51
|
Jung K, Kang H, Mehra R. Targeting phosphoinositide 3-kinase (PI3K) in head and neck squamous cell carcinoma (HNSCC). CANCERS OF THE HEAD & NECK 2018; 3:3. [PMID: 31093356 PMCID: PMC6460806 DOI: 10.1186/s41199-018-0030-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/09/2018] [Indexed: 12/15/2022]
Abstract
The landscape of head and neck squamous cell carcinoma (HNSCC) has been changing rapidly due to growing proportion of HPV-related disease and development of new therapeutic agents. At the same time, there has been a constant need for individually tailored treatment based on genetic biomarkers in order to optimize patient survival and alleviate treatment-related toxicities. In this regard, aberrations of PI3K pathway have important clinical implications in the treatment of HNSCC. They frequently constitute ‘gain of function’ mutations which trigger oncogenesis, and PI3K mutations can also lead to emergence of drug resistance after treatment with EGFR inhibitors. In this article, we review PI3K pathway as a target of treatment for HNSCC and summarize PI3K/mTOR inhibitors that are currently under clinical trials. In light of recent advancement of immune checkpoint inhibitors, consideration of PI3K inhibitors as potential immune modulators is also suggested.
Collapse
Affiliation(s)
- Kyungsuk Jung
- 1Department of Medicine, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA USA
| | - Hyunseok Kang
- 2Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 201 N Broadway, Baltimore, MD USA
| | - Ranee Mehra
- 2Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 201 N Broadway, Baltimore, MD USA
| |
Collapse
|
52
|
Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol 2018; 15:273-291. [PMID: 29508857 DOI: 10.1038/nrclinonc.2018.28] [Citation(s) in RCA: 763] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The PI3K-AKT-mTOR pathway is one of the most frequently dysregulated pathways in cancer and, consequently, more than 40 compounds that target key components of this signalling network have been tested in clinical trials involving patients with a range of different cancers. The clinical development of many of these agents, however, has not advanced to late-phase randomized trials, and the antitumour activity of those that have been evaluated in comparative prospective studies has typically been limited, or toxicities were found to be prohibitive. Nevertheless, the mTOR inhibitors temsirolimus and everolimus and the PI3K inhibitors idelalisib and copanlisib have been approved by the FDA for clinical use in the treatment of a number of different cancers. Novel compounds with greater potency and selectivity, as well as improved therapeutic indices owing to reduced risks of toxicity, are clearly required. In addition, biomarkers that are predictive of a response, such as PIK3CA mutations for inhibitors of the PI3K catalytic subunit α isoform, must be identified and analytically and clinically validated. Finally, considering that oncogenic activation of the PI3K-AKT-mTOR pathway often occurs alongside pro-tumorigenic aberrations in other signalling networks, rational combinations are also needed to optimize the effectiveness of treatment. Herein, we review the current experience with anticancer therapies that target the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Filip Janku
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
53
|
Abramson HN. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Oncotarget 2018; 7:81926-81968. [PMID: 27655636 PMCID: PMC5348443 DOI: 10.18632/oncotarget.10745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the number of therapeutic options available for the treatment of multiple myeloma (MM) - from immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) inhibitors and, most recently, monoclonal antibodies. Used in conjunction with autologous hematopoietic stem cell transplantation, these modalities have nearly doubled the disease's five-year survival rate over the last three decades to about 50%. In spite of these advances, MM still is considered incurable as resistance and relapse are common. While small molecule protein kinase inhibitors have made inroads in the therapy of a number of cancers, to date their application to MM has been less than successful. Focusing on MM, this review examines the roles played by a number of kinases in driving the malignant state and the rationale for target development in the design of a number of kinase inhibitors that have demonstrated anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those that have entered clinical trials. Among the targets and their inhibitors examined are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, and kinases involved in the unfolded protein response.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
54
|
Inamdar AA, Goy A, Ayoub NM, Attia C, Oton L, Taruvai V, Costales M, Lin YT, Pecora A, Suh KS. Mantle cell lymphoma in the era of precision medicine-diagnosis, biomarkers and therapeutic agents. Oncotarget 2018; 7:48692-48731. [PMID: 27119356 PMCID: PMC5217048 DOI: 10.18632/oncotarget.8961] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/10/2016] [Indexed: 12/15/2022] Open
Abstract
Despite advances in the development of clinical agents for treating Mantle Cell Lymphoma (MCL), treatment of MCL remains a challenge due to complexity and frequent relapse associated with MCL. The incorporation of conventional and novel diagnostic approaches such as genomic sequencing have helped improve understanding of the pathogenesis of MCL, and have led to development of specific agents targeting signaling pathways that have recently been shown to be involved in MCL. In this review, we first provide a general overview of MCL and then discuss about the role of biomarkers in the pathogenesis, diagnosis, prognosis, and treatment for MCL. We attempt to discuss major biomarkers for MCL and highlight published and ongoing clinical trials in an effort to evaluate the dominant signaling pathways as drugable targets for treating MCL so as to determine the potential combination of drugs for both untreated and relapse/refractory cases. Our analysis indicates that incorporation of biomarkers is crucial for patient stratification and improve diagnosis and predictability of disease outcome thus help us in designing future precision therapies. The evidence indicates that a combination of conventional chemotherapeutic agents and novel drugs designed to target specific dysregulated signaling pathways can provide the effective therapeutic options for both untreated and relapse/refractory MCL.
Collapse
Affiliation(s)
- Arati A Inamdar
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Andre Goy
- Clinical Divisions, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Christen Attia
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Lucia Oton
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Varun Taruvai
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Mark Costales
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Yu-Ting Lin
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Andrew Pecora
- Clinical Divisions, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - K Stephen Suh
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
55
|
Mui UN, Haley CT, Tyring SK. Viral Oncology: Molecular Biology and Pathogenesis. J Clin Med 2017; 6:E111. [PMID: 29186062 PMCID: PMC5742800 DOI: 10.3390/jcm6120111] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Oncoviruses are implicated in approximately 12% of all human cancers. A large number of the world's population harbors at least one of these oncoviruses, but only a small proportion of these individuals go on to develop cancer. The interplay between host and viral factors is a complex process that works together to create a microenvironment conducive to oncogenesis. In this review, the molecular biology and oncogenic pathways of established human oncoviruses will be discussed. Currently, there are seven recognized human oncoviruses, which include Epstein-Barr Virus (EBV), Human Papillomavirus (HPV), Hepatitis B and C viruses (HBV and HCV), Human T-cell lymphotropic virus-1 (HTLV-1), Human Herpesvirus-8 (HHV-8), and Merkel Cell Polyomavirus (MCPyV). Available and emerging therapies for these oncoviruses will be mentioned.
Collapse
Affiliation(s)
- Uyen Ngoc Mui
- Center for Clinical Studies, Houston, TX 77004, USA.
| | | | - Stephen K Tyring
- Center for Clinical Studies, Houston, TX 77004, USA.
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX 77004, USA.
| |
Collapse
|
56
|
Gao P, Seebacher NA, Hornicek F, Guo Z, Duan Z. Advances in sarcoma gene mutations and therapeutic targets. Cancer Treat Rev 2017; 62:98-109. [PMID: 29190505 DOI: 10.1016/j.ctrv.2017.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022]
Abstract
Sarcomas are rare and complex malignancies that have been associated with a poor prognostic outcome. Over the last few decades, traditional treatment with surgery and/or chemotherapy has not significantly improved outcomes for most types of sarcomas. In recent years, there have been significant advances in the understanding of specific gene mutations that are important in driving the pathogenesis and progression of sarcomas. Identification of these new gene mutations, using next-generation sequencing and advanced molecular techniques, has revealed a range of potential therapeutic targets. This, in turn, may lead to the development of novel agents targeted to different sarcoma subtypes. In this review, we highlight the advances made in identifying sarcoma gene mutations, including those of p53, RB, PI3K and IDH genes, as well as novel therapeutic strategies aimed at utilizing these mutant genes. In addition, we discuss a number of preclinical studies and ongoing early clinical trials in sarcoma targeting therapies, as well as gene editing technology, which may provide a better choice for sarcoma patient management.
Collapse
Affiliation(s)
- Peng Gao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; UCLA Orthopaedic Surgery, Sarcoma Biology Laboratory, 615 Charles E Young Dr. South, Biomedical Sciences Research Building, Room 410, Los Angeles, CA 90095, USA
| | - Nicole A Seebacher
- UCLA Orthopaedic Surgery, Sarcoma Biology Laboratory, 615 Charles E Young Dr. South, Biomedical Sciences Research Building, Room 410, Los Angeles, CA 90095, USA
| | - Francis Hornicek
- UCLA Orthopaedic Surgery, Sarcoma Biology Laboratory, 615 Charles E Young Dr. South, Biomedical Sciences Research Building, Room 410, Los Angeles, CA 90095, USA
| | - Zheng Guo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhenfeng Duan
- UCLA Orthopaedic Surgery, Sarcoma Biology Laboratory, 615 Charles E Young Dr. South, Biomedical Sciences Research Building, Room 410, Los Angeles, CA 90095, USA.
| |
Collapse
|
57
|
Burris HA, Kurkjian CD, Hart L, Pant S, Murphy PB, Jones SF, Neuwirth R, Patel CG, Zohren F, Infante JR. TAK-228 (formerly MLN0128), an investigational dual TORC1/2 inhibitor plus paclitaxel, with/without trastuzumab, in patients with advanced solid malignancies. Cancer Chemother Pharmacol 2017; 80:261-273. [PMID: 28601972 DOI: 10.1007/s00280-017-3343-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/20/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE This phase I trial evaluated the safety, pharmacokinetic profile, and antitumor activity of investigational oral TORC1/2 inhibitor TAK-228 plus paclitaxel, with/without trastuzumab, in patients with advanced solid malignancies. METHODS Sixty-seven patients received TAK-228 6-40 mg via three dosing schedules; once daily for 3 days (QDx3d QW) or 5 days per week (QDx5d QW), and once weekly (QW) plus paclitaxel 80 mg/m2 (dose-escalation phase, n = 47) and with/without trastuzumab 2 mg/kg (expansion phase, n = 20). Doses were escalated using a modified 3 + 3 design, based upon dose-limiting toxicities in cycle 1. RESULTS TAK-228 pharmacokinetics exhibited dose-dependent increase in exposure when dosed with paclitaxel and no apparent differences when administered with or 24 h after paclitaxel. Dose-limiting toxicities were dehydration, diarrhea, stomatitis, fatigue, rash, thrombocytopenia, neutropenia, leukopenia, and nausea. The maximum tolerated dose of TAK-228 was determined as 10-mg QDx3d QW; the expansion phase proceeded with 8-mg QDx3d QW. Overall, the most common grade ≥3 drug-related toxicities were neutropenia (21%), diarrhea (12%), and hyperglycemia (12%). Of 54 response-evaluable patients, eight achieved partial response and six had stable disease lasting ≥6 months. CONCLUSION TAK-228 demonstrated a safety profile consistent with other TORC inhibitors and promising preliminary antitumor activity in a range of tumor types; no meaningful difference was noted in the pharmacokinetics of TAK-228 when administered with or 24 h after paclitaxel. These findings support further investigation of TAK-228 in combination with other agents including paclitaxel, with/without trastuzumab, in patients with advanced solid tumors. CLINICALTRIALS. GOV IDENTIFIER NCT01351350.
Collapse
Affiliation(s)
- Howard A Burris
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA. .,Tennessee Oncology PLLC, Nashville, TN, USA.
| | - C D Kurkjian
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - L Hart
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA.,Florida Cancer Specialists, Fort Myers, FL, USA
| | - S Pant
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P B Murphy
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA.,Tennessee Oncology PLLC, Nashville, TN, USA
| | - S F Jones
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA
| | - R Neuwirth
- Millennium Pharmaceuticals, Inc., A Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - C G Patel
- Millennium Pharmaceuticals, Inc., A Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - F Zohren
- Millennium Pharmaceuticals, Inc., A Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - J R Infante
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA.,Tennessee Oncology PLLC, Nashville, TN, USA
| |
Collapse
|
58
|
Kim LC, Cook RS, Chen J. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene 2017; 36:2191-2201. [PMID: 27748764 PMCID: PMC5393956 DOI: 10.1038/onc.2016.363] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a crucial signaling node that integrates environmental cues to regulate cell survival, proliferation and metabolism, and is often deregulated in human cancer. mTOR kinase acts in two functionally distinct complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), whose activities and substrate specificities are regulated by complex co-factors. Deregulation of this centralized signaling pathway has been associated with a variety of human diseases including diabetes, neurodegeneration and cancer. Although mTORC1 signaling has been extensively studied in cancer, recent discoveries indicate a subset of human cancers harboring amplifications in mTORC2-specific genes as the only actionable genomic alterations, suggesting a distinct role for mTORC2 in cancer as well. This review will summarize recent advances in dissecting the relative contributions of mTORC1 versus mTORC2 in cancer, their role in tumor-associated blood vessels and tumor immunity, and provide an update on mTOR inhibitors.
Collapse
Affiliation(s)
- Laura C. Kim
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
| | - Rebecca S. Cook
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| | - Jin Chen
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212
| |
Collapse
|
59
|
Erdreich-Epstein A, Singh AR, Joshi S, Vega FM, Guo P, Xu J, Groshen S, Ye W, Millard M, Campan M, Morales G, Garlich JR, Laird PW, Seeger RC, Shimada H, Durden DL. Association of high microvessel α vβ 3 and low PTEN with poor outcome in stage 3 neuroblastoma: rationale for using first in class dual PI3K/BRD4 inhibitor, SF1126. Oncotarget 2016; 8:52193-52210. [PMID: 28881723 PMCID: PMC5581022 DOI: 10.18632/oncotarget.13386] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/26/2016] [Indexed: 11/25/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children. Our previous studies showed that the angiogenic integrin αvβ3 was increased in high-risk metastatic (stage 4) NB compared with localized neuroblastomas. Herein, we show that integrin αvβ3 was expressed on 68% of microvessels in MYCN-amplified stage 3 neuroblastomas, but only on 34% (means) in MYCN-non-amplified tumors (p < 0.001; n = 54). PTEN, a tumor suppressor involved in αvβ3 signaling, was expressed in neuroblastomas either diffusely, focally or not at all (immunohistochemistry). Integrin αvβ3 was expressed on 60% of tumor microvessels when PTEN was negative or focal, as compared to 32% of microvessels in tumors with diffuse PTEN expression (p < 0.001). In a MYCN transgenic mouse model, loss of one allele of PTEN promoted tumor growth, illustrating the potential role of PTEN in neuroblastoma pathogenesis. Interestingly, we report the novel dual PI-3K/BRD4 activity of SF1126 (originally developed as an RGD-conjugated pan PI3K inhibitor). SF1126 inhibits BRD4 bromodomain binding to acetylated lysine residues with histone H3 as well as PI3K activity in the MYCN amplified neuroblastoma cell line IMR-32. Moreover, SF1126 suppressed MYCN expression and MYCN associated transcriptional activity in IMR-32 and CHLA136, resulting in overall decrease in neuroblastoma cell viability. Finally, treatment of neuroblastoma tumors with SF1126 inhibited neuroblastoma growth in vivo. These data suggest integrin αvβ3, MYCN/BRD4 and PTEN/PI3K/AKT signaling as biomarkers and hence therapeutic targets in neuroblastoma and support testing of the RGD integrin αvβ3-targeted PI-3K/BRD4 inhibitor, SF1126 as a therapeutic strategy in this specific subgroup of high risk neuroblastoma.
Collapse
Affiliation(s)
- Anat Erdreich-Epstein
- Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA.,Department of Pathology, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Alok R Singh
- Department of Pediatrics, Moores Cancer Center, University of California San Diego, California, USA
| | - Shweta Joshi
- Department of Pediatrics, Moores Cancer Center, University of California San Diego, California, USA
| | - Francisco M Vega
- Department of Pediatrics, Moores Cancer Center, University of California San Diego, California, USA.,Instituto de Biomedicina de Sevilla, IBiS/HUVR/CSIC/Universidad de Sevilla and Department of Medical Physiology and Biophysics, Universidad de Sevilla, Spain
| | - Pinzheng Guo
- Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Jingying Xu
- Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Susan Groshen
- Department of Preventive Medicine, Keck School of Medicine, Los Angeles, California, USA
| | - Wei Ye
- Department of Preventive Medicine, Keck School of Medicine, Los Angeles, California, USA
| | - Melissa Millard
- Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Mihaela Campan
- Department of Surgery University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | | | | | - Peter W Laird
- Department of Surgery University of Southern California, Keck School of Medicine, Los Angeles, California, USA.,USC Epigenome Center, University of Southern California, Keck School of Medicine, Los Angeles, California, USA.,Current Address: Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Robert C Seeger
- Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Hiroyuki Shimada
- Department of Pathology, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Donald L Durden
- Department of Pediatrics, Moores Cancer Center, University of California San Diego, California, USA.,SignalRx Pharmaceuticals, San Diego, California, USA.,Department of Pediatrics, UCSD School of Medicine and Rady Children's Hospital San Diego, California, USA
| |
Collapse
|
60
|
Ong PS, Wang LZ, Dai X, Tseng SH, Loo SJ, Sethi G. Judicious Toggling of mTOR Activity to Combat Insulin Resistance and Cancer: Current Evidence and Perspectives. Front Pharmacol 2016; 7:395. [PMID: 27826244 PMCID: PMC5079084 DOI: 10.3389/fphar.2016.00395] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR), via its two distinct multiprotein complexes, mTORC1, and mTORC2, plays a central role in the regulation of cellular growth, metabolism, and migration. A dysregulation of the mTOR pathway has in turn been implicated in several pathological conditions including insulin resistance and cancer. Overactivation of mTORC1 and disruption of mTORC2 function have been reported to induce insulin resistance. On the other hand, aberrant mTORC1 and mTORC2 signaling via either genetic alterations or increased expression of proteins regulating mTOR and its downstream targets have contributed to cancer development. These underlined the attractiveness of mTOR as a therapeutic target to overcome both insulin resistance and cancer. This review summarizes the evidence supporting the notion of intermittent, low dose rapamycin for treating insulin resistance. It further highlights recent data on the continuous use of high dose rapamycin analogs and related second generation mTOR inhibitors for cancer eradication, for overcoming chemoresistance and for tumor stem cell suppression. Within these contexts, the potential challenges associated with the use of mTOR inhibitors are also discussed.
Collapse
Affiliation(s)
- Pei Shi Ong
- Department of Pharmacy, Faculty of Science, National University of Singapore Singapore, Singapore
| | - Louis Z Wang
- Department of Pharmacy, Faculty of Science, National University of SingaporeSingapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Xiaoyun Dai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Sheng Hsuan Tseng
- Department of Pharmacy, Faculty of Science, National University of Singapore Singapore, Singapore
| | - Shang Jun Loo
- Department of Pharmacy, Faculty of Science, National University of Singapore Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|
61
|
Yang H, Wang Y, Zhan J, Xia Y, Sun P, Bi XW, Liu PP, Li ZM, Li S, Zou BY, Jiang WQ. Puquitinib mesylate, an inhibitor of phosphatidylinositol 3-kinase p110δ, for treating relapsed or refractory non-Hodgkin's lymphoma. Oncotarget 2016; 6:44049-56. [PMID: 26510909 PMCID: PMC4791286 DOI: 10.18632/oncotarget.5833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/24/2015] [Indexed: 11/29/2022] Open
Abstract
Objectives To determine the safety of Puquitinib Mesylate (XC-302), an oral inhibitor of phosphatidylinositol 3-kinase, in treating relapsed or refractory non-Hodgkin's lymphoma (NHL). Methods Between October 2013 and July 2015, 21 patients from Sun Yat-sen University Cancer Center were treated twice daily on each day of a 28-day cycle (median number of cycles, 2; maximum, 20) with XC-302 at a post prandial dose of 25 mg, 37.5 mg, or 50 mg. Adverse events (AEs), AUClast and Cmax, response rates, and overall survival were assessed. Results Patients had received a median (range) of 1 (1 to 3) previous cancer treatments. At the latest follow-up, two patients were still benefitting from the study. The most common drug-related AEs were elevations in alanine transaminase (ALT, 14 of 21 patients) and aspartate transaminase (AST, 7 of 21 patients). Four patients, both in the-50-mg group, had dose-limiting toxicities, and therapy was discontinued in a fifth because of persistent abnormal liver function. The overall response rate was 2 of19. Serum concentrations of XC-302 increased in a dose-dependent pattern. Median progression-free survival in all patients was 1.9 (95% CI, 1.7 to 2.0) months. Conclusion XC-302 has an acceptable safety profile and offers potential therapeutic value to patients with relapsed or refractory non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Hang Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yu Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jing Zhan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Clinical Trial Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yi Xia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Peng Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xi-Wen Bi
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Pan-Pan Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhi-Ming Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Su Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Clinical Trial Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ben-Yan Zou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Nursing Department, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wen-Qi Jiang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
62
|
Singh AR, Joshi S, Burgoyne AM, Sicklick JK, Ikeda S, Kono Y, Garlich JR, Morales GA, Durden DL. Single Agent and Synergistic Activity of the "First-in-Class" Dual PI3K/BRD4 Inhibitor SF1126 with Sorafenib in Hepatocellular Carcinoma. Mol Cancer Ther 2016; 15:2553-2562. [PMID: 27496136 DOI: 10.1158/1535-7163.mct-15-0976] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/08/2016] [Indexed: 01/30/2023]
Abstract
Deregulated PI3K/AKT/mTOR, Ras/Raf/MAPK, and c-Myc signaling pathways are of prognostic significance in hepatocellular carcinoma (HCC). Sorafenib, the only drug clinically approved for patients with advanced HCC, blocks the Ras/Raf/MAPK pathway but it does not inhibit the PI3K/AKT/mTOR pathway or c-Myc activation. Hence, there is an unmet medical need to identify potent PI3K/BRD4 inhibitors, which can be used either alone or in combination with sorafenib to treat patients with advanced HCC. Herein, we show that SF1126 (pan PI3K/BRD4 inhibitor) as single agent or in combination with sorafenib inhibited proliferation, cell cycle, apoptosis, and multiple key enzymes in PI3K/AKT/mTOR and Ras/Raf/MAPK pathway in Hep3B, HepG2, SK-Hep1, and Huh7 HCC cell lines. We demonstrate that the active moiety of the SF1126 prodrug LY294002 binds to and blocks BRD4 interaction with the acetylated histone-H4 chromatin mark protein and displaced BRD4 coactivator protein from the transcriptional start site of MYC in Huh7 and SK-Hep1 HCC cell lines. Moreover, SF1126 blocked expression levels of c-Myc in HCC cells. Treatment of SF1126 either alone or in combination with sorafenib showed significant antitumor activity in vivo Our results establish that SF1126 is a dual PI3K/BRD4 inhibitor. This agent has completed a phase I clinical trial in humans with good safety profile. Our data support the potential future consideration of a phase II clinical trial of SF1126, a clinically relevant dual "first-in-class" PI3K/BRD4 inhibitor in advanced HCC, and a potential combination with sorafenib. Mol Cancer Ther; 15(11); 2553-62. ©2016 AACR.
Collapse
Affiliation(s)
- Alok R Singh
- Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Shweta Joshi
- Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Adam M Burgoyne
- Division of Hematology-Oncology, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Jason K Sicklick
- Division of Surgical Oncology, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Sadakatsu Ikeda
- Division of Hematology-Oncology, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Yuko Kono
- Division of Hepatology, Department of Medicine, University of California San Diego, La Jolla, California
| | | | | | - Donald L Durden
- Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, California.
- SignalRx Pharmaceuticals, San Diego, California
- Division of Pediatric Hematology-Oncology, UCSD Rady Children's Hospital, University of California San Diego Health System, La Jolla, California
| |
Collapse
|
63
|
van der Mijn JC, Panka DJ, Geissler AK, Verheul HM, Mier JW. Novel drugs that target the metabolic reprogramming in renal cell cancer. Cancer Metab 2016; 4:14. [PMID: 27418963 PMCID: PMC4944519 DOI: 10.1186/s40170-016-0154-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
Molecular profiling studies of tumor tissue from patients with clear cell renal cell cancer (ccRCC) have revealed extensive metabolic reprogramming in this disease. Associations were found between metabolic reprogramming, histopathologic Fuhrman grade, and overall survival of patients. Large-scale genomics, proteomics, and metabolomic analyses have been performed to identify the molecular players in this process. Genes involved in glycolysis, the pentose phosphate pathway, glutamine metabolism, and lipogenesis were found to be upregulated in renal cell cancer (RCC) specimens as compared to normal tissue. Preclinical research indicates that mutations in VHL, FBP1, and the PI3K-AKT-mTOR pathway drives aerobic glycolysis through transcriptional activation of the hypoxia-inducible factors (HIF). Mechanistic studies revealed glutamine as an important source for de novo fatty acid synthesis through reductive carboxylation. Amplification of MYC drives reductive carboxylation. In this review, we present a detailed overview of the metabolic changes in RCC in conjunction with potential novel therapeutics. We discuss preclinical studies that have investigated targeted agents that interfere with various aspects of tumor cell metabolism and emphasize their impact specifically on glycolysis, lipogenesis, and tumor growth. Furthermore, we describe a number of phase 1 and 2 clinical trials that have been conducted with these agents.
Collapse
Affiliation(s)
- Johannes C van der Mijn
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA ; Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ; Department of Internal Medicine, OLVG; Jan van Tooropstraat 164, 1061 AE Amsterdam, The Netherlands
| | - David J Panka
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Andrew K Geissler
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Henk M Verheul
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - James W Mier
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| |
Collapse
|
64
|
Host-directed therapies for antimicrobial resistant respiratory tract infections. Curr Opin Pulm Med 2016; 22:203-11. [DOI: 10.1097/mcp.0000000000000271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
65
|
Durisova K, Salovska B, Pejchal J, Tichy A. Chemical inhibition of DNA repair kinases as a promising tool in oncology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:11-9. [DOI: 10.5507/bp.2015.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 09/10/2015] [Indexed: 11/23/2022] Open
|
66
|
Ortolani S, Ciccarese C, Cingarlini S, Tortora G, Massari F. Suppression of mTOR pathway in solid tumors: lessons learned from clinical experience in renal cell carcinoma and neuroendocrine tumors and new perspectives. Future Oncol 2016; 11:1809-28. [PMID: 26075448 DOI: 10.2217/fon.15.81] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The PI3K-AKT-mTOR pathway plays role in the regulation of many cellular processes. Hyperactivation of mTOR signaling has been implicated in human carcinogenesis, representing an attractive target for cancer therapy. Among other cancer subtypes, renal cell carcinoma (RCC) and neuroendocrine tumors are relevant settings in which the deregulation of mTOR pathway is of crucial importance. Different mTOR-inhibitory agents have been developed in recent years. Temsirolimus is approved for advanced RCC; everolimus is registered for the treatment of advanced RCC, pancreatic neuroendocrine tumors and postmenopausal, hormone receptor-positive/HER2-negative, advanced breast cancer. This review is focused on the description of the clinical experience with mTOR-inhibitor agents for the treatment of advanced RCC and neuroendocrine tumors, followed by an excursus on the landscape of the ongoing research in this field.
Collapse
Affiliation(s)
- Silvia Ortolani
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Piazzale LA Scuro 10, 37124 Verona, Italy
| | - Chiara Ciccarese
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Piazzale LA Scuro 10, 37124 Verona, Italy
| | - Sara Cingarlini
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Piazzale LA Scuro 10, 37124 Verona, Italy
| | - Giampaolo Tortora
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Piazzale LA Scuro 10, 37124 Verona, Italy
| | - Francesco Massari
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Piazzale LA Scuro 10, 37124 Verona, Italy
| |
Collapse
|
67
|
Fazio N, Buzzoni R, Baudin E, Antonuzzo L, Hubner RA, Lahner H, DE Herder WW, Raderer M, Teulé A, Capdevila J, Libutti SK, Kulke MH, Shah M, Dey D, Turri S, Aimone P, Massacesi C, Verslype C. A Phase II Study of BEZ235 in Patients with Everolimus-resistant, Advanced Pancreatic Neuroendocrine Tumours. Anticancer Res 2016; 36:713-719. [PMID: 26851029 PMCID: PMC5076549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
BACKGROUND This was a two-stage, phase II trial of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor BEZ235 in patients with everolimus-resistant pancreatic neuroendocrine tumours (pNETs) (NCT01658436). PATIENTS AND METHODS In stage 1, 11 patients received 400 mg BEZ235 orally twice daily (bid). Due to tolerability concerns, a further 20 patients received BEZ235 300 mg bid. Stage 2 would be triggered by a 16-week progression-free survival (PFS) rate of ≥60% in stage 1. RESULTS As of 30 June, 2014, 29/31 patients had discontinued treatment. Treatment-related grade 3/4 adverse events were reported in eight (72.7%) patients at 400 mg and eight (40.0%) patients at 300 mg, including hyperglycaemia, diarrhoea, nausea, and vomiting. The estimated 16-week PFS rate was 51.6% (90% confidence interval=35.7-67.3%). CONCLUSION BEZ235 was poorly tolerated by patients with everolimus-resistant pNETs at 400 and 300 mg bid doses. Although evidence of disease stability was observed, the study did not proceed to stage 2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jaume Capdevila
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Steven K Libutti
- Montefiore Medical Center and Albert Einstein College of Medicine, New York, NY, U.S.A
| | | | - Manisha Shah
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, U.S.A
| | - Debarshi Dey
- Novartis Healthcare Private Limited, Hyderabad, India
| | | | | | | | | |
Collapse
|
68
|
Dolly SO, Wagner AJ, Bendell JC, Kindler HL, Krug LM, Seiwert TY, Zauderer MG, Lolkema MP, Apt D, Yeh RF, Fredrickson JO, Spoerke JM, Koeppen H, Ware JA, Lauchle JO, Burris HA, de Bono JS. Phase I Study of Apitolisib (GDC-0980), Dual Phosphatidylinositol-3-Kinase and Mammalian Target of Rapamycin Kinase Inhibitor, in Patients with Advanced Solid Tumors. Clin Cancer Res 2016; 22:2874-84. [PMID: 26787751 DOI: 10.1158/1078-0432.ccr-15-2225] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/13/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE This first-in-human phase I trial assessed the safety, tolerability, and preliminary antitumor activity of apitolisib (GDC-0980), a dual inhibitor of class I PI3K, and mTOR kinases. EXPERIMENTAL DESIGN Once-daily oral apitolisib was administered to patients with solid tumors for days 1 to 21 or 1 to 28 of 28-day cycles. Pharmacokinetic and pharmacodynamic parameters were assessed. RESULTS Overall, 120 patients were treated at doses between 2 and 70 mg. The commonest ≥G3 toxicities related to apitolisib at the recommended phase 2 dose (RP2D) at 40 mg once daily included hyperglycemia (18%), rash (14%), liver dysfunction (12%), diarrhea (10%), pneumonitis (8%), mucosal inflammation (6%), and fatigue (4%). Dose-limiting toxicities (1 patient each) were G4 fasting hyperglycemia at 40 mg (21/28 schedule) and G3 maculopapular rash and G3 fasting hyperglycemia at 70 mg (21/28 schedule). The pharmacokinetic profile was dose-proportional. Phosphorylated serine-473 AKT levels were suppressed by ≥90% in platelet-rich plasma within 4 hours at the MTD (50 mg). Pharmacodynamic decreases in fluorodeoxyglucose positron emission tomography uptake of >25% occurred in 66% (21/32) of patients dosed at 40 mg once daily. Evidence of single-agent activity included 10 RECIST partial responses (PR; confirmed for peritoneal mesothelioma, PIK3CA mutant head-and-neck cancer, and three pleural mesotheliomas). CONCLUSIONS Apitolisib exhibited dose-proportional pharmacokinetics with target modulation at doses ≥16 mg. The RP2D was 40 mg once-daily 28/28 schedule; severe on-target toxicities were apparent at ≥40 mg, particularly pneumonitis. Apitolisib was reasonably tolerated at 30 mg, the selected dose for pleural mesothelioma patients given limited respiratory reserve. Modest but durable antitumor activity was demonstrated. Clin Cancer Res; 22(12); 2874-84. ©2016 AACR.
Collapse
Affiliation(s)
- Saoirse O Dolly
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Andrew J Wagner
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Johanna C Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | - Hedy L Kindler
- The Gastrointestinal Oncology and Mesothelioma Programs, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Lee M Krug
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York
| | - Tanguy Y Seiwert
- The Gastrointestinal Oncology and Mesothelioma Programs, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Marjorie G Zauderer
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York
| | - Martijn P Lolkema
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom. Department of Medical Oncology, Cancer Institute Rotterdam, Erasmus MC, Rotterdam, the Netherlands
| | - Doris Apt
- Genentech, Inc., South San Francisco, California
| | - Ru-Fang Yeh
- Genentech, Inc., South San Francisco, California
| | | | | | | | | | | | - Howard A Burris
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | - Johann S de Bono
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom.
| |
Collapse
|
69
|
Chen D, Mao C, Zhou Y, Su Y, Liu S, Qi WQ. PF-04691502, a dual PI3K/mTOR inhibitor has potent pre-clinical activity by inducing apoptosis and G1 cell cycle arrest in aggressive B-cell non-Hodgkin lymphomas. Int J Oncol 2015; 48:253-60. [PMID: 26549638 DOI: 10.3892/ijo.2015.3231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/16/2015] [Indexed: 11/05/2022] Open
Abstract
The PI3K/Akt/mTOR pathway is activated in a variety of human tumors including B-cell non-Hodgkin lymphoma (B-NHL). Targeting this pathway has been validated in solid and hematological tumors. In the present study, we demonstrated that PF-04691502, a novel PI3K/mTOR inhibitor has potent activity in a panel of aggressive B-NHL cell lines including diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL). MTS analysis showed that PF-04691502 effectively inhibited cell proliferation with IC50 values ranging from 0.12 to 0.55 µM. Cells treated with PF-04691502 exhibited decreased phosphorylation of Akt and S6 ribosomal protein confirming the mechanism of action of a PI3K/mTOR inhibitor. Also, treatment of B-NHL cell lines with PF-04691502 induced apoptosis in a dose- and time-dependent manner. Moreover, PF-04691502 significantly induced G1 cell cycle arrest associated with a decrease in cyclin D1 which contributed to suppression of cell proliferation. Finally, rituximab enhanced apoptosis induced by PF-04691502. Taken together, our findings provide for the first time that PF-04691502 inhibits the constitutively activated PI3K/mTOR pathway in aggressive B-cell NHL cell lines associated with inhibition of cell cycle progression, cell proliferation and promotion of apoptosis. These findings suggest that PF-04691502 is a novel therapeutic strategy in aggressive B-cell NHL and warrants early phase clinical trial evaluation with and without rituximab.
Collapse
Affiliation(s)
- Deyu Chen
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Chaoming Mao
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuepeng Zhou
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuting Su
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Shenzha Liu
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Wen-Qing Qi
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
70
|
Koh SH, Lo EH. The Role of the PI3K Pathway in the Regeneration of the Damaged Brain by Neural Stem Cells after Cerebral Infarction. J Clin Neurol 2015; 11:297-304. [PMID: 26320845 PMCID: PMC4596106 DOI: 10.3988/jcn.2015.11.4.297] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 01/01/2023] Open
Abstract
Neurologic deficits resulting from stroke remain largely intractable, which has prompted thousands of studies aimed at developing methods for treating these neurologic sequelae. Endogenous neurogenesis is also known to occur after brain damage, including that due to cerebral infarction. Focusing on this process may provide a solution for treating neurologic deficits caused by cerebral infarction. The phosphatidylinositol-3-kinase (PI3K) pathway is known to play important roles in cell survival, and many studies have focused on use of the PI3K pathway to treat brain injury after stroke. Furthermore, since the PI3K pathway may also play key roles in the physiology of neural stem cells (NSCs), eliciting the appropriate activation of the PI3K pathway in NSCs may help to improve the sequelae of cerebral infarction. This review describes the PI3K pathway, its roles in the brain and NSCs after cerebral infarction, and the therapeutic possibility of activating the pathway to improve neurologic deficits after cerebral infarction.
Collapse
Affiliation(s)
- Seong Ho Koh
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Neurology, Hanyang University College of Medicine, Seoul, Korea
| | - Eng H Lo
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
71
|
Penticuff JC, Kyprianou N. Therapeutic challenges in renal cell carcinoma. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2015; 3:77-90. [PMID: 26309897 PMCID: PMC4539109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/17/2015] [Indexed: 06/04/2023]
Abstract
Renal cell carcinoma (RCC) is a malignancy that in advanced disease, is highly resistant to systemic therapies. Elucidation of the angiogenesis pathways and their intrinsic signaling interactions with the genetic and metabolic disturbances within renal cell carcinoma variants has ushered in the era of "targeted therapies". Advanced surgical interventions and novel drugs targeting VEGF and mTOR, have improved patient survival and prolonged clinically stable-disease states. This review discusses the current understanding of diagnostic challenges and the mechanism-based clinical evidence on therapeutic management of advanced RCC.
Collapse
Affiliation(s)
- Justin C Penticuff
- Departments of Urology, Molecular Biochemistry and Pathology, Markey Cancer Center, University of Kentucky College of Medicine Lexington, KY 50536, USA
| | - Natasha Kyprianou
- Departments of Urology, Molecular Biochemistry and Pathology, Markey Cancer Center, University of Kentucky College of Medicine Lexington, KY 50536, USA
| |
Collapse
|
72
|
Discovery of selective phosphatidylinositol 3-kinase inhibitors to treat hematological malignancies. Drug Discov Today 2015; 20:988-94. [DOI: 10.1016/j.drudis.2015.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/22/2015] [Accepted: 03/17/2015] [Indexed: 01/01/2023]
|
73
|
Combination of SF1126 and gefitinib induces apoptosis of triple-negative breast cancer cells through the PI3K/AKT–mTOR pathway. Anticancer Drugs 2015; 26:422-7. [DOI: 10.1097/cad.0000000000000202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
74
|
Lim HJ, Crowe P, Yang JL. Current clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment of human cancer. J Cancer Res Clin Oncol 2015; 141:671-89. [PMID: 25146530 DOI: 10.1007/s00432-014-1803-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/08/2014] [Indexed: 01/14/2023]
Abstract
PURPOSE PTEN is an essential tumour suppressor gene which encodes a phosphatase protein that antagonises the PI3K/Akt/mTOR antiapoptotic pathway. Impairment of this tumour suppressor pathway potentially becomes a causal factor for development of malignancies. This review aims to assess current understanding of mechanisms of dysfunction involving the PI3K/PTEN/Akt/mTOR pathway linked to tumorigenesis and evaluate the evidence for targeted therapy directed at this signalling axis. METHODS Relevant articles in scientific databases were identified using a combination of search terms, including "malignancies", "targeted therapy", "PTEN", and "combination therapy". These databases included Medline, Embase, Cochrane Review, Pubmed, and Scopus. RESULTS PI3K/PTEN expression is frequently deregulated in a majority of malignancies through genetic, epigenetic, and post-transcriptional modifications. This contributes to the upregulation of the PI3K/Akt/mTOR pathway which has been the focus of intense clinical studies. Targeted agents aimed at this pathway offer a novel treatment approach in a variety of haematologic malignancies and solid tumours. Compared to single-agent use, greater response rates were obtained in combination regimens, supporting further investigation of suitable drug combinations in a broad spectrum of malignancies. CONCLUSION Activation of the PI3K/PTEN/Akt/mTOR pathway is implicated both in the pathogenesis of malignancies and development of resistance to anticancer therapies. Therefore, PI3K/Akt/mTOR inhibitors are a promising therapeutic option, in association with systemic cytotoxic and biological therapies, to enable sustained clinical outcomes in cancer treatment. Therapeutic strategies could be tailored according to appropriate biomarkers and patient-specific mutation profiles to maximise benefit of combination therapies.
Collapse
Affiliation(s)
- Hui Jun Lim
- Adult Cancer Program, Sarcoma and Nano-oncology Group, Faculty of Medicine, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Room 209, Randwick, Sydney, NSW, 2052, Australia
| | | | | |
Collapse
|
75
|
Xue B, Huang W, Yuan X, Xu B, Lou Y, Zhou Q, Ran F, Ge Z, Li R, Cui J. YSY01A, a Novel Proteasome Inhibitor, Induces Cell Cycle Arrest on G2 Phase in MCF-7 Cells via ERα and PI3K/Akt Pathways. J Cancer 2015; 6:319-26. [PMID: 25767601 PMCID: PMC4349871 DOI: 10.7150/jca.10733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/15/2014] [Indexed: 11/05/2022] Open
Abstract
Given that the proteasome is essential for multiple cellular processes by degrading diverse regulatory proteins, inhibition of the proteasome has emerged as an attractive target for anti-cancer therapy. YSY01A is a novel small molecule compound targeting the proteasome. The compound was found to suppress viability of MCF-7 cells and cause limited cell membrane damage as determined by sulforhodamine B assay (SRB) and CytoTox 96(®) non-radioactive cytotoxicity assay. High-content screening (HCS) further shows that YSY01A treatment induces cell cycle arrest on G2 phase within 24 hrs. Label-free quantitative proteomics (LFQP), which allows extensive comparison of cellular responses following YSY01A treatment, suggests that various regulatory proteins including cell cycle associated proteins and PI3K/Akt pathway may be affected. Furthermore, YSY01A increases p-CDC-2, p-FOXO3a, p53, p21(Cip1) and p27(Kip1) but decreases p-Akt, p-ERα as confirmed by Western blotting. Therefore, YSY01A represents a potential therapeutic for breast cancer MCF-7 by inducing G2 phase arrest via ERα and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Bingjie Xue
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Wei Huang
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Xia Yuan
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Bo Xu
- 2. Instrumental Analysis Center of State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Yaxin Lou
- 3. Lab of Proteomics Medical and Healthy Analytical Center, Peking University, Beijing, China
| | - Quan Zhou
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Fuxiang Ran
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Zemei Ge
- 4. Peking University School of Pharmaceutical Sciences Department of Medicinal Chemistry, Beijing, China
| | - Runtao Li
- 4. Peking University School of Pharmaceutical Sciences Department of Medicinal Chemistry, Beijing, China
| | - Jingrong Cui
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| |
Collapse
|
76
|
Pan-PI-3 kinase inhibitor SF1126 shows antitumor and antiangiogenic activity in renal cell carcinoma. Cancer Chemother Pharmacol 2015; 75:595-608. [DOI: 10.1007/s00280-014-2639-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 11/17/2014] [Indexed: 01/05/2023]
|
77
|
Yu X, Long YC, Shen HM. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy. Autophagy 2015; 11:1711-28. [PMID: 26018563 PMCID: PMC4824607 DOI: 10.1080/15548627.2015.1043076] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases.
Collapse
Affiliation(s)
- Xinlei Yu
- a Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| | - Yun Chau Long
- a Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| | - Han-Ming Shen
- b Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| |
Collapse
|
78
|
Pistilli A, Rende M, Crispoltoni L, Montagnoli C, Stabile AM. LY294002 induces in vitro apoptosis and overexpression of p75NTR in human uterine leiomyosarcoma HTB 114 cells. Growth Factors 2015; 33:376-83. [PMID: 26653825 DOI: 10.3109/08977194.2015.1118096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Uterine leiomyosarcoma is a severe neoplasia resistant to conventional therapies. In previous studies, we have shown that human SK-UT-1 (ATCC HTB114) uterine leiomyosarcoma cell line secretes nerve growth factor (NGF) and expresses its receptors tyrosine kinase A receptor (TrKA) and low affinity nerve growth factor receptor (p75NTR). Furthermore, we have demonstrated that direct chemical inhibition or IgG neutralization of TrKA receptor induce apoptosis through p75NTR. In the present study, HTB114 cells were exposed to the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 with and without β-NGF: apoptosis, cell cycle, activation of caspase-3 and protein kinase B (AKT) and TrKA/p75NTR phenotypic expression were evaluated. According to the type of exposure, LY294002 not only induced a relevant increase in apoptosis, but also produced a novel and unexpected phenotypic modulation of the NGF receptors with a downregulation of TrKA and an upregulation of p75NTR. This latter increase enhanced HTB114 apoptosis. Our study confirms that the interference on NGF transduction is a promising therapeutical approach in uterine leiomyosarcoma.
Collapse
Affiliation(s)
- Alessandra Pistilli
- a Department of Surgery and Biomedical Sciences , Section of Human Anatomy, Clinical and Forensic, School of Medicine , Perugia , Italy and
| | - Mario Rende
- a Department of Surgery and Biomedical Sciences , Section of Human Anatomy, Clinical and Forensic, School of Medicine , Perugia , Italy and
| | - Lucia Crispoltoni
- a Department of Surgery and Biomedical Sciences , Section of Human Anatomy, Clinical and Forensic, School of Medicine , Perugia , Italy and
| | - Claudia Montagnoli
- b Biology and Degenerative Medicine Division, The Nicola Cerulli Institute of Translational Research for the Musculoskeletal System - LPMRI , Arezzo , Italy
| | - Anna Maria Stabile
- a Department of Surgery and Biomedical Sciences , Section of Human Anatomy, Clinical and Forensic, School of Medicine , Perugia , Italy and
| |
Collapse
|
79
|
Andrs M, Korabecny J, Jun D, Hodny Z, Bartek J, Kuca K. Phosphatidylinositol 3-Kinase (PI3K) and phosphatidylinositol 3-kinase-related kinase (PIKK) inhibitors: importance of the morpholine ring. J Med Chem 2014; 58:41-71. [PMID: 25387153 DOI: 10.1021/jm501026z] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) and phosphatidylinositol 3-kinase-related protein kinases (PIKKs) are two related families of kinases that play key roles in regulation of cell proliferation, metabolism, migration, survival, and responses to diverse stresses including DNA damage. To design novel efficient strategies for treatment of cancer and other diseases, these kinases have been extensively studied. Despite their different nature, these two kinase families have related origin and share very similar kinase domains. Therefore, chemical inhibitors of these kinases usually carry analogous structural motifs. The most common feature of these inhibitors is a critical hydrogen bond to morpholine oxygen, initially present in the early nonspecific PI3K and PIKK inhibitor 3 (LY294002), which served as a valuable chemical tool for development of many additional PI3K and PIKK inhibitors. While several PI3K pathway inhibitors have recently shown promising clinical responses, inhibitors of the DNA damage-related PIKKs remain thus far largely in preclinical development.
Collapse
Affiliation(s)
- Martin Andrs
- Biomedical Research Center, University Hospital Hradec Kralove , Sokolska 81, 500 05 Hradec Kralove, Czech Republic
| | | | | | | | | | | |
Collapse
|
80
|
Singh AR, Joshi S, George E, Durden DL. Anti-tumor effect of a novel PI3-kinase inhibitor, SF1126, in (12) V-Ha-Ras transgenic mouse glioma model. Cancer Cell Int 2014; 14:105. [PMID: 25425962 PMCID: PMC4243316 DOI: 10.1186/s12935-014-0105-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/07/2014] [Indexed: 11/29/2022] Open
Abstract
Background Growth factor mediated activation of RAS-MAP-kinase and PI3-kinase-AKT pathways are critical for the pathogenesis of glioblastoma. The attenuation of PI3-kinase/AKT signaling will be effective in regulating the tumorigenic phenotypes of the glioma cells. Methods Glioma cells derived from the brain of the 12 V-Ha-Ras transgenic mice were used to study the effect of PI-3 kinase inhibitor SF1126 on activation of AKT and ERK signaling, proliferation, vitronectin mediated migration and changes in the distribution of cortical actin on vitronectin in the glioma cells in vitro. The anti-tumor effects of SF1126 were also tested in vivo using pre-established tumors (subcutaneous injection of the glioma cells from 12 V-Ha-Ras transgenic mice) in a mouse xenograft model. Results Our results demonstrate that treatment of LacZ+, GFAP + and PCNA + 12 V-Ras Tg transformed astrocytes with SF1126 and LY294002 blocked the activation of AKT as well as EGF-induced phospho-ERK. Most notably, treatment of SF1126 blocked integrin-dependent migration in transwell and scratch assays and caused a significant change in the organization and distribution of cortical actin on vitronectin in the glioma cells. Moreover, SF1126 treatment inhibited in vitro proliferation of these cells and in vivo growth of pre-established subcutaneous tumors in a xenograft model. Conclusion The present study validate the potent anti-proliferative and anti-migratory activity of SF1126, in a V12 Ras oncogene driven glioma model and suggest that this effect is mediated potentially through a combined attenuation of PI3-kinase and MAP-kinase signaling pathways.
Collapse
Affiliation(s)
- Alok R Singh
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 USA
| | - Shweta Joshi
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 USA
| | | | - Donald L Durden
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 USA ; Division of Pediatric Hematology-Oncology, UCSD Rady Children's Hospital, La Jolla, CA USA
| |
Collapse
|
81
|
Westin JR. Status of PI3K/Akt/mTOR pathway inhibitors in lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2014; 14:335-42. [PMID: 24650973 PMCID: PMC4125533 DOI: 10.1016/j.clml.2014.01.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 02/07/2023]
Abstract
The phosphatidylinositol-3-kinase (PI3K) pathway is well known to regulate a wide variety of essential cellular functions, including glucose metabolism, translational regulation of protein synthesis, cell proliferation, apoptosis, and survival. Aberrations in the PI3K pathway are among the most frequently observed in cancer, and include amplifications, rearrangements, mutations, and loss of regulators. As a net result of these anomalies, the PI3K pathway is activated in many malignancies, including in Hodgkin and non-Hodgkin lymphomas, and yields a competitive growth and survival advantage, increased metastatic ability, and resistance to conventional therapy. Numerous inhibitors targeting various nodes in the PI3K pathway are undergoing clinical development, and their current status in lymphoma will be the focus of this review.
Collapse
Affiliation(s)
- Jason R Westin
- Division of Cancer Medicine, Department of Lymphoma and Myeloma, University of Texas M.D. Anderson Cancer Center, Houston, TX.
| |
Collapse
|
82
|
Majchrzak A, Witkowska M, Smolewski P. Inhibition of the PI3K/Akt/mTOR signaling pathway in diffuse large B-cell lymphoma: current knowledge and clinical significance. Molecules 2014; 19:14304-15. [PMID: 25215588 PMCID: PMC6271242 DOI: 10.3390/molecules190914304] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 12/22/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is one of the most common non-Hodgkin lymphomas in adults. The disease is very heterogeneous in its presentation, that is DLBCL patients may differ from each other not only in regard to histology of tissue infiltration, clinical course or response to treatment, but also in respect to diversity in gene expression profiling. A growing body of knowledge on the biology of DLBCL, including abnormalities in intracellular signaling, has allowed the development of new treatment strategies, specifically directed against lymphoma cells. The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway plays an important role in controlling proliferation and survival of tumor cells in various types of malignancies, including DLBCL, and therefore it may be a promising target for therapeutic intervention. Currently, novel anticancer drugs are undergoing assessment in different phases of clinical trials in aggressive lymphomas, with promising outcomes. In this review we present a state of art review on various classes of small molecule inhibitors selectively involving PI3K/Akt/mTOR pathway and their clinical potential in this disease.
Collapse
Affiliation(s)
- Agata Majchrzak
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| | - Magdalena Witkowska
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland.
| |
Collapse
|
83
|
Joshi S, Singh AR, Zulcic M, Durden DL. A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1α and HIF2α stability and tumor growth, angiogenesis, and metastasis. Mol Cancer Res 2014; 12:1520-31. [PMID: 25103499 DOI: 10.1158/1541-7786.mcr-13-0682] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Tumor growth, progression, and response to the hypoxic tumor microenvironment involve the action of hypoxia-inducible transcription factors, HIF1 and HIF2. HIF is a heterodimeric transcription factor containing an inducible HIFα subunit and a constitutively expressed HIFβ subunit. The signaling pathways operational in macrophages regulating hypoxia-induced HIFα stabilization remain the subject of intense investigation. Here, it was discovered that the PTEN/PI3K/AKT signaling axis controls hypoxia-induced HIF1α (HIF1A) and HIF2α (EPAS1) stability in macrophages. Using genetic mouse models and pan-PI3K as well as isoform-specific inhibitors, inhibition of the PI3K/AKT pathway blocked the accumulation of HIFα protein and its primary transcriptional target VEGF in response to hypoxia. Moreover, blocking the PI3K/AKT signaling axis promoted the hypoxic degradation of HIFα via the 26S proteasome. Mechanistically, a macrophage-dominant PI3K isoform (p110γ) directed tumor growth, angiogenesis, metastasis, and the HIFα/VEGF axis. Moreover, a pan-PI3K inhibitor (SF1126) blocked tumor-induced angiogenesis and inhibited VEGF and other proangiogenic factors secreted by macrophages. These data define a novel molecular mechanism by which PTEN/PI3K/AKT regulates the proteasome-dependent stability of HIFα under hypoxic conditions, a signaling pathway in macrophages that controls tumor-induced angiogenesis and metastasis. IMPLICATIONS This study indicates that PI3K inhibitors are excellent candidates for the treatment of cancers where macrophages promote tumor progression.
Collapse
Affiliation(s)
- Shweta Joshi
- UCSD Department of Pediatrics, Moores Cancer Center, University of California, La Jolla, California
| | - Alok R Singh
- UCSD Department of Pediatrics, Moores Cancer Center, University of California, La Jolla, California
| | - Muamera Zulcic
- UCSD Department of Pediatrics, Moores Cancer Center, University of California, La Jolla, California
| | - Donald L Durden
- UCSD Department of Pediatrics, Moores Cancer Center, University of California, La Jolla, California. Division of Pediatric Hematology-Oncology, UCSD Rady Children's Hospital, San Diego, California. SignalRx Pharmaceuticals, San Diego, California.
| |
Collapse
|
84
|
Jeong WJ, Cha PH, Choi KY. Strategies to overcome resistance to epidermal growth factor receptor monoclonal antibody therapy in metastatic colorectal cancer. World J Gastroenterol 2014; 20:9862-9871. [PMID: 25110417 PMCID: PMC4123368 DOI: 10.3748/wjg.v20.i29.9862] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/14/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
Administration of monoclonal antibodies (mAbs) against epidermal growth factor receptor (EGFR) such as cetuximab and panitumumab in combination with conventional chemotherapy substantially prolongs survival of patients with metastatic colorectal cancer (mCRC). However, the efficacy of these mAbs is limited due to genetic variation among patients, in particular K-ras mutations. The discovery of K-ras mutation as a predictor of non-responsiveness to EGFR mAb therapy has caused a major change in the treatment of mCRC. Drugs that inhibit transformation caused by oncogenic alterations of Ras and its downstream components such as BRAF, MEK and AKT seem to be promising cancer therapeutics as single agents or when given with EGFR inhibitors. Although multiple therapeutic strategies to overcome EGFR mAb-resistance are under investigation, our understanding of their mode of action is limited. Rational drug development based on stringent preclinical data, biomarker validation, and proper selection of patients is of paramount importance in the treatment of mCRC. In this review, we will discuss diverse approaches to overcome the problem of resistance to existing anti-EGFR therapies and potential future directions for cancer therapies related to the mutational status of genes associated with EGFR-Ras-ERK and PI3K signalings.
Collapse
|
85
|
PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer. Arch Gynecol Obstet 2014; 290:1067-78. [PMID: 25086744 DOI: 10.1007/s00404-014-3377-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/08/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Ovarian cancer is one of the major causes of death in women worldwide. Despite improvements in conventional treatment approaches, such as surgery and chemotherapy, a majority of patients with advanced ovarian cancer experience relapse and eventually succumb to the disease; the outcome of patients remains poor. Hence, new therapeutic strategies are urgently required. The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) is activated in approximately 70 % of ovarian cancers, resulting in hyperactive signaling cascades that relate to cellular growth, proliferation, survival, metabolism, and angiogenesis. Consistent with this, a number of clinical studies are focusing on PI3K pathway as an attractive target in the treatment of ovarian cancer. In this review, we present an overview of PI3K pathway as well as its pathological aberrations reported in ovarian cancer. We also discuss inhibitors of PI3K pathway that are currently under clinical investigations and the challenges these inhibitors face in future clinical utility. METHODS PubMed was searched for articles of relevance to ovarian cancer and the PI3K pathway. In addition, the ClinicalTrials.gov was also scanned for data on novel therapeutic inhibitors targeting the PI3K pathway. RESULTS Genetic aberrations at different levels of PI3K pathway are frequently observed in ovarian cancer, resulting in hyperactivation of this pathway. The alterations of this pathway make the PI3K pathway an attractive therapeutic target in ovarian cancer. Currently, several inhibitors of PI3K pathway, such as PI3K/AKT inhibitors, rapamycin analogs for mTOR inhibition, and dual PI3K/mTOR inhibitors are in clinical testing in patients with ovarian cancer. CONCLUSIONS PI3K pathway inhibitors have shown great promise in the treatment of ovarian cancer. However, further researches on selection patients that respond to PI3K inhibitors and exploration of effective combinatorial therapies are required to improve the management of ovarian cancer.
Collapse
|
86
|
Rahmani M, Aust MM, Benson EC, Wallace L, Friedberg J, Grant S. PI3K/mTOR inhibition markedly potentiates HDAC inhibitor activity in NHL cells through BIM- and MCL-1-dependent mechanisms in vitro and in vivo. Clin Cancer Res 2014; 20:4849-60. [PMID: 25070836 DOI: 10.1158/1078-0432.ccr-14-0034] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE The aim of this study is to explore the efficacy and define mechanisms of action of coadministration of the PI3K/mTOR inhibitor BEZ235 and pan-HDAC inhibitor panobinostat in diffuse large B-cell lymphoma (DLBCL) cells. EXPERIMENTAL DESIGN Various DLBCL cells were exposed to panobinostat and BEZ235 alone or together after which apoptosis and signaling/survival pathway perturbations were monitored by flow cytometry and Western blot analysis. Genetic strategies defined the functional significance of such changes, and xenograft mouse models were used to assess tumor growth and animal survival. RESULTS Panobinostat and BEZ235 interacted synergistically in ABC-, GC-, and double-hit DLBCL cells and MCL cells but not in normal CD34(+) cells. Synergism was associated with pronounced AKT dephosphorylation, GSK3 dephosphorylation/activation, Mcl-1 downregulation, Bim upregulation, increased Bcl-2/Bcl-xL binding, diminished Bax/Bak binding to Bcl-2/Bcl-xL/Mcl-1, increased γH2A.X phosphorylation and histone H3/H4 acetylation, and abrogation of p21(CIP1) induction. BEZ235/panobinostat lethality was not susceptible to stromal/microenvironmental forms of resistance. Genetic strategies confirmed significant functional roles for AKT inactivation, Mcl-1 downregulation, Bim upregulation, and Bax/Bak in synergism. Finally, coadministration of BEZ235 with panobinostat in immunocompromised mice bearing SU-DHL4-derived tumors significantly reduced tumor growth in association with similar signaling changes observed in vitro, and combined treatment increased animal survival compared with single agents. CONCLUSIONS BEZ235/panobinostat exhibits potent anti-DLBCL activity, including in poor-prognosis ABC- and double-hit subtypes, but not in normal CD34(+) cells. Synergism is most likely multifactorial, involving AKT inactivation/GSK3 activation, Bim upregulation, Mcl-1 downregulation, enhanced DNA damage, and is operative in vivo. Combined PI3K/mTOR and HDAC inhibition warrants further attention in DLBCL.
Collapse
Affiliation(s)
- Mohamed Rahmani
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| | - Mandy Mayo Aust
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Elisa C Benson
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - LaShanale Wallace
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jonathan Friedberg
- James T. Wilmot Cancer Center, University of Rochester, Rochester, New York
| | | |
Collapse
|
87
|
Vora SR, Juric D, Kim N, Mino-Kenudson M, Huynh T, Costa C, Lockerman EL, Pollack SF, Liu M, Li X, Lehar J, Wiesmann M, Wartmann M, Chen Y, Cao ZA, Pinzon-Ortiz M, Kim S, Schlegel R, Huang A, Engelman JA. CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell 2014; 26:136-49. [PMID: 25002028 PMCID: PMC4155598 DOI: 10.1016/j.ccr.2014.05.020] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/26/2014] [Accepted: 05/23/2014] [Indexed: 12/19/2022]
Abstract
Activation of the phosphoinositide 3-kinase (PI3K) pathway occurs frequently in breast cancer. However, clinical results of single-agent PI3K inhibitors have been modest to date. A combinatorial drug screen on multiple PIK3CA mutant cancers with decreased sensitivity to PI3K inhibitors revealed that combined CDK 4/6-PI3K inhibition synergistically reduces cell viability. Laboratory studies revealed that sensitive cancers suppress RB phosphorylation upon treatment with single-agent PI3K inhibitors but cancers with reduced sensitivity fail to do so. Similarly, patients' tumors that responded to the PI3K inhibitor BYL719 demonstrated suppression of pRB, while nonresponding tumors showed sustained or increased levels of pRB. Importantly, the combination of PI3K and CDK 4/6 inhibitors overcomes intrinsic and adaptive resistance leading to tumor regressions in PIK3CA mutant xenografts.
Collapse
Affiliation(s)
- Sadhna R Vora
- Massachusetts General Hospital Cancer Center, Boston, MA 02120, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Boston, MA 02120, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nayoon Kim
- Massachusetts General Hospital Cancer Center, Boston, MA 02120, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mari Mino-Kenudson
- Massachusetts General Hospital Cancer Center, Boston, MA 02120, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Tiffany Huynh
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Carlotta Costa
- Massachusetts General Hospital Cancer Center, Boston, MA 02120, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth L Lockerman
- Massachusetts General Hospital Cancer Center, Boston, MA 02120, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah F Pollack
- Massachusetts General Hospital Cancer Center, Boston, MA 02120, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Manway Liu
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Xiaoyan Li
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Joseph Lehar
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Marion Wiesmann
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Markus Wartmann
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Yan Chen
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Z Alexander Cao
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | | | - Sunkyu Kim
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Robert Schlegel
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Alan Huang
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA.
| | - Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Boston, MA 02120, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
88
|
Abstract
Activation of the phosphoinositide 3-kinase (PI3K) pathway occurs frequently in breast cancer. However, clinical results of single-agent PI3K inhibitors have been modest to date. A combinatorial drug screen on multiple PIK3CA mutant cancers with decreased sensitivity to PI3K inhibitors revealed that combined CDK 4/6-PI3K inhibition synergistically reduces cell viability. Laboratory studies revealed that sensitive cancers suppress RB phosphorylation upon treatment with single-agent PI3K inhibitors but cancers with reduced sensitivity fail to do so. Similarly, patients' tumors that responded to the PI3K inhibitor BYL719 demonstrated suppression of pRB, while nonresponding tumors showed sustained or increased levels of pRB. Importantly, the combination of PI3K and CDK 4/6 inhibitors overcomes intrinsic and adaptive resistance leading to tumor regressions in PIK3CA mutant xenografts.
Collapse
|
89
|
Brufsky AM. Managing postmenopausal women with hormone receptor-positive advanced breast cancer who progress on endocrine therapies with inhibitors of the PI3K pathway. Breast J 2014; 20:347-57. [PMID: 24861776 DOI: 10.1111/tbj.12278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although endocrine therapies that interfere with estrogen receptor (ER)-mediated signaling have revolutionized the management of postmenopausal women with hormone receptor-positive (HR+) breast cancer (BC), long-term management of these patients is suboptimal because of the eventual emergence of endocrine resistance. Intense research has elucidated a number of targets that act downstream or upstream of the ER, as well as those that crosstalk with the ER; however, clinical validation of inhibiting specific targets to overcome endocrine resistance has been lacking. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway has been implicated to mediate endocrine resistance, and a number of novel agents that target this pathway are in early- and late-stage clinical trials. Recently, everolimus, an inhibitor of mTOR, a critical component of the PI3K/AKT/mTOR pathway, in combination with endocrine therapy, was shown to prolong progression-free survival with a manageable adverse-event profile in postmenopausal patients with HR+ BC. Bolstered by the safety and efficacy observed with concomitant inhibition of the ER and the PI3K/mTOR pathway and the validation of dual inhibition approach in managing postmenopausal patients with HR+ BC, a number of novel agents that inhibit PI3K (pan-PI3K inhibitors) or PI3K and mTOR (dual PI3K/mTOR) are being evaluated in clinical trials. Thus, mTOR inhibitors have provided the much-needed ammunition to oncologists who manage postmenopausal women with BC and have paved the way for the development of novel therapies that target the PI3K/mTOR pathway. Use of these novel therapies in managing postmenopausal women with BC, in combination with endocrine therapies, is expected to improve overall outcomes by overcoming endocrine resistance.
Collapse
Affiliation(s)
- Adam M Brufsky
- Magee-Women's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
90
|
Joshi S, Singh AR, Durden DL. MDM2 regulates hypoxic hypoxia-inducible factor 1α stability in an E3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner. J Biol Chem 2014; 289:22785-22797. [PMID: 24982421 DOI: 10.1074/jbc.m114.587493] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF1) is a heterodimeric transcription factor containing an inducibly expressed HIF1α subunit and a constitutively expressed HIF1β subunit. Under hypoxic conditions, the HIF1α subunit accumulates because of a decrease in the rate of proteolytic degradation, and the resulting HIF1α-HIF1β heterodimers undergo post-translational modifications that promote transactivation. Previous reports suggest that amplified signaling through PI3K enhances HIF1-dependent gene expression; however, its role is controversial, and the mechanism is unclear. Using genetically engineered PTEN-deficient cell lines, we demonstrate that PTEN specifically inhibited the accumulation of HIF1α in response to hypoxia. Furthermore, we report that in glioblastoma cell lines, inhibition of PI3K pathway, using pan as well as isoform-specific PI3K inhibitors SF1126, PF4691502, BEZ-235, GDC0941, and TGX221 blocked the induction of HIF1α protein and its targets vascular endothelial growth factor, HK1, and GLUT1 mRNA in response to hypoxia. Herein, we describe the first evidence that HIF1α can be degraded under hypoxic conditions via the 26 S proteasome and that MDM2 is the E3 ligase that induces the hypoxic degradation of HIF1α. Moreover, the action of MDM2 on HIF1α under hypoxia occurs in the cytoplasm and is controlled by the PTEN-PI3K-AKT signaling axis. These data strongly suggest a new role for PTEN in the regulation of HIF1α and importantly that PI3K-AKT activation is required for the hypoxic stabilization of HIF1α and that hypoxia alone is not sufficient to render HIF1α resistant to proteasomal cleavage and degradation. Moreover, these findings suggest new therapeutic considerations for PI3K and/or AKT inhibitors for cancer therapeutics.
Collapse
Affiliation(s)
- Shweta Joshi
- Department of Pediatrics, Moores Cancer Center, UC San Diego Health System, La Jolla, California 92093 and
| | - Alok R Singh
- Department of Pediatrics, Moores Cancer Center, UC San Diego Health System, La Jolla, California 92093 and
| | - Donald L Durden
- Department of Pediatrics, Moores Cancer Center, UC San Diego Health System, La Jolla, California 92093 and; University of California at San Diego Rady Children's Hospital, San Diego, California 92123.
| |
Collapse
|
91
|
Vella LJ, Andrews MC, Behren A, Cebon J, Woods K. Immune consequences of kinase inhibitors in development, undergoing clinical trials and in current use in melanoma treatment. Expert Rev Clin Immunol 2014; 10:1107-23. [PMID: 24939732 DOI: 10.1586/1744666x.2014.929943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Metastatic malignant melanoma is a frequently fatal cancer. In recent years substantial therapeutic progress has occurred with the development of targeted kinase inhibitors and immunotherapeutics. Targeted therapies often result in rapid clinical benefit however responses are seldom durable. Immune therapies can result in durable disease control but responses may not be immediate. Optimal cancer therapy requires both rapid and durable cancer control and this can likely best be achieved by combining targeted therapies with immunotherapeutics. To achieve this, a detailed understanding of the immune consequences of the various kinase inhibitors, in development, clinical trial and currently used to treat melanoma is required.
Collapse
Affiliation(s)
- Laura J Vella
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immuno-biology Laboratory, Heidelberg, VIC 3084, Australia
| | | | | | | | | |
Collapse
|
92
|
Singh AR, Peirce SK, Joshi S, Durden DL. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment. Exp Cell Res 2014; 327:78-90. [PMID: 24881819 DOI: 10.1016/j.yexcr.2014.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/25/2014] [Accepted: 05/20/2014] [Indexed: 02/07/2023]
Abstract
Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cre and PTEN(fl/fl) mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI-3 kinase inhibitors reverse the lymphoproliferative phenotype in vivo.
Collapse
Affiliation(s)
- Alok R Singh
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093, USA
| | - Susan K Peirce
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Shweta Joshi
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093, USA
| | - Donald L Durden
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093, USA; Division of Pediatric Hematology-Oncology, UCSD Rady Children׳s Hospital, La Jolla, CA, USA.
| |
Collapse
|
93
|
Khan KH, Yap TA, Yan L, Cunningham D. Targeting the PI3K-AKT-mTOR signaling network in cancer. CHINESE JOURNAL OF CANCER 2014; 32:253-65. [PMID: 23642907 PMCID: PMC3845556 DOI: 10.5732/cjc.013.10057] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The phosphoinositide 3-kinase-AKT-mammalian target of rapamycin (PI3K-AKT-mTOR) pathway is a frequently hyperactivated pathway in cancer and is important for tumor cell growth and survival. The development of targeted therapies against mTOR, a vital substrate along this pathway, led to the approval of allosteric inhibitors, including everolimus and temsirolimus, for the treatment of breast, renal, and pancreatic cancers. However, the suboptimal duration of response in unselected patients remains an unresolved issue. Numerous novel therapies against critical nodes of this pathway are therefore being actively investigated in the clinic in multiple tumour types. In this review, we focus on the progress of these agents in clinical development along with their biological rationale, the need of predictive biomarkers and various combination strategies, which will be useful in counteracting the mechanisms of resistance to this class of drugs.
Collapse
Affiliation(s)
- Khurum H Khan
- The Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | | | | | | |
Collapse
|
94
|
Matter MS, Decaens T, Andersen JB, Thorgeirsson SS. Targeting the mTOR pathway in hepatocellular carcinoma: current state and future trends. J Hepatol 2014; 60:855-65. [PMID: 24308993 PMCID: PMC3960348 DOI: 10.1016/j.jhep.2013.11.031] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/28/2013] [Accepted: 11/27/2013] [Indexed: 02/07/2023]
Abstract
Mechanistic target of rapamycin (mTOR) regulates cell growth, metabolism and aging in response to nutrients, cellular energy stage and growth factors. mTOR is frequently up-regulated in cancer including hepatocellular carcinoma (HCC) and is associated with bad prognosis, poorly differentiated tumors, and earlier recurrence. Blocking mTOR with rapamycin and first generation mTOR inhibitors, called rapalogs, has shown promising reduction of HCC tumor growth in preclinical models. Currently, rapamycin/rapalogs are used in several clinical trials for the treatment of advanced HCC, and as adjuvant therapy in HCC patients after liver transplantation and TACE. A second generation of mTOR pathway inhibitors has been developed recently and is being tested in various clinical trials of solid cancers, and has been used in preclinical HCC models. The results of series of clinical trials using mTOR inhibitors in HCC treatment will emerge in the near future.
Collapse
|
95
|
Saurat T, Buron F, Rodrigues N, de Tauzia ML, Colliandre L, Bourg S, Bonnet P, Guillaumet G, Akssira M, Corlu A, Guillouzo C, Berthier P, Rio P, Jourdan ML, Bénédetti H, Routier S. Design, Synthesis, and Biological Activity of Pyridopyrimidine Scaffolds as Novel PI3K/mTOR Dual Inhibitors. J Med Chem 2014; 57:613-31. [DOI: 10.1021/jm401138v] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thibault Saurat
- Institut
de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 OrléansCedex
2, France
- Centre de Biophysique Moléculaire, CNRS Orléans, Rue Charles Sadron, 45071 Orléans, France
| | - Frédéric Buron
- Institut
de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 OrléansCedex
2, France
| | - Nuno Rodrigues
- Institut
de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 OrléansCedex
2, France
| | | | - Lionel Colliandre
- Institut
de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 OrléansCedex
2, France
| | - Stéphane Bourg
- Institut
de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 OrléansCedex
2, France
- Centre de Biophysique Moléculaire, CNRS Orléans, Rue Charles Sadron, 45071 Orléans, France
| | - Pascal Bonnet
- Institut
de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 OrléansCedex
2, France
| | - Gérald Guillaumet
- Institut
de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 OrléansCedex
2, France
| | - Mohamed Akssira
- Équipe de Chimie Bioorganique & Analytique, URAC 22, Université Hassan II Mohammedia-Casablanca, BP 146, 28800 Mohammedia, Morocco
| | - Anne Corlu
- Hôpital
de Pontchaillou, Université de Rennes 1, INSERM, UMR-991, 65033 Rennes Cedex, France
| | - Christiane Guillouzo
- Hôpital
de Pontchaillou, Université de Rennes 1, INSERM, UMR-991, 65033 Rennes Cedex, France
| | - Pauline Berthier
- Faculté
de Médecine, Centre Hospitalier Universitaire (CHU) Tours, INSERM U1069, 10 Boulevard Tonnellé, 37032 Tours Cedex, France
| | - Pascale Rio
- Faculté
de Médecine, Centre Hospitalier Universitaire (CHU) Tours, INSERM U1069, 10 Boulevard Tonnellé, 37032 Tours Cedex, France
| | - Marie-Lise Jourdan
- Faculté
de Médecine, Centre Hospitalier Universitaire (CHU) Tours, INSERM U1069, 10 Boulevard Tonnellé, 37032 Tours Cedex, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS Orléans, Rue Charles Sadron, 45071 Orléans, France
| | - Sylvain Routier
- Institut
de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 OrléansCedex
2, France
| |
Collapse
|
96
|
Jabbour E, Ottmann OG, Deininger M, Hochhaus A. Targeting the phosphoinositide 3-kinase pathway in hematologic malignancies. Haematologica 2014; 99:7-18. [PMID: 24425689 PMCID: PMC4007928 DOI: 10.3324/haematol.2013.087171] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/04/2013] [Indexed: 12/14/2022] Open
Abstract
The phosphoinositide 3-kinase pathway represents an important anticancer target because it has been implicated in cancer cell growth, survival, and motility. Recent studies show that PI3K may also play a role in the development of resistance to currently available therapies. In a broad range of cancers, various components of the phosphoinositide 3-kinase signaling axis are genetically modified, and the pathway can be activated through many different mechanisms. The frequency of genetic alterations in the phosphoinositide 3-kinase pathway, coupled with the impact in oncogenesis and disease progression, make this signaling axis an attractive target in anticancer therapy. A better understanding of the critical function of the phosphoinositide 3-kinase pathway in leukemias and lymphomas has led to the clinical evaluation of novel rationally designed inhibitors in this setting. Three main categories of phosphoinositide 3-kinase inhibitors have been developed so far: agents that target phosphoinositide 3-kinase and mammalian target of rapamycin (dual inhibitors), pan-phosphoinositide 3-kinase inhibitors that target all class I isoforms, and isoform-specific inhibitors that selectively target the α, -β, -γ, or -δ isoforms. Emerging data highlight the promise of phosphoinositide 3-kinase inhibitors in combination with other therapies for the treatment of patients with hematologic malignancies. Further evaluation of phosphoinositide 3-kinase inhibitors in first-line or subsequent regimens may improve clinical outcomes. This article reviews the role of phosphoinositide 3-kinase signaling in hematologic malignancies and the potential clinical utility of inhibitors that target this pathway.
Collapse
|
97
|
Polivka J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther 2013; 142:164-75. [PMID: 24333502 DOI: 10.1016/j.pharmthera.2013.12.004] [Citation(s) in RCA: 606] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/22/2013] [Indexed: 12/20/2022]
Abstract
Aberrations in various cellular signaling pathways are instrumental in regulating cellular metabolism, tumor development, growth, proliferation, metastasis and cytoskeletal reorganization. The fundamental cellular signaling cascade involved in these processes, the phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR), closely related to the mitogen-activated protein kinase (MAPK) pathway, is a crucial and intensively explored intracellular signaling pathway in tumorigenesis. Various activating mutations in oncogenes together with the inactivation of tumor suppressor genes are found in diverse malignancies across almost all members of the pathway. Substantial progress in uncovering PI3K/AKT/mTOR alterations and their roles in tumorigenesis has enabled the development of novel targeted molecules with potential for developing efficacious anticancer treatment. Two approved anticancer drugs, everolimus and temsirolimus, exemplify targeted inhibition of PI3K/AKT/mTOR in the clinic and many others are in preclinical development as well as being tested in early clinical trials for many different types of cancer. This review focuses on targeted PI3K/AKT/mTOR signaling from the perspective of novel molecular targets for cancer therapy found in key pathway members and their corresponding experimental therapeutic agents. Various aberrant prognostic and predictive biomarkers are also discussed and examples are given. Novel approaches to PI3K/AKT/mTOR pathway inhibition together with a better understanding of prognostic and predictive markers have the potential to significantly improve the future care of cancer patients in the current era of personalized cancer medicine.
Collapse
Affiliation(s)
- Jiri Polivka
- Department of Histology and Embryology and Biomedical Centre, Faculty of Medicine Plzen, Charles University Prague, Husova 3, 301 66 Plzen, Czech Republic; Department of Neurology, Faculty Hospital Plzen, Alej Svobody 80, 304 60 Plzen, Czech Republic
| | - Filip Janku
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
98
|
Abstract
The PI3K pathway is over-activated in the majority of human cancers. This may occur through oncogenic activation of upstream RAS isoforms and tyrosine kinase receptors, or by mutational activation of components of the PI3K pathway themselves. Stimulation of the PI3K pathway enhances growth, survival, and metabolism of cancer cells. Migration, invasion, and angiogenesis are also supported by PI3K signaling. Thus, the PI3K pathway is an attractive candidate for the therapeutic targeting of tumors. Multiple kinases within the PI3Ks, AKT, and mTOR pathway have been selected for inhibition, and dual inhibitors have also been produced. Recently, the development of kinase inhibitors with enhanced specificity and improved pharmacokinetics has facilitated the investigation of PI3K pathway inhibition in clinical trials. Initial reports are encouraging, with tolerable toxicity profiles reported. PI3K inhibitors have provided some benefit as single-agent treatments of advanced solid tumors and the possibilities for enhanced effect with combination treatments look promising. In this chapter, we describe the PI3K inhibitors currently under investigation for the treatment of cancer and discuss the opportunities and obstacles that have been revealed by the latest preclinical and clinical studies.
Collapse
Affiliation(s)
- Clare Sheridan
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, United Kingdom.
| | - Julian Downward
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, United Kingdom; Lung Cancer Group, Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
99
|
Weissinger D, Tagscherer KE, Macher-Göppinger S, Haferkamp A, Wagener N, Roth W. The soluble Decoy Receptor 3 is regulated by a PI3K-dependent mechanism and promotes migration and invasion in renal cell carcinoma. Mol Cancer 2013; 12:120. [PMID: 24107265 PMCID: PMC3852559 DOI: 10.1186/1476-4598-12-120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/04/2013] [Indexed: 01/04/2023] Open
Abstract
Background Overexpression of Decoy Receptor 3 (DcR3), a soluble member of the tumor necrosis factor receptor superfamily, is a common event in several types of cancer. In renal cell carcinoma (RCC), DcR3 overexpression is associated with lymph node and distant metastasis as well as a poor prognosis. However, the functional role and regulation of DcR3 expression in RCC is so far unknown. Methods Modulation of DcR3 expression by siRNA and ectopic gene expression, respectively, was performed in ACHN and 769-P RCC cell lines. Functional effects of a modulated DcR3 expression were analyzed with regard to migration, invasion, adhesion, clonogenicity, and proliferation. Furthermore, quantitative RT-PCR and immunoblot analyses were performed to evaluate the expression of downstream mediators of DcR3. In further experiments, luciferase assays, quantitative RT-PCR and immunoblot analyses were applied to study the regulation of DcR3 expression in RCC. Additionally, an ex vivo tissue slice culture technique combined with immunohistochemistry was used to study the regulation of DcR3 expression in human RCC specimens. Results Here, we show that DcR3 promotes adhesion, migration and invasiveness of RCC cells. The DcR3-dependent increase in cellular invasiveness is accompanied with an up-regulation of integrin alpha 4, matrixmetalloproteinase 7 and urokinase plasminogen activator (uPA). Further, we identified a signaling pathway regulating DcR3 expression in RCC. Using in vitro experiments as well as an ex vivo RCC tissue slice culture model, we demonstrate that expression of DcR3 is regulated in a PI3K/AKT-dependent manner involving the transcription factor nuclear factor of activated T-cells (NFAT). Conclusions Taken together, our results identify DcR3 as a key driver of tumor cell dissemination and suggest DcR3 as a promising target for rational therapy of RCC.
Collapse
Affiliation(s)
- Daniel Weissinger
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| | | | | | | | | | | |
Collapse
|
100
|
Tanase CP, Enciu AM, Mihai S, Neagu AI, Calenic B, Cruceru ML. Anti-cancer Therapies in High Grade Gliomas. CURR PROTEOMICS 2013; 10:246-260. [PMID: 24228024 PMCID: PMC3821381 DOI: 10.2174/1570164611310030007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/10/2013] [Accepted: 06/11/2013] [Indexed: 12/28/2022]
Abstract
High grade gliomas represent one of the most aggressive and treatment-resistant types of human cancer, with only 1–2 years median survival rate for patients with grade IV glioma. The treatment of glioblastoma is a considerable therapeutic challenge; combination therapy targeting multiple pathways is becoming a fast growing area of research. This review offers an up-to-date perspective of the literature about current molecular therapy targets in high grade glioma, that include angiogenic signals, tyrosine kinase receptors, nodal signaling proteins and cancer stem cells related approaches. Simultaneous identification of proteomic signatures could provide biomarker panels for diagnostic and personalized treatment of different subsets of glioblastoma. Personalized medicine is starting to gain importance in clinical care, already having recorded a series of successes in several types of cancer; nonetheless, in brain tumors it is still at an early stage.
Collapse
Affiliation(s)
- Cristiana Pistol Tanase
- Victor Babes National Institute of Pathology, Department of Biochemistry-Proteomics, no 99-101 Splaiul Inde-pendentei, 050096 sect 5 Bucharest, Romania
| | | | | | | | | | | |
Collapse
|