipid droplet (LD) biogenesis begins in the endoplasmic reticulum (ER) bilayer, but how the ER topology impacts this process is unclear. An early step in LD formation is nucleation, wherein free neutral lipids, mainly triacylglycerols (TGs) and sterol esters (SEs), condense into a nascent LD. How this transition occurs is poorly known. Here, we found that LDs preferably assemble at ER tubules, with higher curvature than ER sheets, independently of the LD assembly protein seipin. Indeed, the critical TG concentration required for initiating LD assembly is lower at curved versus flat membrane regions. In agreement with this finding, flat ER regions bear higher amounts of free TGs than tubular ones and present less LDs. By using an in vitro approach, we discovered that the presence of free TGs in tubules is energetically unfavorable, leading to outflow of TGs to flat membrane regions or condensation into LDs. Accordingly, in vitro LD nucleation can be achieved by the sole increase of membrane curvature. In contrast to TGs, the presence of free SEs is favored at tubules and increasing SE levels is inhibitory to the curvature-induced nucleation of TG LDs. Finally, we found that seipin is enriched at ER tubules and controls the condensation process, preventing excessive tubule-induced nucleation. The absence of seipin provokes erratic LD nucleation events determined by the abundance of ER tubules. In summary, our data indicate that membrane curvature catalyzes LD assembly.
Collapse
Affiliation(s)
- Alexandre Santinho
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Veijo T Salo
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Aymeric Chorlay
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Shiqian Li
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Xin Zhou
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Mohyeddine Omrane
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France.
| |
Collapse
|
95
|
Lundquist PK, Shivaiah KK, Espinoza-Corral R. Lipid droplets throughout the evolutionary tree. Prog Lipid Res 2020; 78:101029. [PMID: 32348789 DOI: 10.1016/j.plipres.2020.101029] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Intracellular lipid droplets are utilized for lipid storage and metabolism in organisms as evolutionarily diverse as animals, fungi, plants, bacteria, and archaea. These lipid droplets demonstrate great diversity in biological functions and protein and lipid compositions, yet fundamentally share common molecular and ultrastructural characteristics. Lipid droplet research has been largely fragmented across the diversity of lipid droplet classes and sub-classes. However, we suggest that there is great potential benefit to the lipid community in better integrating the lipid droplet research fields. To facilitate such integration, we survey the protein and lipid compositions, functional roles, and mechanisms of biogenesis across the breadth of lipid droplets studied throughout the natural world. We depict the big picture of lipid droplet biology, emphasizing shared characteristics and unique differences seen between different classes. In presenting the known diversity of lipid droplets side-by-side it becomes necessary to offer for the first time a consistent system of categorization and nomenclature. We propose a division into three primary classes that reflect their sub-cellular location: i) cytoplasmic lipid droplets (CYTO-LDs), that are present in the eukaryotic cytoplasm, ii) prokaryotic lipid droplets (PRO-LDs), that exist in the prokaryotic cytoplasm, and iii) plastid lipid droplets (PL-LDs), that are found in plant plastids, organelles of photosynthetic eukaryotes. Within each class there is a remarkable array of sub-classes displaying various sizes, shapes and compositions. A more integrated lipid droplet research field will provide opportunities to better build on discoveries and accelerate the pace of research in ways that have not been possible.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Roberto Espinoza-Corral
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
96
|
Tadepalle N, Robers L, Veronese M, Zentis P, Babatz F, Brodesser S, Gruszczyk AV, Schauss A, Höning S, Rugarli EI. Microtubule-dependent and independent roles of spastin in lipid droplet dispersion and biogenesis. Life Sci Alliance 2020; 3:3/6/e202000715. [PMID: 32321733 PMCID: PMC7184029 DOI: 10.26508/lsa.202000715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Lipid droplets (LDs) are metabolic organelles that store neutral lipids and dynamically respond to changes in energy availability by accumulating or mobilizing triacylglycerols (TAGs). How the plastic behavior of LDs is regulated is poorly understood. Hereditary spastic paraplegia is a central motor axonopathy predominantly caused by mutations in SPAST, encoding the microtubule-severing protein spastin. The spastin-M1 isoform localizes to nascent LDs in mammalian cells; however, the mechanistic significance of this targeting is not fully explained. Here, we show that tightly controlled levels of spastin-M1 are required to inhibit LD biogenesis and TAG accumulation. Spastin-M1 maintains the morphogenesis of the ER when TAG synthesis is prevented, independent from microtubule binding. Moreover, spastin plays a microtubule-dependent role in mediating the dispersion of LDs from the ER upon glucose starvation. Our results reveal a dual role of spastin to shape ER tubules and to regulate LD movement along microtubules, opening new perspectives for the pathogenesis of hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Nimesha Tadepalle
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Lennart Robers
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Matteo Veronese
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Peter Zentis
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Felix Babatz
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Anja V Gruszczyk
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Stefan Höning
- Institute for Biochemistry I, University of Cologne, Cologne, Germany
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne, Germany .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
97
|
Dhiman R, Caesar S, Thiam AR, Schrul B. Mechanisms of protein targeting to lipid droplets: A unified cell biological and biophysical perspective. Semin Cell Dev Biol 2020; 108:4-13. [PMID: 32201131 DOI: 10.1016/j.semcdb.2020.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/23/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022]
Abstract
Lipid droplets (LDs), or oil bodies in plants, are specialized organelles that primarily serve as hubs of cellular metabolic energy storage and consumption. These ubiquitous cytoplasmic organelles are derived from the endoplasmic reticulum (ER) and consist of a hydrophobic neutral lipid core - mainly consisting of triglycerides and sterol esters - that is encircled by a phospholipid monolayer. The dynamic metabolic functions of the LDs are mainly executed and regulated by proteins on the monolayer surface. However, its unique architecture puts some structural constraints on the types of proteins that can associate with LDs. The lipid monolayer is decorated with either peripheral proteins or with integral membrane proteins that adopt a monotopic topology. Due to its oil-water interface, which is energetically costly, the LD surface happens to be favorable to the recruitment of many proteins involved in metabolic but also non-metabolic functions. We only started very recently to understand biophysical and biochemical principles controlling protein targeting to LDs. This review aims to summarize the most recent findings regarding this topic and proposes directions that will potentially lead to a better understanding of LD surface characteristics, as compared to bilayer membranes, and how that impacts protein-LD interactions.
Collapse
Affiliation(s)
- Ravi Dhiman
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421 Homburg, Saar, Germany
| | - Stefanie Caesar
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421 Homburg, Saar, Germany
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.
| | - Bianca Schrul
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421 Homburg, Saar, Germany.
| |
Collapse
|
98
|
Renne MF, Klug YA, Carvalho P. Lipid droplet biogenesis: A mystery "unmixing"? Semin Cell Dev Biol 2020; 108:14-23. [PMID: 32192830 DOI: 10.1016/j.semcdb.2020.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/19/2022]
Abstract
Lipid droplets (LDs) are versatile organelles with central roles in lipid and energy metabolism in all eukaryotes. They primarily buffer excess fatty acids by storing them as neutral lipids, mainly triglycerides and steryl esters. The neutral lipids form a core, surrounded by a unique phospholipid monolayer coated with a defined set of proteins. Thus, the architecture of LDs sets them apart from all other membrane-bound organelles. The origin of LDs remained controversial for a long time. However, it has become clear that their biogenesis occurs at the endoplasmic reticulum (ER) and is a lipid driven process. LD formation is intiatied by the demixing of neutral lipids from membrane phospholipids, leading to the formation of a neutral lipid "lens" like structure between the leaflets of the ER bilayer. As this lens grows, it buds out of the membrane towards the cytosol to give rise to a LD. Recent biophysical and cell biological experiments indicate that LD biogenesis occurs at specific ER domains. These domains are enriched in various proteins required for normal LD formation and possibly have a lipid composition distinct from the remaining ER membrane. Here, we describe the prevailing model for LD formation and discuss recent insights on how proteins organize ER domains involved in LD biogenesis.
Collapse
Affiliation(s)
- Mike F Renne
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Yoel A Klug
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
99
|
Morris SNS, Olzmann JA. A Tense Situation: Maintaining ER Homeostasis during Lipid Droplet Budding. Dev Cell 2020; 50:1-2. [PMID: 31265808 DOI: 10.1016/j.devcel.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this issue of Developmental Cell, Chorlay et al. (2019) provide evidence that asymmetric membrane surface tension determines the directionality of lipid droplet (LD) emergence. Furthermore, phospholipid synthesis "refills" the outer leaflet of the endoplasmic reticulum (ER) membrane to maintain cytosolic LD emergence and prevent disruptions to ER homeostasis.
Collapse
Affiliation(s)
- Siti Nur Sarah Morris
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
100
|
Lipidomic profiling analysis of the phospholipid molecules in SCAP-induced lipid droplet formation in bovine mammary epithelial cells. Prostaglandins Other Lipid Mediat 2020; 149:106420. [PMID: 31953015 DOI: 10.1016/j.prostaglandins.2020.106420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/15/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
The accumulation of lipid droplets (LDs) in the cytoplasm plays an important role in energy balance, membrane synthesis and cell signal transduction. The aim of this study was to investigate the profile of phospholipids after SCAP-induced LD formation in bovine mammary epithelial cells (BMECs). A shRNA-SCAP vector and a SCAP/SREBP vector were used to knock down and overexpress the SCAP gene in BMECs prior to evaluating the effects on LDs using Western blotting, real-time PCR, LD staining and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The average LD diameter was determined following oil red O staining. The overexpression of SCAP increased the abundance of SCD, ACACA and FASN genes and nuclear SREBP1a. In contrast, knocking down SCAP decreased the abundance of the nuclear SREBP1a protein and downregulated the abundance of target genes. Lipid droplet staining revealed that knocking down SCAP reduced LD formation and average LD diameter. In contrast, overexpression of SCAP increased the formation and size of the LDs. The results from an analysis of cellular lipids revealed that phospholipids are the predominant species in the profile of cell lipids. phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are important for determining the size of LDs. The LD formation induced by SCAP gene overexpression and knockdown underscored the role of phospholipids involved in lipid droplet formation and fusion.
Collapse
|