51
|
Bergiers I, Lambert B, Daakour S, Twizere JC, Rezsohazy R. Hox protein interactions: screening and network building. Methods Mol Biol 2014; 1196:319-48. [PMID: 25151173 DOI: 10.1007/978-1-4939-1242-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Understanding the mode of action of Hox proteins requires the identification of molecular and cellular pathways they take part in. This includes to characterize the networks of protein-protein interactions involving Hox proteins. In this chapter we propose a strategy and methods to map Hox interaction networks, from yeast two-hybrid and high-throughput yeast two-hybrid interaction screening to bioinformatic analyses based on the software platform Cytoscape.
Collapse
Affiliation(s)
- Isabelle Bergiers
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-5 box L7.07.10, Louvain-la-Neuve, 1348, Belgium
| | | | | | | | | |
Collapse
|
52
|
|
53
|
|
54
|
Qian B, Mo R, Da M, Peng W, Hu Y, Mo X. Common variations in BMP4 confer genetic susceptibility to sporadic congenital heart disease in a Han Chinese population. Pediatr Cardiol 2014; 35:1442-7. [PMID: 25022354 PMCID: PMC4236636 DOI: 10.1007/s00246-014-0951-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/03/2014] [Indexed: 12/13/2022]
Abstract
Congenital heart disease (CHD) is the most common birth defect in humans. The genetic causes of sporadic CHD remain largely unknown. Bone morphogenetic protein 4 (BMP4), a member of the transforming growth factor-β (TGF-β) family, is required for normal heart development. Loss of BMP4 gene expression in mice is associated with septal defects, defective endocardial cushion remodeling, and abnormal semilunar valve formation. This study evaluated the contribution of single nucleotide polymorphisms (SNPs) in BMP4 to CHD susceptibility in a case-control study of 575 patients with CHD and 844 non-CHD control subjects in a Chinese population. The BMP4 SNP rs762642 was associated with CHD in an additive model (odds ratio [OR]add 1.22; 95 % confidence interval [CI] 1.04-1.43; P add = 0.02). Stratified analysis by CHD subtypes showed a significant association only between rs762642 and atrial septal defect (ORadd 1.33; 95 % CI 1.04-1.72; P add = 0.03) in the additive model. This study was the first to indicate that a common variant of BMP4 may contribute to susceptibility to sporadic CHD in a Chinese population.
Collapse
Affiliation(s)
- Bo Qian
- Department of Cardiothoracic Surgery, The Affiliated Children’s Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Nanjing, 210008 China
| | - Ran Mo
- Medical School of Nanjing University, Nanjing, China
| | - Min Da
- Department of Cardiothoracic Surgery, The Affiliated Children’s Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Nanjing, 210008 China
| | - Wei Peng
- Department of Cardiothoracic Surgery, The Affiliated Children’s Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Nanjing, 210008 China
| | - Yuanli Hu
- Department of Cardiothoracic Surgery, The Affiliated Children’s Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Nanjing, 210008 China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, The Affiliated Children’s Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Nanjing, 210008 China
| |
Collapse
|
55
|
Ye F, Yuan F, Li X, Cooper N, Tinney JP, Keller BB. Gene expression profiles in engineered cardiac tissues respond to mechanical loading and inhibition of tyrosine kinases. Physiol Rep 2013; 1:e00078. [PMID: 24303162 PMCID: PMC3841024 DOI: 10.1002/phy2.78] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 12/17/2022] Open
Abstract
Engineered cardiac tissues (ECTs) are platforms to investigate cardiomyocyte maturation and functional integration, the feasibility of generating tissues for cardiac repair, and as models for pharmacology and toxicology bioassays. ECTs rapidly mature in vitro to acquire the features of functional cardiac muscle and respond to mechanical load with increased proliferation and maturation. ECTs are now being investigated as platforms for in vitro models for human diseases and for pharmacologic screening for drug toxicities. We tested the hypothesis that global ECT gene expression patterns are complex and sensitive to mechanical loading and tyrosine kinase inhibitors similar to the maturing myocardium. We generated ECTs from day 14.5 rat embryo ventricular cells, as previously published, and then conditioned constructs after 5 days in culture for 48 h with mechanical stretch (5%, 0.5 Hz) and/or the p38 MAPK (p38 mitogen-activated protein kinase) inhibitor BIRB796. RNA was isolated from individual ECTs and assayed using a standard Agilent rat 4 × 44k V3 microarray and Pathway Analysis software for transcript expression fold changes and changes in regulatory molecules and networks. Changes in expression were confirmed by quantitative-polymerase chain reaction (q-PCR) for selected regulatory molecules. At the threshold of a 1.5-fold change in expression, stretch altered 1559 transcripts, versus 1411 for BIRB796, and 1846 for stretch plus BIRB796. As anticipated, top pathways altered in response to these stimuli include cellular development, cellular growth and proliferation; tissue development; cell death, cell signaling, and small molecule biochemistry as well as numerous other pathways. Thus, ECTs display a broad spectrum of altered gene expression in response to mechanical load and/or tyrosine kinase inhibition, reflecting a complex regulation of proliferation, differentiation, and architectural alignment of cardiomyocytes and noncardiomyocytes within ECT.
Collapse
Affiliation(s)
- Fei Ye
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville Louisville, Kentucky ; Affiliated Hospital of Guiyang Medical College Guiyang, China
| | | | | | | | | | | |
Collapse
|
56
|
Andersen TA, Troelsen KDLL, Larsen LA. Of mice and men: molecular genetics of congenital heart disease. Cell Mol Life Sci 2013; 71:1327-52. [PMID: 23934094 PMCID: PMC3958813 DOI: 10.1007/s00018-013-1430-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 12/21/2022]
Abstract
Congenital heart disease (CHD) affects nearly 1 % of the population. It is a complex disease, which may be caused by multiple genetic and environmental factors. Studies in human genetics have led to the identification of more than 50 human genes, involved in isolated CHD or genetic syndromes, where CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes and to gain further insight into the molecular pathology behind CHD. The picture emerging from these studies suggest that genetic lesions associated with CHD affect a broad range of cellular signaling components, from ligands and receptors, across down-stream effector molecules to transcription factors and co-factors, including chromatin modifiers.
Collapse
Affiliation(s)
- Troels Askhøj Andersen
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | | | | |
Collapse
|
57
|
Rana MS, Christoffels VM, Moorman AFM. A molecular and genetic outline of cardiac morphogenesis. Acta Physiol (Oxf) 2013; 207:588-615. [PMID: 23297764 DOI: 10.1111/apha.12061] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 10/26/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
Abstract
Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect-related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying heart formation. Cardiogenesis is initiated with the formation of mesodermal multipotent cardiac progenitor cells and is governed by cross-talk between developmental cues emanating from endodermal, mesodermal and ectodermal cells. The molecular and transcriptional machineries that direct the specification and differentiation of these cardiac precursors are part of an evolutionarily conserved programme that includes the Nkx-, Gata-, Hand-, T-box- and Mef2 family of transcription factors. Unravelling the hierarchical networks governing the fate and differentiation of cardiac precursors is crucial for our understanding of congenital heart disease and future stem cell-based and gene therapies. Recent molecular and genetic lineage analyses have revealed that subpopulations of cardiac progenitor cells follow distinctive specification and differentiation paths, which determine their final contribution to the heart. In the last decade, progenitor cells that contribute to the arterial pole and right ventricle have received much attention, as abnormal development of these cells frequently results in congenital defects of the aortic and pulmonary outlets, representing the most commonly occurring congenital cardiac defects. In this review, we provide an overview of the building plan of the vertebrate four-chambered heart, with a special focus on cardiac progenitor cell specification, differentiation and deployment during arterial pole development.
Collapse
Affiliation(s)
- M. S. Rana
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - V. M. Christoffels
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - A. F. M. Moorman
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| |
Collapse
|
58
|
Yang YP, Li HR, Cao XM, Wang QX, Qiao CJ, Ya J. Second heart field and the development of the outflow tract in human embryonic heart. Dev Growth Differ 2013; 55:359-67. [PMID: 23488909 DOI: 10.1111/dgd.12050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 01/17/2023]
Abstract
The second heart field (SHF) is indicated to contribute to the embryonic heart development. However, less knowledge is available about SHF development of human embryo due to the difficulty of collecting embryos. In this study, serial sections of human embryos from Carnegie stage 10 (CS10) to CS16 were stained with antibodies against Islet-1 (Isl-1), Nkx2.5, GATA4, myosin heavy chain (MHC) and α-smooth muscle actin (α-SMA) to observe spatiotemporal distribution of SHF and its contribution to the development of the arterial pole of cardiac tube. Our findings suggest that during CS10 to CS12, SHF of the human embryo is composed of the bilateral pharyngeal mesenchyme, the central mesenchyme of the branchial arch and splanchnic mesoderm of the pericardial cavity dorsal wall. With development, SHF translocates and consists of ventral pharyngeal mesenchyme and dorsal wall of the pericardial cavity. Hence, the SHF of human embryo shows a dynamic spatiotemporal distribution pattern. The formation of the Isl-1 positive condense cell prongs provides an explanation for the saddle structure formation at the distal pole of the outflow tract. In human embryo, the Isl-1 positive cells of SHF may contribute to the formation of myocardial outflow tract (OFT) and the septum during different development stages.
Collapse
Affiliation(s)
- Yan-Ping Yang
- Department of Histology and Embryology, Shanxi Medical University, 56 Xin Jian Nan Road, Taiyuan, 030001, Shanxi, China
| | | | | | | | | | | |
Collapse
|
59
|
Van Vliet P, Wu SM, Zaffran S, Pucéat M. Early cardiac development: a view from stem cells to embryos. Cardiovasc Res 2012; 96:352-62. [PMID: 22893679 PMCID: PMC3500045 DOI: 10.1093/cvr/cvs270] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/24/2012] [Accepted: 08/09/2012] [Indexed: 12/11/2022] Open
Abstract
From the 1920s, early cardiac development has been studied in chick and, later, in mouse embryos in order to understand the first cell fate decisions that drive specification and determination of the endocardium, myocardium, and epicardium. More recently, mouse and human embryonic stem cells (ESCs) have demonstrated faithful recapitulation of early cardiogenesis and have contributed significantly to this research over the past few decades. Derived almost 15 years ago, human ESCs have provided a unique developmental model for understanding the genetic and epigenetic regulation of early human cardiogenesis. Here, we review the biological concepts underlying cell fate decisions during early cardiogenesis in model organisms and ESCs. We draw upon both pioneering and recent studies and highlight the continued role for in vitro stem cells in cardiac developmental biology.
Collapse
Affiliation(s)
- Patrick Van Vliet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, CA, USA
| | - Sean M. Wu
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stéphane Zaffran
- Aix-Marseille University, Marseille, France
- INSERM UMRS910, Faculté de Médecine de la Timone, France
| | - Michel Pucéat
- INSERM UMR633, Paris Descartes University, Campus Genopole 1, 4, rue Pierre Fontaine, Evry 91058, Paris, France
| |
Collapse
|
60
|
|
61
|
Briggs LE, Kakarla J, Wessels A. The pathogenesis of atrial and atrioventricular septal defects with special emphasis on the role of the dorsal mesenchymal protrusion. Differentiation 2012; 84:117-30. [PMID: 22709652 PMCID: PMC3389176 DOI: 10.1016/j.diff.2012.05.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/17/2012] [Accepted: 05/04/2012] [Indexed: 12/22/2022]
Abstract
Partitioning of the four-chambered heart requires the proper formation, interaction and fusion of several mesenchymal tissues derived from different precursor populations that together form the atrioventricular mesenchymal complex. This includes the major endocardial cushions and the mesenchymal cap of the septum primum, which are of endocardial origin, and the dorsal mesenchymal protrusion (DMP), which is derived from the Second Heart Field. Failure of these structures to develop and/or fully mature results in atrial septal defects (ASDs) and atrioventricular septal defects (AVSD). AVSDs are congenital malformations in which the atria are permitted to communicate due to defective septation between the inferior margin of the septum primum and the atrial surface of the common atrioventricular valve. The clinical presentation of AVSDs is variable and depends on both the size and/or type of defect; less severe defects may be asymptomatic while the most severe defect, if untreated, results in infantile heart failure. For many years, maldevelopment of the endocardial cushions was thought to be the sole etiology of AVSDs. More recent work, however, has demonstrated that perturbation of DMP development also results in AVSD. Here, we discuss in detail the formation of the DMP, its contribution to cardiac septation and describe the morphological features as well as potential etiologies of ASDs and AVSDs.
Collapse
Affiliation(s)
- Laura E. Briggs
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
| | - Jayant Kakarla
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
| |
Collapse
|
62
|
VanDusen NJ, Firulli AB. Twist factor regulation of non-cardiomyocyte cell lineages in the developing heart. Differentiation 2012; 84:79-88. [PMID: 22516205 DOI: 10.1016/j.diff.2012.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/14/2012] [Accepted: 03/07/2012] [Indexed: 12/31/2022]
Abstract
The heart is a complex organ that is composed of numerous cell types, which must integrate their programs for proper specification, differentiation and cardiac morphogenesis. During cardiogenesis members of the Twist-family of basic helix-loop-helix (bHLH) transcription factors play distinct roles within cardiac lineages such as the endocardium and extra-cardiac lineages such as the cardiac neural crest (cNCC) and epicardium. While the study of these cell populations is often eclipsed by that of cardiomyocytes, the contributions of non-cardiomyocytes to development and disease are increasingly being appreciated as both dynamic and essential. This review summarizes what is known regarding Twist-family bHLH function in extra-cardiac cell populations and the endocardium, with a focus on regulatory mechanisms, downstream targets, and expression profiles. Improving our understanding of the molecular pathways that Twist-family bHLH factors mediate in these lineages will be necessary to ascertain how their dysfunction leads to congenital disease and adult pathologies such as myocardial infarctions and cardiac fibroblast induced fibrosis. Indeed, this knowledge will prove to be critical to clinicians seeking to improve current treatments.
Collapse
Affiliation(s)
- Nathan J VanDusen
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Department of Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | | |
Collapse
|
63
|
Kusser W, Zimmer K, Fiedler F. Characteristics of the binding of aminoglycoside antibiotics to teichoic acids. A potential model system for interaction of aminoglycosides with polyanions. Dev Dyn 1985; 243:117-31. [PMID: 2411558 DOI: 10.1002/dvdy.24060] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/09/2013] [Accepted: 08/30/2013] [Indexed: 12/15/2022] Open
Abstract
The binding of the aminoglycoside antibiotic dihydrostreptomycin to defined cell-wall teichoic acids and to lipoteichoic acid isolated from various gram-positive eubacteria was followed by equilibrium dialysis. Dihydrostreptomycin was used at a wide range of concentration under different conditions of ionic strength, concentration of teichoic acid, presence of cationic molecules like Mg2+, spermidine, other aminoglycoside antibiotics (gentamicin, neomycin, paromomycin). Interaction of dihydrostreptomycin with teichoic acid was found to be a cooperative binding process. The binding characteristics seem to be dependent on structural features of teichoic acid and are influenced by cationic molecules. Mg2+, spermidine and other aminoglycosides antibiotics inhibit the binding of dihydrostreptomycin to teichoic acid competitively. The binding of aminoglycosides to teichoic acids is considered as a model system for the interaction of aminoglycoside antibiotics with cellular polyanions. Conclusions of physiological significance are drawn.
Collapse
|