51
|
Kumar MR, Ehrhardt C, Schneider M, Bakowsky U, Lamprecht A. Editorial to 'Biological Barriers to Drug Delivery'. Adv Drug Deliv Rev 2021; 177:113963. [PMID: 34481033 DOI: 10.1016/j.addr.2021.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
52
|
Dubashynskaya NV, Raik SV, Dubrovskii YA, Shcherbakova ES, Demyanova EV, Shasherina AY, Anufrikov YA, Poshina DN, Dobrodumov AV, Skorik YA. Hyaluronan/colistin polyelectrolyte complexes: Promising antiinfective drug delivery systems. Int J Biol Macromol 2021; 187:157-165. [PMID: 34298050 DOI: 10.1016/j.ijbiomac.2021.07.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Nanotechnology-based modification of known antimicrobial agents is a rational and straightforward way to improve their safety and effectiveness. The aim of this study was to develop colistin (CT)-loaded polymeric carriers based on hyaluronic acid (HA) for potential application as antimicrobial agents against multi-resistant gram-negative microorganisms (including ESKAPE pathogens). CT-containing particles were obtained via a polyelectrolyte interaction between protonated CT amino groups and HA carboxyl groups (the CT-HA complex formation constant [logKCT-HA] was about 5.0). The resulting polyelectrolyte complexes had a size of 210-250 nm and a negative charge (ζ-potential -19 mV), with encapsulation and loading efficiencies of 100% and 20%, respectively. The developed CT delivery systems were characterized by modified release (45% and 85% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro tests showed that the encapsulation of CT in polymer particles did not reduce its pharmacological activity; the minimum inhibitory concentrations of both encapsulated CT and pure CT were 1 μg/mL (against Pseudomonas aeruginosa).
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Sergei V Raik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yaroslav A Dubrovskii
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation; Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation; St. Petersburg State Chemical Pharmaceutical University, Prof. Popova 14, St. Petersburg 197376, Russian Federation
| | - Elena S Shcherbakova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Elena V Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Anna Y Shasherina
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation
| | - Yuri A Anufrikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation
| | - Daria N Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Anatoliy V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
53
|
Al-Obaidi H, Granger A, Hibbard T, Opesanwo S. Pulmonary Drug Delivery of Antimicrobials and Anticancer Drugs Using Solid Dispersions. Pharmaceutics 2021; 13:1056. [PMID: 34371747 PMCID: PMC8309119 DOI: 10.3390/pharmaceutics13071056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023] Open
Abstract
It is well established that currently available inhaled drug formulations are associated with extremely low lung deposition. Currently available technologies alleviate this low deposition problem via mixing the drug with inert larger particles, such as lactose monohydrate. Those inert particles are retained in the inhalation device or impacted in the throat and swallowed, allowing the smaller drug particles to continue their journey towards the lungs. While this seems like a practical approach, in some formulations, the ratio between the carrier to drug particles can be as much as 30 to 1. This limitation becomes more critical when treating lung conditions that inherently require large doses of the drug, such as antibiotics and antivirals that treat lung infections and anticancer drugs. The focus of this review article is to review the recent advancements in carrier free technologies that are based on coamorphous solid dispersions and cocrystals that can improve flow properties, and help with delivering larger doses of the drug to the lungs.
Collapse
Affiliation(s)
- Hisham Al-Obaidi
- The School of Pharmacy, University of Reading, Reading RG6 6AD, UK; (A.G.); (T.H.); (S.O.)
| | | | | | | |
Collapse
|
54
|
Ponkshe P, Feng S, Tan C. Inhalable liposomes for treating lung diseases: clinical development and challenges. Biomed Mater 2021; 16. [PMID: 34134097 DOI: 10.1088/1748-605x/ac0c0c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/16/2021] [Indexed: 12/15/2022]
Abstract
Inhalation delivery of liposomal drugs has distinct advantages for the treatment of pulmonary diseases. Inhalable liposomes of several drugs are currently undergoing clinical trials for a range of indications in the lungs. Herein, general principles of pulmonary delivery as well as the clinical development of inhalable liposomal drugs are reviewed.
Collapse
Affiliation(s)
- Pranav Ponkshe
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University, Mississippi 38655, The United States
| | - Sheng Feng
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University, Mississippi 38655, The United States
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University, Mississippi 38655, The United States
| |
Collapse
|
55
|
Schütz C, Ho D, Hamed MM, Abdelsamie AS, Röhrig T, Herr C, Kany AM, Rox K, Schmelz S, Siebenbürger L, Wirth M, Börger C, Yahiaoui S, Bals R, Scrima A, Blankenfeldt W, Horstmann JC, Christmann R, Murgia X, Koch M, Berwanger A, Loretz B, Hirsch AKH, Hartmann RW, Lehr C, Empting M. A New PqsR Inverse Agonist Potentiates Tobramycin Efficacy to Eradicate Pseudomonas aeruginosa Biofilms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004369. [PMID: 34165899 PMCID: PMC8224453 DOI: 10.1002/advs.202004369] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/21/2021] [Indexed: 05/21/2023]
Abstract
Pseudomonas aeruginosa (PA) infections can be notoriously difficult to treat and are often accompanied by the development of antimicrobial resistance (AMR). Quorum sensing inhibitors (QSI) acting on PqsR (MvfR) - a crucial transcriptional regulator serving major functions in PA virulence - can enhance antibiotic efficacy and eventually prevent the AMR. An integrated drug discovery campaign including design, medicinal chemistry-driven hit-to-lead optimization and in-depth biological profiling of a new QSI generation is reported. The QSI possess excellent activity in inhibiting pyocyanin production and PqsR reporter-gene with IC50 values as low as 200 and 11 × 10-9 m, respectively. Drug metabolism and pharmacokinetics (DMPK) as well as safety pharmacology studies especially highlight the promising translational properties of the lead QSI for pulmonary applications. Moreover, target engagement of the lead QSI is shown in a PA mucoid lung infection mouse model. Beyond that, a significant synergistic effect of a QSI-tobramycin (Tob) combination against PA biofilms using a tailor-made squalene-derived nanoparticle (NP) formulation, which enhance the minimum biofilm eradicating concentration (MBEC) of Tob more than 32-fold is demonstrated. The novel lead QSI and the accompanying NP formulation highlight the potential of adjunctive pathoblocker-mediated therapy against PA infections opening up avenues for preclinical development.
Collapse
|
56
|
Allawadhi P, Singh V, Khurana I, Rawat PS, Renushe AP, Khurana A, Navik U, Allwadhi S, Kumar Karlapudi S, Banothu AK, Bharani KK. Decorin as a possible strategy for the amelioration of COVID-19. Med Hypotheses 2021; 152:110612. [PMID: 34098463 PMCID: PMC8133800 DOI: 10.1016/j.mehy.2021.110612] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022]
Abstract
Coronavirus pandemic has emerged as an extraordinary healthcare crisis in modern times. The SARS-CoV-2 novel coronavirus has high transmission rate, is more aggressive and virulent in comparison to previously known coronaviruses. It primarily attacks the respiratory system by inducing cytokine storm that causes systemic inflammation and pulmonary fibrosis. Decorin is a pluripotent molecule belonging to a leucine rich proteoglycan group that exerts critical role in extracellular matrix (ECM) assembly and regulates cell growth, adhesion, proliferation, inflammation, and fibrogenesis. Interestingly, decorin has potent anti-inflammatory, cytokine inhibitory, and anti-fibrillogenesis effects which make it a potential drug candidate against the COVID-19 related complications especially in the context of lung fibrosis. Herein, we postulate that owing to its distinctive pharmacological actions and immunomodulatory effect, decorin can be a promising preclinical therapeutic agent for the therapy of COVID-19.
Collapse
Affiliation(s)
- Prince Allawadhi
- Department of Pharmacy, Vaish Institute of Pharmaceutical Education and Research (VIPER), Pandit Bhagwat Dayal Sharma University of Health Sciences (Pt. B. D. S. UHS), Rohtak - 124001, Haryana, India
| | - Vishakha Singh
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Pushkar Singh Rawat
- Department of Pharmacology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Akshata Patangrao Renushe
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Warangal 506166, Telangana, India.
| | - Umashanker Navik
- Department of Pharmacology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Sachin Allwadhi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak 124001, Haryana, India
| | - Satish Kumar Karlapudi
- Department of Veterinary Medicine, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India; Department of Aquatic Animal Health Management, College of Fishery Science, PVNRTVU, Pebbair, Wanaparthy 509104, Telangana, India
| | - Kala Kumar Bharani
- Department of Aquatic Animal Health Management, College of Fishery Science, PVNRTVU, Pebbair, Wanaparthy 509104, Telangana, India.
| |
Collapse
|
57
|
Melchor-Martínez EM, Torres Castillo NE, Macias-Garbett R, Lucero-Saucedo SL, Parra-Saldívar R, Sosa-Hernández JE. Modern World Applications for Nano-Bio Materials: Tissue Engineering and COVID-19. Front Bioeng Biotechnol 2021; 9:597958. [PMID: 34055754 PMCID: PMC8160436 DOI: 10.3389/fbioe.2021.597958] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past years, biomaterials-based nano cues with multi-functional characteristics have been engineered with high interest. The ease in fine tunability with maintained compliance makes an array of nano-bio materials supreme candidates for the biomedical sector of the modern world. Moreover, the multi-functional dimensions of nano-bio elements also help to maintain or even improve the patients' life quality most securely by lowering or diminishing the adverse effects of in practice therapeutic modalities. Therefore, engineering highly efficient, reliable, compatible, and recyclable biomaterials-based novel corrective cues with multipurpose applications is essential and a core demand to tackle many human health-related challenges, e.g., the current COVID-19 pandemic. Moreover, robust engineering design and properly exploited nano-bio materials deliver wide-ranging openings for experimentation in the field of interdisciplinary and multidisciplinary scientific research. In this context, herein, it is reviewed the applications and potential on tissue engineering and therapeutics of COVID-19 of several biomaterials. Following a brief introduction is a discussion of the drug delivery routes and mechanisms of biomaterials-based nano cues with suitable examples. The second half of the review focuses on the mainstream applications changing the dynamics of 21st century materials. In the end, current challenges and recommendations are given for a healthy and foreseeable future.
Collapse
|
58
|
Ji G, Li Q, Shen Y, Gan J, Xu L, Wang Y, Luo H, Yang Y, Dong E, Zhang G, Liu B, Yue X, Zhang W, Yang H. Eradication of large established tumors by drug-loaded bacterial particles via a neutrophil-mediated mechanism. J Control Release 2021; 334:52-63. [PMID: 33878368 DOI: 10.1016/j.jconrel.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/13/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
The treatment of large established tumors remains a significant challenge and is generally hampered by poor drug penetration and intrinsic drug resistance of tumor cells in the central tumor region. In the present study, we developed bacterial particles (BactPs) to deliver chemotherapeutics into the tumor mass by hijacking neutrophils as natural cell-based carriers. BactPs loaded with doxorubicin, 5-fluorosuracil, or paclitaxel induced significantly greater tumor regression than unconjugated drugs. This effect was mediated by the ability of BactPs to incorporate chemotherapeutics and serve as vascular disrupting agents that trigger innate host responses and recruit phagocytic neutrophils. Vascular disruption resulted in extensive cell death in the central areas of the tumor mass. Recruited neutrophils acted as natural cellular carriers to deliver engulfed BactPs, which ensured drug delivery into the tumor mass and cytotoxic effects in areas that are normally inaccessible to traditional chemotherapy. Thus, BactPs eradicate large established tumors by functioning as vascular disrupters and natural drug carriers for neutrophil-mediated chemotherapy.
Collapse
Affiliation(s)
- Gaili Ji
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Qiqi Li
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yuge Shen
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Jia Gan
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Lin Xu
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, China
| | - Hui Luo
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yun Yang
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - E Dong
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Guimin Zhang
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Binrui Liu
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Xiaozhu Yue
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Wei Zhang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China.
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China; Experimental and Research Animal Institute, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
59
|
Xiao Z, Zhuang B, Zhang G, Li M, Jin Y. Pulmonary delivery of cationic liposomal hydroxycamptothecin and 5-aminolevulinic acid for chemo-sonodynamic therapy of metastatic lung cancer. Int J Pharm 2021; 601:120572. [PMID: 33831485 DOI: 10.1016/j.ijpharm.2021.120572] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/13/2021] [Accepted: 03/31/2021] [Indexed: 12/31/2022]
Abstract
Sonodynamic therapy (SDT) has been tried for cancer treatment; however, sonosensitizers are usually administered by injection, leading to low distribution in the tumor tissue and compromised therapeutic effect, even serious side effect. Here, we combined cationic liposomal hydroxycamptothecin (CLH) and 5-aminolevulinic acid (5-ALA) via intratracheal (i.t.) administration for the chemo-sonodynamic (Chemo-SDT) therapy of metastatic lung cancer. CLH was prepared from HCPT and the lipid mixture of soybean lecithin/cholesterol/octadecylamine with a film method. The optimal pre-incubation time of 5-ALA with tumor cells before ultrasound exposure was 4 h, for sake of sonosensitizer accumulation, i.e., protoporphyrin IX, the metabolite of 5-ALA. In vitro studies showed the higher cytotoxicity of Chemo-SDT compared to the other treatments, including i.t. CLH, intravenous (i.v.) CLH, and SDT alone. The combination of pulmonary delivery and Chemo-SDT showed the highest anticancer effect among the treatments on the metastatic lung tumor-bearing mice, which was judged according to the tumor appearance and pathological sections. The major anticancer mechanism of Chemo-SDT included the improved apoptosis of cancer cells and the enhanced production of reactive oxygen species, and more importantly, the synergy of chemotherapy and SDT. Pulmonary delivery of chemotherapeutics and sonosensitizers is a promising strategy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Zhimei Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Bo Zhuang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Department of Chemical Defense, Institute of NBC Defense, Beijing 102205, China
| | - Guoli Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Miao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, China.
| |
Collapse
|
60
|
Effect of surface decoration on properties and drug release ability of nanogels. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
61
|
Pinto AM, Silva MD, Pastrana LM, Bañobre-López M, Sillankorva S. The clinical path to deliver encapsulated phages and lysins. FEMS Microbiol Rev 2021; 45:6204673. [PMID: 33784387 DOI: 10.1093/femsre/fuab019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
The global emergence of multidrug-resistant pathogens is shaping the current dogma regarding the use of antibiotherapy. Many bacteria have evolved to become resistant to conventional antibiotherapy, representing a health and economic burden for those afflicted. The search for alternative and complementary therapeutic approaches has intensified and revived phage therapy. In recent decades, the exogenous use of lysins, encoded in phage genomes, has shown encouraging effectiveness. These two antimicrobial agents reduce bacterial populations; however, many barriers challenge their prompt delivery at the infection site. Encapsulation in delivery vehicles provides targeted therapy with a controlled compound delivery, surpassing chemical, physical and immunological barriers that can inactivate and eliminate them. This review explores phages and lysins' current use to resolve bacterial infections in the respiratory, digestive, and integumentary systems. We also highlight the different challenges they face in each of the three systems and discuss the advances towards a more expansive use of delivery vehicles.
Collapse
Affiliation(s)
- Ana Mafalda Pinto
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.,INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Maria Daniela Silva
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.,INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Lorenzo M Pastrana
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Manuel Bañobre-López
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Sanna Sillankorva
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| |
Collapse
|
62
|
Carius P, Horstmann JC, de Souza Carvalho-Wodarz C, Lehr CM. Disease Models: Lung Models for Testing Drugs Against Inflammation and Infection. Handb Exp Pharmacol 2021; 265:157-186. [PMID: 33095300 DOI: 10.1007/164_2020_366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lung diseases have increasingly attracted interest in the past years. The all-known fear of failing treatments against severe pulmonary infections and plans of the pharmaceutical industry to limit research on anti-infectives to a minimum due to cost reasons makes infections of the lung nowadays a "hot topic." Inhalable antibiotics show promising efficacy while limiting adverse systemic effects to a minimum. Moreover, in times of increased life expectancy in developed countries, the treatment of chronic maladies implicating inflammatory diseases, like bronchial asthma or chronic obstructive pulmonary disease, becomes more and more exigent and still lacks proper treatment.In this chapter, we address in vitro models as well as necessary in vivo models to help develop new drugs for the treatment of various severe pulmonary diseases with a strong focus on infectious diseases. By first presenting the essential hands-on techniques for the setup of in vitro models, we intend to combine these with already successful and interesting model approaches to serve as some guideline for the development of future models. The overall goal is to maximize time and cost-efficacy and to minimize attrition as well as animal trials when developing novel anti-infective therapeutics.
Collapse
Affiliation(s)
- Patrick Carius
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Justus C Horstmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Cristiane de Souza Carvalho-Wodarz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany. .,Department of Pharmacy, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
63
|
Cendra MDM, Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol Adv 2021; 49:107734. [PMID: 33785375 DOI: 10.1016/j.biotechadv.2021.107734] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Pseudomonas aeruginosa biofilms and the capacity of the bacterium to coexist and interact with a broad range of microorganisms have a substantial clinical impact. This review focuses on the main traits of P. aeruginosa biofilms, such as the structural composition and regulatory networks involved, placing particular emphasis on the clinical challenges they represent in terms of antimicrobial susceptibility and biofilm infection clearance. Furthermore, the ability of P. aeruginosa to grow together with other microorganisms is a significant pathogenic attribute with clinical relevance; hence, the main microbial interactions of Pseudomonas are especially highlighted and detailed throughout this review. This article also explores the infections caused by single and polymicrobial biofilms of P. aeruginosa and the current models used to recreate them under laboratory conditions. Finally, the antimicrobial and antibiofilm strategies developed against P. aeruginosa mono and multispecies biofilms are detailed at the end of this review.
Collapse
Affiliation(s)
- Maria Del Mar Cendra
- Bacterial Infections and Antimicrobial therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain.
| |
Collapse
|
64
|
Lavanya MN, Preethi R, Moses JA, Anandharamakrishnan C. Aerosol-based Pulmonary Delivery of Therapeutic Molecules from Food Sources: Delivery Mechanism, Research Trends, and the Way Forward. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1888971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- M. N. Lavanya
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - R. Preethi
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - J. A. Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - C. Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| |
Collapse
|
65
|
Deng Z, Kalin GT, Shi D, Kalinichenko VV. Nanoparticle Delivery Systems with Cell-Specific Targeting for Pulmonary Diseases. Am J Respir Cell Mol Biol 2021; 64:292-307. [PMID: 33095997 PMCID: PMC7909340 DOI: 10.1165/rcmb.2020-0306tr] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory disorders are among the most important medical problems threatening human life. The conventional therapeutics for respiratory disorders are hindered by insufficient drug concentrations at pathological lesions, lack of cell-specific targeting, and various biobarriers in the conducting airways and alveoli. To address these critical issues, various nanoparticle delivery systems have been developed to serve as carriers of specific drugs, DNA expression vectors, and RNAs. The unique properties of nanoparticles, including controlled size and distribution, surface functional groups, high payload capacity, and drug release triggering capabilities, are tailored to specific requirements in drug/gene delivery to overcome major delivery barriers in pulmonary diseases. To avoid off-target effects and improve therapeutic efficacy, nanoparticles with high cell-targeting specificity are essential for successful nanoparticle therapies. Furthermore, low toxicity and high degradability of the nanoparticles are among the most important requirements in the nanoparticle designs. In this review, we provide the most up-to-date research and clinical outcomes in nanoparticle therapies for pulmonary diseases. We also address the current critical issues in key areas of pulmonary cell targeting, biosafety and compatibility, and molecular mechanisms for selective cellular uptake.
Collapse
Affiliation(s)
- Zicheng Deng
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio; and
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Gregory T Kalin
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio; and
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
- Department of Pediatrics, College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
66
|
Bianco F, Salomone F, Milesi I, Murgia X, Bonelli S, Pasini E, Dellacà R, Ventura ML, Pillow J. Aerosol drug delivery to spontaneously-breathing preterm neonates: lessons learned. Respir Res 2021; 22:71. [PMID: 33637075 PMCID: PMC7908012 DOI: 10.1186/s12931-020-01585-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Delivery of medications to preterm neonates receiving non-invasive ventilation (NIV) represents one of the most challenging scenarios for aerosol medicine. This challenge is highlighted by the undersized anatomy and the complex (patho)physiological characteristics of the lungs in such infants. Key physiological restraints include low lung volumes, low compliance, and irregular respiratory rates, which significantly reduce lung deposition. Such factors are inherent to premature birth and thus can be regarded to as the intrinsic factors that affect lung deposition. However, there are a number of extrinsic factors that also impact lung deposition: such factors include the choice of aerosol generator and its configuration within the ventilation circuit, the drug formulation, the aerosol particle size distribution, the choice of NIV type, and the patient interface between the delivery system and the patient. Together, these extrinsic factors provide an opportunity to optimize the lung deposition of therapeutic aerosols and, ultimately, the efficacy of the therapy.In this review, we first provide a comprehensive characterization of both the intrinsic and extrinsic factors affecting lung deposition in premature infants, followed by a revision of the clinical attempts to deliver therapeutic aerosols to premature neonates during NIV, which are almost exclusively related to the non-invasive delivery of surfactant aerosols. In this review, we provide clues to the interpretation of existing experimental and clinical data on neonatal aerosol delivery and we also describe a frame of measurable variables and available tools, including in vitro and in vivo models, that should be considered when developing a drug for inhalation in this important but under-served patient population.
Collapse
Affiliation(s)
- Federico Bianco
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.P.A., 43122 Parma, Italy
| | - Fabrizio Salomone
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.P.A., 43122 Parma, Italy
| | - Ilaria Milesi
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.P.A., 43122 Parma, Italy
| | | | - Sauro Bonelli
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.P.A., 43122 Parma, Italy
| | - Elena Pasini
- Department of Preclinical Pharmacology, R&D, Chiesi Farmaceutici S.P.A., 43122 Parma, Italy
| | - Raffaele Dellacà
- TechRes Lab, Dipartimento Di Elettronica, Informazione E Bioingegneria (DEIB), Politecnico Di Milano University, Milano, Italy
| | | | - Jane Pillow
- School of Human Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
67
|
Turuvekere Vittala Murthy N, Agrahari V, Chauhan H. Polyphenols against infectious diseases: Controlled release nano-formulations. Eur J Pharm Biopharm 2021; 161:66-79. [PMID: 33588032 DOI: 10.1016/j.ejpb.2021.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
The emergence of multi-drug resistant (MDR) pathogens has become a global threat and a cause of significant morbidity and mortality around the world. Natural products have been used as a promising approach to counter the infectious diseases associated with these pathogens. The application of natural products and their derivatives especially polyphenolic compounds as antibacterial agents is an active area of research, and prior studies have successfully treated a variety of bacterial infections using these polyphenolic compounds. However, delivery of polyphenolic compounds has been challenging due to their physicochemical properties and often poor aqueous solubility. In this regard, nanotechnology-based novel drug delivery systems offer many advantages, including improving bioavailability and the controlled release of polyphenolic compounds. This review summarizes the pharmacological mechanism and use of nano-formulations in developing controlled release delivery systems of naturally occurring polyphenols in infectious diseases.
Collapse
Affiliation(s)
| | - Vibhuti Agrahari
- Department of Pharmaceutical Sciences, College of Pharmacy, Oklahoma University, Oklahoma City, OK 73117, United States
| | - Harsh Chauhan
- School of Pharmacy and Health Professionals, Creighton University, Omaha, NE 68178, United States.
| |
Collapse
|
68
|
Phan VHG, Trang Duong HT, Tran PT, Thambi T, Ho DK, Murgia X. Self-Assembled Amphiphilic Starch Based Drug Delivery Platform: Synthesis, Preparation, and Interactions with Biological Barriers. Biomacromolecules 2020; 22:572-585. [PMID: 33346660 DOI: 10.1021/acs.biomac.0c01430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Core-shell structured nanoparticles (NPs) render the simultaneous coloading capacity of both hydrophobic and hydrophilic drugs and may eventually enhance therapeutic efficacy. In this study, we employed a facile squalenoylation technology to synthesize a new amphiphilic starch derivative from partially oxidized starch, which self-assembled into core-shell starch NPs (StNPs) only at a squalenyl degree of substitution (DoS) of ∼1%. The StNPs characteristics could be tuned as the functions of the polymer molecular weight, DoS, and NPs concentration. The biopharmaceutical features of the StNPs, including colloidal stability, carrier properties, and biocompatibility, were carefully investigated. The interaction study between StNPs and mucin glycoproteins, the main organic component of mucus, revealed a moderate mucin interacting profile. Furthermore, the StNPs also showed good penetration through Pseudomonas aeruginosa biofilms. These results nominate StNPs as a versatile drug delivery platform with potential applications for mucosal drug delivery and the treatment of persistent infections.
Collapse
Affiliation(s)
- V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Huu Thuy Trang Duong
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Phu-Tri Tran
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, United States
| | | | - Duy-Khiet Ho
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Xabier Murgia
- Kusudama Therapeutics, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San, Sebastián 20014, Spain
| |
Collapse
|
69
|
Christmann R, Ho DK, Wilzopolski J, Lee S, Koch M, Loretz B, Vogt T, Bäumer W, Schaefer UF, Lehr CM. Tofacitinib Loaded Squalenyl Nanoparticles for Targeted Follicular Delivery in Inflammatory Skin Diseases. Pharmaceutics 2020; 12:E1131. [PMID: 33255225 PMCID: PMC7760822 DOI: 10.3390/pharmaceutics12121131] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 01/05/2023] Open
Abstract
Tofacitinib (TFB), a Janus kinase inhibitor, has shown excellent success off-label in treating various dermatological diseases, especially alopecia areata (AA). However, TFB's safe and targeted delivery into hair follicles (HFs) is highly desirable due to its systemic adverse effects. Nanoparticles (NPs) can enhance targeted follicular drug delivery and minimize interfollicular permeation and thereby reduce systemic drug exposure. In this study, we report a facile method to assemble the stable and uniform 240 nm TFB loaded squalenyl derivative (SqD) nanoparticles (TFB SqD NPs) in aqueous solution, which allowed an excellent loading capacity (LC) of 20%. The SqD NPs showed an enhanced TFB delivery into HFs compared to the aqueous formulations of plain drug in an ex vivo pig ear model. Furthermore, the therapeutic efficacy of the TFB SqD NPs was studied in a mouse model of allergic dermatitis by ear swelling reduction and compared to TFB dissolved in a non-aqueous mixture of acetone and DMSO (7:1 v/v). Whereas such formulation would not be acceptable for use in the clinic, the TFB SqD NPs dispersed in water illustrated a better reduction in inflammatory effects than plain TFB's aqueous formulation, implying both encouraging good in vivo efficacy and safety. These findings support the potential of TFB SqD NPs for developing a long-term topical therapy of AA.
Collapse
Affiliation(s)
- Rebekka Christmann
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany; (R.C.); (D.-K.H.); (S.L.); (B.L.)
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany;
| | - Duy-Khiet Ho
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany; (R.C.); (D.-K.H.); (S.L.); (B.L.)
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany;
| | - Jenny Wilzopolski
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany; (J.W.); (W.B.)
| | - Sangeun Lee
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany; (R.C.); (D.-K.H.); (S.L.); (B.L.)
| | - Marcus Koch
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany;
| | - Brigitta Loretz
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany; (R.C.); (D.-K.H.); (S.L.); (B.L.)
| | - Thomas Vogt
- Department of Dermatology, Saarland University Hospital, 66421 Homburg/Saar, Germany;
| | - Wolfgang Bäumer
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany; (J.W.); (W.B.)
| | - Ulrich F. Schaefer
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany;
| | - Claus-Michael Lehr
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany; (R.C.); (D.-K.H.); (S.L.); (B.L.)
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany;
| |
Collapse
|
70
|
Ho DK, LeGuyader C, Srinivasan S, Roy D, Vlaskin V, Chavas TEJ, Lopez CL, Snyder JM, Postma A, Chiefari J, Stayton PS. Fully synthetic injectable depots with high drug content and tunable pharmacokinetics for long-acting drug delivery. J Control Release 2020; 329:257-269. [PMID: 33217474 DOI: 10.1016/j.jconrel.2020.11.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 12/27/2022]
Abstract
Clinical studies have validated that antiretroviral (ARV) drugs can serve as an HIV pre-exposure prophylactic (PrEP) strategy. Dosing adherence remains a crucial factor determining the final efficacy outcomes, and both long-acting implants and injectable depot systems are being developed to improve patient adherence. Here, we describe an injectable depot platform that exploits a new mechanism for both formation and controlled release. The depot is a polymeric prodrug synthesized from monomers that incorporate an ARV drug tenofovir alafenamide (TAF) with degradable linkers that can be designed to control release rates. The prodrug monomers are synthetically incorporated into homopolymer or block designs that exhibit high drug weight percent (wt%) and also are hydrophobized in these prodrug segments to drive depot formation upon injection. Drug release converts those monomers to more hydrophilic pendant groups via linker cleavage, and as this drug release proceeds, the polymer chains losing hydrophobicity are then disassociated from the depot and released over time to provide a depot dissolution mechanism. We show that long-acting TAF depots can be designed as block copolymers or as homopolymers. They can also be designed with different linkers, for example with faster or slower degrading p-hydroxybenzyloxycarbonyl (Benzyl) and ethyloxycarbonyl (Alkyl) linkers, respectively. Diblock designs of p(glycerol monomethacrylate)-b-p(Alkyl-TAF-methacrylate) and p(glycerol monomethacrylate)-b-p(Benzyl-TAF-methacrylate) were first characterized in a mouse subcutaneous injection model. The alkylcarbamate linker design (TAF 51 wt%) showed excellent sustained release profiles of the key metabolite tenofovir (TFV) in skin and plasma over a 50-day period. Next, the homopolymer design with a high TAF drug wt% of 73% was characterized in the same model. The homopolymer depots with p(Alkyl-TAFMA) exhibited sustained TFV and TAF release profiles in skin and blood over 60 days, and TFV-DP concentrations in peripheral blood mononuclear cells (PBMC) were found to be at least 10-fold higher than the clinically suggested minimally EC90 protective concentration of 24 fmol/106 cells. These are the first reports of sustained parent TAF dosing observed in mouse and TFV-DP in mouse PBMC. IVIS imaging of rhodamine labeled homopolymer depots showed that degradation and release of the depot coincided with the sustained TAF release. Finally, these polymers showed excellent stability in accelerated stability studies over a six-month time period, and exceptional solubility of over 700 mg/mL in the DMSO formulation solvent. The homopolymer designs have a drug reservoir potential of well over a year at mg/day dosing and may not require cold chain storage for global health and developed world long-acting drug delivery applications.
Collapse
Affiliation(s)
- Duy-Khiet Ho
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States
| | - Clare LeGuyader
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States
| | - Selvi Srinivasan
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States
| | - Debashish Roy
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States
| | - Vladimir Vlaskin
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States
| | - Thomas E J Chavas
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States
| | - Ciana L Lopez
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States
| | - Jessica M Snyder
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195, United States
| | - Almar Postma
- CSIRO Manufacturing, Bag 10, Clayton South MDC, Victoria 3169, Australia
| | - John Chiefari
- CSIRO Manufacturing, Bag 10, Clayton South MDC, Victoria 3169, Australia
| | - Patrick S Stayton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
71
|
Zhao M, Jing Z, Zhou L, Zhao H, Du Q, Sun Z. Pharmacokinetic Research Progress of Anti-tumor Drugs Targeting for Pulmonary Administration. Curr Drug Metab 2020; 21:1117-1126. [PMID: 33183196 DOI: 10.2174/1389200221999201111193910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cancer is a major problem that threatens human survival and has a high mortality rate. The traditional chemotherapy methods are mainly intravenous injection and oral administration, but have obvious toxic and side effects. Anti-tumor drugs for pulmonary administration can enhance drug targeting, increase local drug concentration, and reduce the damage to systemic organs, especially for the treatment of lung cancer. METHODS The articles on the pharmacokinetics of anti-tumor drugs targeting pulmonary administration were retrieved from the Pub Med database. This article mainly took lung cancer as an example and summarized the pharmacokinetic characteristics of anti-tumor drugs targeting for pulmonary administration contained in nanoparticles, dendrimers, liposomes and micelles. RESULTS The review shows that the pharmacokinetics process of pulmonary administration is associated with a drug carrier by increasing the deposition and release of drugs in the lung, and retarding the lung clearance rate. Among them, the surface of dendrimers could be readily modified, and polymer micelles have favorable loading efficiency. In the case of inhalation administration, liposomes exhibit more excellent lung retention properties compared to other non-lipid carriers. Therefore, the appropriate drug carrier is instrumental to increase the curative effect of anti-tumor drugs and reduce the toxic effect on surrounding healthy tissues or organs. CONCLUSION In the process of pulmonary administration, the carrier-embedded antitumor drugs have the characteristics of targeted and sustained release compared with non-packaging drugs, which provides a theoretical basis for the clinical rational formulation of chemotherapy regimens. However, there is currently a lack of comparative research between drug packaging materials, and more importantly, the development of safe and effective anti-tumor drugs targeting for pulmonary administration requires more data.
Collapse
Affiliation(s)
- Mengfan Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziwei Jing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan,, China
| | - Lin Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan,, China
| | - Hongyu Zhao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan,, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan,, China
| |
Collapse
|
72
|
Wang W, Huang Z, Xue K, Li J, Wang W, Ma J, Ma C, Bai X, Huang Y, Pan X, Wu C. Development of Aggregation-Caused Quenching Probe-Loaded Pressurized Metered-Dose Inhalers with Fluorescence Tracking Potentials. AAPS PharmSciTech 2020; 21:296. [PMID: 33099699 DOI: 10.1208/s12249-020-01782-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, pressurized metered-dose inhalers (pMDIs) are getting more attention as an effective approach of pulmonary drug delivery, and nanoparticle-based formulations have become a new generation of pMDIs, especially for water insoluble drugs. Up until now, there is no clinical application of nanoparticle-based pMDIs. The main hurdle remains in the lack of knowledge of the in vivo fate of those systems. In this study, a fluorescent probe named P4 with aggregation-caused quenching (ACQ) effect was loaded in the nanoparticle-based pMDIs to track the in vivo fate. P4 probe expressed strong fluorescence when distributed in intact nanoparticles, but quenched in the in vivo aqueous environment due to molecular aggregation. Experimentally, P4 probe was encapsulated into solid lipid nanoparticles (SLN) as P4-SLN, and then, the formulation of pMDIs was optimized. The content (w/w) of the optimal formulation (P4-SLN-pMDIs) was as follows: 6.02% Pluronic® L64, 12.03% ethanol, 0.46% P4-SLN, and 81.49% 1,1,1,2-tetrafluoroethane (HFA-134a). P4-SLN-pMDI was transparent in appearance, possessed a particle size of 132.07 ± 3.56 nm, and the fine particle fraction (FPF) was 39.53 ± 1.94%, as well good stability was shown within 10 days. The results indicated P4-SLN-pMDI was successfully prepared. Moreover, the ACQ property of P4-SLN-pMDIs was verified, which ensured the fluorescence property as a credible tool for in vivo fate study. Taken together, this work established a platform that could provide a firm theoretical support for exploration of the in vivo fate of nanoparticle-based pMDIs in subsequent studies. Grapical abstract.
Collapse
Affiliation(s)
- Wenhua Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Zhengwei Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
- College of Pharmacy, Jinan University, Guangzhou, 511443, Guangdong, People's Republic of China
| | - Ke Xue
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jiaye Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jingyi Ma
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE68198, USA
| | - Cheng Ma
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xuequn Bai
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou, 511443, Guangdong, People's Republic of China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
- College of Pharmacy, Jinan University, Guangzhou, 511443, Guangdong, People's Republic of China
| |
Collapse
|
73
|
Ho DK, Christmann R, Murgia X, De Rossi C, Frisch S, Koch M, Schaefer UF, Loretz B, Desmaele D, Couvreur P, Lehr CM. Synthesis and Biopharmaceutical Characterization of Amphiphilic Squalenyl Derivative Based Versatile Drug Delivery Platform. Front Chem 2020; 8:584242. [PMID: 33195079 PMCID: PMC7604382 DOI: 10.3389/fchem.2020.584242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Limited drug loading capacity (LC), mostly below 5% w/w, is a significant drawback of nanoparticulate drug delivery systems (DDS). Squalenoylation technology, which employs bioconjugation of squalenyl moiety and drug, allows self-assemble of nanoparticles (NPs) in aqueous media with significantly high LC (>30% w/w). The synthesis and particle preparation of squalenoylated prodrugs are, however, not facile for molecules with multiple reactive groups. Taking a different approach, we describe the synthesis of amphiphilic squalenyl derivatives (SqDs) as well as the physicochemical and biopharmaceutical characterizations of their self-assembled NPs as DDSs. The SqDs included in this study are (i) cationic squalenyl diethanolamine (ii) PEGylated SqD (PEG 750 Da), (iii) PEGylated SqD (PEG 3,000 Da), and (iv) anionic squalenyl hydrogen sulfate. All four SqDs self-assemble into NPs in a size range from 100 to 200 nm in an aqueous solution. Furthermore, all NP derivatives demonstrate appropriate biocompatibility and adequate colloidal stability in physiological relevant pH environments. The mucoprotein binding of PEGylated NPs is reduced compared to the charged NPs. Most importantly, this technology allows excellent LC (at maximum of 45% w/w) of a wide range of multifunctional compounds, varying in physicochemical properties and molecular weight. Interestingly, the drug release profile can be tuned by different loading methods. In summary, the SqD-based NPs appear as versatile drug delivery platforms.
Collapse
Affiliation(s)
- Duy-Khiet Ho
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Rebekka Christmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Chiara De Rossi
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany
| | - Sarah Frisch
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Marcus Koch
- INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| | | | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany
| | - Didier Desmaele
- Faculté de Pharmacie, Institut Galien Paris Sud, Université Paris-Saclay, Chatenay-Malabry, France
| | - Patrick Couvreur
- Faculté de Pharmacie, Institut Galien Paris Sud, Université Paris-Saclay, Chatenay-Malabry, France
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
74
|
Formiga FR, Leblanc R, de Souza Rebouças J, Farias LP, de Oliveira RN, Pena L. Ivermectin: an award-winning drug with expected antiviral activity against COVID-19. J Control Release 2020; 329:758-761. [PMID: 33038449 PMCID: PMC7539925 DOI: 10.1016/j.jconrel.2020.10.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022]
Abstract
Ivermectin is an FDA-approved broad-spectrum antiparasitic agent with demonstrated antiviral activity against a number of DNA and RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite this promise, the antiviral activity of ivermectin has not been consistently proven in vivo. While ivermectin's activity against SARS-CoV-2 is currently under investigation in patients, insufficient emphasis has been placed on formulation challenges. Here, we discuss challenges surrounding the use of ivermectin in the context of coronavirus disease-19 (COVID-19) and how novel formulations employing micro- and nanotechnologies may address these concerns.
Collapse
Affiliation(s)
- Fabio Rocha Formiga
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil; Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), 50100-130 Recife, PE, Brazil.
| | - Roger Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | | | - Leonardo Paiva Farias
- Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), 40296-710 Salvador, BA, Brazil
| | - Ronaldo Nascimento de Oliveira
- Bioactive Compounds Synthesis Laboratory, Department of Chemistry, Federal Rural University of Pernambuco (UFRPE), 52171-900 Recife, PE, Brazil
| | - Lindomar Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil
| |
Collapse
|
75
|
Preparation of Hybrid Alginate-Chitosan Aerogel as Potential Carriers for Pulmonary Drug Delivery. Polymers (Basel) 2020; 12:polym12102223. [PMID: 32992662 PMCID: PMC7601040 DOI: 10.3390/polym12102223] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
This study aims to prepare hybrid chitosan-alginate aerogel microparticles without using additional ionic crosslinker as a possible pulmonary drug delivery system. The microparticles were prepared using the emulsion gelation method. The effect of the mixing order of the biopolymer within the emulsion and the surfactant used on final particle properties were investigated. Physicochemical characterizations were performed to evaluate particle size, density, morphology, surface area, surface charge, and the crystallinity of the preparation. The developed preparation was evaluated for its acute toxicity in adult male Sprague-Dawley rats. Measurements of zeta potential suggest that the surface charge depends mainly on the surfactant type while the order of biopolymer mixing has less impact on the surface charge. Chitosan amphiphilic properties changed the hydrophilic-lipophilic balance (HLB) of the emulsifying agents. The specific surface area of the prepared microparticles was in the range of (29.36-86.20) m2/g with a mesoporous pore size of (12.48-13.38) nm and pore volume of (0.09-0.29) cm3/g. The calculated aerodynamic diameter of the prepared particles was in the range of (0.17-2.29 µm). Toxicity studies showed that alginate-chitosan carrier developed herein caused mild lung inflammation with some renal and hepatic toxicities.
Collapse
|
76
|
Dałek P, Borowik T, Reczyńska K, Pamuła E, Chrzanowski W, Langner M. Evaluation of the In Vitro Stability of Stimuli-Sensitive Fatty Acid-Based Microparticles for the Treatment of Lung Cancer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11138-11146. [PMID: 32856922 PMCID: PMC7513473 DOI: 10.1021/acs.langmuir.0c02141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The fatty acid-based microparticles containing iron oxide nanoparticles and paclitaxel (PAX) are a viable proposition for the treatment of lung cancer. The microparticles inhaled as a dry powder can be guided to selected locations using an external magnetic field, and when accumulated there, the active compound release can be triggered by local hyperthermia. However, this general strategy requires that the active compound is released from microparticles and can reach the targeted cells before microparticles are removed. Isothermal titration calorimetry was used to demonstrate that the components of microparticles were released and transferred to albumins and lipid bilayers. The morphology of the measured particulates was studied with scanning electron microscopy and dynamic light scattering. To determine the cytotoxicity of microparticles, cell culture studies were done. It has been shown that the transfer efficiency depends predominantly on the fatty acid composition of microparticles, which, together with the active ingredient, accumulate predominantly in membrane structures after being released from microparticles and before entering the cytoplasm. The release process is sufficient; hence, paclitaxel-loaded microparticles effectively suppressed the proliferation of A549 human lung epithelial cells of malignant origin (IC50 values for both lauric acid-based and myristic/palmitic-based microparticles containing paclitaxel were below 0.375 μg/mL), while reference microparticles were noncytotoxic.
Collapse
Affiliation(s)
- Paulina Dałek
- Department
of Biomedical Engineering, Wrocław
University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego
27, 51-270 Wrocław, Poland
| | - Tomasz Borowik
- Lipotech
Sp. Z o.o., Wadowicka
8A, 30-415 Kraków, Poland
| | - Katarzyna Reczyńska
- Faculty
of Materials Science and Ceramics, AGH University
of Science and Technology, Aleja Adama Mickiewicza 30, 30-059 Kraków, Poland
| | - Elżbieta Pamuła
- Faculty
of Materials Science and Ceramics, AGH University
of Science and Technology, Aleja Adama Mickiewicza 30, 30-059 Kraków, Poland
| | - Wojciech Chrzanowski
- Faculty
of Pharmacy, The University of Sydney, Pharmacy Building A15, Sydney, NSW 2006, Australia
| | - Marek Langner
- Department
of Biomedical Engineering, Wrocław
University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego
27, 51-270 Wrocław, Poland
| |
Collapse
|
77
|
Souza F, Fornasier F, Carvalho A, Silva B, Lima M, Pimentel A. Polymer-coated gold nanoparticles and polymeric nanoparticles as nanocarrier of the BP100 antimicrobial peptide through a lung surfactant model. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
78
|
Ho DK, De Rossi C, Loretz B, Murgia X, Lehr CM. Itaconic Acid Increases the Efficacy of Tobramycin against Pseudomonas aeruginosa Biofilms. Pharmaceutics 2020; 12:E691. [PMID: 32707837 PMCID: PMC7463765 DOI: 10.3390/pharmaceutics12080691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/28/2023] Open
Abstract
The search for novel therapeutics against pulmonary infections, in particular Pseudomonas aeruginosa (PA) biofilm infections, has been intense to deal with the emergent rise of antimicrobial resistance. Despite the numerous achievements in drug discovery and delivery strategies, only a limited number of therapeutics reach the clinic. To allow a timely preclinical development, a formulation should be highly effective, safe, and most importantly facile to produce. Thus, a simple combination of known actives that enhances the therapeutic efficacy would be a preferential choice compared to advanced drug delivery systems. In this study, we propose a novel combination of an anti-inflammatory agent-itaconic acid (itaconate, IA)-and an approved antibiotic-tobramycin (Tob) or ciprofloxacin (Cipro). The combination of Tob and IA at a molar ratio of 1:5 increased the biofilm eradicating efficacy in the strain PA14 wild type (wt) by ~4-fold compared to Tob alone. In contrast, such effect was not observed for the combination of IA with Cipro. Subsequent studies on the influence of IA on bacterial growth, pyocyanin production, and Tob biofilm penetration indicated that complexation with IA enhanced the transport of Tob through the biofilm. We recommend the simple and effective combination of Tob:IA for further testing in advanced preclinical models of PA biofilm infections.
Collapse
Affiliation(s)
- Duy-Khiet Ho
- HIPS–Helmholtz Institute for Pharmaceutical Research Saarland, HZI—Helmholtz Center for Infection Research, D-66123 Saarbrücken, Germany; (C.D.R.); (B.L.)
| | - Chiara De Rossi
- HIPS–Helmholtz Institute for Pharmaceutical Research Saarland, HZI—Helmholtz Center for Infection Research, D-66123 Saarbrücken, Germany; (C.D.R.); (B.L.)
| | - Brigitta Loretz
- HIPS–Helmholtz Institute for Pharmaceutical Research Saarland, HZI—Helmholtz Center for Infection Research, D-66123 Saarbrücken, Germany; (C.D.R.); (B.L.)
| | - Xabier Murgia
- HIPS–Helmholtz Institute for Pharmaceutical Research Saarland, HZI—Helmholtz Center for Infection Research, D-66123 Saarbrücken, Germany; (C.D.R.); (B.L.)
| | - Claus-Michael Lehr
- HIPS–Helmholtz Institute for Pharmaceutical Research Saarland, HZI—Helmholtz Center for Infection Research, D-66123 Saarbrücken, Germany; (C.D.R.); (B.L.)
- Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
79
|
Ho D, Murgia X, De Rossi C, Christmann R, Hüfner de Mello Martins AG, Koch M, Andreas A, Herrmann J, Müller R, Empting M, Hartmann RW, Desmaele D, Loretz B, Couvreur P, Lehr C. Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of
P. aeruginosa
Biofilm Infections. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Duy‐Khiet Ho
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
- Current address: Department of Bioengineering School of Medicine University of Washington Seattle WA 98195 USA
| | - Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
- Current address: Kusudama Therapeutics Parque Científico y Tecnológico de Gipuzkoa 20014 Donostia-San Sebastián Spain
| | - Chiara De Rossi
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
| | - Rebekka Christmann
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
| | | | - Marcus Koch
- INM—Leibniz Institute for New Materials 66123 Saarbrücken Germany
| | - Anastasia Andreas
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig 66123 Saarbrücken Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig 66123 Saarbrücken Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
| | - Didier Desmaele
- Faculté de Pharmacie Institut Galien Paris Sud Université Paris-Saclay, UMR CNRS 8612 92296 Châtenay-Malabry France
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
| | - Patrick Couvreur
- Faculté de Pharmacie Institut Galien Paris Sud Université Paris-Saclay, UMR CNRS 8612 92296 Châtenay-Malabry France
| | - Claus‐Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
| |
Collapse
|
80
|
Ho DK, Murgia X, De Rossi C, Christmann R, Hüfner de Mello Martins AG, Koch M, Andreas A, Herrmann J, Müller R, Empting M, Hartmann RW, Desmaele D, Loretz B, Couvreur P, Lehr CM. Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of P. aeruginosa Biofilm Infections. Angew Chem Int Ed Engl 2020; 59:10292-10296. [PMID: 32243047 PMCID: PMC7317969 DOI: 10.1002/anie.202001407] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Indexed: 12/02/2022]
Abstract
Elimination of pulmonary Pseudomonas aeruginosa (PA) infections is challenging to accomplish with antibiotic therapies, mainly due to resistance mechanisms. Quorum sensing inhibitors (QSIs) interfering with biofilm formation can thus complement antibiotics. For simultaneous and improved delivery of both active agents to the infection sites, self‐assembling nanoparticles of a newly synthesized squalenyl hydrogen sulfate (SqNPs) were prepared. These nanocarriers allowed for remarkably high loading capacities of hydrophilic antibiotic tobramycin (Tob) and a novel lipophilic QSI at 30 % and circa 10 %, respectively. The drug‐loaded SqNPs showed improved biofilm penetration and enhanced efficacy in relevant biological barriers (mucin/human tracheal mucus, biofilm), leading to complete eradication of PA biofilms at circa 16‐fold lower Tob concentration than Tob alone. This study offers a viable therapy optimization and invigorates the research and development of QSIs for clinical use.
Collapse
Affiliation(s)
- Duy-Khiet Ho
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany.,Current address: Department of Bioengineering, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany.,Current address: Kusudama Therapeutics, Parque Científico y Tecnológico de Gipuzkoa, 20014, Donostia-San Sebastián, Spain
| | - Chiara De Rossi
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Rebekka Christmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | | | - Marcus Koch
- INM-Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
| | - Anastasia Andreas
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Rolf W Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Didier Desmaele
- Faculté de Pharmacie, Institut Galien Paris Sud, Université Paris-Saclay, UMR CNRS 8612, 92296, Châtenay-Malabry, France
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Patrick Couvreur
- Faculté de Pharmacie, Institut Galien Paris Sud, Université Paris-Saclay, UMR CNRS 8612, 92296, Châtenay-Malabry, France
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
81
|
Lacoma A, Usón L, Mendoza G, Sebastián V, Garcia-Garcia E, Muriel-Moreno B, Domínguez J, Arruebo M, Prat C. Novel intracellular antibiotic delivery system against Staphylococcus aureus: cloxacillin-loaded poly(d,l-lactide-co-glycolide) acid nanoparticles. Nanomedicine (Lond) 2020; 15:1189-1203. [DOI: 10.2217/nnm-2019-0371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: First, to compare in vitro minimum inhibitory concentrations (MIC) of free cloxacillin and cloxacillin-containing nanoparticles (NP) against methicillin-susceptible (MSSA) and resistant Staphylococcus aureus (MRSA) and second, to assess NP antimicrobial activity against intracellular S. aureus. Methods: Poly(d,l-lactide-co-glycolide) acid (PLGA)-NP were loaded with cloxacillin and physico-chemically characterized. MICs were determined for reference strains Newman-(MSSA) and USA300-(MRSA). Murine alveolar macrophages were infected, and bacterial intracellular survival was assessed after incubating with free-cloxacillin or PLGA-cloxacillin-NP. Results & conclusion: For both isolates, MICs for antibiotic-loaded-NP were lower than those obtained with free cloxacillin, indicating that the drug encapsulation improves antimicrobial activity. A sustained antibiotic release was demonstrated when using the PLGA-cloxacillin-NP. When considering the lowest concentrations, the use of drug-loaded NP enabled a higher reduction of intracellular bacterial load.
Collapse
Affiliation(s)
- Alicia Lacoma
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Fundació Institut d’Investigació en Ciències de la Salut GermansTrias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Laura Usón
- Institute of Nanoscience of Aragon (INA), Department of Chemical Engineering & Environmental Technologies, University of Zaragoza & Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018, Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| | - Gracia Mendoza
- Institute of Nanoscience of Aragon (INA), Department of Chemical Engineering & Environmental Technologies, University of Zaragoza & Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018, Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| | - Victor Sebastián
- Institute of Nanoscience of Aragon (INA), Department of Chemical Engineering & Environmental Technologies, University of Zaragoza & Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018, Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| | - Esther Garcia-Garcia
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Fundació Institut d’Investigació en Ciències de la Salut GermansTrias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Beatriz Muriel-Moreno
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Fundació Institut d’Investigació en Ciències de la Salut GermansTrias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Jose Domínguez
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Fundació Institut d’Investigació en Ciències de la Salut GermansTrias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Manuel Arruebo
- Institute of Nanoscience of Aragon (INA), Department of Chemical Engineering & Environmental Technologies, University of Zaragoza & Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018, Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| | - Cristina Prat
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Fundació Institut d’Investigació en Ciències de la Salut GermansTrias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
- Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
82
|
Dubashynskaya NV, Skorik YA. Polymyxin Delivery Systems: Recent Advances and Challenges. Pharmaceuticals (Basel) 2020; 13:E83. [PMID: 32365637 PMCID: PMC7281078 DOI: 10.3390/ph13050083] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Polymyxins are vital antibiotics for the treatment of multiresistant Gram-negative ESKAPE pathogen infections. However, their clinical value is limited by their high nephrotoxicity and neurotoxicity, as well as their poor permeability and absorption in the gastrointestinal tract. This review focuses on various polymyxin delivery systems that improve polymyxin bioavailability and reduce drug toxicity through targeted and controlled release. Currently, the most suitable systems for improving oral, inhalation, and parenteral polymyxin delivery are polymer particles, liposomes, and conjugates, while gels, polymer fibers, and membranes are attractive materials for topical administration of polymyxin for the treatment of infected wounds and burns. In general, the application of these systems protects polymyxin molecules from the negative effects of both physiological and pathological factors while achieving higher concentrations at the target site and reducing dosage and toxicity. Improving the properties of polymyxin will be of great interest to researchers who are focused on developing antimicrobial drugs that show increased efficacy and safety.
Collapse
Affiliation(s)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, St. Petersburg 199004, Russia;
| |
Collapse
|
83
|
Brillault J, Tewes F. Control of the Lung Residence Time of Highly Permeable Molecules after Nebulization: Example of the Fluoroquinolones. Pharmaceutics 2020; 12:pharmaceutics12040387. [PMID: 32340298 PMCID: PMC7238242 DOI: 10.3390/pharmaceutics12040387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
Pulmonary drug delivery is a promising strategy to treat lung infectious disease as it allows for a high local drug concentration and low systemic side effects. This is particularly true for low-permeability drugs, such as tobramycin or colistin, that penetrate the lung at a low rate after systemic administration and greatly benefit from lung administration in terms of the local drug concentration. However, for relatively high-permeable drugs, such as fluoroquinolones (FQs), the rate of absorption is so high that the pulmonary administration has no therapeutic advantage compared to systemic or oral administration. Formulation strategies have thus been developed to decrease the absorption rate and increase FQs’ residence time in the lung after inhalation. In the present review, some of these strategies, which generally consist of either decreasing the lung epithelium permeability or decreasing the release rate of FQs into the epithelial lining fluid after lung deposition, are presented in regards to their clinical aspects.
Collapse
Affiliation(s)
- Julien Brillault
- INSERM U-1070, Pôle Biologie Santé, 86000 Poitiers, France
- UFR Médecine-Pharmacie, Université de Poitiers, 86073 Poitiers, France
- Correspondence: (J.B.); (F.T.)
| | - Frédéric Tewes
- INSERM U-1070, Pôle Biologie Santé, 86000 Poitiers, France
- UFR Médecine-Pharmacie, Université de Poitiers, 86073 Poitiers, France
- Correspondence: (J.B.); (F.T.)
| |
Collapse
|
84
|
Artzy-Schnirman A, Lehr CM, Sznitman J. Advancing human in vitro pulmonary disease models in preclinical research: opportunities for lung-on-chips. Expert Opin Drug Deliv 2020; 17:621-625. [DOI: 10.1080/17425247.2020.1738380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Arbel Artzy-Schnirman
- Department of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
85
|
Zhang X, Yue X, Cui Y, Zhao Z, Huang Y, Cai S, Wang G, Wang W, Hugh S, Pan X, Wu C, Tan W. A Systematic Safety Evaluation of Nanoporous Mannitol Material as a Dry-Powder Inhalation Carrier System. J Pharm Sci 2020; 109:1692-1702. [PMID: 31987851 DOI: 10.1016/j.xphs.2020.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/28/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
For carrier-based dry-powder inhaler (DPI) formulations, the adhesion between carrier particles and active pharmaceutical ingredients (API) particles have a significant influence on the aerosolization performance of the API-carrier complexes and the desired detachment of the API for efficient pulmonary delivery. In our previous study, nanoporous mannitol material was successfully fabricated as carriers by a one-step nonorganic solvent spray drying method with the thermal degradation of ammonium carbonate. These carriers were shown to achieve excellent aerosolization performance. In addition, no residue of ammonium carbonate was detected on the powder surface. However, the safety of nanoporous mannitol carriers (Nano-PMCs) during pulmonary administration/delivery was still unknown because the lung is vulnerable to the inhaled particles. To address this question, the present study was conducted to construct a systematic safety evaluation for DPIs carriers to investigate the safety of Nano-PMCs in the whole inhalation, which would make up for the lack of detailed and standardized method in this field. In vitro safety evaluation was carried out using respiratory and pulmonary cytotoxicity tests, hemolysis assay, and ciliotoxicity test. In vivo safety evaluation was studied by measuring inflammatory indicators in the bronchoalveolar lavage fluid, assessing the pulmonary function and observing pulmonary pathological changes. Nano-PMCs showed satisfactory biocompatibility on respiratory tracts and lungs in vitro and in vivo. It was suggested that Nano-PMCs were safe for intrapulmonary delivery and potential as DPI carriers.
Collapse
Affiliation(s)
- Xuejuan Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, P. R. China; School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Xiao Yue
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Yingtong Cui
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Ziyu Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China; College of Pharmacy, Jinan University, Guangzhou, 511443 Guangdong, P. R. China.
| | - Shihao Cai
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Smyth Hugh
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China; College of Pharmacy, Jinan University, Guangzhou, 511443 Guangdong, P. R. China
| | - Wen Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, P. R. China
| |
Collapse
|
86
|
Sécher T, Mayor A, Heuzé-Vourc'h N. Inhalation of Immuno-Therapeutics/-Prophylactics to Fight Respiratory Tract Infections: An Appropriate Drug at the Right Place! Front Immunol 2019; 10:2760. [PMID: 31849954 PMCID: PMC6896187 DOI: 10.3389/fimmu.2019.02760] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 01/18/2023] Open
Affiliation(s)
- Thomas Sécher
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Tours, France.,Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
| | - Alexie Mayor
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Tours, France.,Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Tours, France.,Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
| |
Collapse
|