51
|
Nicolella HD, Ribeiro AB, Munari CC, Melo MR, Ozelin SD, da Silva LHD, Marquele-Oliveira F, Orenha RP, Veneziani RCS, Parreira RLT, Tavares DC. Antimelanoma effect of manool in 2D cell cultures and reconstructed human skin models. J Biochem Mol Toxicol 2023; 37:e23282. [PMID: 36541366 DOI: 10.1002/jbt.23282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/03/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Melanoma is the most aggressive and lethal type of skin cancer, characterized by therapeutic resistance. In this context, the present study aimed to investigate the cytotoxic potential of manool, a diterpene from Salvia officinalis L., in human (A375) and murine (B16F10) melanoma cell lines. The analysis of cytotoxicity using the XTT assay showed the lowest IC50 after 48 h of treatment with the manool, being 17.6 and 18.2 µg/ml for A375 and B16F10, respectively. A selective antiproliferative effect of manool was observed on the A375 cells based on the colony formation assay, showing an IC50 equivalent to 5.6 µg/ml. The manool treatments led to 43.5% inhibition of the A375 cell migration at a concentration of 5.0 µg/ml. However, it did not affect cell migration in the B16F10 cells. Cell cycle analysis revealed that the manool interfered in the cell cycle of the A375 cells, blocking the G2/M phase. No changes in the cell cycle were observed in the B16F10 cells. Interestingly, manool did not induce apoptosis in the A375 cells, but apoptosis was observed after treatment of the B16F10 cells. Additionally, manool showed an antimelanoma effect in a reconstructed human skin model. Furthermore, in silico studies, showed that manool is stabilized in the active sites of the tubulin dimer with comparable energy concerning taxol, indicating that both structures can inhibit the proliferation of cancer cells. Altogether, it is concluded that manool, through the modulation of the cell cycle, presents a selective antiproliferative activity and a potential antimelanoma effect.
Collapse
|
52
|
Replacing the tropolonic methoxyl group of colchicine with methylamino increases tubulin binding affinity with improved therapeutic index and overcomes paclitaxel cross-resistance. Drug Resist Updat 2023; 68:100951. [PMID: 36841134 DOI: 10.1016/j.drup.2023.100951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/12/2023] [Accepted: 02/12/2023] [Indexed: 02/15/2023]
Abstract
AIMS Microtubule inhibitors are widely used in first line cancer therapy, though drug resistance often develops and causes treatment failure. Colchicine binds to tubulins and inhibits tumor growth, but is not approved for cancer therapy due to systemic toxicity. In this study, we aim to improve the therapeutic index of colchicine through structural modification. METHODS The methoxyl group of the tropolonic ring in colchicine was replaced with amino groups. The cross-resistance of the derivatives with paclitaxel and vincristine was tested. Antitumor effects of target compounds were tested in vivo in A549 and paclitaxel-resistant A549/T xenografts. The interaction of target compounds with tubulins was measured using biological and chemical methods. RESULTS Methylamino replacement of the tropolonic methoxyl group of colchicine increases, while demethylation loses, selective tubulin binding affinity, G2/M arrest and antiproliferation activity. Methylaminocolchicine is more potent than paclitaxel and vincristine to inhibit tumor growth in vitro and in vivo without showing cross-resistance to paclitaxel. Methylaminocolchicine binds to tubulins in unique patterns and inhibits P-gp with a stable pharmacokinetic profile. CONCLUSION Methylanimo replacement of the tropolonic methoxyl group of colchicine increases antitumor activity with improved therapeutic index. Methylaminocolchicine represents a new type of mitotic inhibitor with the ability of overcoming paclitaxel and vincristine resistance.
Collapse
|
53
|
Kuang Z, Yang H, Cheng S, Zhou X, Chen L, Zhang Y, Zhang J. Silencing of circ_002136 sensitizes gastric cancer to paclitaxel by targeting the miR-16-5p/HMGA1 axis. Open Med (Wars) 2023; 18:20220625. [PMID: 36760722 PMCID: PMC9896165 DOI: 10.1515/med-2022-0625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 02/04/2023] Open
Abstract
The dysregulated expression of circRNA in gastric cancer (GC) induces paclitaxel (Tax) resistance of cancer cells, which in turn affects disease progression and prognosis. Here, we sought to investigate the role and mechanism of circ_002136 in Tax-resistant GC. In this study, we found the enriched circ_002136 level and the declined miR-16-5p level in Tax-resistant GC tissues and cells. Biologically, knockdown of circ_002136 elevated the Tax sensitivity of Tax-resistant GC cells, inhibited the cell motility properties, and simultaneously drove the apoptosis. Mechanically, circ_002136 promoted the HMGA1-mediated cellular Tax resistance and cell invasion by sponging miR-16-5p. Furthermore, circ_002136 silencing impeded the growth of Tax-resistant GC tumors in vivo. Overall, our study revealed a novel signaling pathway that could be used for future clinical applications, namely the circ_002136/miR-16-5p/HMGA1 axis to regulate the Tax resistance of GC cells.
Collapse
Affiliation(s)
- Zhijian Kuang
- Department of Pathology, Ningbo Mingzhou Hospital, Ningbo, Zhejiang, China
| | - Haitao Yang
- Department of Pathology, Ningbo Mingzhou Hospital, Ningbo, Zhejiang, China
| | - Shu Cheng
- Department of Pathology, Ningbo Mingzhou Hospital, Ningbo, Zhejiang, China
| | - Xiaolong Zhou
- Department of Pathology, Ningbo Mingzhou Hospital, Ningbo, Zhejiang, China
| | - Lan Chen
- Department of Pathology, Ningbo Mingzhou Hospital, Ningbo, Zhejiang, China
| | - Yuqing Zhang
- Department of Pathology, Ningbo Mingzhou Hospital, Ningbo, Zhejiang, China
| | - Jie Zhang
- Department of Pathology, The First People’s Hospital of Wenling, Wenling, Zhejiang, No. 333, Chuan’an South Road, Chengxi Street, Wenling, Zhejiang Province, 3175000, China
| |
Collapse
|
54
|
Synthesis and Antiproliferative Activity of Steroidal Diaryl Ethers. Molecules 2023; 28:molecules28031196. [PMID: 36770863 PMCID: PMC9919549 DOI: 10.3390/molecules28031196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Novel 13α-estrone derivatives have been synthesized via direct arylation of the phenolic hydroxy function. Chan-Lam couplings of arylboronic acids with 13α-estrone as a nucleophilic partner were carried out under copper catalysis. The antiproliferative activities of the newly synthesized diaryl ethers against a panel of human cancer cell lines (A2780, MCF-7, MDA-MB 231, HeLa, SiHa) were investigated by means of MTT assays. The quinoline derivative displayed substantial antiproliferative activity against MCF-7 and HeLa cell lines with low micromolar IC50 values. Disturbance of tubulin polymerization has been confirmed by microplate-based photometric assay. Computational calculations reveal significant interactions of the quinoline derivative with the taxoid binding site of tubulin.
Collapse
|
55
|
Identification of Potential Antitubulin Agents with Anticancer Assets from a Series of Imidazo[1,2- a]quinoxaline Derivatives: In Silico and In Vitro Approaches. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020802. [PMID: 36677860 PMCID: PMC9867416 DOI: 10.3390/molecules28020802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Computer-aided drug design is a powerful and promising tool for drug design and development, with a reduced cost and time. In the current study, we rationally selected a library of 34 fused imidazo[1,2-a]quinoxaline derivatives and performed virtual screening, molecular docking, and molecular mechanics for a lead identification against tubulin as an anticancer molecule. The computational analysis and pharmacophoric features were represented as 1A2; this was a potential lead against tubulin, with a maximized affinity and binding score at the colchicine-binding site of tubulin. The efficiency of this lead molecule was further identified using an in vitro assay on a tubulin enzyme and the anticancer potential was established using an MTT assay. Compound 1A2 (IC50 = 4.33-6.11 µM against MCF-7, MDA-MB-231, HCT-116, and A549 cell lines) displayed encouraging results similar to the standard drug colchicine in these in vitro studies, which further confirmed the effectiveness of CADD in new drug developments. Thus, we successfully applied the utility of in silico techniques to identify the best plausible leads from the fused azaheterocycles.
Collapse
|
56
|
Goel KK, Kharb R, Rajput SK. Design, Synthesis and Biological Evaluation of Imidazole-Substituted/Fused Aryl Derivatives Targeting Tubulin Polymerization as Anticancer Agents. SYNOPEN 2023. [DOI: 10.1055/s-0042-1751835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
AbstractThe development of new pharmacologically active molecules targeting tubulin polymerization has recently attracted great interest in research groups. In efforts to develop new potent anticancer compounds, imidazole-tethered/fused pharmacologically active aryl derivatives possessing different substitution patterns targeting tubulin polymerization have been rationally designed and synthesized. The target molecules (P1-5 and KG1-5) were synthesized by multistep syntheses involving the reaction of intermediate 2-aminophenyl-tethered imidazoles with appropriate reactants in the presence of p-TsOH under different conditions. The synthesized compounds displayed moderate to good cytotoxicity, comparable to that of colchicine, against four cancer cell lines (MCF-7, MD-MBA-231, A549, and HCT-116). Compounds P2 and P5, with an imidazoloquinoxaline moiety, emerged as potential leads with cytotoxicity profiles against these cell lines similar to colchicine. Compounds P2 and P5 arrested cell division at the G2/M phase and prevented cancerous cell growth through induced apoptosis. These results favored the hypothesis that the compounds might act by binding to the colchicine binding site, which was further confirmed with the help of a tubulin polymerization inhibition assay. The results encourage the further exploration of imidazoloquinoxalines as promising leads that deserve advanced clinical investigation.
Collapse
Affiliation(s)
- Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to be University)
- Amity Institute of Pharmacy, Amity University
| | | | | |
Collapse
|
57
|
López-López E, Cerda-García-Rojas CM, Medina-Franco JL. Consensus Virtual Screening Protocol Towards the Identification of Small Molecules Interacting with the Colchicine Binding Site of the Tubulin-microtubule System. Mol Inform 2023; 42:e2200166. [PMID: 36175374 PMCID: PMC10078098 DOI: 10.1002/minf.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023]
Abstract
Modification of the tubulin-microtubule (Tub-Mts) system has generated effective strategies for developing different treatments for cancer. A huge amount of clinical data about inhibitors of the tubulin-microtubule system have supported and validated the studies on this pharmacological target. However, many tubulin-microtubule inhibitors have been developed from representative and common scaffolds that cover a small region of the chemical space with limited structural innovation. The main goal of this study is to develop the first consensus virtual screening protocol for natural products (ligand- and structure-based drug design methods) tuned for the identification of new potential inhibitors of the Tub-Mts system. A combined strategy that involves molecular similarity, molecular docking, pharmacophore modeling, and in silico ADMET prediction has been employed to prioritize the selections of potential inhibitors of the Tub-Mts system. Five compounds were selected and further studied using molecular dynamics and binding energy predictions to characterize their possible binding mechanisms. Their structures correspond to 5-[2-(4-hydroxy-3-methoxyphenyl) ethyl]-2,3-dimethoxyphenol (1), 9,10-dihydro-3,4-dimethoxy-2,7-phenanthrenediol (2), 2-(3,4-dimethoxyphenyl)-5,7-dihydroxy-6-methoxy-4H-1-benzopyran-4-one (3), 13,14-epoxyparvifoline-4',5',6'-trimethoxybenzoate (4), and phenylmethyl 6-hydroxy-2,3-dimethoxybenzoate (5). Compounds 1-3 have been associated with literature reports that confirm their activity against several cancer cell lines, thus supporting the utility of this protocol.
Collapse
Affiliation(s)
- Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.,Departamento de Química y Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, 07000, Mexico
| | - Carlos M Cerda-García-Rojas
- Departamento de Química y Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, 07000, Mexico
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
58
|
Siadati SA, Davoudi S, Soheilizad M, Firoozpour L, Payab M, Bagherpour S, Kolivand S. The synthesis and the mechanism of a five-membered ring formation between an isothiocyanate and an amide leading to the yield of Enzalutamide anticancer API; a joint experimental and theoretical study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
59
|
Huang X, Chen Y, Zhong W, Liu Z, Zhang H, Zhang B, Wang H. Novel combretastatin A-4 derivative containing aminophosphonates as dual inhibitors of tubulin and matrix metalloproteinases for lung cancer treatment. Eur J Med Chem 2022; 244:114817. [DOI: 10.1016/j.ejmech.2022.114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
|
60
|
Guo K, Ma X, Li J, Zhang C, Wu L. Recent advances in combretastatin A-4 codrugs for cancer therapy. Eur J Med Chem 2022; 241:114660. [PMID: 35964428 DOI: 10.1016/j.ejmech.2022.114660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
CA4 is a potent microtubule polymerization inhibitor and vascular disrupting agent. However, the in vivo efficiency of CA4 is limited owing to its poor pharmacokinetics resulting from its high lipophilicity and low water solubility. To improve the water solubility, CA4 phosphate (CA4P) has been developed and shows potent antivascular and antitumor effects. CA4P had been evaluated as a vascular disrupting agent in previousc linical trials. However, it had been discontinued due to the lack of a meaningful improvement in progression-free survival and unfavorable partial response data. Codrug is a drug design approach to chemically bind two or more drugs to improve therapeutic efficiency or decrease adverse effects. This review describes the progress made over the last twenty years in developing CA4-based codrugs to improve the therapeutic profile and achieve targeted delivery to cancer tissues. It also discusses the existing problems and the developmental prospects of CA4 codrugs.
Collapse
Affiliation(s)
- Kerong Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xin Ma
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jian Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chong Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
61
|
Foroutan A, Corazzari M, Grolla AA, Colombo G, Travelli C, Genazzani AA, Theeramunkong S, Galli U, Tron GC. Identification of novel aza-analogs of TN-16 as disrupters of microtubule dynamics through a multicomponent reaction. Eur J Med Chem 2022; 245:114895. [DOI: 10.1016/j.ejmech.2022.114895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/14/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
62
|
Synthesis of indole-tetrazole coupled aromatic amides; In vitro anticancer activity, in vitro tubulin polymerization inhibition assay and in silico studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
63
|
Discovery of Simple Diacylhydrazine-Functionalized Cinnamic Acid Derivatives as Potential Microtubule Stabilizers. Int J Mol Sci 2022; 23:ijms232012365. [PMID: 36293224 PMCID: PMC9604255 DOI: 10.3390/ijms232012365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/21/2022] [Accepted: 10/05/2022] [Indexed: 11/04/2022] Open
Abstract
To develop novel microtubule-binding agents for cancer therapy, an array of N-cinnamoyl-N'-(substituted)acryloyl hydrazide derivatives were facilely synthesized through a two-step process. Initially, the antiproliferative activity of these title compounds was explored against A549, 98 PC-3 and HepG2 cancer cell lines. Notably, compound I23 exhibited the best antiproliferative activity against three cancer lines with IC50 values ranging from 3.36 to 5.99 μM and concurrently afforded a lower cytotoxicity towards the NRK-52E cells. Anticancer mechanism investigations suggested that the highly bioactive compound I23 could potentially promote the protofilament assembly of tubulin, thus eventually leading to the stagnation of the G2/M phase cell cycle of HepG2 cells. Moreover, compound I23 also disrupted cancer cell migration and significantly induced HepG2 cells apoptosis in a dosage-dependent manner. Additionally, the in silico analysis indicated that compound I23 exhibited an acceptable pharmacokinetic profile. Overall, these easily prepared N-cinnamoyl-N'-(substituted)acryloyl hydrazide derivatives could serve as potential microtubule-interacting agents, probably as novel microtubule-stabilizers.
Collapse
|
64
|
Hou Y, Chen M, Sun Z, Ma G, Chen D, Wu H, Yang J, Li Y, Xu X. The Biosynthesis Related Enzyme, Structure Diversity and Bioactivity Abundance of Indole-Diterpenes: A Review. Molecules 2022; 27:6870. [PMID: 36296463 PMCID: PMC9611320 DOI: 10.3390/molecules27206870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Indole diterpenes are a large class of secondary metabolites produced by fungi, possessing a cyclic diterpenoid backbone and an indole moiety. Novel structures and important biological activity have made indole diterpenes one of the focuses of synthetic chemists. Although the discovery, identification, structural diversity, biological activity and especially structure-activity relationship of indole diterpenes have been reported in some papers in recent years, they are absent of a systematic and comprehensive analysis, and there is no elucidation of enzymes related to this kind of natural product. Therefore, it is necessary to summarize the relevant reports to provide new perspectives for the following research. In this review, for the first time, the function of related synthases and the structure-activity relationship of indole diterpenes are expounded, and the recent research advances of them are emphasized.
Collapse
Affiliation(s)
- Yong Hou
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Meiying Chen
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhaocui Sun
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guoxu Ma
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Deli Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Junshan Yang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Yihang Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xudong Xu
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
65
|
Evaluation of 3,5-Diphenyl-2-Pyrazolines for Antimitotic Activity by Inhibition of Tubulin Polymerization. J CHEM-NY 2022. [DOI: 10.1155/2022/3567606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chalcones have a skeleton of diphenyls connected via an α,β-unsaturated carbonyl group. Many chalcone derivatives have been shown to interact with tubulin. Based on previous reports, chalcones derived by substitution of a carbonyl group with 2-pyrazoline can be expected to inhibit tubulin polymerization. Therefore, 3,5-diphenyl-2-pyrazolines were prepared to investigate their ability to inhibit tubulin polymerization. The clonogenic long-term survival assay showed that derivative 4, 5-(3,5-dimethoxyphenyl)-3-(2-methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide, was the most effective at inhibiting the clonogenicity of HCT116 human colon cancer cells. Derivative 4 induced G2/M cell cycle arrest. In addition, derivative 4 caused dispersed microtubules, a disorganized spherical arrangement of chromosomes, and inhibition of mitotic spindle formation. The binding mode between tubulin and derivative 4 was elucidated by in silico molecular docking. Derivative 4 was superimposed with colchicine and entered the colchicine-binding site well. These results suggest that derivative 4 inhibits tubulin polymerization by binding to the colchicine binding site of tubulin, thus preventing mitotic spindle formation during mitosis in HCT116 colon cancer cells. We propose that derivative 4 could be used as a promising antimitotic chemotherapeutic agent.
Collapse
|
66
|
Khan A, Naaz F, Basit R, Das D, Bisht P, Shaikh M, Lone BA, Pokharel YR, Ahmed QN, Parveen S, Ali I, Singh SK, Chashoo G, Shafi S. 1,2,3-Triazole Tethered Hybrid Capsaicinoids as Antiproliferative Agents Active against Lung Cancer Cells (A549). ACS OMEGA 2022; 7:32078-32100. [PMID: 36119972 PMCID: PMC9476207 DOI: 10.1021/acsomega.2c03325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
A series of novel 1,2,3-triazole derivatives of capsaicin and its structural isomer (new natural product hybrid capsaicinoid) were synthesized by exploiting one-/two-point modification of capsaicin without altering the amide linkage (neck). The newly synthesized compounds were screened for their antiproliferative activity against an NCI panel of 60 cancer cell lines at a single dose of 10 μM. Most of the compounds have demonstrated reduced growth between 55 and 95%, whereas capsaicin (10) has shown reduced growth between 0 and 24%. Compounds showing more than 50% growth inhibition were further evaluated for the IC50 value. Among the cell lines tested, lung cancer cell lines (A549, NCI-H460) were found to be more susceptible toward most of the synthesized compounds. Compounds 14g and 14j demonstrated good antiproliferative activity in NCI-H460 with IC50 values of 6.65 and 5.55 μM, respectively, while compounds 18b, 18c, 18f, and 18m demonstrated potential antiproliferative activity in A549 cell lines with IC50 values ranging between 2.9 and 10.5 μM. Among the compounds, compound 18f was found to demonstrate the best activity with an IC50 value of 2.91 μM against A549. Furthermore, 18f induces cell cycle arrest at the S-phase and disrupts the mitochondrial membrane potential, reducing cell migration potential by inducing cellular apoptosis and higher ROS generation along with a decrease in mitochondrial membrane potential in addition to surface and nuclear morphological alterations such as a reduction in the number and shrinkage of cells coupled with nuclear blabbing indicating the sign of apoptosis of A549 non-small cell lung cancer cell lines. Compound 18f has emerged as a lead molecule and may serve as a template for further discovery of capsaicinoid scaffolds.
Collapse
Affiliation(s)
- Arif Khan
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Fatima Naaz
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Rafia Basit
- Pharmacology
Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Deepak Das
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Piyush Bisht
- Faculty
of Life Sciences and Biology, South Asian
University, New Delhi 110021, India
| | - Majeed Shaikh
- Natural
product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Bilal Ahmad Lone
- Faculty
of Life Sciences and Biology, South Asian
University, New Delhi 110021, India
| | - Yuba Raj Pokharel
- Faculty
of Life Sciences and Biology, South Asian
University, New Delhi 110021, India
| | - Qazi Naveed Ahmed
- Natural
product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Shazia Parveen
- Faculty
of Science, Chemistry Department, Taibah
University, Yanbu Branch, Yanbu 46423, Saudi
Arabia
| | - Intzar Ali
- Department
of Microbiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shashank Kumar Singh
- Pharmacology
Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Gousia Chashoo
- Pharmacology
Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Syed Shafi
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| |
Collapse
|
67
|
Xu X, Jiang N, Liu S, Jin Y, Cheng Y, Xu T, Wang X, Liu Y, Zhang M, Du S, Fan J, Zhang A. Moroidin, a Cyclopeptide from the Seeds of Celosia cristata That Induces Apoptosis in A549 Human Lung Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2022; 85:1918-1927. [PMID: 35951980 DOI: 10.1021/acs.jnatprod.1c01215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interference of microtubule dynamics with tubulin-targeted drugs is a validated approach for cancer chemotherapy. Moroidin (1) is an Urticaceae-type cyclopeptide having a potent inhibitory effect on purified tubulin polymerization. So far, moroidin has not been chemically synthesized, and its effect on cancer cells remains unknown. Herein, the cyclopeptide moroidin was isolated and identified from the seeds of Celosia cristata, and a revised assignment of its NMR data was presented. For the first time, moroidin (1) was demonstrated as having cytotoxic effects for several cancer cells, especially A549 lung cancer cells. The cellular evidence obtained showed that moroidin disrupts microtubule polymerization and decreases β-tubulin protein levels, but is not as potent as colchicine. Molecular docking indicated that 1 has a high binding potential to the vinca alkaloid site on tubulin. Moreover, moroidin arrested A549 cells in the G2/M phase and induced cell apoptosis. The intrinsic mitochondrial pathway and AKT were involved in the moroidin-induced cell apoptosis. In addition, moroidin (1) inhibited the migration and invasion of A549 cells at sublethal concentrations.
Collapse
Affiliation(s)
- Xiaoya Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Nan Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Shangming Liu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Yang Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Yuhan Cheng
- The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, 211112, People's Republic of China
| | - Tong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Xin Wang
- Jiangsu Province Hospital of TCM and the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Yuanhua Liu
- Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Mingwan Zhang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, People's Republic of China
| | - Shuhu Du
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Junting Fan
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Aixia Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| |
Collapse
|
68
|
Combination of microtubule targeting agents with other antineoplastics for cancer treatment. Biochim Biophys Acta Rev Cancer 2022; 1877:188777. [PMID: 35963551 DOI: 10.1016/j.bbcan.2022.188777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/22/2022]
Abstract
Microtubule targeting agents (MTAs) have attracted extensive attention for cancer treatment. However, their clinical efficacies are limited by intolerable toxicities, inadequate efficacy and acquired multidrug resistance. The combination of MTAs with other antineoplastics has become an efficient strategy to lower the toxicities, overcome resistance and improve the efficacies for cancer treatment. In this article, we review the combinations of MTAs with some other anticancer drugs, such as cytotoxic agents, kinases inhibitors, histone deacetylase inhibitors, immune checkpoints inhibitors, to overcome these obstacles. We strongly believe that this review will provide helpful information for combination therapy based on MTAs.
Collapse
|
69
|
Ranjan Dwivedi A, Singh Rawat S, Kumar V, Kumar N, Anand P, Prakash Yadav R, Barnwal S, Prasad A, Kumar V. Synthesis and Screening of Novel 4-N-Heterocyclic-2-aryl-6,7,8-trimethoxyquinazolines as Antiproliferative and Tubulin Polymerization Inhibitors. Bioorg Med Chem 2022; 72:116976. [DOI: 10.1016/j.bmc.2022.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
|
70
|
Design, Synthesis, In Vitro Biological Activity Evaluation and Stabilized Nanostructured Lipid Carrier Formulation of Newly Synthesized Schiff Bases-Based TMP Moieties. Pharmaceuticals (Basel) 2022; 15:ph15060679. [PMID: 35745599 PMCID: PMC9230623 DOI: 10.3390/ph15060679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
A series of novel Schiff bases-based TMP moieties have been designed and synthesized as potential anticancer agents. The target Schiff bases were screened for their cytotoxic activity against the MDA-MB-231 breast cancer cell line. Most of the tested molecules revealed good cytotoxic activity, especially compounds 4h, 4j and 5d. Being the most potent, compound 4h showed good tubulin polymerization inhibition activity as revealed by immunofluorescence analysis and ELISA assay. Additionally, compound 4h was screened for cell cycle disturbance and apoptosis induction. Pre-G1 apoptosis and cell growth halt at the G2/M phase were discovered to be caused by it. Moreover, compound 4h induced apoptosis via p53 and Bax activation, as well as reduced the level of Bcl-2. Additionally, the most potent compound 4h was lodged on nanostructured lipid carriers (NLCs). 23 full factorial design was involved to govern the influence of the fabrication variables on the in vitro characters of the casted NLCs. F3 was picked as the optimum formula exhibiting dominant desirability value 0.805, EE% 95.6 ± 2.4, PS 222.4 ±18.7, PDI 0.23 ± 0.05 and ZP −39.2 ± 3.9 Mv. Furthermore, F3 affirmed improved solubility and release over the drug suspension. In the comparative cytotoxic activity, F3 was capable of diminishing the IC50 by around 2.15 times for pure 4h, while nearly close to the IC50 of the reference drug. Thus, NLCs could be a potential platform for boosted antitumor activity.
Collapse
|
71
|
Orozco-Barocio A, Robles-Rodríguez BS, Camacho-Corona MDR, Méndez-López LF, Godínez-Rubí M, Peregrina-Sandoval J, Rivera G, Rojas Mayorquín AE, Ortuno-Sahagun D. In vitro Anticancer Activity of the Polar Fraction From the Lophocereus schottii Ethanolic Extract. Front Pharmacol 2022; 13:820381. [PMID: 35444555 PMCID: PMC9014087 DOI: 10.3389/fphar.2022.820381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer is an increasingly common disease and is considered one of the main causes of death in the world. Lophocereus schottii (L. schottii) is a cactus used in Mexico in traditional medicine for cancer treatment. This study aimed to determine the effect of the ethanolic extract and the polar and nonpolar fractions of L. schottii in murine L5178Y lymphoma cells in vitro, analyzing their effect on the proliferative activity of splenocytes, and establishing the effective concentration 50 (EC50) of the polar fraction. In addition, the secondary metabolites present in the extracts were determined by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The study establishes that the three extracts of L. schottii have a cytotoxic effect on L5178Y cells and on the splenocytes stimulated with ConA. Additionally, the polar fraction has a significantly greater effect being three times more effective than cyclophosphamide on inhibiting the viability of L5178Y cells. Secondary metabolites present are mainly flavonoids and alkaloids, but there are also some terpenoids and sterols. Ultimately, polar fraction can be considered an anticancer substance, since its EC50 of 15 μg/mL is within the parameters established by the National Cancer Institute.
Collapse
Affiliation(s)
- Arturo Orozco-Barocio
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, Mexico
| | - Blanca Susana Robles-Rodríguez
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, Mexico
| | | | - Luis Fernando Méndez-López
- Centro de Investigación en Nutrición y Salud Publica, Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Marisol Godínez-Rubí
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jorge Peregrina-Sandoval
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica- Instituto Politécnico Nacional, Reynosa, Mexico
| | - Argelia E Rojas Mayorquín
- Departamento de Ciencias Ambientales, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, Mexico
| | - Daniel Ortuno-Sahagun
- Laboratorio de Neuroinmunobiología Molecular, Departamento de Biología Molecular y Genómica, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
| |
Collapse
|
72
|
Akao Y, Terazawa R, Sugito N, Heishima K, Morikawa K, Ito Y, Narui R, Hamaguchi R, Nobukawa T. Understanding of cell death induced by the constituents of Taxus yunnanensis wood. Sci Rep 2022; 12:6282. [PMID: 35428370 PMCID: PMC9012736 DOI: 10.1038/s41598-022-09655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
The ethanol extract from the wood of Taxus Yunnanensis (TY) induced apoptosis in all cancer cell lines tested, which was mainly due to activation of an extrinsic pathway in human colon cancer DLD-1 cells. The extrinsic pathway was activated by the upregulation of the expression levels of Fas and TRAIL/DR5, which led to the activation of caspase-8. Of note, the machinery of this increase in expression was promoted by the upregulation of MIR32a expression, which silenced MIR34a-targeting E2F3 transcription factor. Furthermore, ectopic expression of MIR32a or siR-E2F3 silencing E2F3 increased Fas and TRAIL/DR5 expression. Thus, the extract activated the extrinsic pathway through the MIR34a/E2F3 axis, resulting in the autocrine and paracrine release of TRAIL, and upregulated expression of death receptors Fas and DR5 in the treated DLD-1 cells, which were functionally validated by Fas immunocytochemistry, and using anti-Fas and anti-TRAIL antibodies, respectively. In vivo, TY showed significant anti-tumor effects on xenografted and syngeneic model mice. The extract may also aid in chemoprevention by selectively making marked tumor cells susceptible to the tumor immunosurveillance system.
Collapse
Affiliation(s)
- Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan.
| | - Riyako Terazawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Kohei Morikawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Ryoko Narui
- Karasuma Wada Clinic, Nakagyo-ku, Kyoto, 604-0845, Japan
| | - Reo Hamaguchi
- Karasuma Wada Clinic, Nakagyo-ku, Kyoto, 604-0845, Japan
| | | |
Collapse
|
73
|
Sahil, Kaur K, Jaitak V. Thiazole and Related Heterocyclic Systems as Anticancer Agents: A Review on Synthetic Strategies, Mechanisms of Action and SAR Studies. Curr Med Chem 2022; 29:4958-5009. [DOI: 10.2174/0929867329666220318100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Background:
Cancer is the second leading cause of death throughout the world. Many anticancer drugs are commercially available, but lack of selectivity, target specificity, cytotoxicity and development of resistance lead to serious side effects. There have been several experiments going on to develop compounds with minor or no side effects.
Objective:
This review mainly emphasizes synthetic strategies, SAR studies, and mechanism of action for thiazole, benzothiazole, and imidazothiazole containing compounds as anticancer agents.
Methods:
Recent literature related to thiazole and thiazole-related derivatives endowed with encouraging anticancer potential is reviewed. This review emphasizes contemporary strategies used for the synthesis of thiazole and related derivatives, mechanistic targets, and comprehensive structural activity relationship studies to provide perspective into the rational design of high-efficiency thiazole-based anticancer drug candidates.
Results:
Exhaustive literature survey indicated that thiazole derivatives are associated with properties of inducing
apoptosis and disturbing tubulin assembly. Thiazoles are also associated with the inhibition of NFkB/mTOR/PI3K/AkT and regulation of estrogen-mediated activity. Furthermore, thiazole derivatives have been found to modulate critical targets such as topoisomerase and HDAC.
Conclusion:
Thiazole derivatives seem to be quite competent and act through various mechanisms. Some of the thiazole derivatives, such as compounds 29, 40, 62, and 74a with IC50 values of 0.05 μM, 0.00042 μM, 0.18 μM, and 0.67 μM, respectively not only have anticancer activity but they also have lower toxicity and better absorption. Therefore, some other similar compounds could be investigated to aid in the development of anticancer pharmacophores.
Collapse
Affiliation(s)
- Sahil
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| |
Collapse
|
74
|
Discovery of novel microtubule stabilizers targeting taxane binding site by applying molecular docking, molecular dynamics simulation, and anticancer activity testing. Bioorg Chem 2022; 122:105722. [PMID: 35303622 DOI: 10.1016/j.bioorg.2022.105722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
Abstract
Disruption of the dynamic equilibrium of microtubules can induce cell cycle arrest in G2/M phase and apoptosis. Hence, discovery of novel tubulin polymerization inhibitors is very necessary and an important task in drug research and development for treatment of various tumors. In this investigation, 50 compounds were screened as microtubule stabilizers targeting the taxane site by combination of molecular docking methods. Among these hits, hits 19 and 38 with novel scaffolds exhibited the highest anti-proliferative activity with IC50 ranging from 9.50 to 13.81 μM in four cancer cell lines. The molecular dynamics simulations confirmed that tubulin and two hits could form stable systems. Meanwhile, the mechanism of the interactions between tubulin and two hits at simulated physiological conditions were probed. The in vitro tubulin polymerization assay revealed hits 19 and 38 were able to promote tubulin polymerization in a dose-dependent manner. Further, the immunofluorescence assay suggested that hits 19 and 38 could accelerate microtubule assembly in A549 and HeLa cells. Finally, studies on antitumor activity indicated that hits 19 and 38 induced G2/M phase cell cycle arrest and apoptosis, and inhibited cancer cell motility and migration in A549 and HeLa cells. Importantly, hit38 exhibited better anti-tubulin and anti-cancer activity than hit19 in A549 and HeLa cells. Therefore, these results suggest that hit38 represents a promising microtubule stabilizer for treating cancer and deserves further investigation.
Collapse
|
75
|
Huang L, Peng Y, Tao X, Ding X, Li R, Jiang Y, Zuo W. Microtubule Organization Is Essential for Maintaining Cellular Morphology and Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1623181. [PMID: 35295719 PMCID: PMC8920689 DOI: 10.1155/2022/1623181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/10/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022]
Abstract
Microtubules (MTs) are highly dynamic polymers essential for a wide range of cellular physiologies, such as acting as directional railways for intracellular transport and position, guiding chromosome segregation during cell division, and controlling cell polarity and morphogenesis. Evidence has established that maintaining microtubule (MT) stability in neurons is vital for fundamental cellular and developmental processes, such as neurodevelopment, degeneration, and regeneration. To fulfill these diverse functions, the nervous system employs an arsenal of microtubule-associated proteins (MAPs) to control MT organization and function. Subsequent studies have identified that the disruption of MT function in neurons is one of the most prevalent and important pathological features of traumatic nerve damage and neurodegenerative diseases and that this disruption manifests as a reduction in MT polymerization and concomitant deregulation of the MT cytoskeleton, as well as downregulation of microtubule-associated protein (MAP) expression. A variety of MT-targeting agents that reverse this pathological condition, which is regarded as a therapeutic opportunity to intervene the onset and development of these nervous system abnormalities, is currently under development. Here, we provide an overview of the MT-intrinsic organization process and how MAPs interact with the MT cytoskeleton to promote MT polymerization, stabilization, and bundling. We also highlight recent advances in MT-targeting therapeutic agents applied to various neurological disorders. Together, these findings increase our current understanding of the function and regulation of MT organization in nerve growth and regeneration.
Collapse
Affiliation(s)
- Lijiang Huang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, No. 291 Donggu Road, Xiangshan County, Zhejiang 315000, China
| | - Yan Peng
- Hangzhou Institute for Food and Drug Control, Hangzhou, Zhejiang, China
| | - Xuetao Tao
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaoxiao Ding
- Department of Pharmacy, The People's Hospital of Beilun District, Ningbo, Zhejiang 315807, China
| | - Rui Li
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, No. 291 Donggu Road, Xiangshan County, Zhejiang 315000, China
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongsheng Jiang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, No. 291 Donggu Road, Xiangshan County, Zhejiang 315000, China
| | - Wei Zuo
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, No. 291 Donggu Road, Xiangshan County, Zhejiang 315000, China
| |
Collapse
|
76
|
Podophyllotoxin esters with alicyclic residues: an insight into the origin of microtubule-curling effect in cancer cells. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
77
|
Wang J, Miller DD, Li W. Molecular interactions at the colchicine binding site in tubulin: An X-ray crystallography perspective. Drug Discov Today 2022; 27:759-776. [PMID: 34890803 PMCID: PMC8901563 DOI: 10.1016/j.drudis.2021.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/27/2021] [Accepted: 12/02/2021] [Indexed: 01/02/2023]
Abstract
Tubulin is an important cancer drug target. Compounds that bind at the colchicine site in tubulin have attracted significant interest as they are generally less affected by multidrug resistance than other potential drugs. Modeling is useful in understanding the interactions between tubulin and colchicine binding site inhibitors (CBSIs), but because the colchicine binding site contains two flexible loops whose conformations are highly ligand-dependent, modeling has its limitations. X-ray crystallography provides experimental pictures of tubulin-ligand interactions at this challenging colchicine site. Since 2004, when the first X-ray structure of tubulin in complex with N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) was published, many X-ray crystal structures have been reported for tubulin complexes involving the colchicine binding site. In this review, we summarize the crystal structures of tubulin in complexes with various CBSIs, aiming to facilitate the discovery of new generations of tubulin inhibitors.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
78
|
Synthesis and biological evaluation of novel hybrids of phenylsulfonyl furoxan and phenstatin derivatives as potent anti-tumor agents. Eur J Med Chem 2022; 230:114112. [DOI: 10.1016/j.ejmech.2022.114112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/20/2022]
|
79
|
The Assessment of Morphological Diversity of Colchicum luteum L., an Economically Important Threatened Medicinal Plant of Kashmir Himalaya. SUSTAINABILITY 2022. [DOI: 10.3390/su14031327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Colchicum luteum L. is an economically important and endangered medicinal plant of the Kashmir Himalaya. The corm extract is used for the treatment of rheumatism, gout, Behcet’s syndrome, and Alzheimer disease. It is also used extensively in plant breeding programs for the doubling of chromosomes. The present study was carried out for two years (2017–2019) to study the genetic diversity of C. luteum, an economically important and endangered medicinal plant of Kashmir Himalaya. The mapping of genetic diversity of C. luteum was estimated using Mahalanobis D2 analysis in the Aharbal (Kulgam), Dhara (Theed), and Baera Baal Hills (Harwan) of Kashmir Valley. The results showed the presence of 5 clusters for 30 populations. There were 17 populations in cluster-1, 1 in cluster-2, 2 in cluster-3, 3 in cluster-4, and 7 in cluster-5. The majority of the population was a group in cluster-1 followed by cluster-5. The maximum intracluster distance (D2 values) was observed in cluster-5 (46.55588) followed by cluster-3 (41.61871), and the maximum inter-cluster distance (D2 values) was observed in cluster-3 (46.55588) followed by cluster-5 (41.61871). Our study revealed that plant species possessed sufficient genetic diversity among the populations. Cluster-5 showed superiority in plant−1 respect of the maximum mean plant height (28.46 cm), leaf area (47.0 cm2), number of seeds plant−1 (26.85), corm length (5.15 cm), corm width (3.17 cm), fresh weight of corm plant (6.87 g), and dry weight of corm plant (4.81 g) as compared to other clusters. Out of five clusters, cluster-5 is a promising one for better yield and yield attributing traits. The present study revealed that plant species possessed sufficient genetic diversity among the populations as 30 populations were arranged into 5 clusters. Therefore, cluster-5, consisting of seven populations from the undisturbed area of Harwan, and consequently the populations from the same cluster can be multiplied for initiating a conservation and breeding program and can serve as a tool for the scientific community to evolve better contemporary varieties of C. luteum with profitable characters such as more yield of corms, etc. This will assist farmers, particularly the marginal farmers, to alleviate their income.
Collapse
|
80
|
Yan J, Xu Y, Jin X, Zhang Q, Ouyang F, Han L, Zhan M, Li X, Liang B, Huang X. Structure modification and biological evaluation of indole-chalcone derivatives as anti-tumor agents through dual targeting tubulin and TrxR. Eur J Med Chem 2022; 227:113897. [PMID: 34649064 DOI: 10.1016/j.ejmech.2021.113897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Microtubule target agents (MTAs) are widely-used clinical anti-cancer drugs for decades, but the acquired drug resistance severely restricted their application. Thioredoxin reductases (TrxR) was reported to be overexpressed in most tumors and closely related to high risk of cancer recurrence and drug resistance, making it a potential target for anticancer drug discovery. Multi-target-directed ligands (MTDLs) by a single molecule provide a logical and alternative approach to drug combinations. In this work, based on the structure-activity relationships obtained in our previous study, some structure modifications were performed. On one hand, the retained skeleton structure of MTAs endowed its tubulin polymerization inhibition activity, on the other hand, the selenium-containing structure and α,β-unsaturated ketone moiety endowed the TrxR inhibition activity. As results, the newly obtained compounds exhibited superior anti-proliferative activities towards various human cancer cells and drug-resistance cells, and displayed high selectivity towards various human normal cells. The mechanism study revealed that the dual effect of cell cycle arrest triggered by targeting tubulin and the abnormal accumulation of ROS caused by TrxR inhibition eventually lead to cell apoptosis. Notably, compared with the MTA agents CA-4P, and the TrxR inhibitor Ethaselen, the optimized compound 14c, which served as dual-targeting inhibitor of tubulin and TrxR, exerted greatly improved in vivo anti-tumor activity. In summary, 14c deserved further consideration for cancer therapy.
Collapse
Affiliation(s)
- Jun Yan
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510720, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yuzhu Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510720, China
| | - Xing Jin
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510720, China
| | - Qiaoxuan Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510720, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Feng Ouyang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Liqiao Han
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Min Zhan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Baoxia Liang
- The School of Food and Biological Engineering, Guangdong Polytechnic of Science and Trade, Guangzhou, 510430, China.
| | - Xianzhang Huang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510720, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
81
|
Silyanova EA, Ushkarov VI, Samet AV, Maksimenko AS, Koblov IA, Kislyi VP, Semenova MN, Semenov VV. A comparative evaluation of monomethoxy substituted o-diarylazoles as antiproliferative microtubule destabilizing agents. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
82
|
Atanasov G, Rusew RI, Gelev VM, Chanev CD, Nikolova R, Shivachev BL, Petrov OI, Apostolova MD. New Heterocyclic Combretastatin A-4 Analogs: Synthesis and Biological Activity of Styryl-2(3 H)-benzothiazolones. Pharmaceuticals (Basel) 2021; 14:1331. [PMID: 34959731 PMCID: PMC8703450 DOI: 10.3390/ph14121331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Here, we describe the synthesis, characterization, and biological activities of a series of 26 new styryl-2(3H)-benzothiazolone analogs of combretastatin-A4 (CA-4). The cytotoxic activities of these compounds were tested in several cell lines (EA.hy926, A549, BEAS-2B, MDA-MB-231, HT-29, MCF-7, and MCF-10A), and the relations between structure and cytotoxicity are discussed. From the series, compound (Z)-3-methyl-6-(3,4,5-trimethoxystyryl)-2(3H)-benzothiazolone (26Z) exhibits the most potent cytotoxic activity (IC50 0.13 ± 0.01 µM) against EA.hy926 cells. 26Z not only inhibits vasculogenesis but also disrupts pre-existing vasculature. 26Z is a microtubule-modulating agent and inhibits a spectrum of angiogenic events in EA.hy926 cells by interfering with endothelial cell invasion, migration, and proliferation. 26Z also shows anti-proliferative activity in CA-4 resistant cells with the following IC50 values: HT-29 (0.008 ± 0.001 µM), MDA-MB-231 (1.35 ± 0.42 µM), and MCF-7 (2.42 ± 0.48 µM). Cell-cycle phase-specific experiments show that 26Z treatment results in G2/M arrest and mitotic spindle multipolarity, suggesting that drug-induced centrosome amplification could promote cell death. Some 26Z-treated adherent cells undergo aberrant cytokinesis, resulting in aneuploidy that perhaps contributes to drug-induced cell death. These data indicate that spindle multipolarity induction by 26Z has an exciting chemotherapeutic potential that merits further investigation.
Collapse
Affiliation(s)
- Gjorgji Atanasov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Rusi I. Rusew
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 107, 1113 Sofia, Bulgaria; (R.I.R.); (R.N.); (B.L.S.)
| | - Vladimir M. Gelev
- Department of Pharmaceutical and Applied Organic Chemistry, Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (V.M.G.); (C.D.C.)
| | - Christo D. Chanev
- Department of Pharmaceutical and Applied Organic Chemistry, Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (V.M.G.); (C.D.C.)
| | - Rosica Nikolova
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 107, 1113 Sofia, Bulgaria; (R.I.R.); (R.N.); (B.L.S.)
| | - Boris L. Shivachev
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 107, 1113 Sofia, Bulgaria; (R.I.R.); (R.N.); (B.L.S.)
| | - Ognyan I. Petrov
- Department of Pharmaceutical and Applied Organic Chemistry, Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (V.M.G.); (C.D.C.)
| | - Margarita D. Apostolova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
| |
Collapse
|
83
|
Ibrahim TS, Hawwas MM, Malebari AM, Taher ES, Omar AM, Neamatallah T, Abdel-Samii ZK, Safo MK, Elshaier YAMM. Discovery of novel quinoline-based analogues of combretastatin A-4 as tubulin polymerisation inhibitors with apoptosis inducing activity and potent anticancer effect. J Enzyme Inhib Med Chem 2021; 36:802-818. [PMID: 33730937 PMCID: PMC7993375 DOI: 10.1080/14756366.2021.1899168] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/27/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023] Open
Abstract
A new series of quinoline derivatives of combretastatin A-4 have been designed, synthesised and demonstrated as tubulin polymerisation inhibitors. These novel compounds showed significant antiproliferative activities, among them, 12c exhibited the most potent inhibitory activity against different cancer cell lines (MCF-7, HL-60, HCT-116 and HeLa) with IC50 ranging from 0.010 to 0.042 µM, and with selectivity profile against MCF-10A non-cancer cells. Further mechanistic studies suggest that 12c can inhibit tubulin polymerisation and cell migration, leading to G2/M phase arrest. Besides, 12c induces apoptosis via a mitochondrial-dependant apoptosis pathway and caused reactive oxygen stress generation in MCF-7 cells. These results provide guidance for further rational development of potent tubulin polymerisation inhibitors for the treatment of cancer.HighlightsA novel series of quinoline derivatives of combretastatin A-4 have been designed and synthesised.Compound 12c showed significant antiproliferative activities against different cancer cell lines.Compound 12c effectively inhibited tubulin polymerisation and competed with [3H] colchicine in binding to tubulin.Compound 12c arrested the cell cycle at G2/M phase, effectively inducing apoptosis and inhibition of cell migration.
Collapse
Affiliation(s)
- Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed M. Hawwas
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Azizah M. Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab S. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Thikryat Neamatallah
- Department of Pharmacology and toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zakaria K. Abdel-Samii
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Martin K. Safo
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Yaseen A. M. M. Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| |
Collapse
|
84
|
Liu JT, Jaunky DB, Larocque K, Chen F, Mckibbon K, Sirouspour M, Taylor S, Shafeii A, Campbell D, Braga H, Piekny A, Forgione P. Design, structure-activity relationship study and biological evaluation of the thieno[3,2-c]isoquinoline scaffold as a potential anti-cancer agent. Bioorg Med Chem Lett 2021; 52:128327. [PMID: 34416378 DOI: 10.1016/j.bmcl.2021.128327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Several derivatives of a series that share a thienoisoquinoline scaffold have demonstrated potent activity against cancer cell lines A549, HeLa, HCT-116, and MDA-MB-231 in the submicromolar concentration range. Structure-activity relationship (SAR) studies on a range of derivatives aided in identifying key pharmacophores in the lead compound. A series of compounds have been identified as the most promising with submicromolar IC50 values against a lung cancer cell line (A549). Microscopy studies of cancer cells treated with the lead compound revealed that it causes mitotic arrest and disrupts microtubules. Further evaluation via an in vitro microtubule polymerization assay and competition studies indicate that the lead compound binds to tubulin via the colchicine site.
Collapse
Affiliation(s)
- Jiang Tian Liu
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Dilan B Jaunky
- Department of Biology, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Kevin Larocque
- Department of Biology, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Fei Chen
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Keegan Mckibbon
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Mehdi Sirouspour
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Sarah Taylor
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Alexandre Shafeii
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Donald Campbell
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Helena Braga
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Pat Forgione
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada; Center for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 rue Sherbrooke O., Montréal, QC H3A 0B8, Canada.
| |
Collapse
|
85
|
Alghamdi SS, Suliman RS, Alsaeed AS, Almutairi KK, Aljammaz NA, Altolayyan A, Ali R, Alhallaj A. Novel Anti-Tubulin Compounds from Trigonella foenum-graecum Seeds; Insights into In-vitro and Molecular Docking Studies. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4195-4211. [PMID: 34675483 PMCID: PMC8502543 DOI: 10.2147/dddt.s320793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/22/2021] [Indexed: 01/08/2023]
Abstract
Background Fenugreek, also known as Trigonella foenum-graecum L, is a natural plant that belongs to the Fabaceae family and has been known as a promising source of bioactive compounds. It has been widely used as traditional medicine since it has shown to lower blood glucose, manage cholesterol levels and further aid in the prevention and treatment of cancer. Herein, we aim to evaluate the anticancer activity of methanolic fenugreek seed extract against several cancer cell lines. Methods We sought to investigate the phytochemical classes present in multiple fenugreek seeds extracts using HPLC-DAD followed by LC/MS, predict and investigate anticancer activity using PASS online webserver, the CellTiter-Glo assay, evaluate ADME properties, and perform molecular docking for all bioactive compounds via Maestro software. Results Multiple extracts exhibited distinct phytochemical classes that demonstrated different biological activities. Fenugreek methanolic extract contains flavonoid chemical class, which showed the highest anticancer activity against the HCT8 cell line of colorectal cancer (IC50 of 8.83 μg/mL), followed by KAIMRC1 breast cancer cell line (IC50 of 35.06 μg/mL), HL60 leukemia cell line (37.80 μg/mL), MDA-MB-231 breast cancer cell line (38.51 μg/mL), and lastly, HCT116 colorectal cancer cell line with IC50 of 56.03 μg/mL. In contrast, the chloroform extract was inactive. The molecular docking study for all the bioactive compounds suggested that flavonoids F6 (−9.713 and −12.132), F7 (−10.166 and −12.411), and F11 (−10.084 and −13.516) possess the highest docking scores through SP and XP scores, respectively. Conclusion The obtained results confirm that the bioactive compounds present in fenugreek seeds exhibit anticancer activity against several cancer cells that can mediate via tubulin polymerization inhibition. Although our study has evaluated the anticancer potential of Trigonella foenum-graecum as a promising natural source for new anticancer agents, fenugreek biological activity needs further research and investigations on their mechanism of action and toxicity profile.
Collapse
Affiliation(s)
- Sahar Saleh Alghamdi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia.,Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Rasha Saad Suliman
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia.,Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Amjad Sulaiman Alsaeed
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Khlood Khaled Almutairi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Norah Abdulaziz Aljammaz
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Abdulelah Altolayyan
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Rizwan Ali
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Alshaimaa Alhallaj
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
86
|
Zhou X, Liu J, Meng J, Fu Y, Wu Z, Ouyang G, Wang Z. Discovery of facile amides-functionalized rhodanine-3-acetic acid derivatives as potential anticancer agents by disrupting microtubule dynamics. J Enzyme Inhib Med Chem 2021; 36:1996-2009. [PMID: 34525898 PMCID: PMC8451688 DOI: 10.1080/14756366.2021.1975695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Microtubule dynamics are crucial for multiple cell functions, and cancer cells are particularly sensitive to microtubule-modulating agents. Here, we describe the design and synthesis of a series of (Z)-2-(5-benzylidene-4-oxo-2-thioxothiazolidin-3-yl)-N-phenylacetamide derivatives and evaluation of their microtubule-modulating and anticancer activities in vitro. Proliferation assays identified I20 as the most potent of the antiproliferative compounds, with 50% inhibitory concentrations ranging from 7.0 to 20.3 µM with A549, PC-3, and HepG2 human cancer cell lines. Compound I20 also disrupted cancer A549 cell migration in a concentration-dependent manner. Immunofluorescence microscopy, transmission electron microscopy, and tubulin polymerisation assays suggested that compound I20 promoted protofilament assembly. In support of this possibility, computational docking studies revealed a strong interaction between compound I20 and tubulin Arg β369, which is also the binding site for the anticancer drug Taxol. Our results suggest that (Z)-2-(5-benzylidene-4-oxo-2-thioxothiazolidin-3-yl)-N-phenylacetamide derivatives could have utility for the development of microtubule-stabilising therapeutic agents.
Collapse
Affiliation(s)
- Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang, People's Republic of China.,College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Jiamin Liu
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Jiao Meng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang, People's Republic of China
| | - Yihong Fu
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Zhibin Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang, People's Republic of China
| | - Guiping Ouyang
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Zhenchao Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang, People's Republic of China.,College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
87
|
Khwaja S, Kumar K, Das R, Negi AS. Microtubule associated proteins as targets for anticancer drug development. Bioorg Chem 2021; 116:105320. [PMID: 34492559 DOI: 10.1016/j.bioorg.2021.105320] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/28/2022]
Abstract
The dynamic equilibrium of tubulin-microtubule is an essential aspect of cell survivality. Modulation of this dynamics has become an important target for the cancer drug development. Tubulin exists in the alpha-beta dimer form which polymerizes to form microtubule and further depolymerizes back to tubulin dimer. The microtubule plays an essential role in mitosis and cell multiplication. Antitubulin drugs disturb the microtubule dynamics which is essentially required for DNA segregation and cell division during mitosis so killing the cancerous cells. Microtubule Associated Proteins (MAPs) interact with cellular cytoskeletal microtubules. MAPs bind to the either polymerized or depolymerized tubulin dimers within the cell and mostly causing stabilization of microtubules. Some of the tubulin binding drugs are in clinical use and others in clinical trial. MAPs inhibitors are also in clinical trial. Post-translational modification of lysine-40 either in histone or in alpha tubulin has an important role in gene expression and is balanced between histone deacetylases (HDACs) and histone acetyltransferases (HATs). HDAC inhibitors have the anticancer properties to form a drug for the treatment of cancer. They act by inducing cell cycle arrest and cell death. Some of the HDAC inhibitors are approved to be used as anticancer drug while others are under different phases of clinical trial. The present review updates on various MAPs, their role in cancer progression, MAPs inhibitors and their future prospects.
Collapse
Affiliation(s)
- Sadiya Khwaja
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kapil Kumar
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India
| | - Ranjana Das
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India
| | - Arvind Singh Negi
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
88
|
Indole derivatives (2010-2020) as versatile tubulin inhibitors: synthesis and structure-activity relationships. Future Med Chem 2021; 13:1795-1828. [PMID: 34468201 DOI: 10.4155/fmc-2020-0385] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tubulin inhibitors are conjugates that interfere with the dynamic equilibrium of the polymerization and depolymerization of microtubules. Among all the reported conjugates, indole moiety is one of the most significant classes for the development of new drug candidates for cancer therapy. Due to their presence in a wide range of natural as well as synthetic antitubulin agents, indole has become a versatile scaffold in research, and various synthetic and semisynthetic indole-based antitubulin agents have been identified and reported. The present article focuses on the reported indole-based tubulin inhibitors of synthetic origin from last the decade. Synthesis, structure-activity relationships and biological activities of synthetic indole derivatives along with brief updates on their antitubulin activity are presented.
Collapse
|
89
|
Lian S, Gao X, Song C, Li H, Lin J. The characteristics of Raman spectroscopy of fenbendazole-gold nanoparticles based on the chemical adsorption effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119799. [PMID: 33887509 DOI: 10.1016/j.saa.2021.119799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/10/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Fenbendazole, a benzimidazole derivative with anti-tubulin polymerization properties, has been widely used in the treatment of parasitic infections. Because of its anticancer activity similar to that of many anticancer drugs, low cost and few side effects, fenbendazole has attracted wide research attention. The chemical adsorption of fenbendazole and gold nanoparticles are studied by the UV-Vis spectrophotometry, density functional method, Raman spectroscopy and surface-enhanced Raman spectroscopy. By comparing and analyzing the theoretical and experimental Raman spectra, this paper explains the reasons for the difference between the theoretical and experimental Raman spectra. Meanwhile, it is also found that the frequencies at 851 cm-1, 1222 cm-1, 1425 cm-1 and 1566 cm-1 are greatly enhanced. It is found that imidazole is adsorbed vertically to the surface of the substrate. It is concluded that Fenbendazole is vertically adsorbed on the surface of AuNPs through imidazole.
Collapse
Affiliation(s)
- Shuai Lian
- School of Science, Changchun University of Science and Technology, Jilin, China
| | - Xun Gao
- School of Science, Changchun University of Science and Technology, Jilin, China.
| | - Chao Song
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin, China.
| | - Hui Li
- School of Science, Changchun University of Science and Technology, Jilin, China
| | - Jingquan Lin
- School of Science, Changchun University of Science and Technology, Jilin, China
| |
Collapse
|
90
|
Gangapuram M, Mazzio EA, Redda KK, Soliman KFA. Transcriptome Profile Analysis of Triple-Negative Breast Cancer Cells in Response to a Novel Cytostatic Tetrahydroisoquinoline Compared to Paclitaxel. Int J Mol Sci 2021; 22:ijms22147694. [PMID: 34299315 PMCID: PMC8306781 DOI: 10.3390/ijms22147694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
The absence of chemotherapeutic target hormone receptors in breast cancer is descriptive of the commonly known triple-negative breast cancer (TNBC) subtype. TNBC remains one of the most aggressive invasive breast cancers, with the highest mortality rates in African American women. Therefore, new drug therapies are continually being explored. Microtubule-targeting agents such as paclitaxel (Taxol) interfere with microtubules dynamics, induce mitotic arrest, and remain a first-in-class adjunct drug to treat TNBC. Recently, we synthesized a series of small molecules of substituted tetrahydroisoquinolines (THIQs). The lead compound of this series, with the most potent cytostatic effect, was identified as 4-Ethyl-N-(7-hydroxy-3,4-dihydroisoquinolin-2(1H)-yl) benzamide (GM-4-53). In our previous work, GM-4-53 was similar to paclitaxel in its capacity to completely abrogate cell cycle in MDA-MB-231 TNBC cells, with the former not impairing tubulin depolymerization. Given that GM-4-53 is a cytostatic agent, and little is known about its mechanism of action, here, we elucidate differences and similarities to paclitaxel by evaluating whole-transcriptome microarray data in MDA-MB-231 cells. The data obtained show that both drugs were cytostatic at non-toxic concentrations and caused deformed morphological cytoskeletal enlargement in 2D cultures. In 3D cultures, the data show greater core penetration, observed by GM-4-53, than paclitaxel. In concentrations where the drugs entirely blocked the cell cycle, the transcriptome profile of the 48,226 genes analyzed (selection criteria: (p-value, FDR p-value < 0.05, fold change −2< and >2)), paclitaxel evoked 153 differentially expressed genes (DEGs), GM-4-53 evoked 243 DEGs, and, of these changes, 52/153 paclitaxel DEGs were also observed by GM-4-53, constituting a 34% overlap. The 52 DEGS analysis by String database indicates that these changes involve transcripts that influence microtubule spindle formation, chromosome segregation, mitosis/cell cycle, and transforming growth factor-β (TGF-β) signaling. Of interest, both drugs effectively downregulated “inhibitor of DNA binding, dominant negative helix-loop-helix” (ID) transcripts; ID1, ID3 and ID4, and amphiregulin (AREG) and epiregulin (EREG) transcripts, which play a formidable role in cell division. Given the efficient solubility of GM-4-53, its low molecular weight (MW; 296), and capacity to penetrate a small solid tumor mass and effectively block the cell cycle, this drug may have future therapeutic value in treating TNBC or other cancers. Future studies will be required to evaluate this drug in preclinical models.
Collapse
|
91
|
Laamari Y, Oubella A, Bimoussa A, El Mansouri AE, Ketatni EM, Mentre O, Ait Itto MY, Morjani H, Khouili M, Auhmani A. Design, Hemiysnthesis, crystal structure and anticancer activity of 1, 2, 3-triazoles derivatives of totarol. Bioorg Chem 2021; 115:105165. [PMID: 34298240 DOI: 10.1016/j.bioorg.2021.105165] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/15/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
A new series of diverse triazoles linked to the hydroxyl group of totarol were synthesized using click chemistry approach. The structures of these compounds were elucidated by HRMS, IR and NMR spectroscopy. The structure of compound 3 g was also confirmed by x-ray single crystal diffraction. The cytotoxicity of these compounds was evaluated by the MTT method against four cancer cell lines, including fibrosarcoma HT-1080, lung carcinoma A-549 and breast adenocarcinoma (MDA-MB-231 and MCF-7), and the results indicated that all compounds showed weak to moderate activities against all cancer cell lines with IC50 values ranging from 14.44 to 46.25 μM. On the basis of our research the structure-activity relationships (SAR) of these compounds were discussed. This work provides some important hints for further structural modification of totarol towards developing novel and highly effective anticancer drugs respectively. It is interesting to note that compound 3 g indicated a very significant cytotoxicity against HT-1080 and A-549 cell lines. The molecular docking showed that compound 3 g activated the caspase-3 and inhibited tubulin by forming stable protein-ligand complexes.
Collapse
Affiliation(s)
- Yassine Laamari
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, Université Cadi-Ayyad, B.P 2390, Marrakech 40001, Morocco
| | - Ali Oubella
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, Université Cadi-Ayyad, B.P 2390, Marrakech 40001, Morocco
| | - Abdoullah Bimoussa
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, Université Cadi-Ayyad, B.P 2390, Marrakech 40001, Morocco
| | - Az-Eddine El Mansouri
- Laboratory of Biomolecular and Medicinal Chemistry, Department of Chemistry, Faculty of Science Semlalia, BP 2390, Marrakech 40001, Morocco
| | - El Mostafa Ketatni
- Laboratory of Applied Spectro-Chemistry and the Environment, 10 University Sultan Moulay Slimane, Faculty of Sciences and Technology, PO Box 523, Beni-Mellal, Morocco
| | - Olivier Mentre
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS-Catalysis and Solid Chemistry Unit, F-59000 Lille, France
| | - My Youssef Ait Itto
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, Université Cadi-Ayyad, B.P 2390, Marrakech 40001, Morocco
| | - Hamid Morjani
- BioSpectroscopieTranslationnelle, BioSpecT - EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| | - Mostafa Khouili
- Laboratory of Applied Spectro-Chemistry and the Environment, 10 University Sultan Moulay Slimane, Faculty of Sciences and Technology, PO Box 523, Beni-Mellal, Morocco
| | - Aziz Auhmani
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, Université Cadi-Ayyad, B.P 2390, Marrakech 40001, Morocco.
| |
Collapse
|
92
|
Wang D, Li S, Zhao Z, Zhang X, Tan W. Engineering a Second‐Order DNA Logic‐Gated Nanorobot to Sense and Release on Live Cell Membranes for Multiplexed Diagnosis and Synergistic Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103993] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dan Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Shenhuan Li
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
- Institute of Molecular Medicine (IMM) Renji Hospital Shanghai Jiao Tong University School of Medicine College of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
93
|
Wang D, Li S, Zhao Z, Zhang X, Tan W. Engineering a Second-Order DNA Logic-Gated Nanorobot to Sense and Release on Live Cell Membranes for Multiplexed Diagnosis and Synergistic Therapy. Angew Chem Int Ed Engl 2021; 60:15816-15820. [PMID: 33908144 DOI: 10.1002/anie.202103993] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Indexed: 01/24/2023]
Abstract
Tumor biomarker-based theranostics have achieved broad interest and success in recent years. However, single biomarker-based recognition can cause false-positive feedback, including the on-target off-tumor phenomenon, in the absence of tumor-specific antigen. Multibiomarker-based recognition molecules often elicit nonspecific and undesired internalization when they bind to "bystander" cells. We report a universal DNA tetrahedral scaffold (DTS) that anchors on the cell membrane to load multiple aptamers and therapeutics for precise and effective theranostics. This DNA logic-gated nanorobot (DLGN) not only facilitates precise discrimination among five cell lines, but also triggers synergistic killing of effector aptamer-tethered synergistic drugs (EASDs) to target cancer cells. Logic-gated recognition integrated into aptamer-functionalized molecular machines will prompt fast tumor profiling, in situ capture and isolation, and safe delivery of precise medicine.
Collapse
Affiliation(s)
- Dan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Shenhuan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
- The Cancer Hospital of the University of, Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
94
|
Zhang H, Mao J, Yang YL, Liu CT, Shen C, Zhang HR, Xie HZ, Ding L. Discovery of novel tubulin inhibitors targeting taxanes site by virtual screening, molecular dynamic simulation, and biological evaluation. J Cell Biochem 2021; 122:1609-1624. [PMID: 34237164 DOI: 10.1002/jcb.30077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023]
Abstract
Microtubules play crucial role in process of mitosis and cell proliferation, which have been considered as attractive drug targets for anticancer therapy. The aim of this study was to discover novel and chemically diverse tubulin inhibitors for treatment of cancer. In this investigation, the multilayer virtual screening methods, including common feature pharmacophore model, structure-based pharmacophore model and molecular docking, were developed to screen BioDiversity database with 30,000 compounds. A total of 102 compounds were obtained by the virtual screening, and further filtered by diverse chemical clusters with desired properties and PAINS analysis. Finally, 50 compounds were selected and submitted to the biological evaluation. Among these hits, hits 8 and 30 with novel scaffolds displayed stronger antiproliferative activity on four human tumor cells including Hela, A549, MCF-7, and HepG2. Moreover, the two hits were subsequently submitted to molecular dynamic simulations of 90 ns with the aim of exploring the stability of ligand-protein interactions into the binding pocket, and further probing the mechanism of the interaction between tubulin and hits. The molecular dynamic simulation results revealed there had stronger interactions between tubulin and hits in equilibrium state. Therefore, the hits 8 and 30 have been well characterized as lead compounds for developing new tubulin inhibitors with potential anticancer activity.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmaceutical Engineering, College of Life Science, Northwest Normal University, Lanzhou, Gansu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Mao
- Department of Pharmaceutical Engineering, College of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| | - Yan-Li Yang
- Department of Pharmaceutical Engineering, College of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| | - Chun-Tao Liu
- Department of Pharmaceutical Engineering, College of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| | - Chen Shen
- Department of Pharmaceutical Engineering, College of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| | - Hong-Rui Zhang
- Department of Pharmaceutical Engineering, College of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| | - Huan-Zhang Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Marine Drug R&D Center, Institute of Oceanography, MinJiang University, Fuzhou, Fujian, China
| | - Lan Ding
- Department of Pharmaceutical Engineering, College of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| |
Collapse
|
95
|
Guerra WD, Lucena-Agell D, Hortigüela R, Rossi RA, Fernando Díaz J, Padrón JM, Barolo SM. Design, Synthesis, and in vitro Evaluation of Tubulin-Targeting Dibenzothiazines with Antiproliferative Activity as a Novel Heterocycle Building Block. ChemMedChem 2021; 16:3003-3016. [PMID: 34231318 DOI: 10.1002/cmdc.202100383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/27/2021] [Indexed: 01/15/2023]
Abstract
We prepared a series of free NH and N-substituted dibenzonthiazines with potential anti-tumor activity from N-aryl-benzenesulfonamides. A biological test of synthesized compounds (59 samples) was performed in vitro measuring their antiproliferative activity against a panel of six human solid tumor cell lines and its tubulin inhibitory activity. We identified 6-(phenylsulfonyl)-6H-dibenzo[c,e][1,2]thiazine 5,5-dioxide and 6-tosyl-6H-dibenzo[c,e][1,2]thiazine 5,5-dioxide as the best compounds with promising values of activity (overall range of 2-5.4 μM). Herein, we report the dibenzothiazine core as a novel building block with antiproliferative activity, targeting tubulin dynamics.
Collapse
Affiliation(s)
- Walter D Guerra
- Instituto de Investigaciones en Físico Química de Córdoba, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Rafael Hortigüela
- Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Roberto A Rossi
- Instituto de Investigaciones en Físico Química de Córdoba, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - J Fernando Díaz
- Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
| | - Silvia M Barolo
- Instituto de Investigaciones en Físico Química de Córdoba, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| |
Collapse
|
96
|
Mahapatra S, Sahu SS. Integrating Resonant Recognition Model and Stockwell Transform for Localization of Hotspots in Tubulin. IEEE Trans Nanobioscience 2021; 20:345-353. [PMID: 33950844 DOI: 10.1109/tnb.2021.3077710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tubulin is a promising target for designing anti-cancer drugs. Identification of hotspots in multifunctional Tubulin protein provides insights for new drug discovery. Although machine learning techniques have shown significant results in prediction, they fail to identify the hotspots corresponding to a particular biological function. This paper presents a signal processing technique combining resonant recognition model (RRM) and Stockwell Transform (ST) for the identification of hotspots corresponding to a particular functionality. The characteristic frequency (CF) representing a specific biological function is determined using the RRM. Then the spectrum of the protein sequence is computed using ST. The CF is filtered from the ST spectrum using a time-frequency mask. The energy peaks in the filtered sequence represent the hotspots. The hotspots predicted by the proposed method are compared with the experimentally detected binding residues of Tubulin stabilizing drug Taxol and destabilizing drug Colchicine present in the Tubulin protein. Out of the 53 experimentally identified hotspots, 60% are predicted by the proposed method whereas around 20% are predicted by existing machine learning based methods. Additionally, the proposed method predicts some new hot spots, which may be investigated.
Collapse
|
97
|
Li T, Yu P, Chen Y, Sun B, Dong P, Zhu T, Meng X. N-acetylgalactosamine-decorated nanoliposomes for targeted delivery of paclitaxel to hepatocellular carcinoma. Eur J Med Chem 2021; 222:113605. [PMID: 34126457 DOI: 10.1016/j.ejmech.2021.113605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
In this study, we designed and developed a novel asialoglycoprotein receptor (ASGPR)-targeted PEGylated paclitaxel (PTX) nanoliposome for hepatocellular carcinoma (HCC). N-acetylgalactosamine with α configuration (Tn) was synthesized and used as the active targeting ligand. Notably, Tn modified nanoliposomes loaded with PTX (Tn-Lipo-PTX) showed a narrow distribution (PDI = 0.18-0.20) with 74 ± 0.36 nm of average sizes. Tn-Lipo-PTX has a high encapsulation efficiency of more than 93.0% and 13% of drug loading (DL). Compared with no targeted Con-Lipo-PTX, Tn-Lipo-PTX showed lower and sustained release characteristic in PBS in vitro. Tn targeting ASGPR was confirmed by HepG-2 cells uptake experiment by fluorescence microscopy analysis. Tn-Lipo-PTX accumulated in HepG-2 cells and this process was inhibited by adding Tn ligand, supporting receptor-mediated endocytosis mechanism. MTT assays was implemented in four cell lines. Tn-Lipo-PTX exhibited superior inhibition against ASGPR on over-expressing HepG-2 (IC50 = 1.93 nM). The cell cycle experiments showed that Tn-Lipo-PTX could efficiently increase the percentage of cells arrest in the G2/M phase. Through western blotting analysis, the β-tubulin and cyclin B1 expression in the Tn-Lipo-PTX group were significantly higher compared with other groups and the CDK1 was down-regulated compared with PTX group, which indicated that targeting liposome delivery system could not only change periodic proteins expression, but also improve the killing effect of PTX on hepatocarcinoma cell. Tn-installed PEGylated nanoliposomes have a great potential for targeted cancer chemotherapy.
Collapse
Affiliation(s)
- Tingshen Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin, 300457, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin, 300457, China
| | - Yihao Chen
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin, 300457, China
| | - Baoying Sun
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin, 300457, China
| | - Peijie Dong
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin, 300457, China
| | - Tao Zhu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin, 300457, China; CanSino Biologics Inc., Tianjin Enterprise Key Laboratory of Respiratory Bacterial Recombination and Conjugated Vaccine, Tianjin, 300457, China
| | - Xin Meng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin, 300457, China.
| |
Collapse
|
98
|
Multi-functionalized dendrimers for targeted co-delivery of sorafenib and paclitaxel in liver cancers. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
99
|
Jójárt R, Tahaei SAS, Trungel-Nagy P, Kele Z, Minorics R, Paragi G, Zupkó I, Mernyák E. Synthesis and evaluation of anticancer activities of 2- or 4-substituted 3-( N-benzyltriazolylmethyl)-13α-oestrone derivatives. J Enzyme Inhib Med Chem 2021; 36:58-67. [PMID: 33121276 PMCID: PMC7598997 DOI: 10.1080/14756366.2020.1838500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
2- or 4-Substituted 3-N-benzyltriazolylmethyl-13α-oestrone derivatives were synthesised via bromination of ring A and subsequent microwave-assisted, Pd-catalysed C(sp2)–P couplings. The antiproliferative activities of the newly synthesised brominated and phosphonated compounds against a panel of human cancer cell lines (A2780, MCF-7, MDA-MB 231) were investigated by means of MTT assays. The most potent compound, the 3-N-benzyltriazolylmethyl-4-bromo-13α-oestrone derivative exerted substantial selective cell growth-inhibitory activity against A2780 cell line with a submicromolar IC50 value. Computational calculations reveal strong interactions of the 4-bromo derivative with both colchicine and taxoid binding sites of tubulin. Disturbance of tubulin function has been confirmed by photometric polymerisation assay.
Collapse
Affiliation(s)
- Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | | | | | - Zoltán Kele
- Department of Medicinal Chemistry, University of Szeged, Szeged, Hungary
| | - Renáta Minorics
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
100
|
Antitumor Effects of a Sesquiterpene Derivative from Marine Sponge in Human Breast Cancer Cells. Mar Drugs 2021; 19:md19050244. [PMID: 33925873 PMCID: PMC8144972 DOI: 10.3390/md19050244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
In this study, the anti-proliferative effect of ilimaquinone, a sesquiterpene derivative from the marine sponge, in breast cancer cells was investigated. Ilimaquinone inhibited the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values of 10.6 μM and 13.5 μM, respectively. Non-tumorigenic human breast epithelial cells were less sensitive to ilimaquinone than breast cancer cells. Flow cytometric and Western blot analysis showed that ilimaquinone induced S-phase arrest by modulating the expression of p-CDC-2 and p21. Ilimaquinone induces apoptosis, which is accompanied by multiple biological biomarkers, including the downregulation of Akt, ERK, and Bax, upregulation of p38, loss of mitochondrial membrane potential, increased reactive oxygen species generation, and induced autophagy. Collectively, these findings suggest that ilimaquinone causes cell cycle arrest as well as induces apoptosis and autophagy in breast cancer cells.
Collapse
|