51
|
Ma T, Liu X, Xiong T, Li H, Zhou Y, Liang J. Polystyrene nanoplastics aggravated dibutyl phthalate-induced blood-testis barrier dysfunction via suppressing autophagy in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115403. [PMID: 37659273 DOI: 10.1016/j.ecoenv.2023.115403] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/04/2023]
Abstract
Nanoplastics (NPs) frequently cause adverse health effects by transporting organic pollutants such as dibutyl phthalate (DBP) into organisms by utilizing their large specific surface area, large surface charge, and increased hydrophobicity. However, the effects of NPs combined with DBP on the reproductive systems of mammals are still unclear. The present investigation involved the administration of polystyrene NPs (PS-NPs) to BALB/c mice via gavage, with a size of 100 nm and at doses of 5 mg/kg/day or 50 mg/kg/day, along with DBP at a dose of 0.5 mg/kg/day, or a combination of PS-NPs and DBP, for 30 days, to assess their potential for reproductive toxicity. The co-exposure of mice to PS-NPs and DBP resulted in a significant increase in reproductive toxicities compared to exposure to PS-NPs or DBP alone. This was demonstrated by a marked decrease in sperm quality, significant impairment of spermatogenesis, and increased disruption of the blood-testis barrier (BTB). Furthermore, a combination of in vivo and in vitro investigations were conducted to determine that the co-exposure of DBP and PS-NPs resulted in a noteworthy reduction in the expressions of tight junction proteins (ZO-1 and occludin). Moreover, the in vitro findings revealed that monobutyl phthalate (MBP, the active metabolite of DBP, 0.5 μg/mL) and PS-NPs (30 μg/mL or 300 μg/mL) inhibited autophagy in Sertoli cells, thereby increasing the expression of matrix metalloproteinases (MMPs). The study found that PS-NPs and DBP co-exposure caused harmful effects in male reproductive organs by disrupting BTB, which may be alleviated by reactivating autophagy. The paper's conclusions provided innovative perspectives on the collective toxicities of PS-NPs and other emerging pollutants.
Collapse
Affiliation(s)
- Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Xing Liu
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Tianqing Xiong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Yue Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China.
| |
Collapse
|
52
|
Khanjani MH, Sharifinia M, Mohammadi AR. The impact of microplastics on bivalve mollusks: A bibliometric and scientific review. MARINE POLLUTION BULLETIN 2023; 194:115271. [PMID: 37429180 DOI: 10.1016/j.marpolbul.2023.115271] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Bivalves are important members of the ecosystem and their populations are declining globally, making them a concern for their role in ecosystem services and the fishing industry. Bivalves are excellent bioindicators of MPs pollution due to their widespread distribution, filtering capabilities, and close association with human health. Microplastics (MPs) have direct and indirect impacts on bivalves, affecting their physiology, habitat structure, food sources, and persistence of organic pollutants. This review provides an extensive overview of the impact of MPs on bivalves, covering various aspects such as their economic significance, ecological roles, and importance in biomonitoring environmental quality. The article presents the current state of knowledge on the sources and pathways of MPs in aquatic environments and their effects on bivalves. The mechanisms underlying the effects of MPs on bivalves, including ingestion, filtration activity, feeding inhibition, accumulation, bioaccumulation, and reproduction, are also discussed. Additionally, a bibliometric analysis of research on MPs in bivalves is presented, highlighting the number of papers, geographical distribution, and keyword clusters relating to MPs. Finally, the review emphasizes the importance of ongoing research and the development of mitigation strategies to reduce the negative effects of MPs pollution on bivalves and their habitats in oceans and coastal waters.
Collapse
Affiliation(s)
- Mohammad Hossein Khanjani
- Department of Fisheries Sciences and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Kerman, Iran
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran.
| | - Ali Reza Mohammadi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.
| |
Collapse
|
53
|
Rigi N, Zare R, Kor K. Occurrence and spatial distribution of microplastics in the intertidal sediments along the Oman Sea. MARINE POLLUTION BULLETIN 2023; 194:115360. [PMID: 37544063 DOI: 10.1016/j.marpolbul.2023.115360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
Microplastics (MPs) have been found in marine systems more frequently. We aim to analyze the MPs abundances, distribution, and characteristics in the intertidal sediments along the Oman Sea. Samples were collected from 7 locations with three replicates. Density separation was used to extract MPs, which were then visually counted and categorized based on their size, shape, and color. MPs abundance ranged between 219.6 ± 38.3 particles.kg-1dw and 617.3 ± 99.9 particles.kg-1dw with a mean abundance of 315.4 ± 24.4 particles.kg-1 dw. Fragments and fibers were the dominant shapes. Red and blue colors were observed in 61.6 % of the collected MPs. In addition, 100-500 μm size range of MPs were more abundant. Micro-Raman spectroscopy analysis revealed polypropylene was the major polymer constituent. The present study revealed the widespread occurrence of MPs as anthropogenic pollutants throughout the Oman Sea and highlighted the urgent need for regulations and policies to reduce the entry of this material into marine environments.
Collapse
Affiliation(s)
- Navid Rigi
- Department of Marine Biology, Faculty of Marine Science, Chabahar Maritime University, Chabahar, Iran
| | - Rouhollah Zare
- Department of Marine Biology, Faculty of Marine Science, Chabahar Maritime University, Chabahar, Iran
| | - Kamalodin Kor
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran.
| |
Collapse
|
54
|
Afreen V, Hashmi K, Nasir R, Saleem A, Khan MI, Akhtar MF. Adverse health effects and mechanisms of microplastics on female reproductive system: a descriptive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:76283-76296. [PMID: 37247153 DOI: 10.1007/s11356-023-27930-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Microplastics (MPs), with a diameter of less than 5 mm, include polymers such as polystyrene, polypropylene, and polyethylene. The MPs occur in different morphologies including fragments, beads, fibers, and films that are swallowed by fresh water and land-based animals and enter their food chain, where they produce hazardous effects such as uterine toxicity, infertility, and neurotoxicity. The aim of this review is to explore the effects of polystyrene MPs (PS-MPs) on the female reproductive system and understand the mechanisms by which they produce reproductive toxicity. Several studies suggested that the exposure to PS-MPs increased the probability of larger ovaries with fewer follicles, decreased the number of embryos produced, and decreased the number of pregnancies in female mice. It also changed sex hormone levels and caused oxidative stress, which could have an impact on fertility and reproduction. Exposure to PS-MPs caused the death of granulosa cells through apoptosis and pyroptosis via activation of the NLRP3/caspase pathway and disruption of the Wnt-signaling pathway. Activation of TL4/NOX2 caused the uterine fibrosis resulting in endometrium thinning. The PS-MPs had a negative impact on ovarian capacity, oocyte maturation, and oocyte quality. Furthermore, the PS-MPs disrupted the hypothalamus-pituitary-gonadal axis in marine animals, resulting in a decrease in hatching rate and offspring body size, causing trans-generational effects. It also reduced fecundity and produced germ-line apoptosis. The main focus of this review was to explore the different mechanisms and pathways through which PS-MPs adversely impact the female reproductive system.
Collapse
Affiliation(s)
- Vishal Afreen
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Kanza Hashmi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Rimsha Nasir
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| |
Collapse
|
55
|
Babczyńska A, Górka M, Lis A, Tarnawska M, Łozowski B, Brożek J, Rozpędek K, Augustyniak M, Skowronek M, Kafel A. Joint cadmium and polypropylene microparticle action in cadmium tolerant model insect. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104209. [PMID: 37399851 DOI: 10.1016/j.etap.2023.104209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Microplastic enlisted as a contaminant of emerging concerns in polluted environments interact with "traditional" contaminants such as metals, causing, among others, their increased accumulation in the body. Harmful effects depend on the exposed animals' possible preadaptation and/or cross-tolerance. The project aimed to assess the role of this phenomenon in the limited toxicity of polypropylene fibers (PPf) in 0%, 0.02%, 0.06, 0.18%, 0.54%, and 1.6% of Cd-supplemented food of larvae of Spodoptera exigua multigenerationally selected to cadmium tolerance. The activity of 20 digestive enzymes (API-ZYM test), defensins, and heat shock proteins, HSP70 levels in the exposed groups were used as biomarkers. PPfs caused the increase of Cd accumulation in the body, while intake of polypropylene microfibers did not change the biomarker levels. Moreover, multigenerational Cd pre-exposure, due to increased tolerance of Cd and, possibly, cross-tolerance, prepares the insects for an additional stressor (PPf) alone and in interaction with cadmium.
Collapse
Affiliation(s)
- Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| | - Mikołaj Górka
- Center for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| | - Artur Lis
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Bartosz Łozowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Jolanta Brożek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Magdalena Skowronek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Alina Kafel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
56
|
Tang H, Zhong L, Xu Y, Jin Z, Pan Z, Shen J. Polypropylene microplastics affect the physiology in Drosophila model. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:355-360. [PMID: 36636811 DOI: 10.1017/s0007485322000633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) pollution has been a hot research topic in recent years. MPs are ubiquitous throughout the ecological environment and are eventually accumulated in organisms through inhalation or ingestion. However, given that MPs are inert pollutants, their effects on organisms are not clear. In previous study, we have investigated the effects of polyethylene terephthalate MPs on physiology of Drosophila. What is the effect of polypropylene microplastics (PP-MPs)? The results of our experiments show that being exposed to high concentration of PP-MPs have significant effect on Drosophila. PP-MPs exposure can significantly increase locomotor activity and shorten the time of group sleep in Drosophila. In the presence of high concentrations of PP-MPs, the triglyceride content was reduced in females and their ability of egg production was affected. However, there was no significant effect on the level of protein and carbohydrate, or on the food intake. Our experimental results can provide some preliminary data for assessing the potential hazard of PP-MPs to other organisms.
Collapse
Affiliation(s)
- Hao Tang
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China 310018
| | - Lichao Zhong
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China 310018
| | - Yifan Xu
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China 310018
| | - Zhishen Jin
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China 310018
| | - Zhihao Pan
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China 310018
| | - Jie Shen
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China 310018
| |
Collapse
|
57
|
Bydalek F, Webster G, Barden R, Weightman AJ, Kasprzyk-Hordern B, Wenk J. Microplastic biofilm, associated pathogen and antimicrobial resistance dynamics through a wastewater treatment process incorporating a constructed wetland. WATER RESEARCH 2023; 235:119936. [PMID: 37028211 DOI: 10.1016/j.watres.2023.119936] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/05/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Microplastics in wastewater are colonized by biofilms containing pathogens and antimicrobial resistance (AMR) genes that can be exported into receiving water bodies. This study investigated establishment and changes in microplastic-associated biofilm and AMR during a conventional full-scale 2100 population equivalent wastewater treatment process combined with a free water surface polishing constructed wetland. Sequential microplastic colonization experiments were conducted at different stages of the wastewater treatment process, including in raw sewage, treated effluent and the constructed wetland. Two scenarios were tested in which the constructed wetland served as either (i) a polishing step or (ii) as primary recipient of sewage inoculated microplastics. Bacterial 16S rRNA gene sequencing was carried out for qualitative bacterial community analysis. qPCR was applied for quantitative analysis of AMR genes (sul1, ermB, tetW, intiI1), bacterial biomass (16S rRNA) and a human fecal marker (HF183). Microbial diversity on microplastics increased with incubation time. The initial sewage-derived biofilm composition changed more significantly in the wastewater effluent compared to the constructed wetland. Pathogen and AMR load decreased by up to two orders of magnitude after coupled conventional and constructed wetland treatment, while less impact was observed when sewage-inoculated microplastic material was directly transferred into the constructed wetland. Aeromonas, Klebsiella, and Streptococcus were key pathogenic genera correlated with AMR in microplastic-associated biofilms. Despite decreasing trends on human pathogens and AMR load along the treatment process, microplastic-associated biofilms were a considerable potential hotspot for AMR (intI1 gene) and accommodated Cyanobacteria and fish pathogens.
Collapse
Affiliation(s)
- Franciszek Bydalek
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK; GW4 NERC CDT in Freshwater Biosciences and Sustainability, Cardiff University, Cardiff CF10 3AX, UK; Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Andrew J Weightman
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Barbara Kasprzyk-Hordern
- Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK; Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Jannis Wenk
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
58
|
Ferreira RDO, Guimarães ATB, Luz TMD, Rodrigues ASDL, Islam ARMT, Rahman MM, Ragavendran C, Kamaraj C, Charlie-Silva I, Durigon EL, Braz HLB, Arias AH, Santiago OC, Barceló D, Malafaia G. First report on the toxicity of SARS-CoV-2, alone and in combination with polyethylene microplastics in neotropical fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163617. [PMID: 37088384 PMCID: PMC10122543 DOI: 10.1016/j.scitotenv.2023.163617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic has caused unprecedented negative impacts in the modern era, including economic, social, and public health losses. On the other hand, the potential effects that the input of SARS-CoV-2 in the aquatic environment from sewage may represent on non-target organisms are not well known. In addition, it is not yet known whether the association of SARS-CoV-2 with other pollutants, such as microplastics (MPs), may further impact the aquatic biota. Thus, we aimed to evaluate the possible ecotoxicological effects of exposure of male adults Poecilia reticulata, for 15 days, to inactivated SARS-CoV-2 (0.742 pg/L; isolated SARS.CoV2/SP02.2020.HIAE.Br) and polyethylene MP (PE MPs) (7.1 × 104 particles/L), alone and in combination, from multiple biomarkers. Our data suggest that exposure to SARS-CoV-2 induced behavioral changes (in the open field test), nephrotoxic effect (inferred by the increase in creatinine), hepatotoxic effect (inferred by the increase in bilirubin production), imbalance in the homeostasis of Fe, Ca, and Mg, as well as an anticholinesterase effect in the animals [marked by the reduction of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity]. On the other hand, exposure to PE MPs induced a genotoxic effect (assessed by the comet assay), as well as an increase in enzyme activity alpha-amylase, alkaline phosphatase, and carboxylesterases. However, we did not show synergistic, antagonistic, or additive effects caused by the combined exposure of P. reticulata to SARS-CoV-2 and PE MPs. Principal component analysis (PCA) and values from the "Integrated Biomarker Response" index indicate that exposure to SARS-CoV-2 was determinant for a more prominent effect in the evaluated animals. Therefore, our study sheds light on the ecotoxicity of the new coronavirus in non-target organisms and ratifies the need for more attention to the impacts of COVID-19 on aquatic biota.
Collapse
Affiliation(s)
- Raíssa de Oliveira Ferreira
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), JordiGirona 1826, 08034 Barcelona, Spain
| | | | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Ives Charlie-Silva
- Chemistry Institute, São Paulo State University (UNESP) Campus Araraquara, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Andrés Hugo Arias
- National University of the South Bahía Blanca, CONICET Instituto Argentino de Oceanografía (IADO), Argentina
| | - Omar Cruz Santiago
- Multidisciplinary Postgraduate Program for Environmental Sciences, Universidad Autónoma de San Luis Potosí, Mexico
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
59
|
Kor K, Jannat B, Ershadifar H, Ghazilou A. Microplastic occurrence in finfish and shellfish from the mangroves of the northern Gulf of Oman. MARINE POLLUTION BULLETIN 2023; 189:114788. [PMID: 36871342 DOI: 10.1016/j.marpolbul.2023.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
This study was conducted to assess microplastic (MP) pollution in some aquatic animals inhabiting planted and natural mangrove swamps in the northern Gulf of Oman. The KOH-NaI solution was used to retrieve MPs from the gastrointestinal tracts of animals. The highest MP prevalence was recorded in crabs (41.65 %) followed by fish (33.89 %) and oysters (20.8 %). The abundance of MPs in examined animals varied from zero in Sphyraena putnamae to 11 particles in a Rhinoptera javanica specimen. When polluted-only animals were considered, the mean abundance of MPs significantly varied among species and between locations. The mean density of ingested MPs was higher in the planted mangrove animals (1.79 ± 2.89 vs. 1.21 ± 2.25 n/individual; mean ± SD). Among the examined fish species, R. javanica ingested the highest number of MPs (3.83 ± 3.93 n/individual; mean ± SD). The polyethylene/ polypropylene fragments or fibers of average 1900 μm size were recorded as predominant (>50 % occurrence) MP particles.
Collapse
Affiliation(s)
- Kamalodin Kor
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran
| | - Behrooz Jannat
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Hamid Ershadifar
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran
| | - Amir Ghazilou
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran.
| |
Collapse
|
60
|
Fang C, Zheng R, Hong F, Chen S, Chen G, Zhang M, Gao F, Chen J, Bo J. First evidence of meso- and microplastics on the mangrove leaves ingested by herbivorous snails and induced transcriptional responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161240. [PMID: 36587672 DOI: 10.1016/j.scitotenv.2022.161240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Although evidence suggests the ubiquity of meso- and microplastics (MMPs) in mangrove forests, our knowledge of their bioavailability and risk on mangrove leaves is scarce. Here, we investigated MMP contamination concerning submerged mangrove leaves and herbivorous snails that mainly feed on them from the four mangrove forests located in Beibu Gulf, Guangxi Province, China. Results showed that the MMP abundance on the mangrove leaves ranged from 0.01 ± 0.00 to 0.42 ± 0.15 items cm-2, while it ranged from 0.33 ± 0.21 to 6.20 ± 2.91 items individual-1 in the snails. There were significant positive correlations between snails and leaves regarding the abundance of total MMPs and the proportions of MMPs with the same characteristics. Expanded polystyrene (EPS) that mainly derived from aquaculture rafts, accounted for a major component both on the leaves and in the snails in Shi Jiao (SJ). Both the detection frequency and percentage of larger EPS (2.00-17.50 mm) on the leaves in SJ were higher than other sites. Meanwhile, the detection frequency, abundance and percentage of larger EPS on the leaves had significant positive correlations with those of micro-EPS in the snails. These findings suggested that mangrove leaves may represent a viable pathway for MMPs to enter the herbivorous snails. Larger EPS with higher frequency of occurrence on mangrove leaves were more likely to be encountered and ingested by snail considering its opportunistic feeding behavior. In addition, 11 sensitive genes involved in the processes of metabolism, intestinal mucosal immune systems, and cellular transduction in the snails were significantly suppressed by MMP exposure, which may be potentially used as early biomarkers to indicate the biological effects of MMPs under realistic environmental conditions. Overall, this study provides novel insights into the fate, sources, and biological effects of MMPs on mangrove leaves.
Collapse
Affiliation(s)
- Chao Fang
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Ronghui Zheng
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fukun Hong
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shunyang Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Guangcheng Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Min Zhang
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fulong Gao
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jincan Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jun Bo
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
61
|
Microplastics (MPs) in marine food chains: Is it a food safety issue? ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:101-140. [PMID: 36863833 DOI: 10.1016/bs.afnr.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enormous usage of plastic over the last seven decades has resulted in a massive quantity of plastic waste, much of it eventually breaking down into microplastic (MP) and nano plastic (NP). The MPs and NPs are regarded as emerging pollutants of serious concern. Both MPs and NPs can have a primary or secondary origin. Their ubiquitous presence and ability to sorb, desorb, and leach chemicals have raised concern over their presence in the aquatic environment and, particularly, the marine food chain. MPs and NPs are also considered vectors for pollutant transfer along with the marine food chain, and people who consume seafood have began significant concerns about the toxicity of seafood. The exact consequences and risk of MP exposure to marine foods are largely unknown and should be a priority research area. Although several studies have documented an effective clearance mechanism by defecation, significant aspect has been less emphasized for MPs and NPs and their capability to translocate in organs and clearance is not well established. The technological limitations to study these ultra-fine MPs are another challenge to be addressed. Therefore, this chapter discusses the recent findings of MPs in different marine food chains, their translocation and accumulations potential, MPs as a critical vector for pollutant transfer, toxicology impact, cycling in the marine environment and seafood safety. Besides, the concerns and challenges that are overshadowed by findings for the significance of MPs were covered.
Collapse
|
62
|
Fan S, Yan Z, Qiao L, Gui F, Li T, Yang Q, Zhang X, Ren C. Biological effects on the migration and transformation of microplastics in the marine environment. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105875. [PMID: 36652887 DOI: 10.1016/j.marenvres.2023.105875] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Microplastics(MPs) are ubiquitous, difficult to degrade, and potentially threatening to organisms in marine environment, so it is important to clarify the factors that affect their biogeochemical processes. The impact of biological activities on the MPs in marine environment is ubiquitous and complex, and there is currently a lack of systematic summaries. This paper reviews the effects of biological actions on the migration, distribution and degradation of MPs in marine environment from four aspects: biological ingestion and digestion, biological movement, biological colonization and biological adhesion. MPs in seawater and sediments can be closely combined with organisms through three pathways: biological ingestion, biofilm formation or adhesion to organisms, and are passed between species at different trophic levels through the food chain. The generation and degradation of faecal pellets and biofilms can alter the density of "environmental MPs", thereby affecting their vertical migration and deposition in water bodies. The movement of swimming organisms and the disturbance by benthic organisms can promote the migration of MPs in water and vertical migration and resuspension in sediments, thereby changing the distribution of MPs in local sea areas. The grinding effect of the digestive tract and the secretion of chemicals from the biofilm (such as enzymes and acids) can reduce the particle size and increase surface roughness of MPs, or even degrade them completely. Besides, biological adhesion may be an important mechanism affecting the distribution, migration and preservation of MPs. There may be complex interactions and linkages among marine dynamical processes, photochemical degradation and biological processes that collectively affect the biogeochemical processes of MPs, but their relative contributions remain to be more studied.
Collapse
Affiliation(s)
- Songyao Fan
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Zezheng Yan
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Ling Qiao
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316012, China
| | - Feng Gui
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Tiejun Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316012, China
| | - Qiao Yang
- ABI Group, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xiaoling Zhang
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Chengzhe Ren
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, 316004, China.
| |
Collapse
|
63
|
Fernández-Míguez M, Puvanendran V, Burgerhout E, Presa P, Tveiten H, Vorkamp K, Hansen ØJ, Johansson GS, Bogevik AS. Effects of weathered polyethylene microplastic ingestion on sexual maturation, fecundity and egg quality in maturing broodstock Atlantic cod Gadus morhua. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121053. [PMID: 36632969 DOI: 10.1016/j.envpol.2023.121053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) have become a global issue as they are omnipresent in the ocean. Fish ingesting MPs through feed could be affected in their physiological function, e.g., disrupted enzyme production and function, reduction of feeding and reproductive failure. This study assessed the effects of feed containing naturally weathered MPs from the Oslofjord (Norway) on the reproductive physiology of Atlantic cod (Gadus morhua). Farmed cod broodstock were fed either control (C-diet) or feeds containing 1% microplastic (MP-diet) starting nine months prior to spawning, from June until May. No major differences were found between diet groups in overall biometrics or gonad histology. Sex steroid levels (testosterone, 11-ketotestosterone and 17β-estradiol) resulted in expected profiles increasing over time without any significant differences between treatments. Gene expression levels of the steroidogenic enzyme 20β-hydroxysteroid dehydrogenase (20β-hsd) and vitellogenin1 (vtg1) showed significant differences between dietary treatments with lower expression in the control group. This can be a direct effect of MPs, but endocrine disrupting effects of potentially leachable plastic additives cannot be completely ruled out. Thus, these enzymes could be indicators of exposure to contaminants that disrupt sexual maturation by affecting the production of primarily maturation-inducing steroid. Although the concentration of MPs employed in this study may not be high enough to elicit any observable short-term biological effects, the observed gene expression suggests that long-term consequences should be considered caused by an expected increase of MPs in marine environments.
Collapse
Affiliation(s)
- M Fernández-Míguez
- Instituto de Investigaciones Marinas, CSIC, Vigo, Spain; Laboratory of Marine Genetic Resources, CIM-Universidad de Vigo, Spain
| | | | | | - P Presa
- Laboratory of Marine Genetic Resources, CIM-Universidad de Vigo, Spain
| | - H Tveiten
- Nofima AS, Norway; UiT The Arctic University of Norway, Tromsø, Norway
| | - K Vorkamp
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | | | | | | |
Collapse
|
64
|
Capolupo M, Rafiq A, Coralli I, Alessandro T, Valbonesi P, Fabbri D, Fabbri E. Bioplastic leachates characterization and impacts on early larval stages and adult mussel cellular, biochemical and physiological responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120951. [PMID: 36581238 DOI: 10.1016/j.envpol.2022.120951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Bioplastics are promoted as safer alternatives to tackle the long-term persistence of conventional plastics. However, information on the potential release of additives and non-intentionally added substances (NIAS) in the surrounding environment is limited, and biological effects of the leachates have been little studied. Leachates produced from three bioplastics, i.e. compostable bags (CB), bio-polyethylene terephthalate bottles (bioPET) and polylactic acid cups (PLA), and a control polymeric material, i.e. rubber tire (TR), were examined. The chemical nature of bioplastic polyesters PET, PLA and poly (butylene adipate-co-terephthalate) (PBAT) in CB, was confirmed by analytical pyrolysis. Fragments were incubated in artificial sea water for 14 days at 20 °C in darkness and leachate contents examined by GC-MS and HPLC-MS/MS. Catalysts and stabilizers represented the majority of chemicals in TR, while NIAS (e.g. 1,6-dioxacyclododecane-7,12-dione) were the main components of CB. Bisphenol A occurred in all leachates at a concentration range 0.3-4.8 μg/L. Trace metals at concentrations higher than control water were found in all leachates, albeit more represented in leachates from CB and TR. A dose response to 11 dilutions of leachates (in the range 0.6-100%) was tested for biological effects on early embryo stages of Mytilus galloprovincialis. Embryotoxicity was observed in the whole range of tested concentrations, the magnitude of effect depending on the polymers. The highest concentrations caused reduction of egg fertilization (CB, bioPET, TR) and of larvae motility (CB, PLA, TR). TR leachates also provoked larvae mortality in the range 10-100%. Effects on adult mussel physiology were evaluated after a 7-day in vivo exposure to the different leachates at 0.6% concentration. Nine biomarkers concerning lysosomal functionality, neurotransmission, antioxidant and immune responses were assessed. All lysosomal parameters were affected, and serum lysozyme activity inhibited. Harmonized chemical and biological approaches are recommended to assess bioplastic safety and support production of sustainable bioplastics.
Collapse
Affiliation(s)
- Marco Capolupo
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Ayesha Rafiq
- Department of Biological, Geological and Environmental Sciences University of Bologna, Campus of Ravenna via S. Alberto 163, 48123, Ravenna
| | - Irene Coralli
- Department of Chemistry "Giacomo Ciamician", Technopole of Rimini, University of Bologna, Italy
| | - Tanya Alessandro
- Department of Biological, Geological and Environmental Sciences University of Bologna, Campus of Ravenna via S. Alberto 163, 48123, Ravenna
| | - Paola Valbonesi
- Department of Biological, Geological and Environmental Sciences University of Bologna, Campus of Ravenna via S. Alberto 163, 48123, Ravenna
| | - Daniele Fabbri
- Department of Chemistry "Giacomo Ciamician", Technopole of Rimini, University of Bologna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences University of Bologna, Campus of Ravenna via S. Alberto 163, 48123, Ravenna.
| |
Collapse
|
65
|
Xia X, Guo W, Ma X, Liang N, Duan X, Zhang P, Zhang Y, Chang Z, Zhang X. Reproductive toxicity and cross-generational effect of polyethylene microplastics in Paramisgurnus dabryanus. CHEMOSPHERE 2023; 313:137440. [PMID: 36460160 DOI: 10.1016/j.chemosphere.2022.137440] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Pollution of microplastics (MPs) has become a global environmental issue due to the difficulty in its degradation and may cause unexpected ecological effects. Nevertheless, little is known about the potential effects of MPs on reproduction toxicity in aquatic species. In this study, adult loach (Paramisgurnus dabryanus, F0 generation) were exposed to two concentrations (1 and 10 mg/L) of polyethylene MPs (PE-MPs) for 15 or 30 days, and the toxic effects in parental loach and the offspring (F1 generation) were examined. Our results showed that PE-MPs exposure could change the indicators content of antioxidant system in the brain, liver, and gonad. PE-MPs can accumulate in the gonads, disrupt the transcription of HPG-axis related genes, alter sex hormone levels, increase cell apoptosis and gonadal pathological lesions, lead to the damage of biological characteristics of semen, and affect the reproduction in F0 generation. PE-MPs remaining in the parental gonads can be transferred to the F1 generation embryos and accumulated on the embryonic chorionic membrane, increasing mortality and malformation rates, accelerating hatching time, and decreasing hatching rate and body length. These results suggest that PE-MPs leads to a potential adverse influence on reproduction and serious impacts on population sustainability. This work provides a new perspective into the effects of MPs on reproductive damage and cross-generational effects in teleost fish, which have implications in fields of freshwater ecology and environmental toxicology.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Wanwan Guo
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaoyu Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Ning Liang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiangyu Duan
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Peihan Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Ying Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaowen Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
66
|
Bydalek F, Ifayemi D, Reynolds L, Barden R, Kasprzyk-Hordern B, Wenk J. Microplastic dynamics in a free water surface constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160113. [PMID: 36370791 DOI: 10.1016/j.scitotenv.2022.160113] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/15/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
This study investigates microplastic (MPs) dynamics of a recently established surface flow 2100 population equivalent polishing constructed wetland (CW) receiving 1.4 ML per day of secondary treated wastewater. MPs type, size ranges and concentrations were measured along the CW at a 2-months sampling campaign. The CW received an average of 5·106 MPs per day (6 MPs per liter), mostly 100-1000 μm-sized synthetic fibers followed by fragments in the same size range. 95 % of MPs were retained, resulting in 0.30 ± 0.09 MPs per liter in CW effluent. Most MPs (97 %) were trapped within the first 20 % of the CW which consisted of a settling pond and shallow vegetated treatment cells and provided an areal removal rate > 4000 MP m-2 d-1. Data and microscopic analysis indicate MPs erosion and fragmentation in the CW. Turbidity and suspended solids were no indicator for MP removal due to water fowl activity, algal growth, and preferential flow conditions. This is the first study on MP dynamics in an independently operating full scale free water surface CW incorporated into a municipal wastewater treatment scheme. Surface flow CWs can retain MPs effectively but accumulation in CW sediments and substrate needs to be considered when further utilized or recycled.
Collapse
Affiliation(s)
- Franciszek Bydalek
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom; Water Innovation and Research Centre (WIRC), University of Bath, BA2 7AY, United Kingdom; GW4 NERC Centre for Doctoral Training in Freshwater Biosciences and Sustainability, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Daniel Ifayemi
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | | | - Barbara Kasprzyk-Hordern
- Water Innovation and Research Centre (WIRC), University of Bath, BA2 7AY, United Kingdom; Department of Chemistry, University of Bath, BA2 7AY, United Kingdom
| | - Jannis Wenk
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom; Water Innovation and Research Centre (WIRC), University of Bath, BA2 7AY, United Kingdom.
| |
Collapse
|
67
|
Jimoh JO, Rahmah S, Mazelan S, Jalilah M, Olasunkanmi JB, Lim LS, Ghaffar MA, Chang YM, Bhubalan K, Liew HJ. Impact of face mask microplastics pollution on the aquatic environment and aquaculture organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120769. [PMID: 36455766 DOI: 10.1016/j.envpol.2022.120769] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Microplastic pollution in our environment, especially water bodies is an emerging threat to food security and human health. Inevitably, the outbreak of Covid-19 has necessitated the constant use of face masks made from polymers such as polypropylene, polyurethane, polyacrylonitrile, polystyrene, polycarbonate, polyethylene, or polyester which eventually will disintegrate into microplastic particles. They can be broken down into microplastics by the weathering action of UV radiation from the sun, heat, or ocean wave-current and precipitate in natural environments. The global adoption of face masks as a preventive measure to curb the spread of Covid-19 has made the safe management of wastes from it cumbersome. Microplastics gain access into aquaculture facilities through water sources and food including planktons. The negative impacts of microplastics on aquaculture cannot be overemphasized. The impacts includes low growth rates of animals, hindered reproductive functions, neurotoxicity, low feeding habit, oxidative stress, reduced metabolic rate, and increased mortality rate among aquatic organisms. With these, there is every tendency of microplastic pollution to negatively impact fish production through aquaculture if the menace is not curbed. It is therefore recommended that biodegradable materials rather than plastics to be considered in the production of face mask while recycle of already produced ones should be encouraged to reduce waste.
Collapse
Affiliation(s)
- Jeremiah Olanipekun Jimoh
- Higher Institution Centre of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia; Department of Fisheries and Aquaculture, Federal University, Oye Ekiti, Ekiti State, Nigeria
| | - Sharifah Rahmah
- Higher Institution Centre of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia; Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Suhairi Mazelan
- Higher Institution Centre of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohamad Jalilah
- Higher Institution Centre of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - John Bunmi Olasunkanmi
- Department of Fisheries and Aquaculture, Federal University, Oye Ekiti, Ekiti State, Nigeria
| | - Leong-Seng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Mazlan Abd Ghaffar
- Higher Institution Centre of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia; Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Yu Mei Chang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Science, Harbin, China
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Hon Jung Liew
- Higher Institution Centre of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia; Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Science, Harbin, China.
| |
Collapse
|
68
|
Cheng Y, Yang S, Yin L, Pu Y, Liang G. Recent consequences of micro-nanaoplastics (MNPLs) in subcellular/molecular environmental pollution toxicity on human and animals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114385. [PMID: 36508803 DOI: 10.1016/j.ecoenv.2022.114385] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Microplastics and Nanoplastics (MNPLs) pollution has been recognized as the important environmental pollution caused by human activities in addition to global warming, ozone layer depletion and ocean acidification. Most of the current studies have focused on the toxic effects caused by plastics and have not actively investigated the mechanisms causing cell death, especially at the subcellular level. The main content of this paper focuses on two aspects, one is a review of the current status of MNPLs contamination and recent advances in toxicological studies, which highlights the possible concentration levels of MNPLs in the environment and the internal exposure of humans. It is also proposed to pay attention to the compound toxicity of MNPLs as carriers of other environmental pollutants and pathogenic factors. Secondly, subcellular toxicity is discussed and the modes of entry and intracellular distribution of smaller-size MNPLs are analyzed, with particular emphasis on the importance of organelle damage to elucidate the mechanism of toxicity. Importantly, MNPLs are a new type of environmental pollutant and researchers need to focus not only on their toxicity, but also work with governments to develop measures to reduce plastic emissions, optimize degradation and control plastic aggression against organisms, especially humans, from multiple perspectives.
Collapse
Affiliation(s)
- Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
69
|
Liu X, Bao X, Wang X, Li C, Yang J, Li Z. Time-dependent immune injury induced by short-term exposure to nanoplastics in the Sepia esculenta larvae. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108477. [PMID: 36494033 DOI: 10.1016/j.fsi.2022.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Marine organisms are threatened by various environmental contaminants, and nanoplastics (NPs) is one of the most concerned. Studied have shown that NPs has a certain impact on marine organisms, but the specific molecular mechanism is still unclear. At present, researches on the effect of NPs on marine life mostly focus on crustaceans, gastropods, and bivalves. In this study, cephalopod Sepia esculenta larvae were first used to investigate the potential immune response molecular mechanisms caused by PS-NPs (50 nm, 50 mg/L) short-term exposure (4 and 24 h). Through S. esculenta larvae transcriptome profile of gene expression analysis, 548 and 1990 genes showed differential expression at 4 and 24 h after NPs exposure, respectively. GO and KEGG enrichment analysis were performed to find immune related DEGs. Then, the interaction relationship between the immune related DEGs after NPs exposure was known through the constructed protein-protein interaction network. 20 hub genes were found on the base of KEGG pathway numbers involved and protein-protein interaction numbers. This research supply valuable genes for the study of cephalopod immune response caused by NPs, which can help us further uncover the molecular mechanisms of organism against NPs.
Collapse
Affiliation(s)
- Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, PR China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Xumin Wang
- College of Life Sciences, Yantai University, Yantai, 264005, PR China
| | - Chengbo Li
- School of Pharmacy, Binzhou Medical University, Yantai, PR China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| |
Collapse
|
70
|
Orts JM, Parrado J, Pascual JA, Orts A, Cuartero J, Tejada M, Ros M. Polyurethane Foam Residue Biodegradation through the Tenebrio molitor Digestive Tract: Microbial Communities and Enzymatic Activity. Polymers (Basel) 2022; 15:polym15010204. [PMID: 36616553 PMCID: PMC9823465 DOI: 10.3390/polym15010204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Polyurethane (PU) is a widely used polymer with a highly complex recycling process due to its chemical structure. Eliminating polyurethane is limited to incineration or accumulation in landfills. Biodegradation by enzymes and microorganisms has been studied for decades as an effective method of biological decomposition. In this study, Tenebrio molitor larvae (T. molitor) were fed polyurethane foam. They degraded the polymer by 35% in 17 days, resulting in a 14% weight loss in the mealworms. Changes in the T. molitor gut bacterial community and diversity were observed, which may be due to the colonization of the species associated with PU degradation. The physical and structural biodegradation of the PU, as achieved by T. molitor, was observed and compared to the characteristics of the original PU (PU-virgin) using Fourier Transform InfraRed spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), and Scanning Electron Microphotography (SEM).
Collapse
Affiliation(s)
- Jose M. Orts
- Departament of Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García Gonzalez 2, 41012 Sevilla, Spain
| | - Juan Parrado
- Departament of Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García Gonzalez 2, 41012 Sevilla, Spain
- Correspondence: (J.P.); (J.A.P.)
| | - Jose A. Pascual
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100 Murcia, Spain
- Correspondence: (J.P.); (J.A.P.)
| | - Angel Orts
- Departament of Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García Gonzalez 2, 41012 Sevilla, Spain
| | - Jessica Cuartero
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100 Murcia, Spain
| | - Manuel Tejada
- Grupo de Investigacion Edafologia Ambiental, Departamento de Cristalografia, Mineralogia y Quimica Agricola, E.T.S.I.A. Universidad de Sevilla, 41004 Sevilla, Spain
| | - Margarita Ros
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100 Murcia, Spain
| |
Collapse
|
71
|
Doyle D, Sundh H, Almroth BC. Microplastic exposure in aquatic invertebrates can cause significant negative effects compared to natural particles - A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120434. [PMID: 36273689 DOI: 10.1016/j.envpol.2022.120434] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Many studies have now reported adverse effects of exposure to microplastics in aquatic organisms. Still, relatively few studies have compared the effects of MPs with those of natural particle controls, which makes it difficult to separate particle effects from chemical effects. In this study, we carry out a meta-analysis of 26 studies to compare the effects of MPs and natural particles on aquatic animals using three different endpoints - growth, reproduction, and mortality. This analysis showed that MPs have the capacity to induce more adverse effects on growth, reproduction, and mortality for some taxonomic groups. However, the effects of exposure to MPs are not consistent across each endpoint or between taxonomic groups. We were not able to clearly discern differing impacts resulting from exposure to specific polymer types or shapes, though more negative effects were associated with polylactic acid and polyethylene, as well as fragments as opposed to beads or fibres. Additionally, meta-regression indicated that larger MP sizes, higher experimental temperatures, and longer exposure periods were all generally associated with more adverse effects. Future studies should continue to make use of negative particle controls to allow for better risk assessment of microplastics and nanoplastics in aquatic ecosystems.
Collapse
Affiliation(s)
- Darragh Doyle
- Department of Biological and Environmental Sciences, Medicinaregatan 18A, Gothenburg, Sweden.
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, Medicinaregatan 18A, Gothenburg, Sweden
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, Medicinaregatan 18A, Gothenburg, Sweden
| |
Collapse
|
72
|
Yuan Y, Qin Y, Wang M, Xu W, Chen Y, Zheng L, Chen W, Luo T. Microplastics from agricultural plastic mulch films: A mini-review of their impacts on the animal reproductive system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114030. [PMID: 36058163 DOI: 10.1016/j.ecoenv.2022.114030] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Plastic mulch films (PMFs) are widely used to improve crop quality and quantity. Although they provide a range of benefits, they degrade into widespread microplastics (MPs), which can cause an unavoidable risk of environmental problems. The residue of PMFs is a significant source of MPs in soils, which can then spread into various ecosystems and be easily absorbed by organisms due to their small size, and subsequently transported through food chain. Notably, MPs have been found in the human placenta, stool and blood, raising an urgent reminder of the potential dangers of MPs to human health. This review summarizes recent studies concerning the effects of MPs on the reproductive system in soil invertebrates, aquatic animals and rodents of both sexes and the mechanisms by which MPs affect the animal reproductive system. The studies on females demonstrated that MPs decrease oocyte quantity and quality, and induce ovary fibrosis, pyroptosis and apoptosis of granulosa cells. In addition, disrupted integrity of the blood-testis barrier, damaged spermatogenesis and compromised sperm quality have been shown in most studies on male animals. The studies on the mechanisms of these effects have provided evidence that MPs act on the animal reproductive system through reactive oxygen species-related mechanisms by initiating the Wnt/β-Catenin and NLRP3/Caspase-1 pathways in females, and the Nrf2/HO-1/NF-κB, p38 MAPK and MAPK/Nrf2 pathways in males. Taken together, these studies reveal the reproductive toxicity of MPs from PMF on animals and serve as a reminder to properly dispose of PMF waste.
Collapse
Affiliation(s)
- Yuan Yuan
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Yiwen Qin
- School of Software, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Meng Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Wenqing Xu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Ying Chen
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China; Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, Jiangxi 330031, PR China
| | - Liping Zheng
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, Jiangxi 330031, PR China
| | - Wen Chen
- School of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330000, PR China.
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China; Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, Jiangxi 330031, PR China.
| |
Collapse
|
73
|
Attademo AM, Cuzziol Boccioni AP, Peltzer PM, Franco VG, Simoniello MF, Passeggi MCG, Lajmanovich RC. Effect of microplastics on the activity of carboxylesterase and phosphatase enzymes in Scinax squalirostris tadpoles. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:718. [PMID: 36050604 DOI: 10.1007/s10661-022-10322-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are critical emerging pollutants around the world. There is a growing interest in the effects of MP ingestion, non-digestion, and toxicity on aquatic organisms. Amphibian tadpoles are the vertebrate group that has received the least attention regarding this issue. The aim of the present study was to determine the ingestion of polyethylene MPs by Scinax squalirostris tadpoles by atomic force microscopy (AFM) and to evaluate the activities of carboxylesterase (CbE, using 4-naphthyl butyrate-NB-, and 1-naphthyl acetate -NA- as substrates) and alkaline phosphatase (ALP) under MP exposure. Enzyme activities were analyzed spectrophotometrically at 2 and 10 days of exposure. Tadpoles were exposed to two different treatments during 10 days: a negative control (CO, dechlorinated water) and MP (60 mg L-1). AFM images of the digestive contents of tadpoles revealed the presence of MPs. After 10 days of MP exposure, CbE (NB) activity was significantly higher and CbE (NA) activity was significantly lower in MP treatments than in controls. ALP activity decreased in MP treatments after 2 and 10 days of exposure. The detection of MP particles in the intestinal contents and the effects on metabolic enzymes in a common frog species evidenced the potential health risk of MP to aquatic vertebrates. Thus, the differential response in enzymes and substrates demonstrate the need for considering the complex effects of contaminants and nutrients on ecosystems for ecotoxicological risk characterization.
Collapse
Affiliation(s)
- Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), El Pozo S/N, Santa Fe, Argentina.
- CONICET-FBCB-UNL, El Pozo S/N, Santa Fe, Argentina.
| | - Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), El Pozo S/N, Santa Fe, Argentina
- CONICET-FBCB-UNL, El Pozo S/N, Santa Fe, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), El Pozo S/N, Santa Fe, Argentina
- CONICET-FBCB-UNL, El Pozo S/N, Santa Fe, Argentina
| | - Vanina G Franco
- Laboratorio de Física de Superficies e Interfaces, Instituto de Física del Litoral (LASUI-IFIS Litoral; CONICET-UNL), Güemes 3450, S3000, Santa Fe, Argentina
| | | | - Mario C G Passeggi
- Laboratorio de Física de Superficies e Interfaces, Instituto de Física del Litoral (LASUI-IFIS Litoral; CONICET-UNL), Güemes 3450, S3000, Santa Fe, Argentina
- Departamento de Física, Facultad de Ingeniería Química, Universidad Nacional del Litoral (FIQ-UNL), Santiago del Estero 2829, S3000, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), El Pozo S/N, Santa Fe, Argentina
- CONICET-FBCB-UNL, El Pozo S/N, Santa Fe, Argentina
| |
Collapse
|
74
|
Spindola Vilela CL, Damasceno TL, Thomas T, Peixoto RS. Global qualitative and quantitative distribution of micropollutants in the deep sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119414. [PMID: 35598814 DOI: 10.1016/j.envpol.2022.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Micropollutants (MPs) include a wide range of biological disruptors that can be toxic to wildlife and humans at very low concentrations (<1 μg/L). These mainly anthropogenic pollutants have been widely detected in different areas of the planet, including the deep sea, and have impacts on marine life. Because of this potential toxicity, the global distribution, quantity, incidence, and potential impacts of deep-sea MPs were investigated in a systematic review of the literature. The results showed that MPs have reached different zones of the ocean and are more frequently reported in the Northern Hemisphere, where higher concentrations are found. MPs are also concentrated in depths up to 3000 m, where they are also more frequently studied, but also extend deeper than 10,000 m. Potentially toxic metals (PTMs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDTs), organotins, and polycyclic aromatic hydrocarbons (PAHs) were identified as the most prevalent and widely distributed MPs at ≥200 m depth. PTMs are widely distributed in the deep sea in high concentrations; aluminum is the most prevalent up to 3000 m depth, followed by zinc and copper. PCBs, organotins, hexachlorocyclohexanes (HCHs), PAHs, and phenols were detected accumulated in both organisms and environmental samples above legislated thresholds or known toxicity levels. Our assessment indicated that the deep sea can be considered a sink for MPs.
Collapse
Affiliation(s)
- Caren Leite Spindola Vilela
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taissa Lopes Damasceno
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Raquel Silva Peixoto
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
75
|
Sharifi R, Keshavarzifard M, Sharifinia M, Zakaria MP, Mehr MR, Abbasi S, Yap CK, Yousefi MR, Masood N, Magam SM, Alkhadher SAA, Daliri M. Source apportionment and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the coastal ecosystem of the Brunei Bay, Brunei. MARINE POLLUTION BULLETIN 2022; 181:113913. [PMID: 35810648 DOI: 10.1016/j.marpolbul.2022.113913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Pollution characteristics and associated ecological risks of PAHs in sediments from Brunei Bay, Brunei were investigated. The concentrations of ∑16 PAHs ranged from 826.7 to 2955.3 μg kg-1, indicating moderate to high level of pollution. Source apportionment of PAHs by molecular isomeric ratios and positive matrix factorization model indicated impact of potential anthropogenic PAH sources including combustion of biomass and fossil fuels. The data indicated relatively no significant ecotoxicological risk for most of PAH compounds. To estimate the individual c-PAH toxicity, the toxic equivalent quantity (c-TEQ) was calculated. Results of the TEQ analysis showed that BaP followed by DBA and BaA are the most carcinogenic of PAHs examined in the study area. The evaluation of human health risk of PAHs revealed that the cancer risk of PAHs for adults and children was higher than the USEPA threshold (<1E-06) and lower than 1E-3, implying low to moderate risk.
Collapse
Affiliation(s)
- Reza Sharifi
- University of Applied Science and Technology, Shiraz, Fars, Iran
| | - Mehrzad Keshavarzifard
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran.
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran
| | - Mohamad Pauzi Zakaria
- Environmental Forensics Research Center, Faculty of Environmental Studies, Universiti Putra, Malaysia
| | - Meisam Rastegari Mehr
- Department of Applied Geology, Faculty of Earth Science, Kharazmi University, Tehran 15614, Iran
| | - Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran; Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin 20-031, Poland
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Mohamad Reza Yousefi
- School of Chemical Engineering University of Zanjan, University Blvd, Zanjan, Iran
| | - Najat Masood
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 55471, Saudi Arabia
| | - Sami Muhsen Magam
- Basic Science Department, Preparatory Year, University of Ha'il, 1560 Hail, Saudi Arabia
| | | | - Moslem Daliri
- Fisheries Department, Faculty of Marine Sciences and Technology, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
76
|
Klein JR, Beaman J, Kirkbride KP, Patten C, Burke da Silva K. Microplastics in intertidal water of South Australia and the mussel Mytilus spp.; the contrasting effect of population on concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154875. [PMID: 35364164 DOI: 10.1016/j.scitotenv.2022.154875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/27/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Microplastics, plastic particles <5 mm in size, are of global concern as human-caused pollutants in marine and fresh waters, and yet little is known of their distribution, behaviour and ecological impact in the intertidal environment of South Australia. This study confirms for the first time, the presence of microplastic in the South Australian intertidal ecosystem by quantifying the abundance of particles in intertidal water and in the keystone species, the blue mussel, Mytilus spp., an important fisheries species, at ten and six locations respectively, along the South Australian coastline. For a remote region known for its pristine environment, microplastic concentration in intertidal water was found to be low to moderate (mean = 8.21 particles l-1 ± 4.91) relative to global levels and microplastic abundance in mussels (mean = 3.58 ± 8.18 particles individual-1) was within the range also reported globally. Microplastic particles were ubiquitous across sites and bioavailable by size in water (mean = 906.36 μm) and in mussel (mean = 983.29 μm) raising concerns for the health of South Australia's unique coastal ecosystems and for the human food chain. Furthermore, a positive correlation was found between human coastal population size and microplastic concentration in intertidal water, irrespective of influences from industry - tourism, fishing and shipping ports. FTIR analysis determined plastic type to include polyamide (PA), polyethylene (PE), polypropylene (PP), acrylic resin, polyethyleneterephthalate (PET) and cellulose, suggesting synthetic and semi-synthetic particles from single-use, short-life cycle products, fabrics, ropes and cordage. Our findings shed light on the urgent need to establish the local sources of microplastic pollution in order to assist the community, industry and government to reduce the impact of microplastic on the fragile marine systems within South Australian intertidal waters and on the organisms associated with the human food chain.
Collapse
Affiliation(s)
- Janet R Klein
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.
| | - Julian Beaman
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.
| | - K Paul Kirkbride
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.
| | - Corey Patten
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Karen Burke da Silva
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.
| |
Collapse
|
77
|
Chatterjee A, Maity S, Banerjee S, Dutta S, Adhikari M, Guchhait R, Biswas C, De S, Pramanick K. Toxicological impacts of nanopolystyrene on zebrafish oocyte with insight into the mechanism of action: An expression-based analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154796. [PMID: 35341844 DOI: 10.1016/j.scitotenv.2022.154796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Many studies have investigated the negative impacts of microplastics on teleost fishes with very little or no evidence of their mechanism of action. This scenario entreats us to investigate the toxicities of nanopolystyrene in zebrafish oocyte with emphasis on the mechanism of action. In the present study, the cellular levels of mRNA transcripts of different genetic markers (such as: sod, gpx, nrf2, inos, ucp2, and atp6 (redox-sensitive markers); nfkβ, tnfα, il-10, ikβ, gdf9, and bmp15 (immune markers); gadd45, rad51, p53 and bcl2 (DNA damage and apoptotic)) have been quantified by real-time PCR after 6 h of incubation of isolated oocyte with different doses of nanopolystyrene viz. P0 (control i.e. no polystyrene in culture medium), P1 (100 ng/ml), and P2 (400 ng/ml). Results showed that both the treatment concentrations of nanopolystyrene induce oxidative stress with % DPPH = 30.75, 31.61, and 32.43% for P0, P1, and P2, respectively. Increase in oxidative stress in oocytes with increasing doses of nanopolystyrene was also observed in TBARS assay with MDA content 0.12 and 0.21 μM for P1 and P2, respectively as compaired to the control 0.08 μM. This increased oxidative stress can regulate the expression pattern (upregulation/downregulation) of selected genes leading to different toxic effects like - oxidative stress, immunotoxicity, and apoptosis in oocytes, which suggests the impairment of reproductive functions by nanopolystyrene.
Collapse
Affiliation(s)
- Ankit Chatterjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, West Bengal, India
| | - Sukhendu Maity
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, West Bengal, India
| | - Sambuddha Banerjee
- Department of Zoology, Visva Bharati University, Bolpur, West Bengal, India
| | - Shibsankar Dutta
- Department of Physics, Presidency University, West Bengal, India
| | - Madhuchhanda Adhikari
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, West Bengal, India
| | - Rajkumar Guchhait
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, West Bengal, India; P.G. Department of Zoology, Mahishadal Raj College, Garkamalpur, Purba Medinipur, West Bengal, India
| | - Chayan Biswas
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, West Bengal, India
| | - Sukanta De
- Department of Physics, Presidency University, West Bengal, India
| | - Kousik Pramanick
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, West Bengal, India.
| |
Collapse
|
78
|
Zhang Q, He Y, Cheng R, Li Q, Qian Z, Lin X. Recent advances in toxicological research and potential health impact of microplastics and nanoplastics in vivo. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40415-40448. [PMID: 35347608 DOI: 10.1007/s11356-022-19745-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
As emerging pollutants, direct and indirect adverse impacts of micro(nano)plastics (MPs/NPs) are raising an increasing environmental concern in recent years due to their poor biodegradability and difficulty in recycling. MPs/NPs can act as carriers of bacteria, viruses, or pollutants (such as heavy metals and toxic organic compounds), and may potentially change the toxicity and bioavailability of pollutants. Ingested or attached MPs/NPs can also be transferred from low-trophic level organisms to high-nutrient organisms or even the human body through the food chain transfer process. This article reviews the emerging field of micro- and nanoplastics on organisms, including the separate toxicity and toxicity of compound after the adsorption of organic pollutants or heavy metals, as well as possible mechanism of toxicological effects and evaluate the nano- and microplastics potential adverse effects on human health. The inherent toxic effects MPs/NPs mainly include the following: physical injury, growth performance decrease and behavioral alteration, lipid metabolic disorder, induced gut microbiota dysbiosis and disruption of the gut's epithelial permeability, neurotoxicity, damage of reproductive system and offspring, oxidative stress, immunotoxicity, etc. Additionally, MPs/NPs may release harmful plastic additives and toxic monomers such as bisphenol A, phthalates, and toluene diisocyanate. The vectors' effect also points out the potential interaction of MPs/NPs with pollutants such as heavy metals, polycyclic aromatic hydrocarbons, organochlorine pesticides, polychlorinated biphenyls, perfluorinated compounds, pharmaceuticals, and polybrominated diphenyl ethers. Nevertheless, these potential consequences of MPs/NPs being vectors for contaminants are controversial.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, No. 6, Huayue Road, Hedong District, Tianjin, 300011, People's Republic of China.
| | - Yuan He
- Microorganism Inspection Institute, Chongqing Center for Disease Control and Prevention, No. 8, Changjiang 2nd Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Runjing Cheng
- School of Public Health, Tianjin Medical University, No. 22, Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Qian Li
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, No. 6, Huayue Road, Hedong District, Tianjin, 300011, People's Republic of China
| | - Zhiyong Qian
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, No. 6, Huayue Road, Hedong District, Tianjin, 300011, People's Republic of China
| | - Xiaohui Lin
- Department of Physics and Chemistry, Tianjin Centers for Disease Control and Prevention, No. 6, Huayue Road, Hedong District, Tianjin, 300011, People's Republic of China
| |
Collapse
|
79
|
Sharifinia M, Keshavarzifard M, Hosseinkhezri P, Khanjani MH, Yap CK, Smith WO, Daliri M, Haghshenas A. The impact assessment of desalination plant discharges on heavy metal pollution in the coastal sediments of the Persian Gulf. MARINE POLLUTION BULLETIN 2022; 178:113599. [PMID: 35366549 DOI: 10.1016/j.marpolbul.2022.113599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
In recent decades the development of desalination plants (DPs) for desalination of seawater has increased dramatically, while little attention has been paid to the effects of this activity on the accumulation of heavy metals (HMs) in the sediments of affected ecosystems. The present study was implemented to evaluate (1) heavy metal accumulation in sediments impacted by DPs discharges, (2) spatial and temporal changes of HMs and the contamination degree by different types of pollution indexes (single and integrated indices), and (3) ecological risk assessment of cadmium (Cd), lead (Pb), zinc (Zn) and copper (Cu) in sediments affected by DPs discharges. A total of 288 sediment samples were collected seasonally at 24 stations from November 2019 to October 2020. Analysis of HMs concentrations in sediments near the desalination plant discharge provided evidence of local contamination. Maximum concentration of Cu and Pb elements were found in sediments near the desalination plant discharge point. Hierarchical cluster analysis revealed clear segregation of stations impacted by desalination plant discharges and away from discharges. The values of PLI index in sediments of all sampling stations were < 1, indicating that there was no metal pollution by this index. The potential ecological risk index (PERI) ranged from 5.33 ± 0.51 to 11.81 ± 4.98 in sampling sediments and were classified as "low potential ecological risk". These results demonstrate that the DPs discharge increased HMs concentrations in the sediments in close proximity to outlets. The necessary and practical regulations and policies regarding the rejection of the DPs discharge and disposal of chemical compounds must be implemented and enforced.
Collapse
Affiliation(s)
- Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran.
| | - Mehrzad Keshavarzifard
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran.
| | - Parisa Hosseinkhezri
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran
| | - Mohammad Hossein Khanjani
- Department of Fisheries Sciences and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Kerman, Iran
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Walker O Smith
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200300, China
| | - Moslem Daliri
- Fisheries Department, Faculty of Marine Sciences and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Arash Haghshenas
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran
| |
Collapse
|
80
|
Zhang C, Chen J, Ma S, Sun Z, Wang Z. Microplastics May Be a Significant Cause of Male Infertility. Am J Mens Health 2022; 16:15579883221096549. [PMID: 35608037 PMCID: PMC9134445 DOI: 10.1177/15579883221096549] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/21/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the problematic degradation properties of plastics, the decomposition of plastic results in the formation of numerous microplastics (MPs), less than 5 mm in diameter. These MPs enter the soil and the ocean, eventually passing through the air, water, or food chain back to the human body and harming human health. In the last 80 years, male semen analysis parameters have shown a significant decline for unknown reasons, speculated to be caused by pollutants. No studies examined the relationship between human MP exposure and male infertility. In this article, we reviewed the relevant animal experimental research literature in recent years and calculated that the minimum human equivalent dose of MPs leading to abnormal male semen quality is 0.016 mg/kg/d. The literature comparison found that MP exposure in Japan and South Korea was close to this value. These results suggest that MPs can affect male semen quality and that MPs may significantly impact male fertility.
Collapse
Affiliation(s)
- Chenming Zhang
- Henan University of Chinese Medicine,
Zhengzhou, Henan, China
| | - Jianshe Chen
- Henan Province Hospital of Traditional
Chinese Medicine, Zhengzhou, Henan, China
| | - Sicheng Ma
- Henan University of Chinese Medicine,
Zhengzhou, Henan, China
| | - Zixue Sun
- Henan Province Hospital of Traditional
Chinese Medicine, Zhengzhou, Henan, China
| | - Zulong Wang
- The First Affiliated Hospital of Henan
University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
81
|
Zhou L, Yu Z, Xia Y, Cheng S, Gao J, Sun W, Jiang X, Zhang J, Mao L, Qin X, Zou Z, Qiu J, Chen C. Repression of autophagy leads to acrosome biogenesis disruption caused by a sub-chronic oral administration of polystyrene nanoparticles. ENVIRONMENT INTERNATIONAL 2022; 163:107220. [PMID: 35381522 DOI: 10.1016/j.envint.2022.107220] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
As a new widespread contaminant, nanoplastics (NPs) pose a potential risk to human health. Nevertheless, the adverse effects of NPs on the male reproductive system are poorly understood. In this study, we aimed to determine the effects of polystyrene nanoplastics (PS-NPs) (50 nm) on sperm quality, with a focus on the acrosome defects. After 35 days of intragastric administration, sperm quality was decreased and testicular structures were impaired in mice exposed to PS-NPs in both the medium (1.0 mg/kg) and high dose (10 mg/kg) groups. No significant changes were observed in the low dose (0.2 mg/kg) group. Meanwhile, acrosome parameters including acrosome integrity and acrosome reaction were decreased after the administration of PS-NPs. These findings were consistent with the disruption of acrosome biogenesis, as identified by the changed testicular ultrastructure. Additionally, the findings were further validated using seven marker genes (Gba2, Pick1, Gopc, Hrb, Zpbp1, Spaca1 and Dpy19l2) essential for acrosome formation, which showed that two of these genes (Gopc and Dpy19l2) were significantly down-regulated. Moreover, repressed autophagy was observed in the testes of PS-NPs-exposed mice based on autophagy-related protein expression. This phenomenon was further verified in GC-2spd cells treated with PS-NPs (50 μg/mL, 100 μg/mL, 200 μg/mL for 24 h). The potential role of autophagy in such acrosome defects was explored by using the autophagy inhibitor 3-methyladenine (3-MA), autophagy activator rapamycin or beclin-1 siRNA. The results showed that Golgi-associated vesicle disorganization was exacerbated with the 3-MA and beclin-1 siRNA pretreatments, but decreased with the rapamycin pretreatment, and the expression of GOPC and DPY19L2 was also altered. These results indicated that autophagy might be involved in the PS-NPs-induced acrosome lesions based on the regulation of two key acrosome-formation proteins, GOPC and DPY19L2. Altogether, our results will provide new insights into the PS-NPs-induced male reproductive impairment.
Collapse
Affiliation(s)
- Lixiao Zhou
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Ziying Yu
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jieying Gao
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Wei Sun
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China; Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun Zhang
- Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China; Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lejiao Mao
- Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China; Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhen Zou
- Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China; Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China; Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
82
|
Ghasemi M, Keshavarzifard M. Are the tourist beaches safe for swimming? A case study of health risks of polycyclic aromatic hydrocarbons (PAHs) in tourist beaches of Bushehr City. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:398. [PMID: 35488981 DOI: 10.1007/s10661-022-09943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The aims of the present research were to evaluate the health risk of long-term exposure to polycyclic aromatic hydrocarbons (PAHs) concerning the human, ecotoxicological risk for marine biota, and identify their possible sources. Surface sediment bioassay samples were collected from 15 stations of tourist beaches surrounding Bushehr City and analyzed using high performance liquid chromatography (HPLC). The results indicated the concentrations of ∑PAH ranged from 193.5 to 725.5 ng g-1 with mean value of 351.1 ± 155.2 ng g-1, which could be considered as moderate level of pollution. Measured levels of PAH in sediments were compared with sediment quality guidelines (SQGs), indicating low to medium ecotoxicological risk on marine organisms. Moreover, mean ERM quotient (M-ERM-Q) and mean PEL quotient (M-PEL-Q) were implemented, demonstrating potentially biological adverse effects. A preliminary evaluation of human health risk using incremental lifetime cancer risk (ILCR) and toxic equivalent quotient (TEQcarc) indicated that PAH-contaminated sediment in some stations of touristic beaches of Bushehr City would induce potential carcinogenic effects especially for children. Composition and diagnostic analysis indicated that PAHs originated from both pyrogenic and petrogenic, with higher portion of incomplete combustion PAHs.
Collapse
Affiliation(s)
- Moslem Ghasemi
- Department of Geography and Tourism Planning, Kharazmi University, Tehran, Iran
| | - Mehrzad Keshavarzifard
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), 75169-89177, Bushehr, Iran.
| |
Collapse
|
83
|
Jewett E, Arnott G, Connolly L, Vasudevan N, Kevei E. Microplastics and Their Impact on Reproduction-Can we Learn From the C. elegans Model? FRONTIERS IN TOXICOLOGY 2022; 4:748912. [PMID: 35399297 PMCID: PMC8987311 DOI: 10.3389/ftox.2022.748912] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Biologically active environmental pollutants have significant impact on ecosystems, wildlife, and human health. Microplastic (MP) and nanoplastic (NP) particles are pollutants that are present in the terrestrial and aquatic ecosystems at virtually every level of the food chain. Moreover, recently, airborne microplastic particles have been shown to reach and potentially damage respiratory systems. Microplastics and nanoplastics have been shown to cause increased oxidative stress, inflammation, altered metabolism leading to cellular damage, which ultimately affects tissue and organismal homeostasis in numerous animal species and human cells. However, the full impact of these plastic particles on living organisms is not completely understood. The ability of MPs/NPs to carry contaminants, toxic chemicals, pesticides, and bioactive compounds, such as endocrine disrupting chemicals, present an additional risk to animal and human health. This review will discusses the current knowledge on pathways by which microplastic and nanoplastic particles impact reproduction and reproductive behaviors from the level of the whole organism down to plastics-induced cellular defects, while also identifying gaps in current knowledge regarding mechanisms of action. Furthermore, we suggest that the nematode Caenorhabditis elegans provides an advantageous high-throughput model system for determining the effect of plastic particles on animal reproduction, using reproductive behavioral end points and cellular readouts.
Collapse
Affiliation(s)
- Elysia Jewett
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Gareth Arnott
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
84
|
Woo H, Kang SH, Kwon Y, Choi Y, Kim J, Ha DH, Tanaka M, Okochi M, Kim JS, Kim HK, Choi J. Sensitive and specific capture of polystyrene and polypropylene microplastics using engineered peptide biosensors. RSC Adv 2022; 12:7680-7688. [PMID: 35424716 PMCID: PMC8982333 DOI: 10.1039/d1ra08701k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/19/2022] [Indexed: 12/17/2022] Open
Abstract
Owing to increased environmental pollution, active research regarding microplastics circulating in the ocean has attracted significant interest in recent times. Microplastics accumulate in the bodies of living organisms and adversely affect them. In this study, a new method for the rapid detection of microplastics using peptides was proposed. Among the various types of plastics distributed in the ocean, polystyrene and polypropylene were selected. The binding affinity of the hydrophobic peptides suitable for each type of plastic was evaluated. The binding affinities of peptides were confirmed in unoxidized plastics and plasma-oxidized plastics in deionised or 3.5% saline water. Also, the detection of microplastics in small animals' intestine extracts were possible with the reported peptide biosensors. We expect plastic-binding peptides to be used in sensors to increase the detection efficiency of microplastics and potentially help separate microplastics from seawater.
Collapse
Affiliation(s)
- Hyunjeong Woo
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Seung Hyun Kang
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital Seoul 06973 Republic of Korea
| | - Yejin Kwon
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Jiwon Kim
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1-S1-24, O-okayama, Meguro-ku Tokyo 152-8552 Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1-S1-24, O-okayama, Meguro-ku Tokyo 152-8552 Japan
| | - Jin Su Kim
- Division of RI Application, Korea Institute Radiological and Medical Sciences Seoul 01812 Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST) Seoul 01812 Republic of Korea
| | - Han Koo Kim
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital Seoul 06973 Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| |
Collapse
|
85
|
Rios-Fuster B, Alomar C, Capó X, Paniagua González G, Garcinuño Martínez RM, Soliz Rojas DL, Silva M, Fernández Hernando P, Solé M, Freitas R, Deudero S. Assessment of the impact of aquaculture facilities on transplanted mussels (Mytilus galloprovincialis): Integrating plasticizers and physiological analyses as a biomonitoring strategy. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127264. [PMID: 34879544 DOI: 10.1016/j.jhazmat.2021.127264] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 05/06/2023]
Abstract
The growing plastic production and its continuous use is a significant problem. In addition, aquaculture practices have experienced a considerable growth and plastic is widely used in these activities, hence plasticizers must be considered due to their potential ecotoxicological impacts on species. Mussels placed inside an Integrated Multi-Trophic Aquaculture (IMTA) system and at two control locations were employed to quantify the ingestion of anthropogenic particles and associated chemical plasticizers, such as bisphenol A (BPA) jointly to bisphenol F (BPF) and bisphenol S (BPS), and phthalates represented by diethyl phthalate (DEP), dibutyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP). In addition, some metabolism and oxidative stress related parameters were measured in mussels' whole soft tissue. Anthropogenic particle ingestion of mussels increased over time at the three locations and the following order of abundance of pollutants was observed: BPA> BPF> DEHP> DBP> BPS> DEP. Even though no differences according to location were found for pollutants' occurrence, time trends were evidenced for BPA and DEHP. On the other hand, a location effect was observed for biomarkers with highest values detected in mussels located at the vicinities of the aquaculture facility. In addition, a reduced detoxification activity was observed over time parallel to BPA decrease.
Collapse
Affiliation(s)
- Beatriz Rios-Fuster
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain.
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - Xavier Capó
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - Gema Paniagua González
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Rosa Maria Garcinuño Martínez
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Dulce Lucy Soliz Rojas
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Monica Silva
- Departamento de Biologia & CESAM, Universidade de Aveiro, Portugal
| | - Pilar Fernández Hernando
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | | | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Portugal
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| |
Collapse
|
86
|
Ouyang X, Duarte CM, Cheung SG, Tam NFY, Cannicci S, Martin C, Lo HS, Lee SY. Fate and Effects of Macro- and Microplastics in Coastal Wetlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2386-2397. [PMID: 35089026 DOI: 10.1021/acs.est.1c06732] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coastal wetlands trap plastics from terrestrial and marine sources, but the stocks of plastics and their impacts on coastal wetlands are poorly known. We evaluated the stocks, fate, and biological and biogeochemical effects of plastics in coastal wetlands with plastic abundance data from 112 studies. The representative abundance of plastics that occurs in coastal wetland sediments and is ingested by marine animals reaches 156.7 and 98.3 items kg-1, respectively, 200 times higher than that (0.43 items kg-1) in the water column. Plastics are more abundant in mangrove forests and tidal marshes than in tidal flats and seagrass meadows. The variation in plastic abundance is related to climatic and geographic zones, seasons, and population density or plastic waste management. The abundance of plastics ingested by pelagic and demersal fish increases with fish length and dry weight. The dominant characteristics of plastics ingested by marine animals are correlated with those found in coastal wetland sediments. Microplastics exert negative effects on biota abundance and mangrove survival but positive effects on sediment nutrients, leaf drop, and carbon emission. We highlight that plastic pollution is widespread in coastal wetlands and actions are urged to include microplastics in ecosystem health and degradation assessment.
Collapse
Affiliation(s)
- Xiaoguang Ouyang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong Special Administrative Region, China
| | - Carlos M Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Siu-Gin Cheung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong Special Administrative Region, China
| | - Nora Fung-Yee Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong Special Administrative Region, China
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin 999077, Hong Kong Special Administrative Region, China
| | - Stefano Cannicci
- The Swire Institute of Marine Sciences and the Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam 999077, Hong Kong Special Administrative Region, China
- Department of Biology, University of Florence, Via Madonna Del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Cecilia Martin
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Hoi Shing Lo
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin 999077, Hong Kong Special Administrative Region, China
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Shing Yip Lee
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong Special Administrative Region, China
| |
Collapse
|
87
|
Kwon W, Kim D, Kim HY, Jeong SW, Lee SG, Kim HC, Lee YJ, Kwon MK, Hwang JS, Han JE, Park JK, Lee SJ, Choi SK. Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150817. [PMID: 34627918 DOI: 10.1016/j.scitotenv.2021.150817] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/18/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The remarkable increase in plastic usage and widespread microplastic (MP) pollution has emerged as a substantial concern today. Many recent studies have revealed MPs as potentially hazardous substances in mammals. Despite several reports on the impact of small MPs in the brain and behaviors in aquatic animals, it is still unclear how small MPs affect the brain and its underlying cellular physiology in terrestrial animals. In this study, we investigated the accumulation of polystyrene MPs (PS-MPs) in mouse brain after oral treatment using three types of fluorescent PS-MPs of different sizes (0.2,2 and 10 μm). We found that PS-MPs were deposited in microglial cells of the brain. Following differential treatment of PS-MPs in human microglial HMC-3 cells, we identified changes in cellular morphology, immune responses, and microglial apoptosis induced by phagocytosis of 0.2 and 2 μm PS-MPs. By analyzing the PS-MP-treated HMC-3 cell transcriptome, we showed that PS-MPs treatment altered the expression of clusters of immune response genes, immunoglobulins, and several related microRNAs. In addition, we confirmed alterations in microglial differentiation marker expression with the activation of NF-κB, pro-inflammatory cytokines and apoptotic markers in PS-MP-treated human microglial cells and in mouse brain. Our findings suggest a potential risk of small PS-MPs in microglial immune activation, which leads to microglial apoptosis in murine and human brains.
Collapse
Affiliation(s)
- Wookbong Kwon
- Division of Biotechnology, DGIST, Daegu, Republic of Korea; Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Daehwan Kim
- Division of Biotechnology, DGIST, Daegu, Republic of Korea; Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Hee-Yeon Kim
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea; College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang Won Jeong
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Se-Guen Lee
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Hyun-Chul Kim
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Young-Jae Lee
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Mi Kyung Kwon
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | | | - Jee Eun Han
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jin-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung-Jun Lee
- Division of Biotechnology, DGIST, Daegu, Republic of Korea.
| | - Seong-Kyoon Choi
- Division of Biotechnology, DGIST, Daegu, Republic of Korea; Core Protein Resources Center, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
88
|
Ebrahimi P, Abbasi S, Pashaei R, Bogusz A, Oleszczuk P. Investigating impact of physicochemical properties of microplastics on human health: A short bibliometric analysis and review. CHEMOSPHERE 2022; 289:133146. [PMID: 34871607 DOI: 10.1016/j.chemosphere.2021.133146] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are contaminants of emerging concern that attracted the attention of researchers over the last decade. They can occur in saliva and stool, and on scalp hair together with skin. Further, MPs can end up in the human diet through seafood, honey, salt, and mineral water. They can be taken up into the plants' roots and lead to the occurrence of MPs in fruits and vegetables. Concentration of the airborne MPs was also reported in the environment. These pieces of evidence clarify that introduction of MPs to the human body through ingestion and inhalation routes should not be overlooked. Following oral exposure to MPs, hazardous chemicals can be released in the gastrointestinal tract leading to toxicity. Inhalation route deserves more attention due to the oxidative potential of the inhaled plastic particles. Although the major characteristics of MPs are being investigated, there are currently few regulations to control concentration of MPs in the environment and their human health impacts remained unclear indicating the need for further investigation. For instance, it is not clear if the present air quality limits for PM2.5 and PM10 can be used for the areas with high suspended plastic particles. Without comprehensive knowledge about the retention and egestion rates of field populations, it is difficult to deduce the ecological and human health consequences. In general, more information about MP contamination in various species and the consequences of MP uptake and retention is required to gain a better idea of MPs in the food web and their environmental fate. The finer details on the MP translocation between tissues and the fate of the small plastic particles might be obtained when considering the existing information about the application of MPs in the pharmaceutical industry. In this review article, we presented a short bibliometric analysis and investigated the link between physicochemical properties of MPs and human health.
Collapse
Affiliation(s)
- Pooria Ebrahimi
- Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran; Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, 20-031, Poland.
| | - Reza Pashaei
- Marine Research Institute of Klaipeda University, Klaipeda, Lithuania
| | - Aleksandra Bogusz
- Department of Ecotoxicology, Institute of Environmental Protection - National Research Institute, ul. Krucza 5/11D, 00-548, Warszawa, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, 20-031, Poland
| |
Collapse
|
89
|
Hajiouni S, Mohammadi A, Ramavandi B, Arfaeinia H, De-la-Torre GE, Tekle-Röttering A, Dobaradaran S. Occurrence of microplastics and phthalate esters in urban runoff: A focus on the Persian Gulf coastline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150559. [PMID: 34582879 DOI: 10.1016/j.scitotenv.2021.150559] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 05/05/2023]
Abstract
Urban runoff seems an obvious pathway for the transfer of microplastics (MPs) and phthalate acid esters (PAEs) from land-based sources to the marine environment; an issue that still lacks attention. This study presents the first results on MP and PAE levels in the urban runoff into the northern part of the Persian Gulf during the dry season. Average concentrations of MPs and PAEs in the urban runoff of eight selected sampling sites (N = 72) along the Bushehr coast were 1.86 items/L and 53.57 μg/L, respectively. MPs with a size range of 500-1000 μm had the highest abundance, and the mean levels of PAEs in MPs were 99.77 μg/g. The results of this study show that urban runoff is a main source of MP and PAE contaminants that are discharged into the Persian Gulf. Therefore, to decrease these pollutants from entering the aquatic environment, decision-makers in the area should consider this problem and stop the direct discharging of urban runoff into water bodies.
Collapse
Affiliation(s)
- Shamim Hajiouni
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Azam Mohammadi
- Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Agnes Tekle-Röttering
- Westfälische Hochschule Gelsenkirchen, Neidenburger Strasse 43, Gelsenkirchen 45877, Germany
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
90
|
Peixoto D, Torreblanca A, Pereira S, Vieira MN, Varó I. Effect of short-term exposure to fluorescent red polymer microspheres on Artemia franciscana nauplii and juveniles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6080-6092. [PMID: 34435289 PMCID: PMC8761148 DOI: 10.1007/s11356-021-15992-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are ubiquitously present in the world's seas with unknown potential toxic effects on aquatic ecosystems. The aim of this study was to evaluate biochemical responses caused by 1-5 μm diameter plastic fluorescent red polymer microspheres (FRM), under short-term exposure of nauplii and juveniles of Artemia franciscana, using a set of biomarkers involved in important physiological processes such as biotransformation, neuronal transmission and oxidative stress. Two FRM concentrations (0.4 and 1.6 mg mL-1) present in the water at ecologically relevant concentrations were used to study their toxicity. No significant differences were found in growth, survival and feeding behaviour of nauplii, after 2 days of exposure to both FRM concentrations. However, in juveniles, survival decreased after 5 days of exposure to FRM1.6; but no significant differences were found in either growth or feeding behaviour. It was observed that nauplii and juveniles, under short-term exposure, had the ability to ingest and egest FRM particles, although their accumulation was higher in nauplii than in juveniles, maybe related with the capacity of the latter to empty their gut content faster, in the presence of food. Regarding biomarkers responses in nauplii, all enzymatic activities increased significantly, after short-term exposure to the higher FRM concentration tested (FRM1.6), which could be related with detoxifying MPs-triggered oxidative stress. In juveniles, the inhibition of ChE and the decrease in the activity of antioxidant enzymes, after 5 days of exposure to FRM1.6, might indicate a neurotoxic effect and oxidative damage induced by FRM. This study provides further evidences that accumulation of MPs in the gut by nauplii and juveniles of A. franciscana can induce negative effects on important physiological processes with influence on their health, highlighting the general concern about the negative effects of MPs pollution on aquatic species, as well as the need to understand the mechanism of MPs toxicity and its possible impacts on environmental safety. Graphical abstract.
Collapse
Affiliation(s)
- Diogo Peixoto
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n 4450-208, Matosinhos, Portugal
| | - Amparo Torreblanca
- Departament de Biología Funcional i Antropología Física, Universitat de València, Burjassot, Spain
| | - Susana Pereira
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Natividade Vieira
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Edifício FC4 2.47, 4169-007 Porto, Portugal
| | - Inmaculada Varó
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| |
Collapse
|
91
|
Corinaldesi C, Canensi S, Carugati L, Lo Martire M, Marcellini F, Nepote E, Sabbatini S, Danovaro R. Organic enrichment can increase the impact of microplastics on meiofaunal assemblages in tropical beach systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118415. [PMID: 34718087 DOI: 10.1016/j.envpol.2021.118415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/10/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The cumulative impact of microplastic and organic enrichment is still largely unknown. Here, we investigated the microplastic contamination, the organic enrichment and their effects on meiofaunal distribution and diversity in two islands of the Maldivian archipelago: one more pristine, and another strongly anthropized. Field studies were coupled with manipulative experiments in which microplastic polymers were added to sediments from the non-anthropized island (i.e., without organic enrichment) to assess the relative effect of microplastic pollution on meiofauna assemblages. Our results reveal that the impact of microplastic contamination on meiofaunal abundance and taxa richness was more significant in the anthropized island, which was also characterized by a significant organic enrichment. Meiofauna exposed experimentally to microplastic contamination showed: i) the increased abundance of opportunistic nematodes and copepods and ii) a shift in the trophic structure, increasing relevance in epistrate-feeder nematodes. Based on all these results, we argue that the coexistence of chronic organic enrichment and microplastics can significantly increase the ecological impacts on meiofaunal assemblages. Since microplastic pollution in the oceans is predicted to increase in the next decades, its negative effects on benthic biodiversity and functioning of tropical ecosystems are expected to worsen especially when coupled with human-induced eutrophication. Urgent actions and management plans are needed to avoid the cumulative impact of microplastic and organic enrichment.
Collapse
Affiliation(s)
- Cinzia Corinaldesi
- Dipartimento di Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy.
| | - Sara Canensi
- Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
| | - Laura Carugati
- Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
| | - Marco Lo Martire
- Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
| | | | - Ettore Nepote
- Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
| | - Simona Sabbatini
- Dipartimento di Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
| | - Roberto Danovaro
- Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| |
Collapse
|
92
|
Hu F, Wang M, Wang N, Hu Y, Gan M, Liu D, Xie Y, Feng Q. All‐cellulose composites prepared by partially dissolving cellulose using
NaOH
/thiourea aqueous solution. J Appl Polym Sci 2021. [DOI: 10.1002/app.51298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fuqiang Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan China
| | - Miaolin Wang
- Collaborative Innovation Center of Green Lightweight Materials and Processing Hubei University of Technology Wuhan China
| | - Na Wang
- Technology R&D Center China Tobacco Hubei Industrial Corporation Wuhan China
| | - Yucheng Hu
- Collaborative Innovation Center of Green Lightweight Materials and Processing Hubei University of Technology Wuhan China
| | - Meixue Gan
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan China
| | - Danqing Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan China
| | - Yimin Xie
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan China
| | - Qinghua Feng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan China
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education Qilu University of Technology Jinan China
| |
Collapse
|
93
|
Liu S, Chen H, Wang J, Su L, Wang X, Zhu J, Lan W. The distribution of microplastics in water, sediment, and fish of the Dafeng River, a remote river in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113009. [PMID: 34808510 DOI: 10.1016/j.ecoenv.2021.113009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Although rivers are one of the dominant pathways by which microplastics reach the oceans, reports on remote rivers are rare. Dafeng River is located in Guangxi Province, China, is an important water source and a habitat of a coastal dolphin, Sousa chinensis, which is a first-class national protected animal in China. In this study, we determined the distribution and characteristics of microplastics in the surface water, sediment, and fish of the river. During the dry and rainy seasons, the microplastics content of the surface water ranged from 3 × 10-4-2.5 × 10-3 items/L (7 × 10-4-0.12 items/m2) and 4 × 10-5-9 × 10-4 items/L (2 × 10-3-2.8 × 10-2 items/m2), while those in the sediment samples ranged from 9.4 to 50.3 items/kg (dry weight) and 0.0-21.3 items/kg, respectively. The pollution level during the dry season was approximately two to three times higher than that during the rainy season (P < 0.05). The estimated annual load of microplastics carried by the Dafeng River flow was 8.3 × 108 particles. The microplastics pollution in the Dafeng River was closely related with residential activities. The contents of microplastics in the digestive tracts and gills of fish ranged from 8 × 102 to 5.7 × 103 items/kg (0.3-6.7 items/individual) and 2 × 102 to 1.7 × 103 items/kg (0.1-3.0 items/individual), respectively. The proportion of blue particles in fish was significantly higher than that in the water and sediment, which may indicate that they prefer blue-colored items. The microplastics pollution levels in the water, sediment, and fish of the Dafeng River decreased in the following order: fish > sediment > surface water in terms of items/kg. The level of microplastics pollution in the Dafeng River was relatively low; however, that in aquatic organisms was more severe. Our work highlights the requirement for concern towards microplastics pollution in the organisms of remote rivers.
Collapse
Affiliation(s)
- Shuo Liu
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China
| | - Huan Chen
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China
| | - Lei Su
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xilong Wang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China
| | - Jingmin Zhu
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China.
| | - Wenlu Lan
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China.
| |
Collapse
|
94
|
Shen J, Liang B, Zhang D, Li Y, Tang H, Zhong L, Xu Y. Effects of PET microplastics on the physiology of Drosophila. CHEMOSPHERE 2021; 283:131289. [PMID: 34182651 DOI: 10.1016/j.chemosphere.2021.131289] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Microplastics, as a new type of pollution, have attracted global attention and have become a research focus in recent years. Given the small size of microplastics, they can be ingested by many organisms. In addition, microplastics can enter the human body through the food chain. So, the potential dangers of microplastics can't be ignored. This study took Drosophila as a model organism to delve the physiological effects of polyethylene terephthalate microplastics (PET-MPs). Here, we reported that the higher concentration of PET-MPs was, the more obvious the effect became. The amount of oviposition decreased in female flies exposed, indicating that microplastics affected reproduction. PET-MPs caused the decrease of triglyceride and glucose content in male flies, as well as the decrease of starvation resistance, suggesting the effect of microplastics on energy metabolism. In addition, the 24-h spontaneous activity of flies exposed to PET-MPs increased significantly. The experimental results can help understand the potential impact of microplastics on physiology.
Collapse
Affiliation(s)
- Jie Shen
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Boying Liang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Dake Zhang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yan Li
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Hao Tang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lichao Zhong
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yifan Xu
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| |
Collapse
|
95
|
Hu J, Qin X, Zhang J, Zhu Y, Zeng W, Lin Y, Liu X. Polystyrene microplastics disturb maternal-fetal immune balance and cause reproductive toxicity in pregnant mice. Reprod Toxicol 2021; 106:42-50. [PMID: 34626775 DOI: 10.1016/j.reprotox.2021.10.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
Microplastics (MPs), which are emerging as a new type of environmental pollutants, have raised great concerns regarding their threats to human health. A successful pregnancy depends on the sophisticated regulation of the maternal-fetal immune balance, but the risks of polystyrene MP (PS-MP) exposure in early pregnancy remain unclear. In this study, we exposed the C57BL/6-mated BALB/c mice to PS-MP particles and used the flow cytometry to explore threats towards the immune system. Herein, the allogeneic mating murine model showed an elevated embryo resorption rate with a 10 μm PS-MP particle exposure during the peri-implantation period. Both the number and diameter of uterine arterioles decreased, which might reduce the uterine blood supply. Moreover, the percentage of decidual natural killer cells was reduced, whereas the helper T cells in the placenta increased. In addition, the M1/M2 ratio in macrophages reversed significantly to a dominant M2-subtype. Lastly, the cytokine secretion shifted towards an immunosuppressive state. Overall, our results demonstrated that PS-MPs have the potential to cause adverse effects on pregnancy outcomes via immune disturbance, providing new insights into the study of reproductive toxicity of MP particles in the human body.
Collapse
Affiliation(s)
- Jianing Hu
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaoli Qin
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jinwen Zhang
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yueyue Zhu
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Weihong Zeng
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yi Lin
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Xiaorui Liu
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
96
|
Liao CP, Chiu CC, Huang HW. Assessment of microplastics in oysters in coastal areas of Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117437. [PMID: 34126518 DOI: 10.1016/j.envpol.2021.117437] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Microplastic contamination in ecosystems has emerged as an environmental issue of global significance. This research quantified microplastics in oysters from 22 sites along Taiwan coastlines. In total, 6630 microplastic items were found in 660 oysters of two genera (Crassostrea and Saccostrea). The average content of microplastics was 3.24 ± 1.02 items/g (wet weight), ranging from 0.63 ± 0.52 items/g to 37.94 ± 19.22 items/g. Over half of the microplastics were smaller than 100 μm, and the most common shape was fragments (67%), followed by fibers (29%). The dominant color was transparent (49.76%), followed by black (25.66%). Polymer types were identified using a μRaman microscope, and the major component was polyethylene terephthalate (PET) (69.54%). Microplastic contamination was higher overall in wild than in farmed oysters. In addition, the microplastic content of oysters from northeastern waters was significantly greater than that of other oysters; this result is similar to the findings of previous research on floating marine litter and beach cleaning data. The results indicated that the average content of microplastic in oysters along the Taiwan coastline was similar to that in oysters in adjacent regions. This study suggests that innovative technologies should be implemented for monitoring and removing pollution, tracking marine pollution origins, and improving accountability and that plastic limitation strategies should be strengthened.
Collapse
Affiliation(s)
- Chun-Pei Liao
- Department of Environmental Biology and Fishery Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan.
| | - Ching-Chun Chiu
- Institute of Marine Affairs and Resources Management, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan.
| | - Hsiang-Wen Huang
- Institute of Marine Affairs and Resources Management, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan.
| |
Collapse
|
97
|
Sanchez-Hernandez JC. A toxicological perspective of plastic biodegradation by insect larvae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109117. [PMID: 34186180 DOI: 10.1016/j.cbpc.2021.109117] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022]
Abstract
Larvae of some insect species (Coleoptera and Lepidoptera) can consume and biodegrade synthetic polymers, including polyethylene, polystyrene, polyvinyl chloride, and polypropylene. Multiple chemical (polymer mass loss and shift of the molecular weight, alterations in chemical functionality, formation of biodegraded intermediates, CO2 production), physical (surface hydrophobicity, thermal analysis), and biological approaches (antibiotic treatment, gut dysbiosis, isolation of plastic microbial degraders) have provided evidence for polymer biodegradation in the larva digestive tract. However, the extent and rate of biodegradation largely depend on the physicochemical structure of the polymer as well as the presence of additives. Additionally, toxicology associated with plastic biodegradation has not been investigated. This knowledge gap is critical to understand the gut symbiont-host interaction in the biodegradation process, its viability in the long term, the effects of plastic additives and their metabolites, and the phenotypic traits linked to a plastic-rich diet might be transferred in successive generations. Likewise, plastic-eating larvae represent a unique case study for elucidating the mechanisms of toxic action by micro- and nanoplastics because of the high concentration of plastics these organisms may be intentionally exposed to. This perspective review graphically summarizes the current knowledge on plastic biodegradation by insect larvae and describes the physiological processes (digestive and immune systems) that may be disrupted by micro- and nanoplastics. It also provides an outlook to advance current knowledge on the toxicity assessment of plastic-rich diets and the environmental risks of plastic-containing by-products (e.g., insect manure used as fertilizer).
Collapse
Affiliation(s)
- Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Faculty of Environmental Science and Biochemistry, University of Castilla-La Mancha, 45071 Toledo, Spain.
| |
Collapse
|
98
|
Pironti C, Ricciardi M, Motta O, Miele Y, Proto A, Montano L. Microplastics in the Environment: Intake through the Food Web, Human Exposure and Toxicological Effects. TOXICS 2021; 9:224. [PMID: 34564375 PMCID: PMC8473407 DOI: 10.3390/toxics9090224] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022]
Abstract
Recently, studies on microplastics (MPs) have increased rapidly due to the growing awareness of the potential health risks related to their occurrence. The first part of this review is devoted to MP occurrence, distribution, and quantification. MPs can be transferred from the environment to humans mainly through inhalation, secondly from ingestion, and, to a lesser extent, through dermal contact. As regards food web contamination, we discuss the microplastic presence not only in the most investigated sources, such as seafood, drinking water, and salts, but also in other foods such as honey, sugar, milk, fruit, and meat (chickens, cows, and pigs). All literature data suggest not-negligible human exposure to MPs through the above-mentioned routes. Consequently, several research efforts have been devoted to assessing potential human health risks. Initially, toxicological studies were conducted with aquatic organisms and then with experimental mammal animal models and human cell cultures. In the latter case, toxicological effects were observed at high concentrations of MPs (polystyrene is the most common MP benchmark) for a short time. Further studies must be performed to assess the real consequences of MP contamination at low concentrations and prolonged exposure.
Collapse
Affiliation(s)
- Concetta Pironti
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Maria Ricciardi
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Ylenia Miele
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (Y.M.); (A.P.)
| | - Antonio Proto
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (Y.M.); (A.P.)
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “S. Francesco di Assisi Hospital”, 84020 Oliveto Citra, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
99
|
Keshavarzifard M, Vazirzadeh A, Sharifinia M. Occurrence and characterization of microplastics in white shrimp, Metapenaeus affinis, living in a habitat highly affected by anthropogenic pressures, northwest Persian Gulf. MARINE POLLUTION BULLETIN 2021; 169:112581. [PMID: 34111606 DOI: 10.1016/j.marpolbul.2021.112581] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are a modern societal concern and recognized as a growing environmental hazard by careless disposal. This study aimed to assess the MPs content in white shrimp (Metapenaeus affinis) inhabiting in a natural habitat affected by high anthropogenic pressures, and recognize if the shrimp could be a suitable bioindicator for MPs pollution. To assess spatial changes of MPs presence in shrimps, sampling was carried out by a trawl net from 13 stations across the entire Musa Bay. Tissues of shrimps were examined for MPs following floatation, digestion, microscopic observation and identified by Confocal Raman Spectroscopy. MPs were observed in the shrimps of all stations. The average MPs abundance was 1.02 items/g of digestive tissues. About 37% of recorded MPs in M. affinis samples exceeding 500 μm that could be related to surface area and stickiness as notable controls beyond ingestion. The dominant shape of MPs was fiber, followed by film. Five different colors were recorded in tissues of M. affinis samples, and the white/transparent MPs were the most abundant, followed by blue and black. In addition, a wide range of recorded colors of MPs in the study area could suggest a variety of sources of MPs. Confocal Raman Spectroscopy confirmed that polyethylene terephthalate (46%), polypropylene (27%) and polystyrene (27%) were dominant polymers. As the average annually consumption of shrimp in the region is 2.3 g/person/day, therefore each person could consume 857 MPs per year. In conclusion, the results of this research provide a detailed and useful information for a better understanding of MPs contamination in the region and suggest Jinga shrimp as a suitable species for monitoring MPs in marine ecosystems.
Collapse
Affiliation(s)
- Mehrzad Keshavarzifard
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran
| | - Arya Vazirzadeh
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran.
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran.
| |
Collapse
|
100
|
Mallik A, Xavier KAM, Naidu BC, Nayak BB. Ecotoxicological and physiological risks of microplastics on fish and their possible mitigation measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146433. [PMID: 33743469 DOI: 10.1016/j.scitotenv.2021.146433] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are widely distributed and extensively found within marine ecosystems, and approximately 8 million tons of plastics are being dumped into the sea annually. Once reached the marine environment, plastics tend to get fragmented into smaller particles through photo-degradation, mechanical and biological processes. These MPs have raised concerns globally due to their potential toxic impacts on a wide variety of aquatic fauna and humans. Ingested microplastics can cause severe health implications in fishes, including reduced feeding intensity, improper gill functioning, immuno-suppression, and compromised reproducibility. Several studies were also conducted to scrutinize MPs trophic transfer through the food chain from primary producers to top predators and their bioaccumulation. This paper briefly summarizes all the possible sources, routes, bioavailability, trophic transfer, and consequences of microplastics in fishes. The review article also intended to highlight various mitigation strategies like implementing Four R's concept (refuse, reduce, reuse, and recycle), integrated strategies, ban on single-use plastics, use bioplastics, and create behavioural changes with public awareness.
Collapse
Affiliation(s)
- Abhijit Mallik
- Fishery Resource Harvest and Postharvest Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - K A Martin Xavier
- Fishery Resource Harvest and Postharvest Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India.
| | - Bejawada Chanikya Naidu
- Fishery Resource Harvest and Postharvest Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Binaya Bhusan Nayak
- Fishery Resource Harvest and Postharvest Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| |
Collapse
|