51
|
Chen Q, Cao Y, Li H, Liu H, Liu Y, Bi L, Zhao H, Jin L, Peng R. Sodium nitroprusside alleviates nanoplastics-induced developmental toxicity by suppressing apoptosis, ferroptosis and inflammation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118702. [PMID: 37536135 DOI: 10.1016/j.jenvman.2023.118702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
The health damage caused by nanoplastics (NPs) pollution has become one of the global scientific problems to be solved urgently. However, the toxicological mechanism of NPs is complex, and the research progress of anti-toxicity is limited. Thus, it has potential application value to explore or develop drugs that can effectively alleviate or remove NPs with biological toxicity. In this research, 8 μM sodium nitroprusside (SNP) solution was used to treat zebrafish larvae with 20 mg/L NPs for up to 12 days, and the results showed that SNP treatments were effective in alleviating NPs-caused developmental toxicity in zebrafish larvae. Further examination of its signaling pathway revealed that NPs-induced oxidative stress was mitigated by activating the NO-sGC-cGMP signaling pathway and reduced most of the reactive oxygen species (ROS). Subsequently, we detected the key substances and the key enzymes involved in apoptosis and ferroptosis, and found that oxidative stress-induced mitochondria-dependent apoptosis and lipid peroxidation-caused ferroptosis were alleviated. Finally, observed the accumulation of NPs and ROS in the liver of zebrafish larvae, which is the target organ of immunotoxicity, and we found that SNP could alleviate NPs-caused inflammation by analyzing the fluorescence intensity of neutrophils and macrophages in transgenic zebrafish and detecting the expression of key immune genes. In conclusion, this research has shown for the first time that SNP treatment can significantly inhibit NPs-induced developmental toxicity, resulting from oxidative stress-induced apoptosis, ferroptosis and inflammation in zebrafish larvae.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
52
|
Cuesta A, Espinosa C, Esteban MA, González-Fernández C. Application of transcriptomic profiling to investigate the toxicity mechanisms caused by dietary exposure of nanoplastics in fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106712. [PMID: 37813046 DOI: 10.1016/j.aquatox.2023.106712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
Nowadays, nanoplastics (NPs) are one of the main concerns regarding plastic pollution. The increasing presence of plastic particles, fibers and fragments in the marine environment pose an additional risk to both, wild and cultured fish. Ingestion is the main mechanism by which particles are internalized. Thus, this study evaluated the impact of a diet containing NPs in one of the most cultivated species across the Mediterranean Sea, the European sea bass (Dicentrarchus labrax). Polystyrene NPs (50 nm) were supplied in the food for a period of 21 days and the transcriptomic changes were measured in the intestine through RNA-seq. Additionally, enzymatic and bactericidal activities were measured in the liver or serum, respectively of the same fish to evaluate the organism stress. No significant changes in the enzymatic activities were observed in the liver, whilst the seric bactericidal activity decreased by NPs dietary treatments. This suggests that ingestion of NPs at low dosages might have an impact on fish health. In addition, our data suggested that NPs impact some important biological pathways related to fish morphogenesis, organ development, membrane receptors, and fish immunity. These routes are extremely important for fish development and growth and can have long-term impact, since the early stages of fish are the most sensitive to this kind of pollution. This study provides information on the impact of the ingestion of NPs in sea bass and can serve as a basis for future investigations on the prevention and treatment of such pollutants in aquaculture.
Collapse
Affiliation(s)
- Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Cristóbal Espinosa
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - María A Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | | |
Collapse
|
53
|
Huang J, Sun X, Wang Y, Su J, Li G, Wang X, Yang Y, Zhang Y, Li B, Zhang G, Li J, Du J, Nanjundappa RH, Umeshappa CS, Shao K. Biological interactions of polystyrene nanoplastics: Their cytotoxic and immunotoxic effects on the hepatic and enteric systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115447. [PMID: 37690176 DOI: 10.1016/j.ecoenv.2023.115447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
As emerging pollutants in the environment, nanoplastics (NPs) can cross biological barriers and be enriched in organisms, posing a greatest threat to the health of livestock and humans. However, the size-dependent toxic effects of NPs in higher mammals remain largely unknown. To determine the size-dependent potential toxicities of NPs, we exposed mouse (AML-12) and human (L02) liver cell lines in vitro, and 6-week-old C57BL/6 mice (well-known preclinical model) in vivo to five different sizes of polystyrene NPs (PS-NPs) (20, 50, 100, 200 and 500 nm). We found that ultra-small NPs (20 nm) induced the highest cytotoxicity in mouse and human liver cell lines, causing oxidative stress and mitochondrial membrane potential loss on AML-12 cells. Unexpectedly in vivo, after long-term oral exposure to PS-NPs (75 mg/kg), medium NPs (200 nm) and large NPs (500 nm) induced significant hepatotoxicity, evidenced by increased oxidative stress, liver dysfunction, and lipid metabolism disorders. Most importantly, medium or large NPs generated local immunotoxic effects via recruiting and activating more numbers of neutrophils and monocytes in the liver or intestine, which potentially resulted in increased proinflammatory cytokine secretion and the tissue damage. The discrepancy in in vitro-in vivo toxic results might be attributed to the different properties of biodistribution and tissue accumulation of different sized NPs in vivo. Our study provides new insights regarding the hepatotoxicity and immunotoxicity of NPs on human and livestock health, warranting us to take immense measures to prevent these NPs-associated health damage.
Collapse
Affiliation(s)
- Jiahao Huang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinbo Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jianlong Su
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xu Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuning Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuxuan Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bangjian Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanyi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinrong Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jing Du
- Liaoning Ocean and Fisheries Science Research Institute, 50# Heishijiao Road, Shahekou District, Dalian 116023, China
| | | | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pediatrics, IWK Research Center, Halifax, NS, Canada.
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
54
|
Lin LY, Kantha P, Horng JL. Toxic effects of polystyrene nanoparticles on the development, escape locomotion, and lateral-line sensory function of zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2023; 272:109701. [PMID: 37478959 DOI: 10.1016/j.cbpc.2023.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/24/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
Environmental pollution by micro- and nanosized plastic particles is a potential threat to aquatic animals. Polystyrene is one of the most common plastic particles in aquatic environments. Previous studies found that polystyrene nanoparticles (PNs) can penetrate the integument and accumulate in the organs of fish embryos. However, the potential impacts of PNs on fish embryos are not fully understood. To investigate this issue, zebrafish embryos were exposed to different concentrations (10, 25, and 50 mg/L) of PNs (25 nm) for 96 h (4-100 h post-fertilization), and various endpoints were examined, including developmental morphology (body length, sizes of the eyes, otic vesicles, otoliths, pericardial cavity, and yolk sac), locomotion (touch-evoked escape response and spinal motor neurons), and lateral-line function (hair cell number and hair bundle number). Exposure to 50 mg/L of PNs resulted in significant adverse effects across all endpoints studied, indicating that embryonic development was severely disrupted, and both locomotion and sensory function were impaired. However, at 25 mg/L of PNs, only locomotion and sensory function were significantly affected. The effects were insignificant in all examined endpoints at 10 mg/L of PNs. Transcript levels of several marker genes for neuronal function and eye development were suppressed after treatment. Exposure to fluorescent PNs showed that they accumulated in various organs including, the eyes, gills, blood vessels, gallbladder, gut, and lateral line neuromasts. Overall, this study suggests that short-term exposure to a high concentration of PNs can threaten fish survival by impairing embryonic development, locomotion performance, and mechanical sensory function.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Phunsin Kantha
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
55
|
Wang W, Mao X, Zhang R, Zhou XX, Liu Y, Zhou H, Jia J, Yan B. Nanoplastic Exposure at Environmental Concentrations Disrupts Hepatic Lipid Metabolism through Oxidative Stress Induction and Endoplasmic Reticulum Homeostasis Perturbation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14127-14137. [PMID: 37683116 DOI: 10.1021/acs.est.3c02769] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
In this study, we investigated the mechanism underlying the perturbation of hepatic lipid metabolism in response to micro/nanoplastic (MP/NP) exposure at environmentally relevant concentrations. Polystyrene (PS) MPs/NPs with different sizes (0.1, 0.5, and 5.0 μm) were studied for their effects on the homeostasis and function of Nile tilapia (Oreochromis niloticus) liver. Results showed that PS MPs/NPs were readily internalized and accumulated in various internal organs/tissues, especially in fish liver and muscle. Smaller-sized NPs caused more severe toxicity than larger MPs, including hepatic steatosis, inflammatory response, and disturbed liver function. Mechanistically, PS NPs with a particle size of 100 nm perturbed protein homeostasis in the endoplasmic reticulum (ER) by inhibiting the expression of chaperone proteins and genes involved in ER-associated degradation. This led to the activation of the PERK-eIF2α pathway, which caused dysfunction of hepatic lipid metabolism. Induction of oxidative stress and activation of the Nrf2/Keap1 pathway were also involved in the PS NP-induced hepatic lipid accumulation. These findings highlight the potential adverse effects of environmental MPs/NPs on aquatic organisms, raising concerns about their ecotoxicity and food safety.
Collapse
Affiliation(s)
- Weiyu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xuan Mao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Rui Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiao-Xia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yujiao Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hongyu Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
56
|
Dube E, Okuthe GE. Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6667. [PMID: 37681807 PMCID: PMC10488176 DOI: 10.3390/ijerph20176667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Plastics, due to their varied properties, find use in different sectors such as agriculture, packaging, pharmaceuticals, textiles, and construction, to mention a few. Excessive use of plastics results in a lot of plastic waste buildup. Poorly managed plastic waste (as shown by heaps of plastic waste on dumpsites, in free spaces, along roads, and in marine systems) and the plastic in landfills, are just a fraction of the plastic waste in the environment. A complete picture should include the micro and nano-plastics (MNPs) in the hydrosphere, biosphere, lithosphere, and atmosphere, as the current extreme weather conditions (which are effects of climate change), wear and tear, and other factors promote MNP formation. MNPs pose a threat to the environment more than their pristine counterparts. This review highlights the entry and occurrence of primary and secondary MNPs in the soil, water and air, together with their aging. Furthermore, the uptake and internalization, by plants, animals, and humans are discussed, together with their toxicity effects. Finally, the future perspective and conclusion are given. The material utilized in this work was acquired from published articles and the internet using keywords such as plastic waste, degradation, microplastic, aging, internalization, and toxicity.
Collapse
Affiliation(s)
- Edith Dube
- Department of Biological & Environmental Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | | |
Collapse
|
57
|
Chen Q, Zhao H, Liu Y, Jin L, Peng R. Factors Affecting the Adsorption of Heavy Metals by Microplastics and Their Toxic Effects on Fish. TOXICS 2023; 11:490. [PMID: 37368590 DOI: 10.3390/toxics11060490] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023]
Abstract
Fish not only constitute an important trophic level in aquatic ecosystems but also serve as an important source of protein for human beings. The health of fish is related to the sustained and healthy development of their entire aquatic ecosystem. Due to the widespread use, mass production, high disposal frequency, and degradation resistance of plastics, these pollutants are released into aquatic environments on a large scale. They have become one of the fastest growing pollutants and have a substantial toxic effect on fish. Microplastics have intrinsic toxicity and can absorb heavy metals discharged into water. The adsorption of heavy metals onto microplastics in aquatic environments is affected by many factors and serves as a convenient way for heavy metals to migrate from the environment to organisms. Fish are exposed to both microplastics and heavy metals. In this paper, the toxic effects of heavy metal adsorption by microplastics on fish are reviewed, and the focus is on the toxic effects at the individual (survival, feeding activity and swimming, energy reserves and respiration, intestinal microorganisms, development and growth, and reproduction), cellular (cytotoxicity, oxidative damage, inflammatory response, neurotoxicity, and metabolism) and molecular (gene expression) levels. This facilitates an assessment of the pollutants' impact on ecotoxicity and contributes to the regulation of these pollutants in the environment.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yinai Liu
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Libo Jin
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Renyi Peng
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
58
|
Duan Z, Wang J, Zhang H, Wang Y, Chen Y, Cong J, Gong Z, Sun H, Wang L. Elevated temperature decreases cardiovascular toxicity of nanoplastics but adds to their lethality: A case study during zebrafish (Danio rerio) development. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131679. [PMID: 37421853 DOI: 10.1016/j.jhazmat.2023.131679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/13/2023] [Accepted: 05/21/2023] [Indexed: 07/10/2023]
Abstract
To highlight the key role of global warming on the toxicity of contaminants, the cardiovascular toxicity of nanoparticles (NPs) was estimated in developing zebrafish (Danio rerio) at different exposure temperatures, and the toxicity mechanisms were explored via multi-omic analyses. Polystyrene NPs (50 nm) at 0.1 mg·L-1 entered zebrafish embryos at 24 h post-fertilization and caused cardiovascular toxicity in the developing zebrafish at 27 ℃. This was explained by the down-regulation of the branched-chain amino acid and insulin signaling pathways owing to induced oxidative stress. Elevated exposure temperatures promoted the accumulation of NPs in developing zebrafish, increased the levels of oxidative stress and enhanced the oxidative phosphorylation rate in mitochondria, thus resulting in an additive effect on the mortality of zebrafish larvae. Notably, elevated exposure temperatures reduced the cardiovascular toxicity of NPs, as the effective concentration of NPs for inhibiting embryonic heartbeat rate increased from 0.1 mg·L-1 at 27 ℃ to 1.0 mg·L-1 at 30 ℃. Experiments of transgenic zebrafish Tg(myl7:GFP) and multi-omic analyses revealed that elevated temperatures enhanced the myocardial contractility of larvae, thus reducing the cardiovascular toxicity of NPs. However, the health risks of enhanced myocardial contraction caused by NP exposure at elevated temperatures requires further consideration.
Collapse
Affiliation(s)
- Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Haihong Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yudi Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yizhuo Chen
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jiaoyue Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Hongwen Sun
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
59
|
Torres-Ruiz M, de Alba González M, Morales M, Martin-Folgar R, González MC, Cañas-Portilla AI, De la Vieja A. Neurotoxicity and endocrine disruption caused by polystyrene nanoparticles in zebrafish embryo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162406. [PMID: 36841402 DOI: 10.1016/j.scitotenv.2023.162406] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/05/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastics (NP) are present in aquatic and terrestrial ecosystems. Humans can be exposed to them through contaminated water, food, air, or personal care products. Mechanisms of NP toxicity are largely unknown and the Zebrafish embryo poses an ideal model to investigate them due to its high homology with humans. Our objective in the present study was to combine a battery of behavioral assays with the study of endocrine related gene expression, to further explore potential NP neurotoxic effects on animal behavior. Polystyrene nanoplastics (PSNP) were used to evaluate NP toxicity. Our neurobehavioral profiles include a tail coiling assay, a light/dark activity assay, two thigmotaxis anxiety assays (auditory and visual stimuli), and a startle response - habituation assay in response to auditory stimuli. Results show PSNP accumulated in eyes, neuromasts, brain, and digestive system organs. PSNP inhibited acetylcholinesterase and altered endocrine-related gene expression profiles both in the thyroid and glucocorticoid axes. At the whole organism level, we observed altered behaviors such as increased activity and anxiety at lower doses and lethargy at a higher dose, which could be due to a variety of complex mechanisms ranging from sensory organ and central nervous system effects to others such as hormonal imbalances. In addition, we present a hypothetical adverse outcome pathway related to these effects. In conclusion, this study provides new understanding into NP toxic effects on zebrafish embryo, emphasizing a critical role of endocrine disruption in observed neurotoxic behavioral effects, and improving our understanding of their potential health risks to human populations.
Collapse
Affiliation(s)
- Mónica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain.
| | - Mercedes de Alba González
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Urbanización Monte Rozas, Avda. Esparta s/n, Ctra. de Las Rozas al Escorial Km 5, 28232 Las Rozas, Madrid, Spain
| | - Raquel Martin-Folgar
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Urbanización Monte Rozas, Avda. Esparta s/n, Ctra. de Las Rozas al Escorial Km 5, 28232 Las Rozas, Madrid, Spain
| | - Mª Carmen González
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Ana I Cañas-Portilla
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain.
| | - Antonio De la Vieja
- Endocrine Tumor Unit, Unidad Funcional de Investigación en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain.
| |
Collapse
|
60
|
Zhou Y, Wu C, Li Y, Jiang H, Miao A, Liao Y, Pan K. Effects of nanoplastics on clam Ruditapes philippinarum at environmentally realistic concentrations: Toxicokinetics, toxicity, and gut microbiota. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131647. [PMID: 37245360 DOI: 10.1016/j.jhazmat.2023.131647] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/18/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Nanoplastics are ubiquitous in marine environments, understanding to what extent nanoplastics accumulate in bivalves and the adverse effects derived from their retention is imperative for evaluating the detrimental effects in the benthic ecosystem. Here, using palladium-doped polystyrene nanoplastics (139.5 nm, 43.8 mV), we quantitatively determined nanoplastic accumulation in Ruditapes philippinarum and investigated its toxic effects by combining physiological damage assessments with a toxicokinetic model and 16 S rRNA sequencing. After a 14 days exposure, significant nanoplastic accumulation was observed, up to 17.2 and 137.9 mg·kg-1 for the environmentally realistic (0.02 mg·L-1) and ecologically (2 mg·L-1) relevant groups, respectively. Ecologically relevant nanoplastic concentrations evidently attenuated the total antioxidant capacity and stimulated excessive reactive oxygen species, which elicited lipid peroxidation, apoptosis, and pathological damage. The modeled uptake (k1) and elimination (k2) rate constants (from physiologically based pharmacokinetic model) were significantly negatively correlated with short-term toxicity. Although no obvious toxic effects were found, environmentally realistic exposures notably altered the intestinal microbial community structure. This work increases our understanding of how the accumulation of nanoplastics influences their toxic effects in terms of the toxicokinetics and gut microbiota, providing further evidence of their potential environmental risks.
Collapse
Affiliation(s)
- Yanfei Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chao Wu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Hao Jiang
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Aijun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Yongyan Liao
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
61
|
Jeon HJ, Cho Y, Kim K, Kim C, Lee SE. Combined toxicity of 3,5,6-trichloro-2-pyridinol and 2-(bromomethyl)naphthalene in the early stages of zebrafish (Danio rerio) embryos: Abnormal heart development at lower concentrations via differential expression of heart forming-related genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121450. [PMID: 36940914 DOI: 10.1016/j.envpol.2023.121450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Combined toxicity can occur in the environment according to the combination of single substances, and the combination works additively or in a synergistic or antagonistic mode. In our study, 3,5,6-trichloro-2-pyridinol (TCP) and 2-(bromomethyl)naphthalene (2-BMN) were used to measure combined toxicity in zebrafish (Danio rerio) embryos. As the lethal concentration (LC) values were obtained through single toxicity, the lethal effects at all combinational concentrations were considered synergistic by the Independent Action model. At 96 hpf, the combined toxicity of TCP LC10 + 2-BMN LC10, the lowest combinational concentration, resulted in high mortality, strong inhibition of hatching, and various morphological changes in zebrafish embryos. Combined treatment resulted in the downregulation of cyp1a, leading to reduced detoxification of the treated chemicals in embryos. These combinations may enhance endocrine-disrupting properties via upregulation of vtg1 in embryos, and inflammatory responses and endoplasmic reticulum stress were found to upregulate il-β, atf4, and atf6. These combinations might induce severe abnormal cardiac development in embryos via downregulation of myl7, cacna1c, edn1, and vmhc expression, and upregulation of the nppa gene. Therefore, the combined toxicity of these two chemicals was observed in zebrafish embryos, which proves that similar substances can exhibit stronger combined toxicity than single toxicity.
Collapse
Affiliation(s)
- Hwang-Ju Jeon
- Red River Research Station, Louisiana State University Agricultural Center, Bossier City, LA, USA
| | - Yerin Cho
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyeongnam Kim
- Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chaeeun Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea; Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
62
|
Meng X, Yip Y, Valiyaveettil S. Understanding the aggregation, consumption, distribution and accumulation of nanoparticles of polyvinyl chloride and polymethyl methacrylate in Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161955. [PMID: 36737013 DOI: 10.1016/j.scitotenv.2023.161955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Plastic products have become an integral part of our life. A widespread usage, high stability, uncontrolled disposal and slow degradation of plastics in the environment led to the generation and accumulation of nanoparticles of polymers (NPs) in the marine environment. However, little is known about the aggregation, consumption and distribution of NPs from common polymers such as polyvinyl chloride (NP-PVC) and polymethyl methacrylate (NP-PMMA) inside marine animal physiologies. In the current study, two types of polymers (PVC and PMMA) × four exposure concentrations (1, 5, 15 and 25 mg/L) × four times (4, 8, 12 and 24 h) exposure studies were conducted to understand the consumption and distribution of luminescent NP-PVC (98.6 ± 17.6 nm) and NP-PMMA (111.9 ± 37.1 nm) in R. philippinarum. Under laboratory conditions, NP-PVC showed a higher aggregation rate than NP-PMMA in seawater within a period of 24 h. Aggregations of NPs increased with an increase in initial NP concentrations, leading to significant settling of nanoparticles within 24 h exposure. Such aggregation and settling of particles enhanced the consumption of NPs by benthic filter-feeding R. philippinarum at all exposure concentrations during 4 h exposure. More interestingly, NP-PVC and NP-PMMA were observed in large amounts in both liver and gills (22.6 % - 29.1 %) of the clams. Furthermore, NP-PVC was detected in most organs of R. philippinarum as compared to NP-PMMA. This study demonstrates that different polymers distribute and accumulate differently in the same biological model under laboratory exposure conditions based on their chemical nature.
Collapse
Affiliation(s)
- Xingliang Meng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yongjie Yip
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
63
|
Lei P, Zhang W, Ma J, Xia Y, Yu H, Du J, Fang Y, Wang L, Zhang K, Jin L, Sun D, Zhong J. Advances in the Utilization of Zebrafish for Assessing and Understanding the Mechanisms of Nano-/Microparticles Toxicity in Water. TOXICS 2023; 11:380. [PMID: 37112607 PMCID: PMC10142380 DOI: 10.3390/toxics11040380] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
A large amount of nano-/microparticles (MNPs) are released into water, not only causing severe water pollution, but also negatively affecting organisms. Therefore, it is crucial to evaluate MNP toxicity and mechanisms in water. There is a significant degree of similarity between the genes, the central nervous system, the liver, the kidney, and the intestines of zebrafish and the human body. It has been shown that zebrafish are exceptionally suitable for evaluating the toxicity and action mechanisms of MNPs in water on reproduction, the central nervous system, and metabolism. Providing ideas and methods for studying MNP toxicity, this article discusses the toxicity and mechanisms of MNPs from zebrafish.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Wenxia Zhang
- Department of Burn and Plastic Surgery, Zigong Fourth People’s Hospital, Zigong 643099, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Yuping Xia
- Department of Burn and Plastic Surgery, Zigong Fourth People’s Hospital, Zigong 643099, China
| | - Haiyang Yu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Jiao Du
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China (L.J.)
| | - Junbo Zhong
- Department of Burn and Plastic Surgery, Zigong Fourth People’s Hospital, Zigong 643099, China
| |
Collapse
|
64
|
Zhou Y, He G, Jiang H, Pan K, Liu W. Nanoplastics induces oxidative stress and triggers lysosome-associated immune-defensive cell death in the earthworm Eisenia fetida. ENVIRONMENT INTERNATIONAL 2023; 174:107899. [PMID: 37054650 DOI: 10.1016/j.envint.2023.107899] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Nanoplastics (NPs) are increasingly perceived as an emerging threat to terrestrial environments, but the adverse impacts of NPs on soil fauna and the mechanisms behind these negative outcomes remain elusive. Here, a risk assessment of NPs was conducted on model organism (earthworm) from tissue to cell. Using palladium-doped polystyrene NPs, we quantitatively measured nanoplastic accumulation in earthworm and investigated its toxic effects by combining physiological assessment with RNA-Seq transcriptomic analyses. After a 42-day exposure, earthworm accumulated up to 15.9 and 143.3 mg kg-1 of NPs for the low (0.3 mg kg-1) and high (3 mg kg-1) dose groups, respectively. NPs retention led to the decrease of antioxidant enzyme activity and the accumulation of reactive oxygen species (O2- and H2O2), which reduced growth rate by 21.3 %-50.8 % and caused pathological abnormalities. These adverse effects were enhanced by the positively charged NPs. Furthermore, we observed that irrespective of surface charge, after 2 h of exposure, NPs were gradually internalized by earthworm coelomocytes (∼0.12 μg per cell) and mainly amassed at lysosomes. Those agglomerations stimulated lysosomal membranes to lose stability and even rupture, resulting in impeded autophagy process and cellular clearance, and eventually coelomocyte death. In comparison with negatively charged nanoplastics, the positively charged NPs exerted 83 % higher cytotoxicity. Our findings provide a better understanding of how NPs posed harmful effects on soil fauna and have important implications for evaluating the ecological risk of NPs.
Collapse
Affiliation(s)
- Yanfei Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Gang He
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hao Jiang
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Wenzhi Liu
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, China.
| |
Collapse
|
65
|
Varshney S, Gora AH, Kiron V, Siriyappagouder P, Dahle D, Kögel T, Ørnsrud R, Olsvik PA. Polystyrene nanoplastics enhance the toxicological effects of DDE in zebrafish (Danio rerio) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160457. [PMID: 36435242 DOI: 10.1016/j.scitotenv.2022.160457] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic releases of plastics, persistent organic pollutants (POPs), and heavy metals can impact the environment, including aquatic ecosystems. Nanoplastics (NPs) have recently emerged as pervasive environmental pollutants that have the ability to adsorb POPs and can cause stress in organisms. Among POPs, DDT and its metabolites are ubiquitous environmental pollutants due to their long persistence. Despite the discontinued use of DDT in Europe, DDT and its metabolites (primarily p,p'-DDE) are still found at detectable levels in fish feed used in salmon aquaculture. Our study aimed to look at the individual and combined toxicity of NPs (50 mg/L polystyrene) and DDE (100 μg/L) using zebrafish larvae as a model. We found no significant morphological, cardiac, respiratory, or behavioural changes in zebrafish larvae exposed to NPs alone. Conversely, morphological, cardiac and respiratory alterations were observed in zebrafish larvae exposed to DDE and NPs + DDE. Interestingly, behavioural changes were only observed in zebrafish larvae exposed to NPs + DDE. These findings were supported by RNA-seq results, which showed that some cardiac, vascular, and immunogenic pathways were downregulated only in zebrafish larvae exposed to NPs + DDE. In summary, we found an enhanced toxicological impact of DDE when combined with NPs.
Collapse
Affiliation(s)
- Shubham Varshney
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Adnan H Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Dalia Dahle
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Tanja Kögel
- Institute of Marine Research, Bergen, Norway; Faculty of Mathematics and Natural Sciences, University of Bergen, Norway
| | | | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway; Institute of Marine Research, Bergen, Norway.
| |
Collapse
|
66
|
Tang R, Zhu D, Luo Y, He D, Zhang H, El-Naggar A, Palansooriya KN, Chen K, Yan Y, Lu X, Ying M, Sun T, Cao Y, Diao Z, Zhang Y, Lian Y, Chang SX, Cai Y. Nanoplastics induce molecular toxicity in earthworm: Integrated multi-omics, morphological, and intestinal microorganism analyses. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130034. [PMID: 36206716 DOI: 10.1016/j.jhazmat.2022.130034] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/02/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
The toxicity of nanoplastics (NPs) at relatively low concentrations to soil fauna at different organismal levels is poorly understood. We investigated the responses of earthworm (Eisenia fetida) to polystyrene NPs (90-110 nm) contaminated soil at a relatively low concentration (0.02 % w:w) based on multi-omics, morphological, and intestinal microorganism analyses. Results showed that NPs accumulated in earthworms' intestinal tissues. The NPs damaged earthworms' digestive and immune systems based on injuries of the intestinal epithelium and chloragogenous tissues (tissue level) and increased the number of changed genes in the digestive and immune systems (transcriptome level). The NPs reduced gut microorganisms' diversity (Shannon index) and species richness (Chao 1 index). Proteomic, transcriptome, and histopathological analyses showed that earthworms suffered from oxidative and inflammatory stresses. Moreover, NPs influenced the osmoregulatory metabolism of earthworms as NPs damaged intestinal epithelium (tissue level), increased aldosterone-regulated sodium reabsorption (transcriptome level), inositol phosphate metabolism (proteomic level) and 2-hexyl-5-ethyl-furan-3-sulfonic acid, and decreased betaine and myo-inositol concentrations (metabolic level). Transcriptional-metabolic and transcriptional-proteomic analyses revealed that NPs disrupted earthworm carbohydrate and arachidonic acid metabolisms. Our multi-level investigation indicates that NPs at a relatively low concentration induced toxicity to earthworms and suggests that NPs pollution has significant environmental toxicity risks for soil fauna.
Collapse
Affiliation(s)
- Ronggui Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Defu He
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Haibo Zhang
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Kumuduni Niroshika Palansooriya
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Keyi Chen
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yan Yan
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinghang Lu
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Minshen Ying
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Tao Sun
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuntao Cao
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhihan Diao
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxin Zhang
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yichen Lian
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, University of Alberta, Edmonton T6G2E3, Canada.
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
67
|
Prado Y, Aravena C, Aravena D, Eltit F, Gatica S, Riedel CA, Simon F. Small Plastics, Big Inflammatory Problems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:101-127. [PMID: 37093424 DOI: 10.1007/978-3-031-26163-3_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The immune system is the first defense against potentially dangerous chemicals, infections, and damaged cells. Interactions between immune cells and inflammatory mediators increase the coordinated activation of cross-talking signaling pathways, resulting in an acute response necessary to restore homeostasis but potentially detrimental if uncontrolled and prolonged. Plastic production exceeds million tons per year, becoming a global concern due to the stability of its constituent polymers, low density, which allows them to spread easily, and small size, which prevents proper removal by wastewater treatment plants, promoting environmental accumulation and increasing health threats. The interaction between plastic particles and the immune system is still being investigated, owing to growing evidence of increased risk not only for dietary intake due to its presence in food packaging, drinking water, and even fruits and vegetables, but also to emerging evidence of new intake pathways such as respiratory and cutaneous. We discuss in depth the impact of small plastic particles on the immune response across the body, with a focus on the nervous system and peripheral organs and tissues such as the gastrointestinal, respiratory, lymphatic, cardiovascular, and reproductive systems, as well as the involvement in increased susceptibility to worsening concomitant diseases and future perspectives in the exploration of potential therapeutics.
Collapse
Affiliation(s)
- Yolanda Prado
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristobal Aravena
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Eltit
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Sebastian Gatica
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia A Riedel
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Simon
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
68
|
Walker TR, Wang L, Horton A, Xu EG. Micro(nano)plastic toxicity and health effects: Special issue guest editorial. ENVIRONMENT INTERNATIONAL 2022; 170:107626. [PMID: 36379729 DOI: 10.1016/j.envint.2022.107626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Alice Horton
- National Oceanography Centre, European Way, Southampton SO14 3ZH, UK
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
69
|
Wang J, Wu J, Cheng H, Wang Y, Fang Y, Wang L, Duan Z. Polystyrene microplastics inhibit the neurodevelopmental toxicity of mercury in zebrafish (Danio rerio) larvae with size-dependent effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120216. [PMID: 36152722 DOI: 10.1016/j.envpol.2022.120216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Insufficient evidence exists regarding the effects of microplastics (MPs) on the neuronal toxicity of heavy metals in the early stages of organisms. Herein, the effects of micro-polystyrene (μ-PS; 157 μm) and nano-polystyrene (n-PS; 100 nm) particles on the neurodevelopmental toxicity of mercury (Hg) in zebrafish embryos were compared. Zebrafish embryos exposed to Hg at the concentration of 0.1 mg L-1 revealed blood disorders, delayed hatching, and malformations such as pericardial oedema and tail deformity. The length of the larval head was significantly reduced (P < 0.01) and in vivo expression of atoh1a in the cerebellum of neuron-specific transgenic zebrafish Tg(atoh1a:dTomato) larvae was inhibited by 29.46% under the Hg treatment. Most of the toxic effects were inhibited by the combined exposure to μ-PS or n-PS with Hg, and n-PS decreased the neurodevelopmental toxicity of Hg more significantly than μ-PS. Metabolomic analysis revealed that in addition to inhibiting the amino acid metabolism pathway as in the μ-PS+Hg treatment, the n-PS+Hg treatment inhibited unsaturated fatty acid metabolism in zebrafish larvae, likely because of a greater reduction in Hg bioavailability, thus reducing the oxidative damage caused by Hg in the larvae. The combined effects of MPs and heavy metals differ greatly among different species and their targeted effects. We conclude that the combined toxicity mechanisms of MPs and heavy metals require further clarification.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jin Wu
- Tianjin Institute of Environment and Operational Medicine, Tianjin, the Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Haodong Cheng
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yudi Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yanjun Fang
- Tianjin Institute of Environment and Operational Medicine, Tianjin, the Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300071, China
| | - Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
70
|
Zhang H, Chen Y, Wang J, Wang Y, Wang L, Duan Z. Effects of temperature on the toxicity of waterborne nanoparticles under global warming: Facts and mechanisms. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105757. [PMID: 36208504 DOI: 10.1016/j.marenvres.2022.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Global climate change is predicted to increase the average temperature of aquatic environments. Temperature changes modulate the toxicity of emerging chemical contaminants, such as nanoparticles (NPs). However, current hazard assessments of waterborne NPs seldom consider the influence of temperature. In this review, we gathered and analyzed the effects of temperature on the toxicity of waterborne NPs in different organisms. There was a general decrease in bioavailability with increasing temperature in algae and plants due to NPs aggregation, thus, reducing their toxicities. However, the agglomerated large particles caused by the increase in temperature induce a shading effect and inhibit algal photosynthesis. The toxicity of NPs in microorganisms and aquatic animals increases with increasing temperature. This may be due to the significant influence of high temperature on the uptake and excretion of chemicals across membranes, which increase the production of reactive oxygen species and enhance oxidative damage to organisms. High temperature also affect the formation and composition of a protein corona on NPs, altering their toxicity. Our results provide new insights into the toxicity of NPs in the context of global warming, and highlight the deficiencies of current research on NPs.
Collapse
Affiliation(s)
- Haihong Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yizhuo Chen
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jing Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yudi Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhenghua Duan
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
71
|
Yin J, Ju Y, Qian H, Wang J, Miao X, Zhu Y, Zhou L, Ye L. Nanoplastics and Microplastics May Be Damaging Our Livers. TOXICS 2022; 10:toxics10100586. [PMID: 36287866 PMCID: PMC9610555 DOI: 10.3390/toxics10100586] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/01/2023]
Abstract
Plastics in the environment can be degraded and even broken into pieces under the action of natural factors, and the degraded products with a particle size of less than 5 mm are called microplastics (MPs). MPs exist in a variety of environmental media that come into contact with the human body. It can enter the body through environmental media and food chains. At present, there are many studies investigating the damage of MPs to marine organisms and mammals. The liver is the largest metabolizing organ and plays an important role in the metabolism of MPs in the body. However, there is no available systematic review on the toxic effects of MPs on the liver. This paper summarizes the adverse effects and mechanisms of MPs on the liver, by searching the literature and highlighting the studies that have been published to date, and provides a scenario for the liver toxicity caused by MPs.
Collapse
Affiliation(s)
- Jianli Yin
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Ye Ju
- School of Public Health, Jilin University, Changchun 130021, China
| | - Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Jia Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Xiaohan Miao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Ying Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|