51
|
Sui YF, Ansari MF, Zhou CH. Pyrimidinetrione-imidazoles as a Unique Structural Type of Potential Agents towards Candida Albicans: Design, Synthesis and Biological Evaluation. Chem Asian J 2021; 16:1417-1429. [PMID: 33829660 DOI: 10.1002/asia.202100146] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Indexed: 12/15/2022]
Abstract
Substantial morbidity and mortality of fungal infections have aroused concerns all over the world, and common Candida spp. currently bring about severe systemic infections. A series of pyrimidinetrione-imidazole conjugates as potentially antifungal agents were developed. Bioassays manifested that 4-fluobenzyl pyrimidinetrione imidazole 5 f exerted favorable inhibition towards C. albicans (MIC=0.002 mM), being 6.5 folds more active than clinical antifungal drug fluconazole (MIC=0.013 mM). Preliminary mechanism research indicated that compound 5 f could not only depolarize membrane potential but also permeabilize the membrane of C. albicans. Molecular docking was operated to simulate the interaction mode between molecule 5 f and CYP51. In addition, hybrid 5 f might form 5 f-DNA supramolecular complex via intercalating into DNA. The interference of membrane and DNA might contribute to its fungicidal capacity with no obvious tendency to induce the resistance against C. albicans. Conjugate 5 f endowed good blood compatibility as well as low cytotoxicity towards HeLa and HEK-293T cells.
Collapse
Affiliation(s)
- Yan-Fei Sui
- Institute of Bioorganic & Medicinal Chemistry', Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry', Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry', Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
52
|
Han R, Qiu H, Zhong J, Zheng N, Li B, Hong Y, Ma J, Wu G, Chen L, Sheng L, Li H. Si Miao Formula attenuates non-alcoholic fatty liver disease by modulating hepatic lipid metabolism and gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153544. [PMID: 33773192 DOI: 10.1016/j.phymed.2021.153544] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease with few therapeutic options available currently. Traditional Chinese Medicine (TCM) has been practiced for thousands of years in China and Asian countries, and regarded as an important source for identifying novel medicines for diseases. Si Miao Formula (SMF) is a classical TCM formula for the treatment of gout disease by reducing serum uric acid concentrations, while high concentration of uric acid is also an independent risk factor for NAFLD. PURPOSE To investigate the protective effect of SMF on NAFLD in a mouse model induced by a high fat/high sucrose (HFHS) diet. METHODS Mice received a HFHS diet over a 16-week period to induce NAFLD with or without SMF intervention. Lipid levels were measured in both the liver and serum. Histopathological staining was used to evaluate the extent of hepatic lipid accumulation. Liver transcriptomics was used to enrich differentially expressed genes and to predict regulatory pathways after gene set enrichment analysis. 16S rRNA gene sequencing was used to determine the microbial composition. Genes of liver lipid metabolism, inflammation and intestinal tight junctions were detected by qRT-PCR analysis. RESULTS SMF attenuated hepatic steatosis, reduced body weight gain and lipid concentrations, improved sensitivity to insulin and also tolerance to glucose, in mice fed an HFHS diet. Hepatic transcriptomics showed that SMF downregulated the biosynthesis of fatty acids and stimulated the insulin secretion pathway. SMF significantly altered the gut microbiota composition and in particular increased the proportion of Akkermansia muciniphila. In agreement with liver transcriptomics, SMF downregulated the expression of genes implicated in the metabolism of lipids (Acly, Fas, Acc, Scd-1) and pro-inflammatory cytokines (Il-1β, Nlrp-3) in the livers. CONCLUSION The results indicate that SMF attenuates HFHS diet-induced NAFLD and regulates hepatic lipid metabolism pathways. The anti-NAFLD effect of SMF was linked to modulation of the gut microbiota composition and in particular an increased relative abundance of Akkermansia muciniphila.
Collapse
Affiliation(s)
- Ruiting Han
- Functional Metabolomics and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Huihui Qiu
- Functional Metabolomics and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zhong
- Functional Metabolomics and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China.
| | - Ningning Zheng
- Functional Metabolomics and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bingbing Li
- Functional Metabolomics and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Hong
- Functional Metabolomics and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junli Ma
- Functional Metabolomics and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Gaosong Wu
- Functional Metabolomics and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Linlin Chen
- Functional Metabolomics and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Sheng
- Functional Metabolomics and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Houkai Li
- Functional Metabolomics and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
53
|
Liang XY, Battini N, Sui YF, Ansari MF, Gan LL, Zhou CH. Aloe-emodin derived azoles as a new structural type of potential antibacterial agents: design, synthesis, and evaluation of the action on membrane, DNA, and MRSA DNA isomerase. RSC Med Chem 2021; 12:602-608. [PMID: 34046631 PMCID: PMC8128066 DOI: 10.1039/d0md00429d] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
As serious global drug resistance motivated the exploration of new structural drugs, we developed a type of novel structural aloe-emodin azoles as potential antibacterial agents in this work. Some target aloe-emodin azoles displayed effective activity against the tested strains, especially tetrazolyl aloe-emodin 4b showed a low MIC value of 2 μg mL-1 towards MRSA, being more efficient than the reference drug norfloxacin (MIC = 8 μg mL-1). Also, the active molecule 4b exhibited low cytotoxicity against LO2 cells with no distinct tendency to induce the concerned resistance towards MRSA. The tetrazolyl derivative 4b was preliminarily investigated for the possible mechanism; it was revealed that tetrazolyl derivative 4b could both disrupt the integrity of MRSA membrane and form 4b-DNA supramolecular complex by intercalating into DNA. Moreover, tetrazolyl aloe-emodin 4b could bind with MRSA DNA isomerase at multiple sites through hydrogen bonds in molecular simulation.
Collapse
Affiliation(s)
- Xin-Yuan Liang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Yan-Fei Sui
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Lin-Ling Gan
- Chongqing Engineering Research Center of Pharmaceutical Sciences, School of Pharmacy, Chongqing Medical and Pharmaceutical College Chongqing 401331 PR China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| |
Collapse
|
54
|
Milani G, Cavalluzzi MM, Solidoro R, Salvagno L, Quintieri L, Di Somma A, Rosato A, Corbo F, Franchini C, Duilio A, Caputo L, Habtemariam S, Lentini G. Molecular Simplification of Natural Products: Synthesis, Antibacterial Activity, and Molecular Docking Studies of Berberine Open Models. Biomedicines 2021; 9:452. [PMID: 33922200 PMCID: PMC8146520 DOI: 10.3390/biomedicines9050452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Berberine, the main bioactive component of many medicinal plants belonging to various genera such as Berberis, Coptis, and Hydrastis is a multifunctional compound. Among the numerous interesting biological properties of berberine is broad antimicrobial activity including a range of Gram-positive and Gram-negative bacteria. With the aim of identifying berberine analogues possibly endowed with higher lead-likeness and easier synthetic access, the molecular simplification approach was applied to the secondary metabolite and a series of analogues were prepared and screened for their antimicrobial activity against Gram-positive and Gram-negative bacterial test species. Rewardingly, the berberine simplified analogues displayed 2-20-fold higher potency with respect to berberine. Since our berberine simplified analogues may be easily synthesized and are characterized by lower molecular weight than the parent compound, they are further functionalizable and should be more suitable for oral administration. Molecular docking simulations suggested FtsZ, a well-known protein involved in bacterial cell division, as a possible target.
Collapse
Affiliation(s)
- Gualtiero Milani
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Roberta Solidoro
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Lara Salvagno
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Laura Quintieri
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research, Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.)
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples “Federico II” Via Cinthia 4, 80126 Napoli, Italy; (A.D.S.); (A.D.)
| | - Antonio Rosato
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Filomena Corbo
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Carlo Franchini
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples “Federico II” Via Cinthia 4, 80126 Napoli, Italy; (A.D.S.); (A.D.)
| | - Leonardo Caputo
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research, Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.)
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK;
| | - Giovanni Lentini
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| |
Collapse
|
55
|
Synthesis and Biological Evaluation of Quinazolonethiazoles as New Potential Conquerors towards
Pseudomonas Aeruginosa. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000627] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
56
|
Gaba S, Saini A, Singh G, Monga V. An insight into the medicinal attributes of berberine derivatives: A review. Bioorg Med Chem 2021; 38:116143. [PMID: 33848698 DOI: 10.1016/j.bmc.2021.116143] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022]
Abstract
In the last few decades, traditional natural products have been the center of attention for the scientific community and exploration of their therapeutic abilities is proceeding perpetually. Berberine, with remarkable therapeutic diversity, is a plant derived isoquinoline alkaloid which is widely used as a traditional medicine in China. Berberine has been tackled as a fascinating pharmacophore to make great contributions to the discovery and development of new therapeutic agents against variegated diseases. Despite its tremendous therapeutic potential, clinical utility of this alkaloid was significantly compromised due to undesirable pharmacokinetic properties. To overcome this limitation, several structural modifications were performed on this scaffold to improve its therapeutic efficacy. The collective efforts of the community have achieved the tremendous advancements, bringing berberine to clinical use and discovering new therapeutic opportunities by structural modifications on the berberine scaffold. In this review, recent advancements in the medicinal chemistry of berberine and its derivatives in the last few years (2016-2020) have been compiled to represent inclusive data associated with various biological activities of this alkaloid. The comprehensive structure-activity relationship studies along with molecular modelling and mechanistic studies have also been summarized. This article would be highly helpful for the scientific community to get better insight into medicinal research of berberine and become a compelling guide for the rational design of berberine based compounds.
Collapse
Affiliation(s)
- Sobhi Gaba
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Anjali Saini
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India.
| |
Collapse
|
57
|
Wang J, Ansari MF, Zhou CH. Unique para-aminobenzenesulfonyl oxadiazoles as novel structural potential membrane active antibacterial agents towards drug-resistant methicillin resistant Staphylococcus aureus. Bioorg Med Chem Lett 2021; 41:127995. [PMID: 33775834 DOI: 10.1016/j.bmcl.2021.127995] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022]
Abstract
A class of structurally unique para-aminobenzenesulfonyl oxadiazoles as new potential antimicrobial agents was designed and synthesized from acetanilide. Some target para-aminobenzenesulfonyl oxadiazoles showed antibacterial potency. Noticeably, hexyl derivative 8b (MIC = 1 μg/mL) was more active than norfloxacin against drug resistant MRSA. Compound 8b was able to disturb the membrane effectively and intercalate into deoxyribonucleic acid (DNA) to form a steady 8b-DNA complex, which might be responsible for bacterial metabolic inactivation. Molecular docking indicated that 8b could interact with DNA topoisomerase IV through noncovalent interactions to form a supramolecular complex and hinder the function of this enzyme. These results indicated that hexyl derivative 8b deserved further investigation as a new lead compound.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, PR China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, PR China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
58
|
Li X, Song Y, Wang L, Kang G, Wang P, Yin H, Huang H. A Potential Combination Therapy of Berberine Hydrochloride With Antibiotics Against Multidrug-Resistant Acinetobacter baumannii. Front Cell Infect Microbiol 2021; 11:660431. [PMID: 33842399 PMCID: PMC8027359 DOI: 10.3389/fcimb.2021.660431] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/11/2021] [Indexed: 01/22/2023] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii strains can cause severe infections in intensive care units, and are rapidly developing resistance to the last-resort of existing antibiotics, posing a major global threat to health care system. Berberine hydrochloride (BBH), a kind of isoquinoline alkaloids extracted from Berberis and other plants, has been widely used as an antibacterial medicine for its reliable therapeutic efficiency. The in vitro synergistic effects of BBH with antibiotics against MDR A. baumannii were determined. BBH alone had weak antimicrobial activity (e.g., MIC≥256 mg/L) against MDR A. baumannii. However, it dramatically increased the susceptibility of MDR strains against antibiotics with FICI values <0.5, even reversed their resistance to antibiotics (e.g., tigecycline, sulbactam, meropenem and ciprofloxacin). In vivo study has suggested BBH with sulbactam had stronger antimicrobial efficiency than monotherapy in a neutropenic murine thigh infection model. The antibiotic-sensitizing mechanism of action of BBH was evaluated as well. BBH boosted adeB gene expression and bound to the AdeB transporter protein, resulting in low uptake of BBH, which may contribute to less extrusion of antibiotics by the AdeABC pump. Knockout of the adeB gene increased uptake of BBH and diminished the antibiotic sensitization and synergistic effects between antibiotics and BBH in MDR strains. Together, BBH effectively re-sensitizes this MDR pathogen to a range of antibiotics that have become barely effective due to antibiotic resistance, which indicates BBH may be a promising therapeutic adjuvant candidate to combat MDR A. baumannii.
Collapse
Affiliation(s)
- Xiaobo Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China.,Tianjin Modern Innovative TCM Technology Co. Ltd., Tianjin, China
| | - Yanqing Song
- School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Lina Wang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China
| | - Guangbo Kang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China
| | - Ping Wang
- Tianjin Modern Innovative TCM Technology Co. Ltd., Tianjin, China
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - He Huang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China
| |
Collapse
|
59
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
60
|
Chen JP, Battini N, Ansari MF, Zhou CH. Membrane active 7-thiazoxime quinolones as novel DNA binding agents to decrease the genes expression and exert potent anti-methicillin-resistant Staphylococcus aureus activity. Eur J Med Chem 2021; 217:113340. [PMID: 33725630 DOI: 10.1016/j.ejmech.2021.113340] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/30/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
A novel class of 7-thiazoxime quinolones was developed as potential antimicrobial agents for the sake of bypassing resistance of quinolones. Biological assays revealed that some constructed 7-thiazoxime quinolones possessed effective antibacterial efficiency. Methyl acetate oxime derivative 6l exhibited 32-fold more active than ciprofloxacin against MRSA, which also possessed rapidly bactericidal ability and low toxicity towards mammalian cells. The combination use of 7-thiazoxime quinolone 6l and ciprofloxacin was able to improve antibacterial potency and effectively alleviate bacterial resistance. The preliminarily mechanism exploration revealed that compound 6l could destroy the cell membrane and insert into MRSA DNA to bind with DNA gyrase, then decrease the expression of gyrB and femB genes. The above results strongly suggested that methyl acetate oxime derivative 6l held a promise for combating MRSA infection.
Collapse
Affiliation(s)
- Jin-Ping Chen
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
61
|
Gong H, He L, Zhao Z, Mao X, Zhang C. The specific effect of (R)-(+)-pulegone on growth and biofilm formation in multi-drug resistant Escherichia coli and molecular mechanisms underlying the expression of pgaABCD genes. Biomed Pharmacother 2021; 134:111149. [PMID: 33385683 DOI: 10.1016/j.biopha.2020.111149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/29/2020] [Accepted: 12/14/2020] [Indexed: 01/11/2023] Open
Abstract
E. coli is associated with high rates of infection and resistance to drugs not only in China but also the rest of the world. In addition, the number of E. coli biofilm infections continue to increase with time. Notably, biofilms are attractive targets for the prevention of infections caused by multidrug-resistant bacteria. Moreover, the pgaABCD-encoded Poly-β-1,6-N-acetyl-d-glucosamine (PNAG) plays an important role in biofilm formation. Therefore, this study aimed to explore the specific effect of the (R)-(+)-pulegone (PU) on growth and biofilm formation in multi-drug resistant E. coli. The molecular mechanisms involved were also examined. The results showed that PU had significant antibacterial and antibiofilm formation activity against E. coli K1, with MIC and MBC values of 23.68 and 47.35 mg/mL, respectively. On the other hand, the maximum inhibition rate for biofilm formation in the bacterium was 52.36 % at 94.70 mg/mL of PU. qRT-PCR data showed that PU significantly down-regulated expression of the pgaABCD genes (P < 0.05). PU was also broadly effective against biofilm formation in MG1655 and MG1655/ΔpgaABCD, exhibiting the maximum inhibition rates were 98.23 % and 93.35 %, respectively. In addition, PU destroyed pre-formed mature biofilm in both MG1655 and MG1655/ΔpgaABCD about 95.03 % and 92.4 %, respectively. The study therefore verified that pgaA was a potential and key target for PU in E. coli although it was not the only one. Overall, the findings indicated that PU is a potential and novel inhibitor of drug resistance, This therefore gives insights on new ways of preventing and treating biofilm-associated infections in the food industry as well as in clinical practice.
Collapse
Affiliation(s)
- Haiyan Gong
- The Fifth Affiliated Hospital of Xinjiang Medical University, Xinshi District, No. 118 Henan West Road, Urumqi, Xinjiang, PR China.
| | - Lijuan He
- College of Public Health of Xinjiang Medical University, Shuimogou District, No. 567 Shangde North Road, Urumqi, Xinjiang, PR China.
| | - Zhilong Zhao
- The Fifth Affiliated Hospital of Xinjiang Medical University, Xinshi District, No. 118 Henan West Road, Urumqi, Xinjiang, PR China.
| | - Xinmin Mao
- College of Traditional Chinese Medicine, Key Discipline of Integrated Traditional Chinese and Western Medicine of Autonomous Region from Xinjiang Medical University, Shuimogou District, No. 567 Shangde North Road, Urumqi, Xinjiang, PR China.
| | - Chen Zhang
- Xinjiang Medical University, Shuimogou District, No. 567 Shangde North Road, Urumqi, Xinjiang, PR China.
| |
Collapse
|
62
|
Hu Y, Pan G, Yang Z, Li T, Wang J, Ansari MF, Hu C, Yadav Bheemanaboina RR, Cheng Y, Zhou C, Zhang J. Novel Schiff base-bridged multi-component sulfonamide imidazole hybrids as potentially highly selective DNA-targeting membrane active repressors against methicillin-resistant Staphylococcus aureus. Bioorg Chem 2020; 107:104575. [PMID: 33385978 DOI: 10.1016/j.bioorg.2020.104575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 01/12/2023]
Abstract
A new type of Schiff base-bridged multi-component sulfonamide imidazole hybrids with antimicrobial potential was developed. Some target compounds showed significant antibacterial potency. Observably, butylene hybrids 4h exhibited remarkable inhibitory efficacy against clinical MRSA (MIC = 1 µg/mL), but had no significant toxic effect on normal mammalian cells (RAW 264.7). The highly active molecule 4h was revealed by molecular modeling study that it could insert into the base-pairs of DNA hexamer duplex and bind with the ASN-62 residue of human carbonic anhydrase isozyme II through hydrogen bonding. Furthermore, further preliminary antibacterial mechanism experiments confirmed that compound 4h could effectively interfere with MRSA membrane and insert into bacterial DNA isolated from clinical MRSA strains through non-covalent bonding to produce a supramolecular complex, thus exerting its strong antibacterial efficacy by impeding DNA replication. These findings strongly implied that the highly active hybrid 4h could be used as a potential DNA-targeting template for the development of valuable antimicrobial agent.
Collapse
Affiliation(s)
- Yuanyuan Hu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Guangxing Pan
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhixiong Yang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tiejun Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Juan Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Mohammad Fawad Ansari
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chunfang Hu
- Dongguan School Affiliated to South China Normal University, Dongguan 523755, China
| | - Rammohan R Yadav Bheemanaboina
- Sokol Institute for Pharmaceutical Life Sciences, Department of Chemistry and Biochemistry, Montclair State University, NJ 07043, USA
| | - Yu Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chenghe Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
63
|
Jamshaid F, Dai J, Yang LX. New Development of Novel Berberine Derivatives against Bacteria. Mini Rev Med Chem 2020; 20:716-724. [PMID: 31902359 DOI: 10.2174/1389557520666200103115124] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Many berberine derivatives have been synthesized for their antibacterial activity in the past years. In order to elucidate their new Structural Activity Relationship (SAR), the recently synthesized berberine derivatives are reviewed. The newly synthesized berberine derivatives are reported in this review with novel modifications on the berberine structure at various positions. It is hoped that this article would help scientists to design and synthesize new berberine derivatives with high potency and a broad spectrum of antimicrobial activities, more effectiveness and lower toxicity for improved antimicrobial therapy. These berberine derivatives could be developed as novel antibacterial agents to treat patients with infectious diseases, especially caused by resistant bacteria.
Collapse
Affiliation(s)
- Faisal Jamshaid
- Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai, PC 200240, China.,Changzhou FangYuan Pharmaceutical Co. Ltd. Changzhou, Jiangsu, China
| | - Jun Dai
- Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai, PC 200240, China.,Changzhou FangYuan Pharmaceutical Co. Ltd. Changzhou, Jiangsu, China
| | - Li Xi Yang
- Changzhou FangYuan Pharmaceutical Co. Ltd. Changzhou, Jiangsu, China
| |
Collapse
|
64
|
An unexpected discovery toward novel membrane active sulfonyl thiazoles as potential MRSA DNA intercalators. Future Med Chem 2020; 12:1709-1727. [DOI: 10.4155/fmc-2019-0303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: With the increasing emergence of drug-resistant bacteria, the need for new antimicrobial agents has become extremely urgent. This work was to develop sulfonyl thiazoles as potential antibacterial agents. Results & methodology: Novel hybrids of sulfonyl thiazoles were developed from commercial acetanilide and acetylthiazole. Hybrids 6e and 6f displayed excellent inhibitory efficacy against clinical methicillin-resistant Staphylococcus aureus (MRSA) (minimum inhibitory concentration = 1 μg/ml) without obvious toxicity toward normal mammalian cells (RAW 264.7). The combination uses were found to improve the antimicrobial ability. Further preliminary antibacterial mechanism experiments showed that the active molecule 6f could effectively interfere with MRSA membrane and insert into MRSA DNA. Conclusion: Compounds 6e and 6f could serve as potential DNA-targeting templates toward the development of promising antimicrobial agents.
Collapse
|
65
|
Marinescu M, Cinteză LO, Marton GI, Chifiriuc MC, Popa M, Stănculescu I, Zălaru CM, Stavarache CE. Synthesis, density functional theory study and in vitro antimicrobial evaluation of new benzimidazole Mannich bases. BMC Chem 2020; 14:45. [PMID: 32724899 PMCID: PMC7382033 DOI: 10.1186/s13065-020-00697-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
The tri-component synthesis of novel chiral benzimidazole Mannich bases, by reaction between benzimidazole, aqueous 30% formaldehyde and an amine, the biological evaluation and DFT studies of the new compounds are reported here. The 1H-NMR, 13C-NMR, FTIR spectra and elemental analysis confirm the structures of the new compounds. All synthesized compounds were screened by qualitative and quantitative methods for their in vitro antibacterial activity against 4 bacterial strains. DFT studies were accomplished using GAMESS 2012 software and HOMO-LUMO analysis allowed the calculation of electronic and structural parameters of the chiral Mannich bases. The geometry of 1-methylpiperazine, the cumulated Mullikan atomic charges of the two heteroatoms and of the methyl, and the value of the global electrophilicity index (ω = 0.0527) of the M-1 molecule is correlated with its good antimicrobial activity. It was found that the presence of saturated heterocycles from the amine molecule, 1-methyl piperazine and morpholine, respectively, contributes to an increased biological activity, compared to aromatic amino analogs, diphenylamino-, 4-nitroamino- and 4-aminobenzoic acid. The planarity of the molecules, specific bond lengths and localization of HOMO-LUMO orbitals is responsible for the best biological activities of the compounds.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, 050663 Romania
| | - Ludmila Otilia Cinteză
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, 030018 Romania
| | - George Iuliu Marton
- Faculty of Applied Chemistry and Materials Science, University "Politehnica" of Bucharest, 1-7 Polizu, 011061 Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalilor, 60101 Bucharest, Romania.,Research Institute of the University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Marcela Popa
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalilor, 60101 Bucharest, Romania.,Research Institute of the University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Ioana Stănculescu
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, 030018 Romania
| | - Christina-Marie Zălaru
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, 050663 Romania
| | - Cristina-Elena Stavarache
- Institute of Organic Chemistry "C.D. Nenitzescu" of the Romanian Academy, 202B Splaiul Independentei, 060023 Bucharest, Romania
| |
Collapse
|
66
|
Sui YF, Li D, Wang J, Bheemanaboina RRY, Ansari MF, Gan LL, Zhou CH. Design and biological evaluation of a novel type of potential multi-targeting antimicrobial sulfanilamide hybrids in combination of pyrimidine and azoles. Bioorg Med Chem Lett 2020; 30:126982. [DOI: 10.1016/j.bmcl.2020.126982] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/03/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
|
67
|
Mancy A, Abutaleb NS, Elsebaei MM, Saad AY, Kotb A, Ali AO, Abdel-Aleem JA, Mohammad H, Seleem MN, Mayhoub AS. Balancing Physicochemical Properties of Phenylthiazole Compounds with Antibacterial Potency by Modifying the Lipophilic Side Chain. ACS Infect Dis 2020; 6:80-90. [PMID: 31718144 DOI: 10.1021/acsinfecdis.9b00211] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial resistance to antibiotics is presently one of the most pressing healthcare challenges and necessitates the discovery of new antibacterials with unique chemical scaffolds. However, the determination of the optimal balance between structural requirements for pharmacological action and pharmacokinetic properties of novel antibacterial compounds is a significant challenge in drug development. The incorporation of lipophilic moieties within a compound's core structure can enhance biological activity but have a deleterious effect on drug-like properties. In this Article, the lipophilicity of alkynylphenylthiazoles, previously identified as novel antibacterial agents, was reduced by introducing cyclic amines to the lipophilic side chain. In this regard, substitution with methylpiperidine (compounds 14-16) and thiomorpholine (compound 19) substituents significantly enhanced the aqueous solubility profile of the new compounds more than 150-fold compared to the first-generation lead compound 1b. Consequently, the pharmacokinetic profile of compound 15 was significantly enhanced with a notable improvement in both half-life and the time the compound's plasma concentration remained above its minimum inhibitory concentration (MIC) against methicillin-resistant Staphylococcus aureus (MRSA). In addition, compounds 14-16 and 19 were found to exert a bactericidal mode of action against MRSA and were not susceptible to resistance formation after 14 serial passages. Moreover, these compounds (at 2× MIC) were superior to the antibiotic vancomycin in the disruption of the mature MRSA biofilm. The modifications to the alkynylphenylthiazoles reported herein successfully improved the pharmacokinetic profile of this new series while maintaining the compounds' biological activity against MRSA.
Collapse
Affiliation(s)
- Ahmed Mancy
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Mohamed M. Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
| | - Abdullah Y. Saad
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
| | - Ahmed Kotb
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
| | - Alsagher O. Ali
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Division of Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Jelan A. Abdel-Aleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| | - Abdelrahman S. Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
- University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, Ahmed Zewail Street, October Gardens, 6th of October, Giza 12578, Egypt
| |
Collapse
|
68
|
Hu CF, Zhang PL, Sui YF, Lv JS, Ansari MF, Battini N, Li S, Zhou CH, Geng RX. Ethylenic conjugated coumarin thiazolidinediones as new efficient antimicrobial modulators against clinical methicillin-resistant Staphylococcus aureus. Bioorg Chem 2020; 94:103434. [DOI: 10.1016/j.bioorg.2019.103434] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
|
69
|
Ruan S, Gao Y, Wang Y, Li M, Yang H, Song J, Wang Z, Wang S. A novel berberine-based colorimetric and fluorimetric probe for hydrazine detection. NEW J CHEM 2020. [DOI: 10.1039/d0nj03599h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hydrazine in water and soil has caused serious diseases for human health. In this work, a simple fluorescent probe (BP) for hydrazine detection was synthesized from berberine. The probe has excellent fluorescence properties and naked-eye detection.
Collapse
Affiliation(s)
- Shutang Ruan
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University
- Nanjing
- China
| | - Yu Gao
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University
- Nanjing
- China
| | - Yunyun Wang
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University
- Nanjing
- China
| | - Mingxin Li
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University
- Nanjing
- China
| | - Haiyan Yang
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University
- Nanjing
- China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint
- Flint
- USA
| | - Zhonglong Wang
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University
- Nanjing
- China
| | - Shifa Wang
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University
- Nanjing
- China
| |
Collapse
|
70
|
Detailed characterization of Phellodendron chinense Schneid and its application in the corrosion inhibition of carbon steel in acidic media. Bioelectrochemistry 2019; 130:107332. [DOI: 10.1016/j.bioelechem.2019.107332] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 11/22/2022]
|
71
|
Alaraidh IA, Okla MK, Alamri SA, AL‐ghamdi AA, Soufan WH, Allam AA, Fouda MMG, Gaffer HE. Synthesis of Bis‐(2‐thiazolyl)amine Analogues and Evaluation of Their Antibacterial, Antioxidant and Cytotoxic Activities. ChemistrySelect 2019. [DOI: 10.1002/slct.201902272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ibrahim A. Alaraidh
- Department of Botany and MicrobiologyCollege of ScienceKing Saud University, P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohammad K. Okla
- Department of Botany and MicrobiologyCollege of ScienceKing Saud University, P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Saudi A. Alamri
- Department of Botany and MicrobiologyCollege of ScienceKing Saud University, P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Abdullah A. AL‐ghamdi
- Department of Botany and MicrobiologyCollege of ScienceKing Saud University, P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Walid H. Soufan
- College of AgricultureKing Saud University P.O. Box 2455 Riyadh 11451 Saudia Arabia
| | - Ahmed A. Allam
- Department of ZoologyFaculty of ScienceBeni-Suef University Beni-Suef 65211 Egypt
| | - Moustafa M. G. Fouda
- Pretreatment and Finishing of Cellulosic-based Fibers DepartmentTextile Industries Research DivisionNational Research Centre 33 El-Buhouth Street, Dokki Cairo 12622 Egypt
| | - Hatem E. Gaffer
- DyeingPrinting and Auxiliaries DepartmentTextile Industries Research DivisionNational Research Centre 33 El-Buhouth Street, Dokki Cairo 12622 Egypt
| |
Collapse
|
72
|
Indole-nitroimidazole conjugates as efficient manipulators to decrease the genes expression of methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2019; 179:723-735. [DOI: 10.1016/j.ejmech.2019.06.093] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/28/2022]
|
73
|
Fang WY, Ravindar L, Rakesh KP, Manukumar HM, Shantharam CS, Alharbi NS, Qin HL. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review. Eur J Med Chem 2019; 173:117-153. [PMID: 30995567 PMCID: PMC7111421 DOI: 10.1016/j.ejmech.2019.03.063] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 02/08/2023]
Abstract
At present more than 250 FDA approved chlorine containing drugs were available in the market and many pharmaceutically important drug candidates in pre-clinical trials. Thus, it is quite obvious to expect that in coming decades there will be an even greater number of new chlorine-containing pharmaceuticals in market. Chlorinated compounds represent the family of compounds promising for use in medicinal chemistry. This review describes the recent advances in the synthesis of chlorine containing heterocyclic compounds as diverse biological agents and drugs in the pharmaceutical industries for the inspiration of the discovery and development of more potent and effective chlorinated drugs against numerous death-causing diseases.
Collapse
Affiliation(s)
- Wan-Yin Fang
- School of Chemistry, Chemical Engineering and Life Science, School of Materials Science and Engineering, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China
| | - L Ravindar
- School of Chemistry, Chemical Engineering and Life Science, School of Materials Science and Engineering, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China
| | - K P Rakesh
- School of Chemistry, Chemical Engineering and Life Science, School of Materials Science and Engineering, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China.
| | - H M Manukumar
- Department of Chemistry, Sri Jayachamarajendra College of Engineering, Mysuru, 570006, Karnataka, India
| | - C S Shantharam
- Department of Chemistry, Pooja Bhagavath Memorial Mahajana Education Centre, Mysuru, 570016, Karnataka, India
| | - Njud S Alharbi
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, School of Materials Science and Engineering, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China.
| |
Collapse
|
74
|
Wang LL, Battini N, Bheemanaboina RRY, Ansari MF, Chen JP, Xie YP, Cai GX, Zhang SL, Zhou CH. A new exploration towards aminothiazolquinolone oximes as potentially multi-targeting antibacterial agents: Design, synthesis and evaluation acting on microbes, DNA, HSA and topoisomerase IV. Eur J Med Chem 2019; 179:166-181. [PMID: 31254919 DOI: 10.1016/j.ejmech.2019.06.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 01/26/2023]
Abstract
This work did a new exploration towards aminothiazolquinolone oximes as potentially multi-targeting antimicrobial agents. A class of novel hybrids of quinolone, aminothiazole, piperazine and oxime fragments were designed for the first time, conveniently synthesized as well as characterized by 1H NMR, 13C NMR and HRMS spectra. Biological activity showed that some of the synthesized compounds exhibited good antimicrobial activities in comparison with the reference drugs. Especially, O-methyl oxime derivative 10b displayed excellent inhibitory efficacy against MRSA and S. aureus 25923 with MIC values of 0.009 and 0.017 mM, respectively. Further studies indicated that the highly active compound 10b showed low toxicity toward BEAS-2B and A549 cell lines and no obvious propensity to trigger the development of bacterial resistance. Quantum chemical studies have also been conducted and rationally explained the structural features essential for activity. The preliminarily mechanism exploration revealed that compound 10b could not only exert efficient membrane permeability by interfering with the integrity of cells, bind with topoisomerase IV-DNA complex through hydrogen bonds and π-π stacking, but also form a steady biosupramolecular complex by intercalating into DNA to exert the efficient antibacterial activity. The supramolecular interaction between compound 10b and human serum albumin (HSA) was a static quenching, and the binding process was spontaneous, where hydrogen bonds and van der Waals force played vital roles in the supramolecular transportation of the active compound 10b by HSA.
Collapse
Affiliation(s)
- Liang-Liang Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jin-Ping Chen
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yun-Peng Xie
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
75
|
Rafiee Pour Z, Nazifi SMR, Afshari Safavi A, Nazifi ZS, Massah AR. Solvent-Free Synthesis, ADME Prediction, and Evaluation of Antibacterial Activity of Novel Sulfonamide Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019060162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
76
|
Wang LL, Battini N, Bheemanaboina RRY, Zhang SL, Zhou CH. Design and synthesis of aminothiazolyl norfloxacin analogues as potential antimicrobial agents and their biological evaluation. Eur J Med Chem 2019; 167:105-123. [PMID: 30769240 DOI: 10.1016/j.ejmech.2019.01.072] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
A series of aminothiazolyl norfloxacin analogues as a new type of potential antimicrobial agents were synthesized and screened for their antimicrobial activities. Most of the prepared compounds exhibited excellent inhibitory efficiencies. Especially, norfloxacin analogue II-c displayed superior antimicrobial activities against K. pneumoniae and C. albicans with MIC values of 0.005 and 0.010 mM to reference drugs, respectively. This compound not only showed broad antimicrobial spectrum, rapid bactericidal efficacy and strong enzymes inhibitory potency including DNA gyrase and chitin synthase (CHS), low toxicity against mammalian cells and no obvious propensity to trigger the development of bacterial resistance, but also exerted efficient membrane permeability, and could effectively intercalate into K. pneumoniae DNA to form a steady supramolecular complex, which might block DNA replication to exhibit their powerful antimicrobial activity. Quantum chemical studies were also performed to explain the high antimicrobial activities. Molecular docking showed that compound II-c could bind with gyrase-DNA and topoisomerase IV-DNA through hydrogen bonds and π-π stacking.
Collapse
Affiliation(s)
- Liang-Liang Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
77
|
Hu YY, Yadav Bheemanaboina RR, Battini N, Zhou CH. Sulfonamide-Derived Four-Component Molecular Hybrids as Novel DNA-Targeting Membrane Active Potentiators against Clinical Escherichia coli. Mol Pharm 2019; 16:1036-1052. [DOI: 10.1021/acs.molpharmaceut.8b01021] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan-Yuan Hu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rammohan R. Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
78
|
Sun H, Ansari MF, Battini N, Bheemanaboina RRY, Zhou CH. Novel potential artificial MRSA DNA intercalators: synthesis and biological evaluation of berberine-derived thiazolidinediones. Org Chem Front 2019. [DOI: 10.1039/c8qo01180j] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel berberine-derived thiazolidinediones as potential artificial DNA intercalators were synthesized, and the preliminary mechanism suggested that active compound 6b could intercalate into MRSA DNA.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Rammohan R. Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
79
|
Li B, Liu J, Gao F, Sun M, Guo Y, Zhou Y, Wen D, Deng Y, Chen H, Wang K, Yan W. The asymmetric construction of CF3-containing spiro-thiazolone-pyrrolidine compoundsvia[3 + 2] cycloaddition. Org Biomol Chem 2019; 17:2892-2895. [DOI: 10.1039/c9ob00325h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An organocatalytic method for the asymmetric construction of CF3-containing spiro-thiazolone-pyrrolidine compounds has been developed.
Collapse
|
80
|
Maddili SK, Li ZZ, Kannekanti VK, Bheemanaboina RRY, Tuniki B, Tangadanchu VKR, Zhou CH. Azoalkyl ether imidazo[2,1- b ]benzothiazoles as potentially antimicrobial agents with novel structural skeleton. Bioorg Med Chem Lett 2018; 28:2426-2431. [DOI: 10.1016/j.bmcl.2018.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 12/30/2022]
|
81
|
Li D, Bheemanaboina RRY, Battini N, Tangadanchu VKR, Fang XF, Zhou CH. Novel organophosphorus aminopyrimidines as unique structural DNA-targeting membrane active inhibitors towards drug-resistant methicillin-resistant Staphylococcus aureus. MEDCHEMCOMM 2018; 9:1529-1537. [PMID: 30288226 DOI: 10.1039/c8md00301g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022]
Abstract
A series of novel unique structural organophosphorus aminopyrimidines were developed as potential DNA-targeting membrane active inhibitors through an efficient one-pot procedure from aldehydes, phosphonate and aminopyrimidine. The biological assay revealed that some of the prepared compounds displayed antibacterial activities. In particular, imidazole derivative 2c exhibited more potent inhibitory activity against MRSA with an MIC value of 4 μg mL-1 in comparison with the clinical drugs chloromycin and norfloxacin. Experiments revealed that the active molecule 2c had the ability to rapidly kill the tested strains without obviously triggering the development of bacterial resistance, showed low toxicity to L929 cells and could disturb the cell membrane. The molecular docking study discovered that compound 2c could bind with DNA gyrase via hydrogen bonds and other weak interactions. Further exploration disclosed that the active molecule 2c could also effectively intercalate into MRSA DNA and form a steady 2c-DNA supramolecular complex, which might further block DNA replication to exert powerful antibacterial effects.
Collapse
Affiliation(s)
- Di Li
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Xian-Fu Fang
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| |
Collapse
|
82
|
Ezelarab HAA, Abbas SH, Hassan HA, Abuo-Rahma GEDA. Recent updates of fluoroquinolones as antibacterial agents. Arch Pharm (Weinheim) 2018; 351:e1800141. [DOI: 10.1002/ardp.201800141] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Hend A. A. Ezelarab
- Faculty of Pharmacy, Department of Medicinal Chemistry; Minia University; Minia Egypt
| | - Samar H. Abbas
- Faculty of Pharmacy, Department of Medicinal Chemistry; Minia University; Minia Egypt
| | - Heba A. Hassan
- Faculty of Pharmacy, Department of Medicinal Chemistry; Minia University; Minia Egypt
| | | |
Collapse
|
83
|
Novel carbazole-triazole conjugates as DNA-targeting membrane active potentiators against clinical isolated fungi. Eur J Med Chem 2018; 155:579-589. [DOI: 10.1016/j.ejmech.2018.06.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 11/20/2022]
|
84
|
Wang YN, Bheemanaboina RRY, Cai GX, Zhou CH. Novel purine benzimidazoles as antimicrobial agents by regulating ROS generation and targeting clinically resistant Staphylococcus aureus DNA groove. Bioorg Med Chem Lett 2018; 28:1621-1628. [DOI: 10.1016/j.bmcl.2018.03.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/28/2018] [Accepted: 03/17/2018] [Indexed: 01/19/2023]
|
85
|
Wang YN, Bheemanaboina RRY, Gao WW, Kang J, Cai GX, Zhou CH. Discovery of Benzimidazole-Quinolone Hybrids as New Cleaving Agents toward Drug-Resistant Pseudomonas aeruginosa DNA. ChemMedChem 2018. [PMID: 29512892 DOI: 10.1002/cmdc.201700739] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A series of benzimidazole-quinolone hybrids as new potential antimicrobial agents were designed and synthesized. Bioactive assays indicated that some of the prepared compounds exhibited potent antibacterial and antifungal activities. Notably, 2-fluorobenzyl derivative 5 b (ethyl 7-chloro-6-fluoro-1-[[1-[(2-fluorophenyl)methyl]benzimidazol-2-yl]methyl]-4-oxo-quinoline-3-carboxylate) showed remarkable antimicrobial activity against resistant Pseudomonas aeruginosa and Candida tropicalis isolated from infected patients. Active molecule 5 b could not only rapidly kill the tested strains, but also exhibit low toxicity toward Hep-2 cells. It was more difficult to trigger the development of bacterial resistance of P. aeruginosa against 5 b than that against norfloxacin. Molecular docking demonstrated that 5 b could effectively bind with topoisomerase IV-DNA complexes, and quantum chemical studies theoretically elucidated the good antimicrobial activity of compound 5 b. Preliminary experimental reaction mechanism exploration suggested that derivative 5 b could not intercalate into DNA isolated from drug-resistant P. aeruginosa, but was able to cleave DNA effectively, which might further block DNA replication to exert powerful bioactivities. In addition, compound 5 b is a promising antibacterial agent with membrane disruption abilities.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Wei-Wei Gao
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Jie Kang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| |
Collapse
|
86
|
Novel naphthalimide nitroimidazoles as multitargeting antibacterial agents against resistant Acinetobacter baumannii. Future Med Chem 2018; 10:711-724. [DOI: 10.4155/fmc-2017-0160] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The increasing emergence of resistant bacteria imposed an urgent request to discover novel antibacterial agents. This work was to develop naphthalimide nitroimidazoles as potentially antibacterial agents. Results/methodology: Compound 9e showed the strong antibacterial activity (minimal inhibitory concentration = 0.013 μmol/ml) against resistant Acinetobacter baumannii (A. baumannii) with rapid killing effect and no obvious triggering of the development of resistance. Its combination use with chloromycin, norfloxacin or clinafloxacin improved the antibacterial potency. It could not only effectively permeate membrane of resistant A. baumannii bacteria, but also intercalate into resistant A. baumannii DNA to form 9e–DNA complex. The interaction with bacterial DNA gyrase B was driven by hydrogen bonds. Conclusion: Compound 9e should be a potentially multitargeting antibacterial agent against resistant A. baumannii.
Collapse
|
87
|
Zhang Y, Tangadanchu VKR, Cheng Y, Yang RG, Lin JM, Zhou CH. Potential Antimicrobial Isopropanol-Conjugated Carbazole Azoles as Dual Targeting Inhibitors of Enterococcus faecalis. ACS Med Chem Lett 2018. [PMID: 29541368 DOI: 10.1021/acsmedchemlett.7b00514] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A series of isopropanol-bridged carbazole azoles as potential antimicrobial agents were designed and synthesized from commercial carbazoles. Bioassay revealed that 3,6-dichlorocarbazolyl triazole 3f could effectively inhibit the growth of E. faecalis with minimal inhibitory concentration of 2 μg/mL. The active molecule 3f showed lower propensity to trigger the development of resistance in bacteria than norfloxacin and exerted rapidly bactericidal ability. Compound 3f also exhibited low cytotoxicity to normal mammalian RAW264.7 cells. Further mechanism exploration indicated that conjugate 3f was membrane active against E. faecalis and could form 3f-DNA complex by intercalating into DNA of resistant E. faecalis, which might be responsible for its antimicrobial action. Molecular docking showed an efficient binding of triazole derivative 3f with DNA gyrase enzyme through noncovalent interactions.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu Cheng
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ren-Guo Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jian-Mei Lin
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|