51
|
Kulbacka J, Rembiałkowska N, Szewczyk A, Rossowska J, Drąg-Zalesińska M, Kulbacki M, Choromańska A. Nanosecond PEF Induces Oxidative Stress and Apoptosis via Proteasomal Activity Inhibition in Gastric Adenocarcinoma Cells with Drug Resistance. Int J Mol Sci 2022; 23:12943. [PMID: 36361727 PMCID: PMC9657809 DOI: 10.3390/ijms232112943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 08/01/2023] Open
Abstract
Nanosecond (ns) pulsed electric field (PEF) is a technology in which the application of ultra-short electrical pulses can be used to disrupt the barrier function of cell plasma and internal membranes. Disruptions of the membrane integrity cause a substantial imbalance in cell homeostasis in which oxidative stress is a principal component. In the present study, nsPEF-induced oxidative stress was investigated in two gastric adenocarcinoma cell lines (EPG85-257P and EPG85-257RDB) which differ by their sensitivity to daunorubicin. Cells were exposed to 200 pulses of 10 ns duration, with the amplitude and pulse repetition frequency at 1 kHz, with electric field intensity varying from 12.5 to 50 kV/cm. The electroporation buffer contained either 1 mM or 2 mM calcium chloride. CellMask DeepRed visualized cell plasma permeabilization, Fluo-4 was used to visualize internal calcium ions content, and F-actin was labeled with AlexaFluor®488 for the cytoskeleton. The cellular viability was determined by MTT assay. An alkaline and neutral comet assay was employed to detect apoptotic and necrotic cell death. The luminescent method estimated the modifications in GSSG/GSH redox potential and the imbalance of proteasomal activity (chymotrypsin-, trypsin- and caspase-like). The reactive oxygen species (ROS) level was measured by flow cytometry using dihydroethidium (DHE) dye. Morphological visualization indicated cell shrinkage, affected cell membranes (characteristic bubbles and changed cell shape), and the reorganization of actin fibers with sites of its dense concentration; the effect was more intense with the increasing electric field strength. The most significant decrease in cell viability and GSSG/GSH redox potential was noted at the highest amplitude of 50 kV/cm, and calcium ions amplified this effect. nsPEF, particularly with calcium ions, inhibited proteasomal activities, resulting in increased protein degradation. nsPEF increased the percentage of apoptotic cells and ROS levels. The EPG85-257 RDB cell line, which is resistant to standard chemotherapy, was more sensitive to applied nsPEF protocols. The applied nsPEF method disrupted the metabolism of cancer cells and induced apoptotic cell death. The nsPEF ability to cause apoptosis, oxidative stress, and protein degradation make the nsPEF methodology a suitable alternative to current anticancer pharmacological methods.
Collapse
Affiliation(s)
- Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, 50-335 Wroclaw, Poland
| | - Joanna Rossowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Małgorzata Drąg-Zalesińska
- Division of Histology and Embryology, Division of Human Morpholog and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marek Kulbacki
- Polish-Japanese Academy of Information Technology, 02-008 Warsaw, Poland
- DIVE IN AI, 53-307 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| |
Collapse
|
52
|
Pei J, Zhang J, Cong Q. Human mitochondrial protein complexes revealed by large-scale coevolution analysis and deep learning-based structure modeling. Bioinformatics 2022; 38:4301-4311. [PMID: 35881696 DOI: 10.1093/bioinformatics/btac527] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Recent development of deep-learning methods has led to a breakthrough in the prediction accuracy of 3D protein structures. Extending these methods to protein pairs is expected to allow large-scale detection of protein-protein interactions (PPIs) and modeling protein complexes at the proteome level. RESULTS We applied RoseTTAFold and AlphaFold, two of the latest deep-learning methods for structure predictions, to analyze coevolution of human proteins residing in mitochondria, an organelle of vital importance in many cellular processes including energy production, metabolism, cell death and antiviral response. Variations in mitochondrial proteins have been linked to a plethora of human diseases and genetic conditions. RoseTTAFold, with high computational speed, was used to predict the coevolution of about 95% of mitochondrial protein pairs. Top-ranked pairs were further subject to modeling of the complex structures by AlphaFold, which also produced contact probability with high precision and in many cases consistent with RoseTTAFold. Most top-ranked pairs with high contact probability were supported by known PPIs and/or similarities to experimental structural complexes. For high-scoring pairs without experimental complex structures, our coevolution analyses and structural models shed light on the details of their interfaces, including CHCHD4-AIFM1, MTERF3-TRUB2, FMC1-ATPAF2 and ECSIT-NDUFAF1. We also identified novel PPIs (PYURF-NDUFAF5, LYRM1-MTRF1L and COA8-COX10) for several proteins without experimentally characterized interaction partners, leading to predictions of their molecular functions and the biological processes they are involved in. AVAILABILITY AND IMPLEMENTATION Data of mitochondrial proteins and their interactions are available at: http://conglab.swmed.edu/mitochondria. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
53
|
Wischhof L, Scifo E, Ehninger D, Bano D. AIFM1 beyond cell death: An overview of this OXPHOS-inducing factor in mitochondrial diseases. EBioMedicine 2022; 83:104231. [PMID: 35994922 PMCID: PMC9420475 DOI: 10.1016/j.ebiom.2022.104231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial intermembrane space flavoprotein with diverse functions in cellular physiology. In this regard, a large number of studies have elucidated AIF's participation to chromatin condensation during cell death in development, cancer, cardiovascular and brain disorders. However, the discovery of rare AIFM1 mutations in patients has shifted the interest of biomedical researchers towards AIF's contribution to pathogenic mechanisms underlying inherited AIFM1-linked metabolic diseases. The functional characterization of AIF binding partners has rapidly advanced our understanding of AIF biology within the mitochondria and beyond its widely reported role in cell death. At the present time, it is reasonable to assume that AIF contributes to cell survival by promoting biogenesis and maintenance of the mitochondrial oxidative phosphorylation (OXPHOS) system. With this review, we aim to outline the current knowledge around the vital role of AIF by primarily focusing on currently reported human diseases that have been linked to AIFM1 deficiency.
Collapse
Affiliation(s)
- Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Enzo Scifo
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
54
|
Al-Thomali AW, Al-kuraishy HM, Al-Gareeb AI, K. Al-buhadiliy A, De Waard M, Sabatier JM, Khan Khalil AA, Saad HM, Batiha GES. Role of Neuropilin 1 in COVID-19 Patients with Acute Ischemic Stroke. Biomedicines 2022; 10:2032. [PMID: 36009579 PMCID: PMC9405641 DOI: 10.3390/biomedicines10082032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection can trigger the adaptive and innate immune responses, leading to uncontrolled inflammatory reactions and associated local and systematic tissue damage, along with thromboembolic disorders that may increase the risk of acute ischemic stroke (AIS) in COVID-19 patients. The neuropilin (NRP-1) which is a co-receptor for the vascular endothelial growth factor (VEGF), integrins, and plexins, is involved in the pathogenesis of AIS. NRP-1 is also regarded as a co-receptor for the entry of SARS-CoV-2 and facilitates its entry into the brain through the olfactory epithelium. NRP-1 is regarded as a cofactor for binding of SARS-CoV-2 with angiotensin-converting enzyme 2 (ACE2), since the absence of ACE2 reduces SARS-CoV-2 infectivity even in presence of NRP-1. Therefore, the aim of the present study was to clarify the potential role of NRP-1 in COVID-19 patients with AIS. SARS-CoV-2 may transmit to the brain through NRP-1 in the olfactory epithelium of the nasal cavity, leading to different neurological disorders, and therefore about 45% of COVID-19 patients had neurological manifestations. NRP-1 has the potential capability to attenuate neuroinflammation, blood-brain barrier (BBB) permeability, cerebral endothelial dysfunction (ED), and neuronal dysfunction that are uncommon in COVID-19 with neurological involvement, including AIS. Similarly, high NRP-1 serum level is linked with ED, oxidative stress, and the risk of pulmonary thrombosis in patients with severe COVID-19, suggesting a compensatory mechanism to overcome immuno-inflammatory disorders. In conclusion, NRP-1 has an important role in the pathogenesis of COVID-19 and AIS, and could be the potential biomarker linking the development of AIS in COVID-19. The present findings cannot provide a final conclusion, and thus in silico, experimental, in vitro, in vivo, preclinical, and clinical studies are recommended to confirm the potential role of NRP-1 in COVID-19, and to elucidate the pharmacological role of NRP-1 receptor agonists and antagonists in COVID-19.
Collapse
Affiliation(s)
- Asma W. Al-Thomali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, MBChB, MRCP, FRCP, Baghdad P.O. Box 14132, Iraq
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, Baghdad P.O. Box 14132, Iraq
| | - Ali K. Al-buhadiliy
- Department of Clinical Pharmacology, Medicine and Therapeutic, Medical Faculty, College of Medicine, Al-Mustansiriyah University, Baghdad P.O. Box 14132, Iraq
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, 44007 Nantes, France
- LabEx «Ion Channels, Science & Therapeutics», Université de Nice Sophia-Antipolis, 06560 Valbonne, France
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), Aix-Marseille Université, CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
55
|
Hou S, Zhang X, Ning X, Wu H, Li X, Ma K, Hao H, Lv C, Li C, Du Z, Du H, Jin M. Methylmercury induced apoptosis of human neuroblastoma cells through the reactive oxygen species mediated caspase and poly ADP-ribose polymerase/apoptosis-inducing factor dependent pathways. ENVIRONMENTAL TOXICOLOGY 2022; 37:1891-1901. [PMID: 35396826 DOI: 10.1002/tox.23535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/12/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Methylmercury (MeHg) is an environmental neurotoxic substance, which can easily cross the blood-brain barrier, causing irreversible damage to the human central nervous system. Reactive oxygen species (ROS) are involved in various ways of intracellular physiological or pathological processes including neuronal apoptosis. This study attempted to explore the role of ROS-mediated poly ADP-ribose polymerase (PARP)/apoptosis-inducing factor (AIF) apoptosis signaling pathway in the process of MeHg-induced cell death of human neuroblastoma cells (SH-SY5Y). Here, we found that SH-SY5Y cells underwent apoptosis in response to MeHg, which was accompanied by the increased levels of ROS and calcium ion, and the activation of caspase cascades and PARP. Inhibiting the production of ROS can reduce the apoptosis rate to a certain extent. PARP/AIF apoptotic pathway is independent of caspase dependent signaling pathway and regulates it. In conclusion, these results suggest that ROS mediated activation of caspase pathway and PARP/AIF signaling pathway are involved in MeHg induced apoptosis, and these two pathways interact with each other.
Collapse
Affiliation(s)
- Shanshan Hou
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xiayu Zhang
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xiaofan Ning
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Hao Wu
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xinyue Li
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Kai Ma
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Huifang Hao
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Chunping Lv
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Chunrui Li
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haiying Du
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Minghua Jin
- School of Public Health, Jilin University, Changchun, Jilin, China
| |
Collapse
|
56
|
Abstract
The immune repertoires of mollusks beyond commercially important organisms such as the pacific oyster Crassostrea gigas or vectors for human pathogens like the bloodfluke planorb Biomphalaria glabrata are understudied. Despite being an important model for neural aging and the role of inflammation in neuropathic pain, the immune repertoire of Aplysia californica is poorly understood. Recent discovery of a neurotropic nidovirus in Aplysia has highlighted the need for a better understanding of the Aplysia immunome. To address this gap in the literature, the Aplysia reference genome was mined using InterProScan and OrthoFinder for putative immune genes. The Aplysia genome encodes orthologs of all critical components of the classical Toll-like receptor (TLR) signaling pathway. The presence of many more TLRs and TLR associated adapters than known from vertebrates suggest yet uncharacterized, novel TLR associated signaling pathways. Aplysia also retains many nucleotide receptors and antiviral effectors known to play a key role in viral defense in vertebrates. However, the absence of key antiviral signaling adapters MAVS and STING in the Aplysia genome suggests divergence from vertebrates and bivalves in these pathways. The resulting immune gene set of this in silico study provides a basis for interpretation of future immune studies in this important model organism.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| |
Collapse
|
57
|
Salscheider SL, Gerlich S, Cabrera-Orefice A, Peker E, Rothemann RA, Murschall LM, Finger Y, Szczepanowska K, Ahmadi ZA, Guerrero-Castillo S, Erdogan A, Becker M, Ali M, Habich M, Petrungaro C, Burdina N, Schwarz G, Klußmann M, Neundorf I, Stroud DA, Ryan MT, Trifunovic A, Brandt U, Riemer J. AIFM1 is a component of the mitochondrial disulfide relay that drives complex I assembly through efficient import of NDUFS5. EMBO J 2022; 41:e110784. [PMID: 35859387 PMCID: PMC9434101 DOI: 10.15252/embj.2022110784] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial intermembrane space protein AIFM1 has been reported to mediate the import of MIA40/CHCHD4, which forms the import receptor in the mitochondrial disulfide relay. Here, we demonstrate that AIFM1 and MIA40/CHCHD4 cooperate beyond this MIA40/CHCHD4 import. We show that AIFM1 and MIA40/CHCHD4 form a stable long‐lived complex in vitro, in different cell lines, and in tissues. In HEK293 cells lacking AIFM1, levels of MIA40 are unchanged, but the protein is present in the monomeric form. Monomeric MIA40 neither efficiently interacts with nor mediates the import of specific substrates. The import defect is especially severe for NDUFS5, a subunit of complex I of the respiratory chain. As a consequence, NDUFS5 accumulates in the cytosol and undergoes rapid proteasomal degradation. Lack of mitochondrial NDUFS5 in turn results in stalling of complex I assembly. Collectively, we demonstrate that AIFM1 serves two overlapping functions: importing MIA40/CHCHD4 and constituting an integral part of the disulfide relay that ensures efficient interaction of MIA40/CHCHD4 with specific substrates.
Collapse
Affiliation(s)
| | - Sarah Gerlich
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esra Peker
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | | | | | - Yannik Finger
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Karolina Szczepanowska
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Zeinab Alsadat Ahmadi
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sergio Guerrero-Castillo
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alican Erdogan
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Mark Becker
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Muna Ali
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Markus Habich
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | | | - Nele Burdina
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Guenter Schwarz
- Institute for Biochemistry, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Merlin Klußmann
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Ines Neundorf
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Aleksandra Trifunovic
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jan Riemer
- Institute for Biochemistry, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
58
|
Mondal A, Roberge J, Gilleran J, Peng Y, Jia D, Akel M, Patel Y, Zoltowski H, Doraiswamy A, Langenfeld J. Bone morphogenetic protein inhibitors and mitochondria targeting agents synergistically induce apoptosis-inducing factor (AIF) caspase-independent cell death in lung cancer cells. Cell Commun Signal 2022; 20:99. [PMID: 35761398 PMCID: PMC9238106 DOI: 10.1186/s12964-022-00905-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/18/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Bone morphogenetic proteins (BMP) are evolutionarily conserved morphogens that are reactivated in lung carcinomas. In lung cancer cells, BMP signaling suppresses AMP activated kinase (AMPK) by inhibiting LKB1. AMPK is activated by mitochondrial stress that inhibits ATP production, which is enhanced 100-fold when phosphorylated by LKB1. Activated AMPK can promote survival of cancer cells but its "hyperactivation" induces cell death. The studies here reveal novel cell death mechanisms induced by BMP inhibitors, together with agents targeting the mitochondria, which involves the "hyperactivation" of AMPK. METHODS This study examines the synergistic effects of two BMP inhibitors together with mitochondrial targeting agents phenformin and Ym155, on cell death of lung cancer cells expressing LKB1 (H1299), LKB1 null (A549), and A549 cells transfected with LKB1 (A549-LKB1). Cell death mechanisms evaluated were the activation of caspases and the nuclear localization of apoptosis inducing factor (AIF). A769662 was used to allosterically activate AMPK. Knockdown of BMPR2 and LKB1 using siRNA was used to examine their effects on nuclear localization of AMPK. Validation studies were performed on five passage zero primary NSCLC. RESULTS Both BMP inhibitors synergistically suppressed growth when combined with Ym155 or phenformin in cells expressing LKB1. The combination of BMP inhibitors with mitochondrial targeting agents enhanced the activation of AMPK in lung cancer cells expressing LKB1. Allosteric activation of AMPK with A769662 induced cell death in both H1299 and A549 cells. Cell death induced by the combination of BMP inhibitors and mitochondrial-targeting agents did not activate caspases. The combination of drugs induced nuclear localization of AIF in cells expressing LKB1, which was attenuated by knockdown of LKB1. Knockdown of BMPR2 together with Ym155 increased nuclear localization of AIF. Combination therapy also enhanced cell death and AIF nuclear localization in primary NSCLC. CONCLUSIONS These studies demonstrate that inhibition of BMP signaling together with mitochondrial targeting agents induce AIF caspase-independent cell death, which involves the "hyperactivation" of AMPK. AIF caspase-independent cell death is an evolutionarily conserved cell death pathway that is infrequently studied in cancer. These studies provide novel insight into mechanisms inducing AIF caspase-independent cell death in cancer cells using BMP inhibitors. Video Abstract.
Collapse
Affiliation(s)
- Arindam Mondal
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 1 Robert Wood Johnson Place, New Brunswick, NJ, 08903, USA
| | - Jacques Roberge
- Molecular Design and Synthesis, RUBRIC, Office for Research, Rutgers Translational Science, Rutgers University, Piscataway, NJ, 08854, USA
| | - John Gilleran
- Molecular Design and Synthesis, RUBRIC, Office for Research, Rutgers Translational Science, Rutgers University, Piscataway, NJ, 08854, USA
| | - Youyi Peng
- Biomedical Informatics Shared Resources, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.,Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Dongxuan Jia
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 1 Robert Wood Johnson Place, New Brunswick, NJ, 08903, USA
| | - Moumen Akel
- Rutgers University, Piscataway, NJ, 08854, USA
| | - Yash Patel
- Rutgers University, Piscataway, NJ, 08854, USA
| | | | | | - John Langenfeld
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 1 Robert Wood Johnson Place, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
59
|
Walter LO, Maioral MF, Silva LO, Speer DB, Campbell SC, Gallimore W, Falkenberg MB, Santos-Silva MC. Involvement of the NF-κB and PI3K/Akt/mTOR pathways in cell death triggered by stypoldione, an o-quinone isolated from the brown algae Stypopodium zonale. ENVIRONMENTAL TOXICOLOGY 2022; 37:1297-1309. [PMID: 35128807 DOI: 10.1002/tox.23484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy that remains incurable to date. Thus, the aims of this study were to evaluate the involvement of the NF-κB and PI3K/Akt/mTOR pathways in the cytotoxicity of stypoldione, an o-quinone isolated from the brown algae Stypopodium zonale, in MM cells (MM1.S). The cytotoxic effect was evaluated in MM1.S cells and peripheral blood mononuclear cells (PBMCs) by MTT assay. The stypoldione reduced the cell viability of MM1.S cells in a concentration and time-dependent manner (IC50 in MM.1S from 2.55 to 5.38 μM). However, it was also cytotoxic to PBMCs, but at a lower range. Additionally, no significant hemolysis was observed even at concentration up to 10 times the IC50 . Apoptotic cell death was confirmed by cell morphology and Annexin V-FITC assay. Stypoldione induced intrinsic and extrinsic apoptosis by increasing FasR expression and reactive oxygen species (ROS) production, inverting the Bax/Bcl-2 ratio, and inducing ΔΨm loss, which resulted in AIF release and caspase-3 activation. It also increased Ki-67 and survivin expression and inhibited the NF-κB and PI3K/Akt/mTOR pathways. These results suggest that stypoldione is a good candidate for the development of new drugs for MM treatment.
Collapse
Affiliation(s)
- Laura O Walter
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mariana F Maioral
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Lisandra O Silva
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Douglas B Speer
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Sanjay C Campbell
- Department of Chemistry, University of the West Indies, St. Andrew, Jamaica
| | - Winklet Gallimore
- Department of Chemistry, University of the West Indies, St. Andrew, Jamaica
| | - Miriam B Falkenberg
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Maria Cláudia Santos-Silva
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
60
|
Kit O, Frantsiyants E, Bandovkina V, Neskubina I, Shikhlyarova A, Kaplieva I, Surikova E, Pogorelova Y, Cheryarina N, Trepitaki L, Goroshinskaya I, Vaschenko L, Shatova Y, Kuchkina L, Kovalenko V, Nemashkalova L. cAMP сoncentrations in cardiac mitochondria and serum in the С57ВL/6 mice under independent melanoma В16/F10 growth versus melanoma В16/F10 growth linked to chronic neurogenic pain. CARDIOMETRY 2022. [DOI: 10.18137/cardiometry.2022.22.6268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aim of this research work is to study the cAMP level in the cardiac mitochondria and serum in the С57ВL/6 strain mice of both genders under the independent melanoma В16/F10 growth versus the melanoma В16/F10 growth linked to chronic neurogenic pain (CNP). Materials and methods. Mice of strain С57ВL/6 (n=336) have been grouped as follows: the intact group of the mice (♂n=21; ♀n=21), the reference group (♂n=21; ♀n=21) with the reproduced CNP model, the comparison group (♂n=63; ♀n=63) to include the mice with melanoma В16/F10, and the main test group (♂n=63; ♀n=63) to cover the mice with the melanoma growth against the CNP background. Upon expiration of 1 week, 2 and 3 weeks of the melanoma growth, in the animals of the above experimental groups the cardiac mitochondria have been isolated with the centrifugation using high-performance refrigerated centrifuge Avanti J-E, BECMAN COULTER, USA. With ELISA Kit (RayBio USA) we have determined cAMP concentrations in serum and in the cardiac mitochondria. Results. CNP has induced a decrease in the cAMP level in the cardiac mitochondria by a factor of 3,6 in the female mice only. In the animals of the comparison group the cAMP level in the heart has been increasing beginning with week 2 of the tumor growth on average by a factor of 4, while in the main test group starting from week 1 of the tumor growth it has been recorded 2-4 times higher and was depleted by the end of the experiment. As to the cAMP concentration in serum, the dynamics thereof has not been found to be in correlation with the cardiac mitochondrial data, and its concentration decrease has been recorded both in the females and the males. Conclusion. So, the changes in the cAMP concentration in the cardiac mitochondria demonstrate their gender-specific feature; the female mice as against the males have responded to an independent impact produced by CNP. As to the main test group, CNP has stimulated an increase in the cAMP level in the cardiac mitochondria 1 week earlier than it is the case with the comparison group, and it has resulted in the full cAMP depletion by the 3rd week of the experiment.
Collapse
|
61
|
Piazzesi A, Wang Y, Jackson J, Wischhof L, Zeisler-Diehl V, Scifo E, Oganezova I, Hoffmann T, Gómez Martín P, Bertan F, Wrobel CJJ, Schroeder FC, Ehninger D, Händler K, Schultze JL, Schreiber L, van Echten-Deckert G, Nicotera P, Bano D. CEST-2.2 overexpression alters lipid metabolism and extends longevity of mitochondrial mutants. EMBO Rep 2022; 23:e52606. [PMID: 35297148 PMCID: PMC9066074 DOI: 10.15252/embr.202152606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction can either extend or decrease Caenorhabditis elegans lifespan, depending on whether transcriptionally regulated responses can elicit durable stress adaptation to otherwise detrimental lesions. Here, we test the hypothesis that enhanced metabolic flexibility is sufficient to circumvent bioenergetic abnormalities associated with the phenotypic threshold effect, thereby transforming short‐lived mitochondrial mutants into long‐lived ones. We find that CEST‐2.2, a carboxylesterase mainly localizes in the intestine, may stimulate the survival of mitochondrial deficient animals. We report that genetic manipulation of cest‐2.2 expression has a minor lifespan impact on wild‐type nematodes, whereas its overexpression markedly extends the lifespan of complex I‐deficient gas‐1(fc21) mutants. We profile the transcriptome and lipidome of cest‐2.2 overexpressing animals and show that CEST‐2.2 stimulates lipid metabolism and fatty acid beta‐oxidation, thereby enhancing mitochondrial respiratory capacity through complex II and LET‐721/ETFDH, despite the inherited genetic lesion of complex I. Together, our findings unveil a metabolic pathway that, through the tissue‐specific mobilization of lipid deposits, may influence the longevity of mitochondrial mutant C. elegans.
Collapse
Affiliation(s)
- Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Yiru Wang
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Joshua Jackson
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Enzo Scifo
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ina Oganezova
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thorben Hoffmann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Fabio Bertan
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Kristian Händler
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany.,Department for Genomics and Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Bonn, Germany
| | | | | | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
62
|
Hu Y, Liang Y, Tian H, Xu C, Yu D, Zhang P, Ye H, Li M. Microplitis bicoloratus bracovirus regulates cyclophilin A-apoptosis-inducing factor interaction to induce cell apoptosis in the insect immunosuppressive process. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21877. [PMID: 35218062 PMCID: PMC9285338 DOI: 10.1002/arch.21877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 05/27/2023]
Abstract
Microplitis bicoloratus bracovirus (MbBV) induces apoptosis in hemocytes of the host (Spodoptera litura) via the cyclophilin A (CypA)-mediated signaling pathway. However, the mechanisms underlying CypA-mediated signaling during apoptosis remain largely unknown. Therefore, in this study, we investigated how CypA and apoptosis-inducing factor (AIF) interact during MbBV-mediated apoptosis. Our findings showed that MbBV induces apoptosis through the CypA-AIF axis of insect immune suppression. In MbBV-infected Spli221 cells, both the expression of the cypa gene and the release of AIF from the mitochondria increased the number of apoptotic cells. CypA and AIF underwent concurrent cytoplasm-nuclear translocation. Conversely, blocking of AIF release from mitochondria not only inhibited the CypA-AIF interaction but also inhibited the cytoplasmic-nuclear translocation of AIF and CypA. Importantly, the survival of the apoptotic phenotype was significantly rescued in MbBV-infected Spli221 cells. In addition, we found that the cyclosporine A-mediated inhibition of CypA did not prevent the formation of the CypA and AIF complex; rather, this only suppressed genomic DNA fragmentation. In vitro experiments revealed direct molecular interactions between recombinant CypA and AIF. Taken together, our results demonstrate that the CypA-AIF interaction plays an important role in MbBV-induced innate immune suppression. This study will help to clarify aspects of insect immunological mechanisms and will be relevant to biological pest control.
Collapse
Affiliation(s)
- Yan Hu
- School of Life SciencesYunnan UniversityKunmingChina
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and RegulationsYunnan UniversityKunmingChina
| | - Ya‐Ping Liang
- School of Life SciencesYunnan UniversityKunmingChina
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and RegulationsYunnan UniversityKunmingChina
| | - Hang‐Yu Tian
- School of Life SciencesYunnan UniversityKunmingChina
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and RegulationsYunnan UniversityKunmingChina
| | - Cui‐Xian Xu
- School of Life SciencesYunnan UniversityKunmingChina
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and RegulationsYunnan UniversityKunmingChina
| | - Dan Yu
- School of Life SciencesYunnan UniversityKunmingChina
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and RegulationsYunnan UniversityKunmingChina
| | - Pan Zhang
- School of Life SciencesYunnan UniversityKunmingChina
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and RegulationsYunnan UniversityKunmingChina
| | - Hui Ye
- School of Life SciencesYunnan UniversityKunmingChina
- School of AgricultureYunnan UniversityKunmingChina
| | - Ming Li
- School of Life SciencesYunnan UniversityKunmingChina
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and RegulationsYunnan UniversityKunmingChina
| |
Collapse
|
63
|
Jackson J, Wischhof L, Scifo E, Pellizzer A, Wang Y, Piazzesi A, Gentile D, Siddig S, Stork M, Hopkins CE, Händler K, Weis J, Roos A, Schultze JL, Nicotera P, Ehninger D, Bano D. SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells. Mol Metab 2022; 61:101503. [PMID: 35452878 PMCID: PMC9170783 DOI: 10.1016/j.molmet.2022.101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 01/21/2023] Open
Abstract
Objective Mitochondrial “retrograde” signaling may stimulate organelle biogenesis as a compensatory adaptation to aberrant activity of the oxidative phosphorylation (OXPHOS) system. To maintain energy-consuming processes in OXPHOS deficient cells, alternative metabolic pathways are functionally coupled to the degradation, recycling and redistribution of biomolecules across distinct intracellular compartments. While transcriptional regulation of mitochondrial network expansion has been the focus of many studies, the molecular mechanisms promoting mitochondrial maintenance in energy-deprived cells remain poorly investigated. Methods We performed transcriptomics, quantitative proteomics and lifespan assays to identify pathways that are mechanistically linked to mitochondrial network expansion and homeostasis in Caenorhabditis elegans lacking the mitochondrial calcium uptake protein 1 (MICU-1/MICU1). To support our findings, we carried out biochemical and image analyses in mammalian cells and mouse-derived tissues. Results We report that micu-1(null) mutations impair the OXPHOS system and promote C. elegans longevity through a transcriptional program that is independent of the mitochondrial calcium uniporter MCU-1/MCU and the essential MCU regulator EMRE-1/EMRE. We identify sphingosine phosphate lyase SPL-1/SGPL1 and the ATFS-1-target HOPS complex subunit VPS-39/VPS39 as critical lifespan modulators of micu-1(null) mutant animals. Cross-species investigation indicates that SGPL1 upregulation stimulates VPS39 recruitment to the mitochondria, thereby enhancing mitochondria-lysosome contacts. Consistently, VPS39 downregulation compromises mitochondrial network maintenance and basal autophagic flux in MICU1 deficient cells. In mouse-derived muscles, we show that VPS39 recruitment to the mitochondria may represent a common signature associated with altered OXPHOS system. Conclusions Our findings reveal a previously unrecognized SGPL1/VPS39 axis that stimulates intracellular organelle interactions and sustains autophagy and mitochondrial homeostasis in OXPHOS deficient cells. micu-1(null) nematodes are long-lived mitochondrial mutants. MICU-1/MICU1 deficiency stimulates VPS-39/VPS39 and SPL-1/SGPL1 upregulation. VPS-39 sustains mitochondrial network expansion in micu-1(null) nematodes. VPS39 and SGPL1 expression influences mitochondria-lysosome contact sites in MICU1 deficient cells. VPS39/SGPL1 signaling may be a common signature of mitochondrial deficient cells.
Collapse
Affiliation(s)
- Joshua Jackson
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Enzo Scifo
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Anna Pellizzer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Yiru Wang
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Debora Gentile
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sana Siddig
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Miriam Stork
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Kristian Händler
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Andreas Roos
- Universitätsklinikum Essen and Universität Duisburg-Essen, Essen, Germany
| | - Joachim L Schultze
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany; LIMES Institute, Department for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
| | | | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
64
|
Qian L, Mehrabi Nasab E, Athari SM, Athari SS. Mitochondria signaling pathways in allergic asthma. J Investig Med 2022; 70:863-882. [PMID: 35168999 PMCID: PMC9016245 DOI: 10.1136/jim-2021-002098] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria, as the powerhouse organelle of cells, are greatly involved in regulating cell signaling pathways, including those related to the innate and acquired immune systems, cellular differentiation, growth, death, apoptosis, and autophagy as well as hypoxic stress responses in various diseases. Asthma is a chronic complicated airway disease characterized by airway hyperresponsiveness, eosinophilic inflammation, mucus hypersecretion, and remodeling of airway. The asthma mortality and morbidity rates have increased worldwide, so understanding the molecular mechanisms underlying asthma progression is necessary for new anti-asthma drug development. The lung is an oxygen-rich organ, and mitochondria, by sensing and processing O2, contribute to the generation of ROS and activation of pro-inflammatory signaling pathways. Asthma pathophysiology has been tightly associated with mitochondrial dysfunction leading to reduced ATP synthase activity, increased oxidative stress, apoptosis induction, and abnormal calcium homeostasis. Defects of the mitochondrial play an essential role in the pro-remodeling mechanisms of lung fibrosis and airway cells' apoptosis. Identification of mitochondrial therapeutic targets can help repair mitochondrial biogenesis and dysfunction and reverse related pathological changes and lung structural remodeling in asthma. Therefore, we here overviewed the relationship between mitochondrial signaling pathways and asthma pathogenic mechanisms.
Collapse
Affiliation(s)
- Ling Qian
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai, China
| | - Entezar Mehrabi Nasab
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | | | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran (the Islamic Republic of)
| |
Collapse
|
65
|
Apoptosis-Inducing Factor Deficiency Induces Tissue-Specific Alterations in Autophagy: Insights from a Preclinical Model of Mitochondrial Disease and Exercise Training Effects. Antioxidants (Basel) 2022; 11:antiox11030510. [PMID: 35326160 PMCID: PMC8944439 DOI: 10.3390/antiox11030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
We analyzed the effects of apoptosis-inducing factor (AIF) deficiency, as well as those of an exercise training intervention on autophagy across tissues (heart, skeletal muscle, cerebellum and brain), that are primarily affected by mitochondrial diseases, using a preclinical model of these conditions, the Harlequin (Hq) mouse. Autophagy markers were analyzed in: (i) 2, 3 and 6 month-old male wild-type (WT) and Hq mice, and (ii) WT and Hq male mice that were allocated to an exercise training or sedentary group. The exercise training started upon onset of the first symptoms of ataxia in Hq mice and lasted for 8 weeks. Higher content of autophagy markers and free amino acids, and lower levels of sarcomeric proteins were found in the skeletal muscle and heart of Hq mice, suggesting increased protein catabolism. Leupeptin-treatment demonstrated normal autophagic flux in the Hq heart and the absence of mitophagy. In the cerebellum and brain, a lower abundance of Beclin 1 and ATG16L was detected, whereas higher levels of the autophagy substrate p62 and LAMP1 levels were observed in the cerebellum. The exercise intervention did not counteract the autophagy alterations found in any of the analyzed tissues. In conclusion, AIF deficiency induces tissue-specific alteration of autophagy in the Hq mouse, with accumulation of autophagy markers and free amino acids in the heart and skeletal muscle, but lower levels of autophagy-related proteins in the cerebellum and brain. Exercise intervention, at least if starting when muscle atrophy and neurological symptoms are already present, is not sufficient to mitigate autophagy perturbations.
Collapse
|
66
|
Benbrook DM. SHetA2 Attack on Mortalin and Colleagues in Cancer Therapy and Prevention. Front Cell Dev Biol 2022; 10:848682. [PMID: 35281109 PMCID: PMC8906462 DOI: 10.3389/fcell.2022.848682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Heat Shock Proteins of the 70-kDa family (HSP70s) do not cause cancer by themselves, but instead protect cells as they transform into cancer. These molecular chaperones bind numerous client proteins and utilize ATP hydrolysis to facilitate proper protein folding, formation of functional complexes and cellular localizations, or degradation of irreparably damaged proteins. Their transient upregulation by stressful situations avoids induction of programmed cell death. Continued upregulation of the mortalin, heat shock cognate (hsc70) and glucose regulated protein 78 (Grp78) support cancer development and progression by supporting pro-proliferative and metabolic functions and repressing pro-death functions of oncoproteins and tumor suppressor proteins. This review describes the discovery and development of a lead anti-cancer compound, sulfur heteroarotinoid A2 (SHetA2, NSC726189), which was originally developed to bind retinoic acid receptors, but was subsequently found to work independently of these receptors. The discovery and validation of mortalin, hsc70 and Grp78 as SHetA2 target proteins is summarized. The documented and hypothesized roles of these HSP70 proteins and their clients in the mechanism of SHetA2 inhibition of cancer without toxicity are discussed. Use of this mechanistic data to evaluate drug action in a cancer clinical trial and develop synergistic drug combinations is explained. Knowledge needed to optimize SHetA2 analogs for use in cancer therapy and prevention is proposed as future directions.
Collapse
|
67
|
Mitochondrial Neurodegeneration. Cells 2022; 11:cells11040637. [PMID: 35203288 PMCID: PMC8870525 DOI: 10.3390/cells11040637] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as ‘mitochondrial medicine’.
Collapse
|
68
|
Castelli S, Desideri E, Rosa Ciriolo M. ROS-mediated activation of p38 protects hepatocellular carcinoma cells from caspase-independent death elicited by lysosomal damage. Biochem Pharmacol 2022; 198:114983. [DOI: 10.1016/j.bcp.2022.114983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023]
|
69
|
Song S, Xiao Z, Dekker FJ, Poelarends GJ, Melgert BN. Macrophage migration inhibitory factor family proteins are multitasking cytokines in tissue injury. Cell Mol Life Sci 2022; 79:105. [PMID: 35091838 PMCID: PMC8799543 DOI: 10.1007/s00018-021-04038-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
The family of macrophage migration inhibitory factor (MIF) proteins in humans consist of MIF, its functional homolog D-dopachrome tautomerase (D-DT, also known as MIF-2) and the relatively unknown protein named DDT-like (DDTL). MIF is a pleiotropic cytokine with multiple properties in tissue homeostasis and pathology. MIF was initially found to associate with inflammatory responses and therefore established a reputation as a pro-inflammatory cytokine. However, increasing evidence demonstrates that MIF influences many different intra- and extracellular molecular processes important for the maintenance of cellular homeostasis, such as promotion of cellular survival, antioxidant signaling, and wound repair. In contrast, studies on D-DT are scarce and on DDTL almost nonexistent and their functions remain to be further investigated as it is yet unclear how similar they are compared to MIF. Importantly, the many and sometimes opposing functions of MIF suggest that targeting MIF therapeutically should be considered carefully, taking into account timing and severity of tissue injury. In this review, we focus on the latest discoveries regarding the role of MIF family members in tissue injury, inflammation and repair, and highlight the possibilities of interventions with therapeutics targeting or mimicking MIF family proteins.
Collapse
|
70
|
Ma C, Wang X, He S, Zhang L, Bai J, Qu L, Qi J, Zheng X, Zhu X, Mei J, Guan X, Yuan H, Zhu D. Ubiquitinated AIF is a major mediator of hypoxia-induced mitochondrial dysfunction and pulmonary artery smooth muscle cell proliferation. Cell Biosci 2022; 12:9. [PMID: 35090552 PMCID: PMC8796423 DOI: 10.1186/s13578-022-00744-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) is the main cause of hypoxic pulmonary hypertension (PH), and mitochondrial homeostasis plays a crucial role. However, the specific molecular regulatory mechanism of mitochondrial function in PASMCs remains unclear. METHODS In this study, using the CCK8 assay, EdU incorporation, flow cytometry, Western blotting, co-IP, mass spectrometry, electron microscopy, immunofluorescence, Seahorse extracellular flux analysis and echocardiography, we investigated the specific involvement of apoptosis-inducing factor (AIF), a mitochondrial oxidoreductase in regulating mitochondrial energy metabolism and mitophagy in PASMCs. RESULTS In vitro, AIF deficiency in hypoxia leads to impaired oxidative phosphorylation and increased glycolysis and ROS release because of the loss of mitochondrial complex I activity. AIF was also downregulated and ubiquitinated under hypoxia leading to the abnormal occurrence of mitophagy and autophagy through its interaction with ubiquitin protein UBA52. In vivo, treatment with the adeno-associated virus vector to overexpress AIF protected pulmonary vascular remodeling from dysfunctional and abnormal proliferation. CONCLUSIONS Taken together, our results identify AIF as a potential therapeutic target for PH and reveal a novel posttranscriptional regulatory mechanism in hypoxia-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Cui Ma
- Central Laboratory of Harbin Medical University (Daqing), 39 Xinyang Road, Daqing, 163319, People's Republic of China
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China
| | - Xiaoying Wang
- Central Laboratory of Harbin Medical University (Daqing), 39 Xinyang Road, Daqing, 163319, People's Republic of China
- College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Siyu He
- Central Laboratory of Harbin Medical University (Daqing), 39 Xinyang Road, Daqing, 163319, People's Republic of China
- College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Lixin Zhang
- Central Laboratory of Harbin Medical University (Daqing), 39 Xinyang Road, Daqing, 163319, People's Republic of China
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China
| | - June Bai
- Central Laboratory of Harbin Medical University (Daqing), 39 Xinyang Road, Daqing, 163319, People's Republic of China
- College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Lihui Qu
- College of Basic Medical Sciences, Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China
| | - Jing Qi
- College of Basic Medical Sciences, Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China
| | - Xiaodong Zheng
- College of Basic Medical Sciences, Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China
| | - Xiangrui Zhu
- Central Laboratory of Harbin Medical University (Daqing), 39 Xinyang Road, Daqing, 163319, People's Republic of China
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China
| | - Jian Mei
- Central Laboratory of Harbin Medical University (Daqing), 39 Xinyang Road, Daqing, 163319, People's Republic of China
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China
| | - Xiaoyu Guan
- Central Laboratory of Harbin Medical University (Daqing), 39 Xinyang Road, Daqing, 163319, People's Republic of China
- College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hao Yuan
- Central Laboratory of Harbin Medical University (Daqing), 39 Xinyang Road, Daqing, 163319, People's Republic of China
- College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Daling Zhu
- Central Laboratory of Harbin Medical University (Daqing), 39 Xinyang Road, Daqing, 163319, People's Republic of China.
- College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China.
- State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Daqing, 163319, People's Republic of China.
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Daqing, 163319, People's Republic of China.
| |
Collapse
|
71
|
TRK-fused gene (TFG) regulates ULK1 stability via TRAF3-mediated ubiquitination and protects macrophages from LPS-induced pyroptosis. Cell Death Dis 2022; 13:93. [PMID: 35091545 PMCID: PMC8795729 DOI: 10.1038/s41419-022-04539-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/22/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022]
Abstract
TRK-fused gene (TFG) is known to be involved in protein secretion and plays essential roles in an antiviral innate immune response. However, its function in LPS-induced inflammation and pyroptotic cell death is still unknown. Here, we reported that TFG promotes the stabilization of Unc-51 like autophagy activating kinase (ULK1) and participates in LPS plus nigericin (Ng) induced pyroptotic cell death. Our results showed that TFG-deficient THP-1 macrophages exhibit higher mitochondrial ROS production. LPS/Ng stimulation triggers a much higher level of ROS and induces pyroptotic cell death. ULK1 undergoes a rapid turnover in TFG-deficient THP-1 cells. TFG forms complex with an E3 ligase, tumor necrosis factor receptor-associated factor 3 (TRAF3), and stabilizes ULK1 via disturbing ULK1-TRAF3 interaction. Knockdown of TFG facilitates the interaction of ULK1 with TRAF3 and subsequent K48-linked ULK1 ubiquitination and proteasome degradation. Rescue of ULK1 expression blocks LPS/Ng-induced cell death in TFG-deficient THP-1 macrophages. Taken together, TFG plays an essential role in LPS/Ng-induced pyroptotic cell death via regulating K48-linked ULK1 ubiquitination in macrophages.
Collapse
|
72
|
Dent P. Cell Signaling and Translational Developmental Therapeutics. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC7538147 DOI: 10.1016/b978-0-12-820472-6.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The relationships between drug pharmacodynamics and subsequent changes in cellular signaling processes are complex. Many in vitro cell signaling studies often use drug concentrations above physiologically safe drug levels achievable in a patient's plasma. Drug companies develop agents to inhibit or modify the activities of specific target enzymes, often without a full consideration that their compounds have additional unknown targets. These two negative sequelae, when published together, become impediments against successful developmental therapeutics and translation because this data distorts our understanding of signaling mechanisms and reduces the probability of successfully translating drug-based concepts from the bench to the bedside. This article will discuss cellular signaling in isolation and as it relates to extant single and combined therapeutic drug interventions. This will lead to a hypothetical series standardized sequential approaches describing a rigorous concept to drug development and clinical translation.
Collapse
|
73
|
Qamar A, Zhao J, Xu L, McLeod P, Huang X, Jiang J, Liu W, Haig A, Zhang ZX. Cyclophilin D Regulates the Nuclear Translocation of AIF, Cardiac Endothelial Cell Necroptosis and Murine Cardiac Transplant Injury. Int J Mol Sci 2021; 22:11038. [PMID: 34681708 PMCID: PMC8540562 DOI: 10.3390/ijms222011038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is an inevitable consequence of organ transplant procedure and associated with acute and chronic organ rejection in transplantation. IRI leads to various forms of programmed cell death, which worsens tissue damage and accelerates transplant rejection. We recently demonstrated that necroptosis participates in murine cardiac microvascular endothelial cell (MVEC) death and murine cardiac transplant rejection. However, MVEC death under a more complex IRI model has not been studied. In this study, we found that simulating IRI conditions in vitro by hypoxia, reoxygenation and treatment with inflammatory cytokines induced necroptosis in MVECs. Interestingly, the apoptosis-inducing factor (AIF) translocated to the nucleus during MVEC necroptosis, which is regulated by the mitochondrial permeability molecule cyclophilin D (CypD). Furthermore, CypD deficiency in donor cardiac grafts inhibited AIF translocation and mitigated graft IRI and rejection (n = 7; p = 0.002). Our studies indicate that CypD and AIF play significant roles in MVEC necroptosis and cardiac transplant rejection following IRI. Targeting CypD and its downstream AIF may be a plausible approach to inhibit IRI-caused cardiac damage and improve transplant survival.
Collapse
Affiliation(s)
- Adnan Qamar
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, B4-231, 339 Windermere Road, London, ON N6A 5A5, Canada; (A.Q.); (J.Z.); (L.X.); (P.M.); (X.H.); (J.J.)
- Department of Pathology, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada; (W.L.); (A.H.)
| | - Jianqi Zhao
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, B4-231, 339 Windermere Road, London, ON N6A 5A5, Canada; (A.Q.); (J.Z.); (L.X.); (P.M.); (X.H.); (J.J.)
- Department of Pathology, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada; (W.L.); (A.H.)
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, 3808 Jiefang Road, Changchun 130021, China
| | - Laura Xu
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, B4-231, 339 Windermere Road, London, ON N6A 5A5, Canada; (A.Q.); (J.Z.); (L.X.); (P.M.); (X.H.); (J.J.)
- Department of Pathology, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada; (W.L.); (A.H.)
| | - Patrick McLeod
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, B4-231, 339 Windermere Road, London, ON N6A 5A5, Canada; (A.Q.); (J.Z.); (L.X.); (P.M.); (X.H.); (J.J.)
| | - Xuyan Huang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, B4-231, 339 Windermere Road, London, ON N6A 5A5, Canada; (A.Q.); (J.Z.); (L.X.); (P.M.); (X.H.); (J.J.)
| | - Jifu Jiang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, B4-231, 339 Windermere Road, London, ON N6A 5A5, Canada; (A.Q.); (J.Z.); (L.X.); (P.M.); (X.H.); (J.J.)
| | - Weihua Liu
- Department of Pathology, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada; (W.L.); (A.H.)
| | - Aaron Haig
- Department of Pathology, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada; (W.L.); (A.H.)
| | - Zhu-Xu Zhang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, B4-231, 339 Windermere Road, London, ON N6A 5A5, Canada; (A.Q.); (J.Z.); (L.X.); (P.M.); (X.H.); (J.J.)
- Department of Pathology, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada; (W.L.); (A.H.)
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Division of Nephrology, Department of Medicine, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
74
|
Gould RL, Craig SW, McClatchy S, Churchill GA, Pazdro R. Genetic mapping of renal glutathione suggests a novel regulatory locus on the murine X chromosome and overlap with hepatic glutathione regulation. Free Radic Biol Med 2021; 174:28-39. [PMID: 34324982 PMCID: PMC8597656 DOI: 10.1016/j.freeradbiomed.2021.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 11/29/2022]
Abstract
Glutathione (GSH) is a critical cellular antioxidant that protects against byproducts of aerobic metabolism and other reactive electrophiles to prevent oxidative stress and cell death. Proper maintenance of its reduced form, GSH, in excess of its oxidized form, GSSG, prevents oxidative stress in the kidney and protects against the development of chronic kidney disease. Evidence has indicated that renal concentrations of GSH and GSSG, as well as their ratio GSH/GSSG, are moderately heritable, and past research has identified polymorphisms and candidate genes associated with these phenotypes in mice. Yet those discoveries were made with in silico mapping methods that are prone to false positives and power limitations, so the true loci and candidate genes that control renal glutathione remain unknown. The present study utilized high-resolution gene mapping with the Diversity Outbred mouse stock to identify causal loci underlying variation in renal GSH levels and redox status. Mapping output identified a suggestive locus associated with renal GSH on murine chromosome X at 51.602 Mbp, and bioinformatic analyses identified apoptosis-inducing factor mitochondria-associated 1 (Aifm1) as the most plausible candidate. Then, mapping outputs were compiled and compared against the genetic architecture of the hepatic GSH system, and we discovered a locus on murine chromosome 14 that overlaps between hepatic GSH concentrations and renal GSH redox potential. Overall, the results support our previously proposed model that the GSH redox system is regulated by both global and tissue-specific loci, vastly improving our understanding of GSH and its regulation and proposing new candidate genes for future mechanistic studies.
Collapse
Affiliation(s)
- Rebecca L Gould
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Steven W Craig
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Susan McClatchy
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Gary A Churchill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA.
| |
Collapse
|
75
|
Yan J, Chen Y, Zhu Y, Paquet-Durand F. Programmed Non-Apoptotic Cell Death in Hereditary Retinal Degeneration: Crosstalk between cGMP-Dependent Pathways and PARthanatos? Int J Mol Sci 2021; 22:10567. [PMID: 34638907 PMCID: PMC8508647 DOI: 10.3390/ijms221910567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death (PCD) is a highly regulated process that results in the orderly destruction of a cell. Many different forms of PCD may be distinguished, including apoptosis, PARthanatos, and cGMP-dependent cell death. Misregulation of PCD mechanisms may be the underlying cause of neurodegenerative diseases of the retina, including hereditary retinal degeneration (RD). RD relates to a group of diseases that affect photoreceptors and that are triggered by gene mutations that are often well known nowadays. Nevertheless, the cellular mechanisms of PCD triggered by disease-causing mutations are still poorly understood, and RD is mostly still untreatable. While investigations into the neurodegenerative mechanisms of RD have focused on apoptosis in the past two decades, recent evidence suggests a predominance of non-apoptotic processes as causative mechanisms. Research into these mechanisms carries the hope that the knowledge created can eventually be used to design targeted treatments to prevent photoreceptor loss. Hence, in this review, we summarize studies on PCD in RD, including on apoptosis, PARthanatos, and cGMP-dependent cell death. Then, we focus on a possible interplay between these mechanisms, covering cGMP-signaling targets, overactivation of poly(ADP-ribose)polymerase (PARP), energy depletion, Ca2+-permeable channels, and Ca2+-dependent proteases. Finally, an outlook is given into how specific features of cGMP-signaling and PARthanatos may be targeted by therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany; (J.Y.); (Y.C.); (Y.Z.)
| |
Collapse
|
76
|
Feng B, Meng X, Zhou H, Chen L, Zou C, Liang L, Meng Y, Xu N, Wang H, Zou D. Identification of Dysregulated Mechanisms and Potential Biomarkers in Ischemic Stroke Onset. Int J Gen Med 2021; 14:4731-4744. [PMID: 34456585 PMCID: PMC8390889 DOI: 10.2147/ijgm.s327594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Objective Ischemic stroke (IS) is a major cause of severe disability. This study aimed to identify potential biomarkers closely related to IS diagnosis and treatment. Methods Profiles of gene expression were obtained from datasets GSE16561, GSE22255, GSE112801 and GSE110993. Differentially expressed mRNAs between IS and controls were then subjected to weighted gene co-expression network analysis as well as multiscale embedded gene co-expression network analysis. The intersection of the two sets of module genes was subjected to analyses of functional enrichment and of microRNAs (miRNAs) regulation. Then, the area under receiver operating characteristic curves (AUC) was calculated to assess the ability of genes to discriminate IS patients from controls. IS diagnostic signatures were constructed using least absolute shrinkage and selection operator regression. Results A total of 234 common co-expression network genes were found to be potentially associated with IS. Enrichment analysis found that these genes were mainly associated with inflammation and immune response. The aberrantly expressed miRNAs (hsa-miR-651-5p, hsa-miR-138-5p, hsa-miR-9-3p and hsa-miR-374a-3p) in IS had regulatory effects on IS-related genes and were involved in brain-related diseases. We used the criterion AUC > 0.7 to screen out 23 hub genes from IS-related genes in the GSE16561 and GSE22255 datasets. We obtained an 8-gene signature (ADCY4, DUSP1, ATP5F1, DCTN5, EIF3G, ELAVL1, EXOSC7 and PPIE) from the training set of GSE16561 dataset, which we confirmed in the validation set of GSE16561 dataset and in the GSE22255 dataset. The genes in this signature were highly accurate for diagnosing IS. In addition, the 8-gene signature significantly correlated with infiltration by immune cells. Conclusion These findings provide new clues to molecular mechanisms and treatment targets in IS. The genes in the signature may be candidate markers and potential gene targets for treatments.
Collapse
Affiliation(s)
- Bing Feng
- Department of Neurology, The People's Hospital of Guiping, Guigang, Guangxi, 537200, People's Republic of China
| | - Xinling Meng
- Department of Endocrinology, The People's Hospital of Guiping, Guigang, Guangxi, 537200, People's Republic of China
| | - Hui Zhou
- Department of Neurology, The People's Hospital of Guiping, Guigang, Guangxi, 537200, People's Republic of China
| | - Liechun Chen
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Chun Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Lucong Liang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Youshi Meng
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Neurology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Ning Xu
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Neurology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Hao Wang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Neurology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Neurology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| |
Collapse
|
77
|
Lozic M, Minarik L, Racetin A, Filipovic N, Saraga Babic M, Vukojevic K. CRKL, AIFM3, AIF, BCL2, and UBASH3A during Human Kidney Development. Int J Mol Sci 2021; 22:ijms22179183. [PMID: 34502088 PMCID: PMC8431184 DOI: 10.3390/ijms22179183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
We aimed to investigate the spatio-temporal expression of possible CAKUT candidate genes CRKL, AIFM3, and UBASH3A, as well as AIF and BCL2 during human kidney development. Human fetal kidney tissue was stained with antibodies and analyzed by fluorescence microscopy and RT-PCR. Quantification of positive cells was assessed by calculation of area percentage and counting cells in nephron structures. Results showed statistically significant differences in the temporal expression patterns of the examined markers, depending on the investigated developmental stage. Limited but strong expression of CRKL was seen in developing kidneys, with increasing expression up to the period where the majority of nephrons are formed. Results also lead us to conclude that AIFM3 and AIF are important for promoting cell survival, but only AIFM3 is considered a CAKUT candidate gene due to the lack of AIF in nephron developmental structures. Our findings imply great importance of AIFM3 in energy production in nephrogenesis and tubular maturation. UBASH3A raw scores showed greater immunoreactivity in developing structures than mature ones which would point to a meaningful role in nephrogenesis. The fact that mRNA and proteins of CRKL, UBASH3A, and AIFM3 were detected in all phases of kidney development implies their role as renal development control genes.
Collapse
Affiliation(s)
- Mirela Lozic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Luka Minarik
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
- Department of Medical Genetics, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
| | - Natalija Filipovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Mirna Saraga Babic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
- Department of Medical Genetics, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
- Correspondence: ; Tel.: +385-21-557-807; Fax: +385-21-557-811
| |
Collapse
|
78
|
Calpain-Mediated Mitochondrial Damage: An Emerging Mechanism Contributing to Cardiac Disease. Cells 2021; 10:cells10082024. [PMID: 34440793 PMCID: PMC8392834 DOI: 10.3390/cells10082024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Calpains belong to the family of calcium-dependent cysteine proteases expressed ubiquitously in mammals and many other organisms. Activation of calpain is observed in diseased hearts and is implicated in cardiac cell death, hypertrophy, fibrosis, and inflammation. However, the underlying mechanisms remain incompletely understood. Recent studies have revealed that calpains target and impair mitochondria in cardiac disease. The objective of this review is to discuss the role of calpains in mediating mitochondrial damage and the underlying mechanisms, and to evaluate whether targeted inhibition of mitochondrial calpain is a potential strategy in treating cardiac disease. We expect to describe the wealth of new evidence surrounding calpain-mediated mitochondrial damage to facilitate future mechanistic studies and therapy development for cardiac disease.
Collapse
|
79
|
1-Nitropyrene Induced Reactive Oxygen Species-Mediated Apoptosis in Macrophages through AIF Nuclear Translocation and AMPK/Nrf-2/HO-1 Pathway Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9314342. [PMID: 34336119 PMCID: PMC8294986 DOI: 10.1155/2021/9314342] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022]
Abstract
1-Nitropyrene (1-NP), one of the most abundant nitropolycyclic aromatic hydrocarbons (nitro-PAHs), is generated from the incomplete combustion of carbonaceous organic compounds. 1-NP is a specific marker of diesel exhaust and is an environmental pollutant and a probable carcinogen. Macrophages participate in immune defense against the invasive pathogens in heart, lung, and kidney infection diseases. However, no evidence has indicated that 1-NP induces apoptosis in macrophages. In the present study, 1-NP was found to induce concentration-dependent changes in various cellular functions of RAW264.7 macrophages including cell viability reduction; apoptosis generation; mitochondrial dysfunction; apoptosis-inducing factor (AIF) nuclear translocation; intracellular ROS generation; activation of the AMPK/Nrf-2/HO-1 pathway; changes in the expression of BCL-2 family proteins; and depletion of antioxidative enzymes (AOE), such as glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) These results indicate that 1-NP induced apoptosis in macrophages through AIF nuclear translocation and ROS generation due to mitochondrial dysfunction and to the depletion of AOE from the activation of the AMPK/Nrf-2/HO-1 pathway.
Collapse
|
80
|
Chelko SP, Keceli G, Carpi A, Doti N, Agrimi J, Asimaki A, Beti CB, Miyamoto M, Amat-Codina N, Bedja D, Wei AC, Murray B, Tichnell C, Kwon C, Calkins H, James CA, O'Rourke B, Halushka MK, Melloni E, Saffitz JE, Judge DP, Ruvo M, Kitsis RN, Andersen P, Di Lisa F, Paolocci N. Exercise triggers CAPN1-mediated AIF truncation, inducing myocyte cell death in arrhythmogenic cardiomyopathy. Sci Transl Med 2021; 13:13/581/eabf0891. [PMID: 33597260 DOI: 10.1126/scitranslmed.abf0891] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Myocyte death occurs in many inherited and acquired cardiomyopathies, including arrhythmogenic cardiomyopathy (ACM), a genetic heart disease plagued by the prevalence of sudden cardiac death. Individuals with ACM and harboring pathogenic desmosomal variants, such as desmoglein-2 (DSG2), often show myocyte necrosis with progression to exercise-associated heart failure. Here, we showed that homozygous Dsg2 mutant mice (Dsg2 mut/mut), a model of ACM, die prematurely during swimming and display myocardial dysfunction and necrosis. We detected calcium (Ca2+) overload in Dsg2 mut/mut hearts, which induced calpain-1 (CAPN1) activation, association of CAPN1 with mitochondria, and CAPN1-induced cleavage of mitochondrial-bound apoptosis-inducing factor (AIF). Cleaved AIF translocated to the myocyte nucleus triggering large-scale DNA fragmentation and cell death, an effect potentiated by mitochondrial-driven AIF oxidation. Posttranslational oxidation of AIF cysteine residues was due, in part, to a depleted mitochondrial thioredoxin-2 redox system. Hearts from exercised Dsg2 mut/mut mice were depleted of calpastatin (CAST), an endogenous CAPN1 inhibitor, and overexpressing CAST in myocytes protected against Ca2+ overload-induced necrosis. When cardiomyocytes differentiated from Dsg2 mut/mut embryonic stem cells (ES-CMs) were challenged with β-adrenergic stimulation, CAPN1 inhibition attenuated CAPN1-induced AIF truncation. In addition, pretreatment of Dsg2 mut/mut ES-CMs with an AIF-mimetic peptide, mirroring the cyclophilin-A (PPIA) binding site of AIF, blocked PPIA-mediated AIF-nuclear translocation, and reduced both apoptosis and necrosis. Thus, preventing CAPN1-induced AIF-truncation or barring binding of AIF to the nuclear chaperone, PPIA, may avert myocyte death and, ultimately, disease progression to heart failure in ACM and likely other forms of cardiomyopathies.
Collapse
Affiliation(s)
- Stephen P Chelko
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA. .,Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrea Carpi
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging, CNR, Naples 80134, Italy
| | - Jacopo Agrimi
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Angeliki Asimaki
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London WC1E 6BS, UK
| | - Carlos Bueno Beti
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London WC1E 6BS, UK
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nuria Amat-Codina
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - An-Chi Wei
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Edon Melloni
- Department of Medicine, University of Genova, Genova 16126, Italy
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 20115, USA
| | - Daniel P Judge
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Medical University of South Carolina, Charleston, SC 29425, USA
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, CNR, Naples 80134, Italy
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA. .,Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| |
Collapse
|
81
|
Guo H, Yang R, He J, Chen K, Yang W, Liu J, Xiao K, Li H. Edaravone combined with dexamethasone exhibits synergic effects on attenuating smoke-induced inhalation lung injury in rats. Biomed Pharmacother 2021; 141:111894. [PMID: 34225014 DOI: 10.1016/j.biopha.2021.111894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023] Open
Abstract
Inhalational lung injury often leads to morbidity and mortality during fire disasters. In this study, we aimed to evaluate the protective effects of edaravone combined with dexamethasone on smoke-induced inhalational lung injury. Sprague-Dawley rats were divided into five groups, namely, the control, model (inhalation), and three treatment groups (edaravone, dexamethasone, and edaravone combined with dexamethasone). After drug intervention in the acute lung injury model, arterial blood gas, wet:dry weight ratio of the lung tissue, bronchoalveolar lavage fluid, and pulmonary histopathology were determined. The production of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), inflammatory cytokines, peroxidase and apoptosis were further analyzed to explore the underlying mechanisms. The results of blood gas and inflammatory cytokine analysis and the histopathological data demonstrated that edaravone combined with dexamethasone had obvious protective effects on smoke infiltration and tissue injury. Moreover, after the co-administration of edaravone and dexamethasone, malondialdehyde and myeloperoxidase levels in the lung tissue decreased, whereas those of glutathione peroxidase and superoxide dismutase were elevated. In addition, this drug combination could inhibit smoke-induced apoptosis in lung tissues by reducing the cleavage of caspase-3, caspase-9, and poly ADP-ribose polymerase (PARP), and also reverse smoke-mediated mitochondrial dysfunction, including ROS generation, loss of MMP, early release of cytochrome C, second mitochondrial activator of caspases, and apoptosis-inducing factor. In conclusion, edaravone combined with dexamethasone had a protective effect on smoke-induced inhalational lung injury in rats and can be further explored as an attractive therapeutic option for the treatment of smoke inhalation-induced pulmonary dysfunction.
Collapse
Affiliation(s)
- Haidong Guo
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China hospital, Sichuan University, Chengdu 610041, PR China; Sichuan Fire Research Institute of Ministry of Emergency Management, Chengdu 610036, PR China
| | - Runfang Yang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China hospital, Sichuan University, Chengdu 610041, PR China
| | - Jin He
- Sichuan Fire Research Institute of Ministry of Emergency Management, Chengdu 610036, PR China
| | - Ke Chen
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China hospital, Sichuan University, Chengdu 610041, PR China
| | - Wen Yang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China hospital, Sichuan University, Chengdu 610041, PR China
| | - Junjun Liu
- Sichuan Fire Research Institute of Ministry of Emergency Management, Chengdu 610036, PR China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China hospital, Sichuan University, Chengdu 610041, PR China; Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hongxia Li
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
82
|
Molecular Insights into Mitochondrial Protein Translocation and Human Disease. Genes (Basel) 2021; 12:genes12071031. [PMID: 34356047 PMCID: PMC8305315 DOI: 10.3390/genes12071031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
In human mitochondria, mtDNA encodes for only 13 proteins, all components of the OXPHOS system. The rest of the mitochondrial components, which make up approximately 99% of its proteome, are encoded in the nuclear genome, synthesized in cytosolic ribosomes and imported into mitochondria. Different import machineries translocate mitochondrial precursors, depending on their nature and the final destination inside the organelle. The proper and coordinated function of these molecular pathways is critical for mitochondrial homeostasis. Here, we will review molecular details about these pathways, which components have been linked to human disease and future perspectives on the field to expand the genetic landscape of mitochondrial diseases.
Collapse
|
83
|
Severe multisystem pathology, metabolic acidosis, mitochondrial dysfunction, and early death associated with an X-linked AIFM1 variant. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006081. [PMID: 34117073 PMCID: PMC8208043 DOI: 10.1101/mcs.a006081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Variants in the X-linked gene AIFM1 (apoptosis-inducing factor mitochondria-associated 1) are associated with a highly variable clinical presentation that encompasses motor neuropathy, ataxia, encephalopathies, deafness, and cognitive impairment. AIFM1 encodes a mitochondrial flavin adenine dinucleotide (FAD)-dependent nicotinamide adenine dinucleotide (NADH) oxidoreductase, with roles in the regulation of respiratory complex assembly and function, production of reactive oxygen species, and the coordination of a caspase-independent type of apoptosis known as parthanatos. In this report, we describe a missense AIFM1 variant (absent in reference population databases; c.506C > T, p.Pro169Leu) identified in the proband and sibling of a family with three affected males. The proband, his brother, and their maternal uncle all exhibited severe multisystem pathology, metabolic acidosis, and early demise. Metabolic testing on the proband revealed normal activity of the pyruvate dehydrogenase complex in skin fibroblasts. Absent or partial deficiency of cytochrome c oxidase was found in muscle fibers, however, supporting a Complex IV mitochondrial deficiency. Functional studies carried out on fibroblasts from the proband demonstrated reduced steady state levels of the AIFM1 protein, decreased Complex I subunit abundance, elevated sensitivity to the apoptosis inducer staurosporine, and increased nuclear condensation when grown in galactose-containing media. The reduced abundance of AIFM1 in the patient cells could not be stabilized with riboflavin or protease inhibitor treatment. Together, these findings suggest that the normal function of the AIFM1 gene product within mitochondria, and its response to apoptotic stimuli, are impaired by this variant, likely accounting for the severity of the phenotype seen in these patients. These findings also imply tissue-specific effects of this variant on different mitochondrial complexes. This study expands the genetic and phenotypic spectrum associated with AIFM1 variants, with the combination of exome sequencing and functional studies allowing a diagnosis to finally be confirmed for this family.
Collapse
|
84
|
Chiang DY, Lahiri S, Wang G, Karch J, Wang MC, Jung SY, Heck AJR, Scholten A, Wehrens XHT. Phosphorylation-Dependent Interactome of Ryanodine Receptor Type 2 in the Heart. Proteomes 2021; 9:proteomes9020027. [PMID: 34200203 PMCID: PMC8293434 DOI: 10.3390/proteomes9020027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Hyperphosphorylation of the calcium release channel/ryanodine receptor type 2 (RyR2) at serine 2814 (S2814) is associated with multiple cardiac diseases including atrial fibrillation and heart failure. Despite recent advances, the molecular mechanisms driving pathological changes associated with RyR2 S2814 phosphorylation are still not well understood. Methods: Using affinity-purification coupled to mass spectrometry (AP-MS), we investigated the RyR2 interactome in ventricles from wild-type (WT) mice and two S2814 knock-in mutants: the unphosphorylated alanine mutant (S2814A) and hyperphosphorylated mimic aspartic acid mutant (S2814D). Western blots were used for validation. Results: In WT mouse ventricular lysates, we identified 22 proteins which were enriched with RyR2 pull-down relative to both IgG control and no antibody (beads-only) pull-downs. Parallel AP-MS using WT, S2814A, and S2814D mouse ventricles identified 72 proteins, with 20 being high confidence RyR2 interactors. Of these, 14 had an increase in their binding to RyR2 S2814A but a decrease in their binding to RyR2 S2814D. We independently validated three protein hits, Idh3b, Aifm1, and Cpt1b, as RyR2 interactors by western blots and showed that Aifm1 and Idh3b had significantly decreased binding to RyR2 S2814D compared to WT and S2814A, consistent with MS findings. Conclusion: By applying state-of-the-art proteomic approaches, we discovered a number of novel RyR2 interactors in the mouse heart. In addition, we found and defined specific alterations in the RyR2 interactome that were dependent on the phosphorylation status of RyR2 at S2814. These findings yield mechanistic insights into RyR2 regulation which may guide future drug designs.
Collapse
Affiliation(s)
- David Y. Chiang
- Cardiovascular Division, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Satadru Lahiri
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (S.L.); (G.W.); (J.K.)
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guoliang Wang
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (S.L.); (G.W.); (J.K.)
| | - Jason Karch
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (S.L.); (G.W.); (J.K.)
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C. Wang
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Y. Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands; (A.J.R.H.); (A.S.)
- Netherlands Proteomics Centre, 3584 Utrecht, The Netherlands
| | - Arjen Scholten
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands; (A.J.R.H.); (A.S.)
- Netherlands Proteomics Centre, 3584 Utrecht, The Netherlands
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (S.L.); (G.W.); (J.K.)
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-798-4261
| |
Collapse
|
85
|
Gu J, Wang X, Zhang L, Xiang J, Li J, Chen Z, Zhang Y, Chen J, Shen J. Matrine suppresses cell growth of diffuse large B-cell lymphoma via inhibiting CaMKIIγ/c-Myc/CDK6 signaling pathway. BMC Complement Med Ther 2021; 21:163. [PMID: 34088288 PMCID: PMC8178855 DOI: 10.1186/s12906-021-03315-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
Background C-Myc aberrations confer a more aggressive clinic behavior in diffuse large B-cell lymphoma (DLBCL). Matrine is an alkaloid extracted from Sophora flavescens Ait. It possesses anti-cancer property through inhibiting the cell proliferation and inducing the apoptosis. The present study aimed to explore the underlying mechanisms of matrine in suppressing the cell growth of DLBCL. Methods The influence of matrine on the viability of cultured DLBCL cell lines SU-DHL-16 and OCI-LY3 cells were determined by CCK-8. Apoptosis and cell cycle were measured by flow cytometry after matrine exposure. Western blot was taken to investigate the expression of activated Caspase-3, cleaved PARP, c-Myc, phospho-c-Myc (Ser62), CaMKIIγ, phospho-CaMKIIγ (Thr287), CDK4 and CDK6 after matrine treatment. Cycloheximide chase analysis was used to determine the c-Myc protein half-lives before and after matrine treatment. Growth salvage analysis was taken by ectopic expression of c-Myc. Results In cultured DLBCL cells, matrine suppressed cell viability in a concentration and time dependent fashion. Matrine treated SU-DHL-16 and OCI-LY3 cells for 48 h with IC50 value of 1.76 mM and 4.1 mM, respectively. Matrine induced apoptosis through a caspase-independent pathway and caused G0/G1 cell cycle arrest in a concentration dependent manner in DLBCL cells. The protein expression of c-Myc was inhibited while the transcription of c-Myc was not reduced by matrine. c-Myc protein half-lives were decreased from 30.4, 69.4 min to 16.6, 15.9 min after matrine treatment in SU-DHL-16 and OCI-LY3, respectively. As a critical protein kinase of c-Myc, CaMKIIγ phosphorylation at Thr287 was found to be down-regulated and c-Myc phosphorylation at Ser62 was reduced together after matrine treatment in DLBCL. The growth suppression of SU-DHL-16 cells induced by matrine was rescued by over-expression of c-Myc achieved by recombinant adenovirus infection. The decreased expression of CDK6, not CDK4, induced by matrine was rescued by ectopic expression of c-Myc protein. Conclusions This study has shown for the first time that matrine suppresses cell growth of DLBCL via inhibiting CaMKIIγ/c-Myc/CDK6 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03315-0.
Collapse
Affiliation(s)
- Jianyou Gu
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Hangzhou, 310006, Zhejiang, China. .,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, No. 54 Youdian Road, Hangzhou, 310006, Zhejiang, China.
| | - Xiao Wang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Hangzhou, 310006, Zhejiang, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, No. 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Ling Zhang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Jingjing Xiang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Jingya Li
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Hangzhou, 310006, Zhejiang, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, No. 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Zheng Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Hangzhou, 310006, Zhejiang, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, No. 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Yu Zhang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Junfa Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Jianping Shen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, No. 54 Youdian Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
86
|
Ghanbarinejad V, Jamshidzadeh A, Khalvati B, Farshad O, Li H, Shi X, Chen Y, Ommati MM, Heidari R. Apoptosis-inducing factor plays a role in the pathogenesis of hepatic and renal injury during cholestasis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1191-1203. [PMID: 33527194 DOI: 10.1007/s00210-020-02041-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Cholestasis is a clinical complication with different etiologies. The liver is the primary organ influenced in cholestasis. Renal injury is also a severe clinical complication in cholestatic/cirrhotic patients. Several studies mentioned the importance of oxidative stress and mitochondrial impairment as two mechanistically interrelated events in cholestasis-induced organ injury. Apoptosis-inducing factor (AIF) is a flavoprotein located in the inner mitochondrial membrane. This molecule is involved in a distinct pathway of cell death. The current study aimed to evaluate the role of AIF in the pathophysiology of cholestasis-associated hepatic and renal injury. Bile duct ligation (BDL) was used as an animal model of cholestasis. Serum, urine, and tissue samples were collected at scheduled time intervals (3, 7, 14, and 28 days after BDL surgery). Tissues' AIF mRNA levels, as well as serum, urine, and tissue activity of AIF, were measured. Moreover, markers of DNA fragmentation and apoptosis were assessed in the liver and kidney of cholestatic animals. A significant increase in liver and kidney AIF mRNA levels, in addition to increased AIF activity in the liver, kidney, serum, and urine, was detected in BDL rats. DNA fragmentation and apoptosis were raised in the liver and kidney of cholestatic animals, especially at the early stage of the disease. The apoptotic mode of cell death in the liver and kidney was connected to a higher AIF level. These data mention the importance of AIF in the pathogenesis of cholestasis-induced organ injury, especially at the early stage of this disease. Mitochondrial release of apoptosis-inducing factor (AIF) seems to play a pathogenic role in cholestasis-associated hepatic and renal injury. AIF release is directly connected to oxidative stress and mitochondrial impairment in cholestatic animals.
Collapse
Affiliation(s)
- Vahid Ghanbarinejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St, Shiraz, Fars, Iran
- Department of Pharmacology and Toxicology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St, Shiraz, Fars, Iran
- Department of Pharmacology and Toxicology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalvati
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St, Shiraz, Fars, Iran
| | - Huifeng Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiong Shi
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yuanyu Chen
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St, Shiraz, Fars, Iran.
| |
Collapse
|
87
|
Administration of 4-Hydroxy-3,5-Di-Tertbutyl Cinnamic Acid Restores Mitochondrial Function in Rabbits with Cerebral Ischemia. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2019-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of the study is to evaluate the effect of 4-hydroxy-3,5- di-tertbutyl cinnamic acid on the change in mitochondrial function under conditions of experimental cerebral ischemia in rabbits. The study was performed on 48 male rabbits, which were used for modeling permanent cerebral ischemia by occlusion of the common carotid arteries. The test compound was administered before modeling ischemia for 14 days and after the occurrence of reproducing ischemia, in a similar time interval. After that, neurological deficit and the parameters of mitochondrial respiration, the intensity of anaerobic processes, the latent opening time of the mitochondrial permeability transition pore, the value of the mitochondrial membrane potential and the concentration of caspase – 3 were determined. The administration of 100 mg/kg of 4-hydroxy-3,5-di-tertbutyl cinnamic acid into the animals reduced neurological deficit and restored the mitochondrial membrane potential. Prophylactic administration of 4-hydroxy- 3,5-di-tertbutyl cinnamic acid, contributed to an increase in ATPgenerating ability, the maximum level of respiration and respiratory capacity by 4.1 times (p<0.01), 4.8 times (p<0.01) and 4.3 times (p<0.01), respectively. With therapeutic administration, these indicators increased by 11 times (p<0.01), 12.2 times (p<0.01) and 8.6 times (p<0.01), respectively. Also, both the prophylactic and therapeutic use of 4-hydroxy-3,5-di-tret-butyl cinnamic acid normalized aerobic/anaerobic metabolism, as well as reduced the concentration of caspase-3. Based on the obtained data, significant cerebroprotective properties of 4-hydroxy-3,5- di-tertbutyl cinnamic acid can be assumed. Moreover, the potential mechanism of action of this compound may be mediated by the normalization of mitochondrial function.
Collapse
|
88
|
Li C, Chu T, Zhang Z, Zhang Y. Single Cell RNA-Seq Analysis Identifies Differentially Expressed Genes of Treg Cell in Early Treatment-Naive Rheumatoid Arthritis By Arsenic Trioxide. Front Pharmacol 2021; 12:656124. [PMID: 34108876 PMCID: PMC8181733 DOI: 10.3389/fphar.2021.656124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/28/2021] [Indexed: 12/27/2022] Open
Abstract
Objective: Early treatment-naïve rheumatoid arthritis (RA) has defective regulatory T (Treg) cells and increased inflammation response. In this study, we aim to illustrate the regulation of Treg cells in pathogenesis of early rheumatoid arthritis by arsenic trioxide (As2O3). Methods: We studied the effects of As2O3 on gene expression in early treatment-naïve RA Treg cells with single cell RNA-seq (scRNA-seq). Treg cells were sorted from peripheral blood mononuclear cells (PBMCs) and purified by fluorescence-activated cell sorting (FACS) and cultured with or without As2O3 (at 0.1 µM) for 24 h. Total RNA was isolated and sequenced, and functional analysis was performed against the Gene Ontology (GO) database. Results for selected genes were confirmed with RT-qPCR. Results: As2O3 exerts no significant effect on CD4+ T-cell apoptosis under physical condition, and selectively modulate CD4+ T cells toward Treg cells not Th17 cells under special polarizing stimulators. As2O3 increased the expression of 200 and reduced that of 272 genes with fold change (FC) 2.0 or greater. Several genes associated with inflammation, Treg-cell activation and differentiation as well as glucose and amino acids metabolism were among the most strongly affected genes. GO function analysis identified top ten ranked significant biological process (BPs), molecular functions (MFs), and cell components (CCs) in treatment and nontreatment Treg cells. In GO analysis, genes involved in the immunoregulation, cell apoptosis and cycle, inflammation, and cellular metabolism were enriched among the significantly affected genes. The KEGG pathway enrichment analysis identified the forkhead box O (FoxO) signal pathway, apoptosis, cytokine–cytokine receptor interaction, cell cycle, nuclear factor-kappa B (NF-κB) signaling pathway, tumor necrosis factor α (TNF-α), p53 signaling pathway, and phosphatidylinositol 3′-kinase (PI3K)-Akt signaling pathway were involved in the pathogenesis of early treatment-naïve RA. Conclusion: This is the first study investigating the genome-wide effects of As2O3 on the gene expression of treatment-naïve Treg cells. In addition to clear anti-inflammatory and immunoregulation effects, As2O3 affect amino acids and glucose metabolism in Treg cells, an observation that might be particularly important in the metabolic phenotype of treatment-naïve RA.
Collapse
Affiliation(s)
- Chunling Li
- Department of Rheumatology and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.,Department of Rheumatology and Immunology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianshu Chu
- Department of Rheumatology and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiyi Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Rheumatology, Immunology and Gerontology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China.,Shenzhen Futian Hospital of Rheumatic Diseases, Shenzhen, China
| |
Collapse
|
89
|
Bertan F, Wischhof L, Scifo E, Guranda M, Jackson J, Marsal-Cots A, Piazzesi A, Stork M, Peitz M, Prehn JHM, Ehninger D, Nicotera P, Bano D. Comparative analysis of CI- and CIV-containing respiratory supercomplexes at single-cell resolution. CELL REPORTS METHODS 2021; 1:100002. [PMID: 35474694 PMCID: PMC9017192 DOI: 10.1016/j.crmeth.2021.100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/03/2021] [Accepted: 03/03/2021] [Indexed: 12/29/2022]
Abstract
Mitochondria sustain the energy demand of the cell. The composition and functional state of the mitochondrial oxidative phosphorylation system are informative indicators of organelle bioenergetic capacity. Here, we describe a highly sensitive and reproducible method for a single-cell quantification of mitochondrial CI- and CIV-containing respiratory supercomplexes (CI∗CIV-SCs) as an alternative means of assessing mitochondrial respiratory chain integrity. We apply a proximity ligation assay (PLA) and stain CI∗CIV-SCs in fixed human and mouse brains, tumorigenic cells, induced pluripotent stem cells (iPSCs) and iPSC-derived neural precursor cells (NPCs), and neurons. Spatial visualization of CI∗CIV-SCs enables the detection of mitochondrial lesions in various experimental models, including complex tissues undergoing degenerative processes. We report that comparative assessments of CI∗CIV-SCs facilitate the quantitative profiling of even subtle mitochondrial variations by overcoming the confounding effects that mixed cell populations have on other measurements. Together, our PLA-based analysis of CI∗CIV-SCs is a sensitive and complementary technique for detecting cell-type-specific mitochondrial perturbations in fixed materials.
Collapse
Affiliation(s)
- Fabio Bertan
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Enzo Scifo
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Mihaela Guranda
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Joshua Jackson
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Anaïs Marsal-Cots
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Miriam Stork
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, North Rhine-Westphalia 53127, Germany
- Cell Programming Core Facility, University of Bonn Medical Faculty, Bonn, North Rhine-Westphalia 53127, Germany
| | - Jochen Herbert Martin Prehn
- Royal College of Surgeons in Ireland, Department of Physiology and Medical Physics Department, D02 YN77 Dublin, Ireland
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Pierluigi Nicotera
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Gebäude 99, Bonn, North Rhine-Westphalia 53127, Germany
| |
Collapse
|
90
|
Kit O, Frantsiyants E, Neskubina I, Cheryarina N, Shikhlyarova A, Przhedetskiy Y, Pozdnyakova V, Surikova E, Kaplieva I, Bandovkina V. Influence of standard and stimulated growth of B16/F10 melanoma on AIF levels in mitochondria in cells of the heart and other somatic organs in female mice. CARDIOMETRY 2021. [DOI: 10.18137/cardiometry.2021.18.113120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
studying AIF levels in mitochondria in cells of the heart and various organs in female mice with the growth of experimental melanoma B16 / F10 and comorbid pathology
Collapse
|
91
|
Frantsiyants E, Neskubina I, Shikhlyarova A, Yengibaryan M, Vashchenko L, Surikova E, Nemashkalova L, Kaplieva I, Trepitaki L, Bandovkina V, Pogorelova Y. Content of apoptosis factors and self-organization processes in the mitochondria of heart cells in female mice C57BL/6 under growth of melanoma B16 / F10 linked with comorbid pathology. CARDIOMETRY 2021. [DOI: 10.18137/cardiometry.2021.18.121130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aim is to study some mechanisms of regulation of apoptosis and self-organization in the mitochondria in the heart cells in female mice during the growth of experimental melanoma B16/ F10 linked with chronic neurogenic pain as comorbid pathology.
Collapse
|
92
|
Chandra V, Rai R, Benbrook DM. Utility and Mechanism of SHetA2 and Paclitaxel for Treatment of Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13102322. [PMID: 34066052 PMCID: PMC8150795 DOI: 10.3390/cancers13102322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Incidence and death rates for endometrial cancer are steadily rising world-wide. Endometrial cancer patients at high risk for recurrence are treated with chemotherapy, which causes significant toxicity. Molecularly targeted drugs have been found to cause less toxicity than chemotherapy. We studied a low-toxicity drug, called SHetA2, which targets three heat shock A proteins that are highly mutated in endometrial cancers. Our results demonstrated that SHetA2 inhibits endometrial cancer cells and tumors, and enhances therapeutic effects of paclitaxel without increasing toxicity. This information supports development of clinical trials to test if combining SHetA2 with paclitaxel can increase the paclitaxel therapeutic effect without increasing toxicity, or allows a lowered paclitaxel dose to achieve the same level of therapeutic effect, but with reduced toxicity. Our new knowledge about how SHetA2 works can be translated into development of biomarkers to predict with patients would most likely benefit from SHetA2-based therapy. Abstract Endometrial cancer patients with advanced disease or high recurrence risk are treated with chemotherapy. Our objective was to evaluate the utility and mechanism of a novel drug, SHetA2, alone and in combination with paclitaxel, in endometrial cancer. SHetA2 targets the HSPA chaperone proteins, Grp78, hsc70, and mortalin, which have high mutation rates in endometrial cancer. SHetA2 effects on cancerous phenotypes, mitochondria, metabolism, protein expression, mortalin/client protein complexes, and cell death were evaluated in AN3CA, Hec13b, and Ishikawa endometrial cancer cell lines, and on growth of Ishikawa xenografts. In all three cell lines, SHetA2 inhibited anchorage-independent growth, migration, invasion, and ATP production, and induced G1 cell cycle arrest, mitochondrial damage, and caspase- and apoptosis inducing factor (AIF)-mediated apoptosis. These effects were associated with altered levels of proteins involved in cell cycle regulation, mitochondrial function, protein synthesis, endoplasmic reticulum stress, and metabolism; disruption of mortalin complexes with mitochondrial and metabolism proteins; and inhibition of oxidative phosphorylation and glycolysis. SHetA2 and paclitaxel exhibited synergistic combination indices in all cell lines and exerted greater xenograft tumor growth inhibition than either drug alone. SHetA2 is active against endometrial cancer cell lines in culture and in vivo and acts synergistically with paclitaxel.
Collapse
|
93
|
Metformin induces caspase-dependent and caspase-independent apoptosis in human bladder cancer T24 cells. Anticancer Drugs 2021; 31:655-662. [PMID: 32568826 PMCID: PMC7365670 DOI: 10.1097/cad.0000000000000966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bladder cancer (BC) is the sixth most common cancer in men. Moreover, chemotherapy for BC leads to various side effects. Metformin is known to induce apoptosis in vitro in many types of cancer. Furthermore, it has feasibility as a drug repositioning used for the treatment of cancer. The molecular mechanism of metformin mediating apoptosis in BC is still unclear. In this study, we showed that metformin stimulated the caspase-dependent apoptotic signaling pathway in T24 cells, a human BC cell line. Moreover, the induced apoptosis was partially inhibited by a general caspase inhibitor, z-VAD-fmk, which suggested that metformin-induced apoptosis in T24 cells is partially caspase-independent. Notably, we observed the nuclear translocation of apoptosis-inducing factors (AIFs) in metformin-promoted apoptosis, which is a typical characteristic of the caspase-independent apoptotic pathway. In addition, we found that metformin-mediated apoptosis occurred via degradation of the cellular FADD-like interleukin-1β-converting enzyme inhibitory protein (c-FLIP) by facilitating ubiquitin/proteasome-mediated c-FLIPL degradation. Furthermore, treatment with the reactive oxygen species scavenger N-acetylcysteine, failed to suppress metformin-induced apoptosis and c-FLIPL protein degradation in metformin-treated T24 cells. In conclusion, these results indicate that metformin-induced apoptosis was mediated through AIF-promoted caspase-independent pathways as well as caspase-dependent pathways in T24 cells. As such, metformin could be used as a possible apoptotic agent for the treatment of BC.
Collapse
|
94
|
Yang D, Rong R, Yang R, You M, Wang M, Li H, Ji D. CaMK II -induced Drp1 phosphorylation contributes to blue light-induced AIF-mediated necroptosis in retinal R28 cells. Biochem Biophys Res Commun 2021; 559:113-120. [PMID: 33940381 DOI: 10.1016/j.bbrc.2021.04.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Retinal damage caused by blue light has become an important public health concern. Mitochondria have been found to play a key role in light-induced retinal cell death. In this study, we aimed to clarify the molecular mechanism involved in mitochondrion-related retinal cell damage caused by blue light, the major component of light-emitting diodes (LEDs). Our results show that blue light (450 nm, 300lux)-induced R28 cell death is caspase independent and can be attenuated by necrostatin-1. Apoptosis-inducing factor (AIF) cleavage and translocation to the nucleus are involved in the cell death progress. Blue light exposure causes mitochondrial fragmentation, which is mediated by phosphorylation at dynamin-related protein 1 (Drp1) Ser616 site, but it does not alter the protein levels of fission or fusion machinery. Knocking down Drp1 or treatment with Drp1 inhibitor Mdivi-1 protects R28 cells from blue light. Overproduction of reactive oxygen species (ROS) is induced by blue light. The ROS scavenger Trolox decreases Drp1 Ser616 phosphorylation level and mitochondrial fragmentation upon blue light exposure. Moreover, Calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 blocks Drp1 phosphorylation and rescues mitochondrial fragmentation and AIF-mediated cell death caused by blue light. In conclusion, our data suggest that the CaMKII-Drp1 pathway plays a major role in blue light-induced AIF-mediated retinal cell damage.
Collapse
Affiliation(s)
- Dawei Yang
- The School of Life Sciences, Central South University, Changsha, 410078, Hunan Province, China; Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008, Hunan Province, China
| | - Rong Rong
- Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008, Hunan Province, China
| | - Rongliang Yang
- Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008, Hunan Province, China
| | - Mengling You
- Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008, Hunan Province, China
| | - Mengxiao Wang
- Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008, Hunan Province, China
| | - Haibo Li
- Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008, Hunan Province, China.
| | - Dan Ji
- Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
95
|
Liu S, Zhou M, Ruan Z, Wang Y, Chang C, Sasaki M, Rajaram V, Lemoff A, Nambiar K, Wang JE, Hatanpaa KJ, Luo W, Dawson TM, Dawson VL, Wang Y. AIF3 splicing switch triggers neurodegeneration. Mol Neurodegener 2021; 16:25. [PMID: 33853653 PMCID: PMC8048367 DOI: 10.1186/s13024-021-00442-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/12/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Apoptosis-inducing factor (AIF), as a mitochondrial flavoprotein, plays a fundamental role in mitochondrial bioenergetics that is critical for cell survival and also mediates caspase-independent cell death once it is released from mitochondria and translocated to the nucleus under ischemic stroke or neurodegenerative diseases. Although alternative splicing regulation of AIF has been implicated, it remains unknown which AIF splicing isoform will be induced under pathological conditions and how it impacts mitochondrial functions and neurodegeneration in adult brain. METHODS AIF splicing induction in brain was determined by multiple approaches including 5' RACE, Sanger sequencing, splicing-specific PCR assay and bottom-up proteomic analysis. The role of AIF splicing in mitochondria and neurodegeneration was determined by its biochemical properties, cell death analysis, morphological and functional alterations and animal behavior. Three animal models, including loss-of-function harlequin model, gain-of-function AIF3 knockin model and conditional inducible AIF splicing model established using either Cre-loxp recombination or CRISPR/Cas9 techniques, were applied to explore underlying mechanisms of AIF splicing-induced neurodegeneration. RESULTS We identified a nature splicing AIF isoform lacking exons 2 and 3 named as AIF3. AIF3 was undetectable under physiological conditions but its expression was increased in mouse and human postmortem brain after stroke. AIF3 splicing in mouse brain caused enlarged ventricles and severe neurodegeneration in the forebrain regions. These AIF3 splicing mice died 2-4 months after birth. AIF3 splicing-triggered neurodegeneration involves both mitochondrial dysfunction and AIF3 nuclear translocation. We showed that AIF3 inhibited NADH oxidase activity, ATP production, oxygen consumption, and mitochondrial biogenesis. In addition, expression of AIF3 significantly increased chromatin condensation and nuclear shrinkage leading to neuronal cell death. However, loss-of-AIF alone in harlequin or gain-of-AIF3 alone in AIF3 knockin mice did not cause robust neurodegeneration as that observed in AIF3 splicing mice. CONCLUSIONS We identified AIF3 as a disease-inducible isoform and established AIF3 splicing mouse model. The molecular mechanism underlying AIF3 splicing-induced neurodegeneration involves mitochondrial dysfunction and AIF3 nuclear translocation resulting from the synergistic effect of loss-of-AIF and gain-of-AIF3. Our study provides a valuable tool to understand the role of AIF3 splicing in brain and a potential therapeutic target to prevent/delay the progress of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuiqiao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Mi Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Zhi Ruan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Yanan Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Calvin Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Masayuki Sasaki
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Veena Rajaram
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Kalyani Nambiar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jennifer E. Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Kimmo J. Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Weibo Luo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Yingfei Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
96
|
Singh M, Mansuri MS, Kadam A, Palit SP, Dwivedi M, Laddha NC, Begum R. Tumor Necrosis Factor-alpha affects melanocyte survival and melanin synthesis via multiple pathways in vitiligo. Cytokine 2021; 140:155432. [PMID: 33517195 DOI: 10.1016/j.cyto.2021.155432] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a major mediator of inflammation and its increased levels have been analyzed in vitiligo patients. Vitiligo is a depigmentary skin disarray caused due to disapperance of functional melanocytes. The aim of the study was to investigate the role of TNF-α in melanocyte biology, analyzing candidate molecules of melanocytes and immune homeostasis. Our results showed increased TNF-α transcripts in vitiligenous lesional and non-lesional skin. Melanocytes upon exogenous stimulation with TNF-α exhibited a significant reduction in cell viability with elevated cellular and mitochondrial ROS and compromised complex I activity. Moreover, we observed a reduction in melanin content via shedding of dendrites, down-regulation of MITF-M, TYR and up-regulation of TNFR1, IL6, ICAM1 expression, whereas TNFR2 levels remain unaltered. TNF-α exposure stimulated cell apoptosis at 48 h and autophagy at 12 h, elevating ATG12 and BECN1 transcripts. Our novel findings establish the functional link between autophagy and melanocyte destruction. Overall, our study suggests a key function of TNF-α in melanocyte homeostasis and autoimmune vitiligo pathogenesis.
Collapse
Affiliation(s)
- Mala Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Mohmmad Shoab Mansuri
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Sayantani P Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Mitesh Dwivedi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Naresh C Laddha
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India.
| |
Collapse
|
97
|
Komeil IA, El-Refaie WM, Gowayed MA, El-Ganainy SO, El Achy SN, Huttunen KM, Abdallah OY. Oral genistein-loaded phytosomes with enhanced hepatic uptake, residence and improved therapeutic efficacy against hepatocellular carcinoma. Int J Pharm 2021; 601:120564. [PMID: 33812970 DOI: 10.1016/j.ijpharm.2021.120564] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/06/2021] [Accepted: 03/29/2021] [Indexed: 12/27/2022]
Abstract
Genistein (Gen) is one of the most potent soy isoflavones used for hepatocellular carcinoma (HCC) treatment. Low aqueous solubility and first-pass metabolism are the main obstacles resulting in low Gen oral bioavailability. The current study aims to introduce phytosomes as an approach to improve Gen solubility, protect it from metabolism by complexation with phospholipids (PL), and get used to PL in Gen lymphatic delivery. Different forms of PL namely: Lipiod® S100, Phosal® 53 MCT, and Phosal®75 SA were used in phytosomes preparation GP, GPM, and GPL respectively. The effect of formulation components on Gen absorption, metabolism, and liver accumulation was evaluated following oral administration to rats. Cytotoxicity and cellular uptake studies were applied on HepG2 cells and in-vivo anti-tumor studies were applied to the DEN-mice model. Results revealed that GP and GPL remarkably accumulated Gen aglycone in hepatic cells and minimized the metabolic effect on Gen. They significantly increased the intracellular accumulation of Gen in its complex form in HepG2 cells. Their cytotoxicity is time-dependent according to the complex stability. The enhanced in-vivo anti-tumor effect was observed for GP and GPL compared to Gen suspension on DEN-induced HCC in mice. In conclusion, Gen-phytosomes can represent a promising approach for liver cancer treatment.
Collapse
Affiliation(s)
- Ibrahim A Komeil
- Department of Pharmaceutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Wessam M El-Refaie
- Department of Pharmaceutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar N El Achy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, Kuopio, Finland
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
98
|
Evaluation of moxifloxacin-induced cytotoxicity on human corneal endothelial cells. Sci Rep 2021; 11:6250. [PMID: 33737688 PMCID: PMC7973544 DOI: 10.1038/s41598-021-85834-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Moxifloxacin hydrochloride (MXF) is widely used for the prevention of bacterial endophthalmitis after intraocular surgeries. However, the safety issue of intracameral injection of MXF for human corneal endothelial cells (HCECs) is still debatable. In this study, we investigated concentration-dependent cytotoxicity (0.05–1 mg/ml) of MXF for immortalized HCECs (B4G12 cell) and the underlying mechanism. Reactive oxygen generation (ROS) and cell viability after MXF exposure was measured. Flow cytometric analysis and TUNEL assay was used to detect apoptotic HCECs after MXF exposure. Ultrastructure of damaged HCECs by MXF was imaged by transmission electron microscope. Western blot analysis and caspase 2, 3 and 8 analysis were used to reveal the underlying mechanism of MXF induced damage in HCECs. We found that MXF induced dose-dependent cytotoxicity in HCECs. MXF exposure increased ROS generation and induced autophagy in HCECs. Increased LDH release represented the cellular membrane damage by MXF. In addition, caspases activation, Bax/Bcl-xL-dependent apoptosis pathway and apoptosis inducing factor nuclear translocation were all involved in MXF induced HCECs’ damage, especially after exposure to high dose of MXF (0.5 and 1.0 mg/ml). These findings suggest that MXF toxicity on HCECs should be thoroughly considered by ophthalmologists when intracameral injection of MXF is planned.
Collapse
|
99
|
Wang N, Wang C, Zhao H, He Y, Lan B, Sun L, Gao Y. The MAMs Structure and Its Role in Cell Death. Cells 2021; 10:cells10030657. [PMID: 33809551 PMCID: PMC7999768 DOI: 10.3390/cells10030657] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
The maintenance of cellular homeostasis involves the participation of multiple organelles. These organelles are associated in space and time, and either cooperate or antagonize each other with regards to cell function. Crosstalk between organelles has become a significant topic in research over recent decades. We believe that signal transduction between organelles, especially the endoplasmic reticulum (ER) and mitochondria, is a factor that can influence the cell fate. As the cellular center for protein folding and modification, the endoplasmic reticulum can influence a range of physiological processes by regulating the quantity and quality of proteins. Mitochondria, as the cellular "energy factory," are also involved in cell death processes. Some researchers regard the ER as the sensor of cellular stress and the mitochondria as an important actuator of the stress response. The scientific community now believe that bidirectional communication between the ER and the mitochondria can influence cell death. Recent studies revealed that the death signals can shuttle between the two organelles. Mitochondria-associated membranes (MAMs) play a vital role in the complex crosstalk between the ER and mitochondria. MAMs are known to play an important role in lipid synthesis, the regulation of Ca2+ homeostasis, the coordination of ER-mitochondrial function, and the transduction of death signals between the ER and the mitochondria. Clarifying the structure and function of MAMs will provide new concepts for studying the pathological mechanisms associated with neurodegenerative diseases, aging, and cancers. Here, we review the recent studies of the structure and function of MAMs and its roles involved in cell death, especially in apoptosis.
Collapse
Affiliation(s)
- Nan Wang
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Chong Wang
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Hongyang Zhao
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Yichun He
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Beiwu Lan
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
- Correspondence: (L.S.); (Y.G.)
| | - Yufei Gao
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
- Correspondence: (L.S.); (Y.G.)
| |
Collapse
|
100
|
Novo N, Ferreira P, Medina M. The apoptosis-inducing factor family: Moonlighting proteins in the crosstalk between mitochondria and nuclei. IUBMB Life 2021; 73:568-581. [PMID: 33035389 DOI: 10.1002/iub.2390] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
In Homo sapiens, the apoptosis-inducing factor (AIF) family is represented by three different proteins, known as AIF, AMID and AIFL, that have in common the mitochondrial localisation in healthy cells, the presence of FAD- and NADH-dependent domains involved in an -albeit yet not well understood- oxidoreductase function and their capability to induce programmed cell death. AIF is the best characterised family member, while the information about AMID and AIFL is much scarcer. Nonetheless, available data support different roles as well as mechanisms of action of their particular apoptogenic and redox domains regarding both pro-apoptotic and anti-apoptotic activities. Moreover, diverse cellular functions, to date far from fully clarified, are envisaged for the transcripts corresponding to these three proteins. Here, we review the so far available knowledge on the moonlighting human AIF family from their molecular properties to their relevance in health and disease, through the evaluation of their potential cell death and redox functions in their different subcellular locations. This picture emerging from the current knowledge of the AIF family envisages its contribution to regulate signalling and transcription machineries in the crosstalk among mitochondria, the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Nerea Novo
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| | - Patricia Ferreira
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|