51
|
Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur J Med Chem 2019; 182:111631. [DOI: 10.1016/j.ejmech.2019.111631] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
|
52
|
Saravani F, Moghadam ES, Salehabadi H, Ostad S, Hamedani MP, Amanlou M, Faramarzi MA, Amini M. Synthesis, Anti-proliferative Evaluation, and Molecular Docking Studies of 3-(alkylthio)-5,6-diaryl-1,2,4-triazines as Tubulin Polymerization Inhibitors. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180727114216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background:
The role of microtubules in cell division and signaling, intercellular transport,
and mitosis has been well known. Hence, they have been targeted for several anti-cancer drugs.
Methods:
A series of 3-(alkylthio)-5,6-diphenyl-1,2,4-triazines were prepared and evaluated for
their cytotoxic activities in vitro against three human cancer cell lines; human colon carcinoma cells
HT-29, human breast adenocarcinoma cell line MCF-7, human Caucasian gastric adenocarcinoma
cell line AGS as well as fibroblast cell line NIH-3T3 by MTT assay. Docking simulation was performed
to insert these compounds into the crystal structure of tubulin at the colchicine binding site
to determine a probable binding model. Compound 5d as the most active compound was selected
for studying of microtubule disruption.
Results:
Compound 5d showed potent cytotoxic activity against all cell lines. The molecular modeling
study revealed that some derivatives of triazine strongly bind to colchicine binding site. The
tubulin polymerization assay kit showed that the cytotoxic activity of 5d may be related to inhibition
of tubulin polymerization.
Conclusion:
The cytotoxicity and molecular modeling study of the synthesized compounds with
their inhibition activity in tubulin polymerization demonstrate the potential of triazine derivatives
for development of new anti-cancer agents.
Collapse
Affiliation(s)
- Farhad Saravani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Saeedian Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hafezeh Salehabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyednasser Ostad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Pirali Hamedani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
53
|
Insights on the synthesis of asymmetric curcumin derivatives and their biological activities. Eur J Med Chem 2019; 183:111704. [PMID: 31557608 DOI: 10.1016/j.ejmech.2019.111704] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/02/2019] [Accepted: 09/14/2019] [Indexed: 02/08/2023]
Abstract
Curcumin is a small organic molecule with pleiotropic biological activities. However, its multiple structural-pharmacokinetic challenges prevent its development into a clinical drug. Various structural modifications have been made to improve its drug profile. In this review, we focus on the methods adopted in the synthesis of asymmetric curcumin derivatives and their biological activities and forecast the future of this exciting class of compounds in the field of medicine.
Collapse
|
54
|
Rodríguez‐Sevilla P, Sanz‐Rodríguez F, Peláez RP, Delgado‐Buscalioni R, Liang L, Liu X, Jaque D. Upconverting Nanorockers for Intracellular Viscosity Measurements During Chemotherapy. ACTA ACUST UNITED AC 2019; 3:e1900082. [DOI: 10.1002/adbi.201900082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/22/2019] [Indexed: 11/06/2022]
Affiliation(s)
| | - Francisco Sanz‐Rodríguez
- Fluorescence Imaging Group Departamento de Biología Facultad de CienciasUniversidad Autónoma de Madrid 28049 Madrid Spain
- Nanobiology GroupInstituto Ramón y Cajal de Investigación Sanitaria Hospital Ramón y Cajal. Ctra. De Colmenar Viejo Km. 9100 28034 Madrid Spain
| | - Raúl P. Peláez
- Departamento de Física Teórica de la Materia Condensada Facultad de CienciasUniversidad Autónoma de Madrid 28049 Madrid Spain
| | - Rafael Delgado‐Buscalioni
- Departamento de Física Teórica de la Materia Condensada Facultad de CienciasUniversidad Autónoma de Madrid 28049 Madrid Spain
| | - Liangliang Liang
- Department of ChemistryNational University of Singapore Science Drive 3 Singapore 117543 Singapore
| | - Xiaogang Liu
- Department of ChemistryNational University of Singapore Science Drive 3 Singapore 117543 Singapore
| | - Daniel Jaque
- Nanobiology GroupInstituto Ramón y Cajal de Investigación Sanitaria Hospital Ramón y Cajal. Ctra. De Colmenar Viejo Km. 9100 28034 Madrid Spain
- Fluorescence Imaging Group Departamento de Fisica de MaterialesUniversidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
55
|
de Oliveira Pedrosa Rolim M, de Almeida AR, da Rocha Pitta MG, de Melo Rêgo MJB, Quintans-Júnior LJ, de Souza Siqueira Quintans J, Heimfarth L, Scotti L, Scotti MT, da Cruz RMD, de Almeida RN, da Silva TG, de Oliveira JA, de Campos ML, Marchand P, Mendonça-Junior FJB. Design, synthesis and pharmacological evaluation of CVIB, a codrug of carvacrol and ibuprofen as a novel anti-inflammatory agent. Int Immunopharmacol 2019; 76:105856. [PMID: 31480005 DOI: 10.1016/j.intimp.2019.105856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 01/23/2023]
Abstract
The search for new drugs with anti-inflammatory properties remains a challenge for modern medicine. Among the various strategies for drug discovery, deriving new chemical entities from known bioactive natural and/or synthetic compounds remains a promising approach. Here, we designed and synthesized CVIB, a codrug developed by association of carvacrol (a phenolic monoterpene) with ibuprofen (a non-steroidal anti-inflammatory drug). In silico pharmacokinetic and physicochemical properties evaluation indicated low aqueous solubility (LogP ≥5.0). Nevertheless, the hybrid presented excellent oral bioavailability, gastrointestinal tract absorption, and low toxicity. CVIB did not present cytotoxicity in peripheral blood mononuclear cells (PBMCs), and promoted a significant reduction in IL-2, IL-10, IL-17, and IFN-γ cytokine levels in vitro. The LD50 was estimated to be approximately 5000 mg/kg. CVIB was stable and detectable in human plasma after 24 h. In vivo anti-inflammatory evaluations revealed that CVIB at 10 and 50 mg/kg i.p. caused a significant decrease in total leukocyte count (p < 0.01) and provoked a significant reduction in IL-1β (p < 0.01). CVIB at 10 mg/kg i.p. efficiently decreased inflammatory parameters better than the physical mixture (carvacrol + ibuprofen 10 mg/kg i.p.). The results suggest that the codrug approach is a good option for drug design and development, creating the possibility of combining NSAIDs with natural products in order to obtain new hybrid drugs may be useful for treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Michelle de Oliveira Pedrosa Rolim
- Laboratory of Synthesis and Drug Delivery, State University of Paraiba, João Pessoa, PB 58071-160, Brazil; Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Anderson Rodrigues de Almeida
- Laboratory of Immunomodulation and Novel Therapeutic Approaches, Federal University of Pernambuco, Recife, PE 50670-901, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratory of Immunomodulation and Novel Therapeutic Approaches, Federal University of Pernambuco, Recife, PE 50670-901, Brazil
| | | | - Lucindo José Quintans-Júnior
- Laboratory of Neurosciences and Pharmacological Assays (LANEF) University of Sergipe, São Cristóvão, SE 49100-000, Brazil
| | | | - Luana Heimfarth
- Laboratory of Neurosciences and Pharmacological Assays (LANEF) University of Sergipe, São Cristóvão, SE 49100-000, Brazil
| | - Luciana Scotti
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil; Teaching and Research Management - University Hospital, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Marcus Tullius Scotti
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Ryldene Marques Duarte da Cruz
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Reinaldo Nóbrega de Almeida
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Teresinha Gonçalves da Silva
- Department of Antibiotics, Center for Biosciences, Federal University of Pernambuco, Recife, PE 50740-520, Brazil
| | - Jonata Augusto de Oliveira
- Laboratory of Toxicology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP 14801-902, Brazil
| | - Michel Leandro de Campos
- Health Research and Education Center (NUPADS), Federal University of Mato Grosso, Sinop, MT 78550-728, Brazil
| | - Pascal Marchand
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France
| | - Francisco Jaime Bezerra Mendonça-Junior
- Laboratory of Synthesis and Drug Delivery, State University of Paraiba, João Pessoa, PB 58071-160, Brazil; Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil.
| |
Collapse
|
56
|
Singh H, Singh JV, Bhagat K, Gulati HK, Sanduja M, Kumar N, Kinarivala N, Sharma S. Rational approaches, design strategies, structure activity relationship and mechanistic insights for therapeutic coumarin hybrids. Bioorg Med Chem 2019; 27:3477-3510. [PMID: 31255497 PMCID: PMC7970831 DOI: 10.1016/j.bmc.2019.06.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/01/2023]
Abstract
Hybrid molecules, furnished by combining two or more pharmacophores is an emerging concept in the field of medicinal chemistry and drug discovery that has attracted substantial traction in the past few years. Naturally occurring scaffolds such as coumarins display a wide spectrum of pharmacological activities including anticancer, antibiotic, antidiabetic and others, by acting on multiple targets. In this view, various coumarin-based hybrids possessing diverse medicinal attributes were synthesized in the last five years by conjugating coumarin moiety with other therapeutic pharmacophores. The current review summarizes the recent development (2014 and onwards) of these pharmacologically active coumarin hybrids and demonstrates rationale behind their design, structure-activity relationships (SAR) and mechanistic studies performed on these hybrid molecules. This review will be beneficial for medicinal chemist and chemical biologist, and in general to the drug discovery community and will facilitate the synthesis and development of novel, potent coumarin hybrid molecules serving as lead molecules for the treatment of complex disorders.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Mohit Sanduja
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, Haryana, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Nihar Kinarivala
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA.
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
57
|
Coumarin-containing hybrids and their anticancer activities. Eur J Med Chem 2019; 181:111587. [PMID: 31404864 DOI: 10.1016/j.ejmech.2019.111587] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/21/2019] [Accepted: 08/04/2019] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide, and it results in around 9 million deaths annually. The anticancer agents play an intriguing role in the treatment of cancers, while the severe anticancer scenario and the emergence of drug-resistant especially multidrug-resistant cancers create a huge demand for novel anticancer drugs with different mechanisms of action. The coumarin scaffold is ubiquitous in nature and is a highly privileged motif for the development of novel drugs due to its biodiversity and versatility. Coumarin derivatives can exert diverse antiproliferative mechanisms, and some of them such as Irosustat are under clinical trials for the treatment of various cancers, revealing their potential as putative anticancer drugs. Hybridization of coumarin moiety with other anticancer pharmacophores is a promising strategy to reduce side effects, overcome the drug resistance, and may provide valuable therapeutic intervention for the treatment of cancers. Thus, coumarin-containing hybrids occupy an important position in the development of novel anticancer agents. This review aims to summarize the recent advances made towards the development of coumarin-containing hybrids as potential anticancer agents, covering articles published between 2015 and 2019, and the structure-activity relationship together with mechanisms of action are also discussed.
Collapse
|
58
|
Haider K, Rahaman S, Yar MS, Kamal A. Tubulin inhibitors as novel anticancer agents: an overview on patents (2013-2018). Expert Opin Ther Pat 2019; 29:623-641. [DOI: 10.1080/13543776.2019.1648433] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, New Delhi, India
| | - Shaik Rahaman
- Department of Pharmacology, School of Pharmaceutical Education and Research, New Delhi, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, New Delhi, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
59
|
Singh A, Singh JV, Rana A, Bhagat K, Gulati HK, Kumar R, Salwan R, Bhagat K, Kaur G, Singh N, Kumar R, Singh H, Sharma S, Bedi PMS. Monocarbonyl Curcumin-Based Molecular Hybrids as Potent Antibacterial Agents. ACS OMEGA 2019; 4:11673-11684. [PMID: 31460274 PMCID: PMC6682034 DOI: 10.1021/acsomega.9b01109] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/14/2019] [Indexed: 05/22/2023]
Abstract
Keeping in view various pharmacological attributes of curcumin, coumarin, and isatin derivatives, triazole-tethered monocarbonyl curcumin-coumarin and curcumin-isatin molecular hybrids have been synthesized and evaluated for their antibacterial potential against Gram-positive (Enterococcus faecalis and Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) human pathogenic bacterial strains. Among all hybrid molecules, A-4 and B-38 showed the most potent antibacterial activity with inhibition zones of 29 and 31 mm along with MIC values of 12.50 and 6.25 μg/mL, respectively. Structure-activity relationship that emerged from biological data revealed that the two-carbon alkyl chain between triazole and coumarin/isatin moiety is well tolerable for the activity. Bromo substitution at the fifth position of isatin, para-cholo substitution in the case of curcumin-isatin, and para-methoxy in the case of curcumin-coumarin hybrids on ring A of curcumin are most suitable groups for the antibacterial activity. Various types of binding interactions of A-4 and B-38 within the active site of dihydrofolate reductase (DHFR) of S. aureus are also streamlined by molecular modeling studies, suggesting their capability in completely blocking DHFR.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Abhineet Rana
- EMC Group
of Hospital, Green Avenue, Amritsar, Punjab 143001, India
| | - Kavita Bhagat
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Raman Kumar
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Rajan Salwan
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Kajal Bhagat
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Gurinder Kaur
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Navjot Singh
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Randeep Kumar
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Harbinder Singh
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- E-mail: (H.S.)
| | - Sahil Sharma
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- E-mail: (S.S.)
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- E-mail: (P.M.S.B.)
| |
Collapse
|
60
|
Bhagat K, Bhagat J, Gupta MK, Singh JV, Gulati HK, Singh A, Kaur K, Kaur G, Sharma S, Rana A, Singh H, Sharma S, Singh Bedi PM. Design, Synthesis, Antimicrobial Evaluation, and Molecular Modeling Studies of Novel Indolinedione-Coumarin Molecular Hybrids. ACS OMEGA 2019; 4:8720-8730. [PMID: 31459961 PMCID: PMC6648594 DOI: 10.1021/acsomega.8b02481] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/03/2019] [Indexed: 05/14/2023]
Abstract
Keeping in view various pharmacological attributes of indole and coumarin derivatives, a new series of indolindione-coumarin molecular hybrids was rationally designed and synthesized. All synthesized hybrid molecules were evaluated for their antimicrobial potential against Gram-negative bacterial strains (Escherichia coli and Salmonella enterica), Gram-positive bacterial strains (Staphylococcus aureus and Mycobacterium smegmatis), and four fungal strains (Candida albicans, Alternaria mali, Penicillium sp., and Fusarium oxysporum) by using the agar gel diffusion method. Among all synthetics, compounds K-1 and K-2 were found to be the best antimicrobial agents with the minimum inhibitory concentration values of 30 and 312 μg/mL, against Penicillium sp. and S. aureus, respectively. The biological data revealed some interesting facts about the structure-activity relationship which state that the electronic environment on the indolinedione moiety and carbon chain length between indolinedione and triazole moieties considerably affect the antimicrobial potential of the synthesized hybrids. Various types of binding interactions of K-2 within the active site of S. aureus dihydrofolate reductase were also streamlined by molecular modeling studies, which revealed the possible mechanism for potent antibacterial activity of the compound.
Collapse
Affiliation(s)
- Kavita Bhagat
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jyoti Bhagat
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manish Kumar Gupta
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gual Pahari, Gurugram, Haryana 122001, India
| | - Jatinder Vir Singh
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Harmandeep Kaur Gulati
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Atamjit Singh
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Kamalpreet Kaur
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Gurinder Kaur
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Shally Sharma
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Abhineet Rana
- EMC Group of Hospital, Green Avenue, Amritsar, Punjab 143001, India
| | - Harbinder Singh
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- E-mail: . Phone: +919463148367 (H.S.)
| | - Sahil Sharma
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- E-mail: (S.S.)
| | - Preet Mohinder Singh Bedi
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- E-mail: . Phone: +919815698249 (P.M.S.B.)
| |
Collapse
|
61
|
Diao Q, Guo H, Wang G. Design, Synthesis, and
In Vitro
Anticancer Activities of Diethylene Glycol Tethered Isatin‐1,2,3‐triazole‐coumarin Hybrids. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Quan‐Ping Diao
- School of Chemistry and Life ScienceAnshan Normal University Anshan Liaoning 114007 People's Republic of China
| | - Hua Guo
- School of Chemistry and Life ScienceAnshan Normal University Anshan Liaoning 114007 People's Republic of China
| | - Gang‐Qiang Wang
- Non‐power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & BiologyHubei University of Science and Technology Xianning 437100 People's Republic of China
| |
Collapse
|
62
|
Nagargoje AA, Akolkar SV, Siddiqui MM, Bagade AV, Kodam KM, Sangshetti JN, Damale MG, Shingate BB. Synthesis and evaluation of pyrazole‐incorporated monocarbonyl curcumin analogues as antiproliferative and antioxidant agents. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Amol A. Nagargoje
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Aurangabad India
| | - Satish V. Akolkar
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Aurangabad India
| | - Madiha M. Siddiqui
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Aurangabad India
| | - Aditi V. Bagade
- Department of ChemistrySavitribai Phule Pune University Pune India
| | - Kisan M. Kodam
- Department of ChemistrySavitribai Phule Pune University Pune India
| | | | - Manoj G. Damale
- Department of Pharmaceutical ChemistrySrinath College of Pharnacy Aurangabad India
| | - Bapurao B. Shingate
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Aurangabad India
| |
Collapse
|
63
|
Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Eur J Med Chem 2019; 171:310-331. [PMID: 30953881 DOI: 10.1016/j.ejmech.2019.03.025] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/24/2022]
Abstract
Microtubules are a protein which is made of α- and β-heterodimer. It is one of the main components of the cell which play a vital role in cell division especially in G2/M-phase. It exists in equilibrium dynamic of polymerization and depolymerization of α- and β-heterodimer. It is one of the best targets for developing anti-cancer drugs. Various natural occurring molecules are well known for their anti-tubulin effect such as vinca, paclitaxel, combretastatin, colchicine etc. These microtubule-targeted drugs are acted through two processes (i) inhibiting depolymerization of tubulin (tubulin stabilizing agents) and (ii) inhibiting polymerization of tubulin (tubulin destabilizing agents). Now days, various binding domains have been explore through which these molecules are binding to tubulin but the three major binding domain of tubulin are taxol, vinca and colchicine binding domain. The present article mainly focus on the classification of various naturally occurring compounds on the basis of their inhibition processes (depolymerization and polymerization) and the site of interaction (targets taxol, vinca and colchicine binding domain) which has been hitherto reported. By placing all the naturally occurring taxol, vinca and colchicine binding site analogues at one place makes a better understanding of the tubulin interactions with known natural tubulin binders that would helps in the discovery of new and potent natural, semi-synthetic and synthetic analogues for treating cancer.
Collapse
|
64
|
Theppawong A, Van de Walle T, Grootaert C, Van Hecke K, Catry N, Desmet T, Van Camp J, D'hooghe M. Synthesis of Non-Symmetrical Nitrogen-Containing Curcuminoids in the Pursuit of New Anticancer Candidates. ChemistryOpen 2019; 8:236-247. [PMID: 30847262 PMCID: PMC6392825 DOI: 10.1002/open.201800287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/05/2019] [Indexed: 01/03/2023] Open
Abstract
Curcumin is known to display pronounced anticancer effects and a variety of other biological activities. However, the low bioavailability and fast metabolism of this molecule present an issue of concern with respect to its medicinal applications. To address this issue, structural modifications of the curcumin scaffold can be envisioned as a strategy to improve both the solubility and stability of this chemical entity, without compromising its biological activities. Previous work in our group targeted the synthesis of symmetrical azaheteroaromatic curcuminoids, which showed better solubility and cytotoxicity profiles compared to curcumin. In continuation of that work, we now focused on the synthesis of non-symmetrical nitrogen-containing curcuminoids bearing both a phenolic and an azaheteroaromatic moiety. In that way, we aimed to combine good solubility, antioxidant potential and cytotoxic properties into one molecule. Some derivatives were selected for further chemical modification of their rather labile β-diketone scaffold to the corresponding pyrazole moiety. In this way, thirteen new non-symmetrical aza-aromatic curcuminoids and four pyrazole-based analogues were successfully synthesized in a yield of 11-69 %. All newly synthesized analogues were evaluated for their antioxidant properties, reactive oxygen species (ROS) production, water solubility and anticancer activities. Several novel derivatives displayed good cytotoxicity profiles compared to curcumin, in combination with an improved water solubility and stability, and were thus identified as potential hit scaffolds for further optimization studies.
Collapse
Affiliation(s)
- Atiruj Theppawong
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| | - Tim Van de Walle
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Faculty of ScienceGhent UniversityKrijgslaan 281, S3B-9000GhentBelgium
| | - Nathalie Catry
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| | - Tom Desmet
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent University Coupure Links 653, 9000GhentBelgium
| | - John Van Camp
- Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| |
Collapse
|
65
|
Xu Z, Zhao S, Lv Z, Gao F, Wang Y, Zhang F, Bai L, Deng J, Wang Q, Fan Y. Design, Synthesis, and Evaluation of Tetraethylene Glycol‐Tethered Isatin–1,2,3‐Triazole–Coumarin Hybrids as Novel Anticancer Agents. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhi Xu
- Industry Innovation & Research and Development Institute of Zhumadian,Huanghuai University Zhumadian People's Republic of China
| | - Shi‐Jia Zhao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon MaterialsWuhan University of Science and Technology Wuhan People's Republic of China
| | - Zao‐Sheng Lv
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon MaterialsWuhan University of Science and Technology Wuhan People's Republic of China
| | - Feng Gao
- Academy of Advanced Interdisciplinary StudiesQilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250353 People's Republic of China
| | - Yin‐Ling Wang
- Industry Innovation & Research and Development Institute of Zhumadian,Huanghuai University Zhumadian People's Republic of China
| | - Feng Zhang
- Industry Innovation & Research and Development Institute of Zhumadian,Huanghuai University Zhumadian People's Republic of China
| | - Liu‐Yang Bai
- Industry Innovation & Research and Development Institute of Zhumadian,Huanghuai University Zhumadian People's Republic of China
| | - Jia‐Lun Deng
- Haiso Technology Co., Ltd. Wuhan People's Republic of China
| | - Qin Wang
- Wuhan Changqing No. 1 High School Wuhan People's Republic of China
| | - Yi‐Lei Fan
- Haiso Technology Co., Ltd. Wuhan People's Republic of China
| |
Collapse
|
66
|
Sabt A, Abdelhafez OM, El-Haggar RS, Madkour HMF, Eldehna WM, El-Khrisy EEDAM, Abdel-Rahman MA, Rashed LA. Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: synthesis, in vitro biological evaluation, and QSAR studies. J Enzyme Inhib Med Chem 2018; 33:1095-1107. [PMID: 29944015 PMCID: PMC6022226 DOI: 10.1080/14756366.2018.1477137] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/07/2022] Open
Abstract
Herein, we report the synthesis of different novel sets of coumarin-6-sulfonamide derivatives bearing different functionalities (4a, b, 8a-d, 11a-d, 13a, b, and 15a-c), and in vitro evaluation of their growth inhibitory activity towards the proliferation of three cancer cell lines; HepG2 (hepatocellular carcinoma), MCF-7 (breast cancer), and Caco-2 (colon cancer). HepG2 cells were the most sensitive cells to the influence of the target coumarins. Compounds 13a and 15a emerged as the most active members against HepG2 cells (IC50 = 3.48 ± 0.28 and 5.03 ± 0.39 µM, respectively). Compounds 13a and 15a were able to induce apoptosis in HepG2 cells, as assured by the upregulation of the Bax and downregulation of the Bcl-2, besides boosting caspase-3 levels. Besides, compound 13a induced a significant increase in the percentage of cells at Pre-G1 by 6.4-folds, with concurrent significant arrest in the G2-M phase by 5.4-folds compared to control. Also, 13a displayed significant increase in the percentage of annexin V-FITC positive apoptotic cells from 1.75-13.76%. Moreover, QSAR models were established to explore the structural requirements controlling the anti-proliferative activities.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Egypt
| | - Omaima M. Abdelhafez
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Egypt
| | - Radwan S. El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | | | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Mohamed A. Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Laila. A. Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
67
|
Xu Z, Zhao SJ, Deng JL, Wang Q, Lv ZS, Fan YL. Design, Synthesis, and Evaluation of Tetraethylene Glycol Tethered Isatin-Coumarin Hybrids as Novel Anticancer Agents. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhi Xu
- Industry Innovation & Research and Development Institute of Zhumadian; Huanghuai University; Zhumadian People's Republic of China
| | - Shi-Jia Zhao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; Wuhan University of Science and Technology; Wuhan People's Republic of China
| | - Jia-Lun Deng
- Haiso Technology Co., Ltd.; Wuhan People's Republic of China
| | - Qin Wang
- Wuhan Changqing No. 1 High School; Wuhan People's Republic of China
| | - Zao-Sheng Lv
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; Wuhan University of Science and Technology; Wuhan People's Republic of China
| | - Yi-Lei Fan
- Haiso Technology Co., Ltd.; Wuhan People's Republic of China
| |
Collapse
|
68
|
Fan Y, Huang Z, Liu M. Isatin–Coumarin Hybrids Tethered
via
Diethylene Glycol: Design, Synthesis, and Their
In Vitro
Antitumor Activities. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yi‐Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang ProvinceZhejiang Police College Hangzhou People's Republic of China
| | - Zhong‐Ping Huang
- College of Chemical EngineeringZhejiang University of Technology Hangzhou People's Republic of China
| | - Min Liu
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou People's Republic of China
| |
Collapse
|
69
|
Asymmetrical meta-methoxylated diarylpentanoids: Rational design, synthesis and anti-cancer evaluation in-vitro. Eur J Med Chem 2018; 157:716-728. [PMID: 30138803 DOI: 10.1016/j.ejmech.2018.08.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022]
Abstract
In the present study, a series of forty-five asymmetrical meta-methoxylated diarylpentanoids have been synthesized, characterized and evaluated for their in-vitro anti-cancer potential. Among the forty-five analogs, three compounds (20, 33 and 42) have been identified as lead compounds due to their excellent inhibition against five human cancer cell lines including SW620, A549, EJ28, HT1080 and MCF-7. Structure-activity relationship study on cytotoxicity of tested compounds suggested that the presence of meta-oxygenated phenyl ring played a critical role in enhancing their cytotoxic effects. Compounds 33 and 42 in particular, exhibited strongest cytotoxicity against tested cell lines with the IC50 values ranging from 1.1 to 4.3 μM. Subsequent colony formation assay on SW620 cell line showed that both compounds 33 and 42 possessed strong anti-proliferative activity. In addition, flow cytometry based experiments revealed that these compounds could trigger intracellular ROS production thus inducing G2/M-phase cell arrest and apoptosis. All these results suggested that poly meta-oxygenated diarylpentnoid is a promising scaffold which deserved further modification and investigation in the development of natural product-based anti-cancer drug.
Collapse
|
70
|
Fan YL, Ke X, Liu M. Coumarin-triazole Hybrids and Their Biological Activities. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3112] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yi-Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province; Zhejiang Police College; Hangzhou People's Republic of China
| | - Xing Ke
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province; Zhejiang Police College; Hangzhou People's Republic of China
| | - Min Liu
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze river Delta Region; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| |
Collapse
|
71
|
Zhu C, Wang R, Zheng W, Chen D, Yue X, Cao Y, Qin W, Sun H, Wang Y, Liu Z, Li B, Du J, Bu X, Zhou B. Synthesis and evaluation of anticancer activity of BOC26P, an ortho-aryl chalcone sodium phosphate as water-soluble prodrugs in vitro and in vivo. Biomed Pharmacother 2017; 96:551-562. [PMID: 29032339 DOI: 10.1016/j.biopha.2017.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/14/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022] Open
Abstract
Major limitations of chalcones as clinical anticancer agents are water insolubility and poor bioavailability, which may be improved by a classic phosphate prodrug strategy that targets non-specific alkaline phosphatase (ALP) for releasing the parent drug in vivo. In this study, we found that BOC26P, a phosphate prodrug of chalcone OC26, exhibits excellent water solubility and improved plasma concentration in vivo by either i.v. or p.o. compared with the parent drug. In pace with decreased inhibitory activity of BOC26P against microtubule polymerization in vitro and in cells, the antiproliferative activity of BOC26P is attenuated in A549 and HLF cells. However, the antitumor effect of BOC26P increases in an A549 xenograft model as compared to the equimolar concentration of OC26, suggesting that complex tumor microenvironment would be another important influence factor to regulate the antitumor activity of BOC26Pin vivo. In conclusion, these observations showed that the traditional phosphate prodrug strategy would be a promising and easy method to increase water solubility and anticancer activity of chalcones for the clinical developments of anticancer agents.
Collapse
Affiliation(s)
- Cuige Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ruimin Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China; Department of Nuclear Medicine, Guangzhou General Hospital of Guangzhou Military Command Guangzhou, Guangdong, 510010, PR China
| | - Weichao Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Daoyuan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xin Yue
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yingnan Cao
- School of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, PR China
| | - Wenjing Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Haixia Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Youqiao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ziyi Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Baojian Li
- Shenzhen Davoos tech. Ltd.Co., Room A611, Silver star tech. building, 1301 Guanguang Road, Guanlan, Longhua District, Shenzhen, PR China
| | - Jun Du
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xianzhang Bu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Binhua Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
72
|
Singh H, Singh JV, Gupta MK, Saxena AK, Sharma S, Nepali K, Bedi PMS. Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Bioorg Med Chem Lett 2017; 27:3974-3979. [DOI: 10.1016/j.bmcl.2017.07.069] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/15/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022]
|
73
|
Yin L, Wang L, Liu XJ, Cheng FC, Shi DH, Cao ZL, Liu WW. Synthesis and bioactivity of novel C2-glycosyl triazole derivatives as acetylcholinesterase inhibitors. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2016-0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AbstractNew C2-glycosyl triazole derivatives 6a–l were synthesized by cyclization of glycosyl acylthiosemicarbazides 5 in refluxing 3 N sodium hydroxide aqueous solution. Substrates 5 were obtained by the reaction of glycosyl isothiocyanate 3 with various hydrazides. The acetylcholinesterase (AChE) inhibitory activities of compounds 6 were tested by Ellman’s method. Compounds that exhibited over 85% inhibition were subsequently evaluated for the IC50 values. Compound 6f possesses the best acetylcholinesterase-inhibition activity with IC50 of 1.46±0.25 μg/mL.
Collapse
Affiliation(s)
- Long Yin
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Lei Wang
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Xiu-Jian Liu
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Feng-Chang Cheng
- China University of Mining and Technology, Xuzhou 221116, P.R. China
| | - Da-Hua Shi
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
- Jiangsu Institute of Marine Resources, Lianyungang 222005, P.R. China
| | - Zhi-Ling Cao
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
- Jiangsu Institute of Marine Resources, Lianyungang 222005, P.R. China
| | - Wei-Wei Liu
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
- Jiangsu Institute of Marine Resources, Lianyungang 222005, P.R. China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| |
Collapse
|
74
|
Zhang L, Zong H, Lu H, Gong J, Ma F. Discovery of novel anti-tumor curcumin analogues from the optimization of curcumin scaffold. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1946-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
75
|
Sun B, Li L, Hu QW, Zheng HB, Tang H, Niu HM, Yuan HQ, Lou HX. Design, synthesis, biological evaluation and molecular modeling study of novel macrocyclic bisbibenzyl analogues as antitubulin agents. Eur J Med Chem 2017; 129:186-208. [DOI: 10.1016/j.ejmech.2017.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 11/17/2022]
|
76
|
Subhedar DD, Shaikh MH, Nawale L, Sarkar D, Khedkar VM, Shingate BB. Quinolidene based monocarbonyl curcumin analogues as promising antimycobacterial agents: Synthesis and molecular docking study. Bioorg Med Chem Lett 2017; 27:922-928. [DOI: 10.1016/j.bmcl.2017.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 12/17/2022]
|
77
|
Gupta S, Kushwaha B, Srivastava A, Maikhuri JP, Sankhwar SN, Gupta G, Dwivedi AK. Design and synthesis of coumarin–glyoxal hybrids for spermicidal and antimicrobial actions: a dual approach to contraception. RSC Adv 2016. [DOI: 10.1039/c6ra12156j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Today there is an urgent need for safe and effective dual-purpose contraceptive agents, which can simultaneously prevent unintended pregnancies and sexually transmitted infections (STI).
Collapse
Affiliation(s)
- Swati Gupta
- Pharmaceutics Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Bhavana Kushwaha
- Endocrinology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | | | | | - Satya N. Sankhwar
- Urology Department
- King George's Medical University
- Lucknow-226003
- India
| | - Gopal Gupta
- Endocrinology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | | |
Collapse
|