51
|
Abstract
We present the hypothesis that an accumulation of dysfunctional mitochondria initiates a signaling cascade leading to motor neuron and muscle fiber death and culminating in sarcopenia. Interactions between neural and muscle cells that contain dysfunctional mitochondria exacerbate sarcopenia. Preventing sarcopenia will require identifying mitochondrial sources of dysfunction that are reversible.
Collapse
Affiliation(s)
- Stephen E Alway
- 1Division of Exercise Physiology; 2Center for Cardiovascular and Respiratory Sciences, and Mitochondria, Metabolism, and Bioenergetics; and 3Centers for Neuroscience, West Virginia University School of Medicine, Morgantown, WV
| | | | | |
Collapse
|
52
|
Holeček M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J Cachexia Sarcopenia Muscle 2017; 8:529-541. [PMID: 28493406 PMCID: PMC5566641 DOI: 10.1002/jcsm.12208] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 12/21/2022] Open
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite of the essential amino acid leucine that has been reported to have anabolic effects on protein metabolism. The aims of this article were to summarize the results of studies of the effects of HMB on skeletal muscle and to examine the evidence for the rationale to use HMB as a nutritional supplement to exert beneficial effects on muscle mass and function in various conditions of health and disease. The data presented here indicate that the beneficial effects of HMB have been well characterized in strength-power and endurance exercise. HMB attenuates exercise-induced muscle damage and enhances muscle hypertrophy and strength, aerobic performance, resistance to fatigue, and regenerative capacity. HMB is particularly effective in untrained individuals who are exposed to strenuous exercise and in trained individuals who are exposed to periods of high physical stress. The low effectiveness of HMB in strength-trained athletes could be due to the suppression of the proteolysis that is induced by the adaptation to training, which may blunt the effects of HMB. Studies performed with older people have demonstrated that HMB can attenuate the development of sarcopenia in elderly subjects and that the optimal effects of HMB on muscle growth and strength occur when it is combined with exercise. Studies performed under in vitro conditions and in various animal models suggest that HMB may be effective in treatment of muscle wasting in various forms of cachexia. However, there are few clinical reports of the effects of HMB on muscle wasting in cachexia; in addition, most of these studies evaluated the therapeutic potential of combinations of various agents. Therefore, it has not been possible to determine whether HMB was effective or if there was a synergistic effect. Although most of the endogenous HMB is produced in the liver, there are no reports regarding the levels and the effects of HMB supplementation in subjects with liver disease. Several studies have suggested that anabolic effects of HMB supplementation on skeletal muscle do not occur in healthy, non-exercising subjects. It is concluded that (i) HMB may be applied to enhance increases in the mass and strength of skeletal muscles in subjects who exercise and in the elderly and (ii) studies examining the effects of HMB administered alone are needed to obtain conclusions regarding the specific effectiveness in attenuating muscle wasting in various muscle-wasting disorders.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
53
|
Standley RA, Distefano G, Pereira SL, Tian M, Kelly OJ, Coen PM, Deutz NEP, Wolfe RR, Goodpaster BH. Effects of β-hydroxy-β-methylbutyrate on skeletal muscle mitochondrial content and dynamics, and lipids after 10 days of bed rest in older adults. J Appl Physiol (1985) 2017; 123:1092-1100. [PMID: 28705993 DOI: 10.1152/japplphysiol.00192.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
Loss of muscle mass during periods of disuse likely has negative health consequences for older adults. We have previously shown that β-hydroxy-β-methylbutyrate (HMB) supplementation during 10 days of strict bed rest (BR) attenuates the loss of lean mass in older adults. To elucidate potential molecular mechanisms of HMB effects on muscle during BR and resistance training rehabilitation (RT), we examined mediators of skeletal muscle mitochondrial dynamics, autophagy and atrophy, and intramyocellular lipids. Nineteen older adults (60-76 yr) completed 10 days BR followed by 8-wk RT rehabilitation. Subjects were randomized to either HMB (3 g/day HMB; n = 11) or control (CON; n = 8) groups. Skeletal muscle cross-sectional area (CSA) was determined by histology from percutaneous vastus lateralis biopsies. We measured protein markers of mitochondrial content [oxidative phosphorylation (OXPHOS)], fusion and fission (MFN2, OPA1, FIS1, and DRP1), autophagy (Beclin1, LC3B, and BNIP3), and atrophy [poly-ubiquinated proteins (poly-ub)] by Western blot. Fatty acid composition of several lipid classes in skeletal muscle was measured by infusion-MS analysis. Poly-ub proteins and OXPHOS complex I increased in both groups following BR (P < 0.05, main effect for time), and muscle triglyceride content tended to increase following BR in the HMB group (P = 0.055). RT rehabilitation increased OXPHOS complex II protein (P < 0.05), and total OXPHOS content tended (P = 0.0504) to be higher in HMB group. In addition, higher levels of DRP1 and MFN2 were maintained in the HMB group after RT (P < 0.05). BNIP3 and poly-ub proteins were significantly reduced following rehabilitation in both groups (P < 0.05). Collectively, these data suggest that HMB influences mitochondrial dynamics and lipid metabolism during disuse atrophy and rehabilitation.NEW & NOTEWORTHY Mitochondrial content and dynamics remained unchanged over 10 days of BR in older adults. HMB stimulated intramuscular lipid storage as triacylglycerol following 10 days of bed rest (BR) and maintained higher mitochondrial OXPHOS content and dynamics during the 8-wk resistance exercise rehabilitation program.
Collapse
Affiliation(s)
- Robert A Standley
- Translational Research Institute for Metabolism and Diabetes-Florida Hospital, Orlando, Florida
| | - Giovanna Distefano
- Translational Research Institute for Metabolism and Diabetes-Florida Hospital, Orlando, Florida
| | | | - Min Tian
- Abbott Nutrition, Research, and Development, Columbus, Ohio
| | - Owen J Kelly
- Abbott Nutrition, Research, and Development, Columbus, Ohio
| | - Paul M Coen
- Translational Research Institute for Metabolism and Diabetes-Florida Hospital, Orlando, Florida
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Teaxas
| | - Robert R Wolfe
- Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkanas; and
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes-Florida Hospital, Orlando, Florida;
| |
Collapse
|
54
|
Gepner Y, Hoffman JR, Shemesh E, Stout JR, Church DD, Varanoske AN, Zelicha H, Shelef I, Chen Y, Frankel H, Ostfeld I. Combined effect of Bacillus coagulans GBI-30, 6086 and HMB supplementation on muscle integrity and cytokine response during intense military training. J Appl Physiol (1985) 2017; 123:11-18. [DOI: 10.1152/japplphysiol.01116.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to compare the coadministration of the probiotic Bacillus coagulans GBI-30, 6086 (BC30) with β-hydroxy-β-methylbutyrate (HMB) calcium (CaHMB) to CaHMB alone on inflammatory response and muscle integrity during 40 days of intense military training. Soldiers were randomly assigned to one of two groups: CaHMB with BC30 (CaHMBBC30; n = 9) or CaHMB with placebo (CaHMBPL, n = 9). A third group of participants served as a control (CTL; n = 8). During the first 28 days soldiers were garrisoned on base and participated in the same training tasks. During the final 2 wk soldiers navigated 25–30 km per night in difficult terrain carrying ~35 kg of equipment. All assessments (blood draws and diffusion tensor imaging to assess muscle integrity) were conducted before and ~12 h after final supplement consumption. Analysis of covariance was used to analyze all blood and muscle measures. Significant attenuations were noted in IL-1β, IL-2, IL-6, CX3CL1, and TNF-α for both CaHMBBC30 and CaHMBPL compared with CTL. Plasma IL-10 concentrations were significantly attenuated for CaHMBBC30 compared with CTL only. A significant decrease in apparent diffusion coefficients was also observed for CaHMBBC30 compared with CaHMBPL. Results provide further evidence that HMB supplementation may attenuate the inflammatory response to intense training and that the combination of the probiotic BC30 with CaHMB may be more beneficial than CaHMB alone in maintaining muscle integrity during intense military training. NEW & NOTEWORTHY β-Hydroxy-β-methylbutyrate (HMB) in its free acid form was reported to attenuate inflammation and maintain muscle integrity during military training. However, this formulation was difficult to maintain in the field. In this investigation, soldiers ingested HMB calcium (CaHMB) with Bacillus coagulans (BC30) or CaHMB alone during 40 days of training. Results indicated that CaHMB attenuated the inflammatory response and that BC30 combined with CaHMB may be more beneficial than CaHMB alone in maintaining muscle integrity during intense military training.
Collapse
Affiliation(s)
- Yftach Gepner
- Sport and Exercise Science, Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida
| | - Jay R. Hoffman
- Sport and Exercise Science, Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida
| | - Elad Shemesh
- Israel Defense Force Medical Corps, Tel Hashomer, Israel
| | - Jeffrey R. Stout
- Sport and Exercise Science, Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida
| | - David D. Church
- Sport and Exercise Science, Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida
| | - Alyssa N. Varanoske
- Sport and Exercise Science, Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida
| | - Hila Zelicha
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; and
| | | | - Yacov Chen
- Israel Defense Force Medical Corps, Tel Hashomer, Israel
| | - Hagai Frankel
- Israel Defense Force Medical Corps, Tel Hashomer, Israel
| | - Ishay Ostfeld
- Israel Defense Force Medical Corps, Tel Hashomer, Israel
| |
Collapse
|
55
|
Takahashi H, Suzuki Y, Mohamed JS, Gotoh T, Pereira SL, Alway SE. Epigallocatechin-3-gallate increases autophagy signaling in resting and unloaded plantaris muscles but selectively suppresses autophagy protein abundance in reloaded muscles of aged rats. Exp Gerontol 2017; 92:56-66. [PMID: 28286171 PMCID: PMC5501279 DOI: 10.1016/j.exger.2017.02.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/24/2017] [Accepted: 02/27/2017] [Indexed: 01/26/2023]
Abstract
We have previously found that Epigallocatechin-3-gallate (EGCg), an abundant catechin in green tea, reduced apoptotic signaling and improved muscle recovery in response to reloading after hindlimb suspension (HS). In this study, we investigated if EGCg altered autophagy signaling in skeletal muscle of old rats in response to HS or reloading after HS. Fischer 344×Brown Norway inbred rats (age 34months) were given 1ml/day of purified EGCg (50mg/kg body weight), or the same sample volume of the vehicle by gavage. One group of animals received HS for 14days and the second group of rats received 14days of HS, then the HS was removed and they were allowed to recover by ambulating normally around the cage for two weeks. EGCg decreased a small number of autophagy genes in control muscles, but it increased the expression of other autophagy genes (e.g., ATG16L2, SNCA, TM9SF1, Pink1, PIM-2) and HS did not attenuate these increases. HS increased Beclin1, ATG7 and LC3-II/I protein abundance in hindlimb muscles. Relative to vehicle treatment, EGCg treatment had greater ATG12 protein abundance (35.8%, P<0.05), but decreased Beclin1 protein levels (-101.1%, P<0.05) after HS. However, in reloaded muscles, EGCg suppressed Beclin1 and LC3-II/I protein abundance as compared to vehicle treated muscles. EGCg appeared to "prime" autophagy signaling before and enhance autophagy gene expression and protein levels during unloading in muscles of aged rats, perhaps to improve the clearance of damaged organelles. However, EGCg suppressed autophagy signaling after reloading, potentially to increase the recovery of hindlimb muscles mass and function after loading is restored.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Divison of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Kuju Agricultural Research Center, Graduate School of Agriculture Science, Kyushu University, Naoiri-gun Kuju-cho 4045-4, 878-0201, Oita, Japan
| | - Yutaka Suzuki
- Divison of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Research Faculty of Agriculture, Laboratory of Animal Function and Nutrition, Hokkaido University, Kita-9 Nishi-9, Sapporo, Japan
| | - Junaith S Mohamed
- Divison of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Takafumi Gotoh
- Kuju Agricultural Research Center, Graduate School of Agriculture Science, Kyushu University, Naoiri-gun Kuju-cho 4045-4, 878-0201, Oita, Japan
| | - Suzette L Pereira
- Discovery Technology, Abbott Nutrition, Columbus, OH 43219, United States
| | - Stephen E Alway
- Divison of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States.
| |
Collapse
|
56
|
Transfer of β-hydroxy- β-methylbutyrate from sows to their offspring and its impact on muscle fiber type transformation and performance in pigs. J Anim Sci Biotechnol 2017; 8:2. [PMID: 28074127 PMCID: PMC5219807 DOI: 10.1186/s40104-016-0132-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/06/2016] [Indexed: 12/27/2022] Open
Abstract
Background Previous studies suggested that supplementation of lactating sows with β-hydroxy-β-methylbutyrate (HMB) could improve the performance of weaning pigs, but there were little information in the muscle fiber type transformation of the offspring and the subsequent performance in pigs from weaning through finishing in response to maternal HMB consumption. The purpose of this study was to determine the effect of supplementing lactating sows with HMB on skeletal muscle fiber type transformation and growth of the offspring during d 28 and 180 after birth. A total of 20 sows according to their body weight were divided into the control (CON, n = 10) or HMB groups (HMB, n = 10). Sows in the HMB group were supplemented with β-hydroxy-β-methylbutyrate calcium (HMB-Ca) 2 g /kg feed during d 1 to 27 of lactation. After weaning, 48 mixed sex piglets were blocked by sow treatment and fed standard diets for post-weaning, growing, finishing periods. Growth performance was recorded during d 28 to 180 after birth. Pigs were slaughtered on d 28 (n = 6/treatment) and 180 (n = 6/treatment) postnatal, and the longissimus dorsi (LD) was collected, respectively. Results The HMB-fed sows during lactation showed increased HMB concentration (P < 0.05) in milk and LD of weaning piglets (P < 0.05). In addition, offsprings in HMB group had a higher finishing BW and lean percentage than did pigs in CON group (P < 0.05), meanwhile, compared with pigs from sows fed the CON diet, pigs from sows fed HMB diet showed higher type II muscle fiber cross-sectional area (CSA), elevated myosin heavy chain (MyHC) IIb and Sox6 mRNA, and fast-MyHC protein levels in LD (P < 0.05). Conclusions HMB supplemented to sow diets throughout lactation increases the levels of HMB in maternal milk and skeletal muscle of pigs during d 28 after birth and promotes subsequent performance of pigs between d 28 and 180 of age by enhancing glycolytic muscle fiber transformation.
Collapse
|
57
|
Russ DW, Acksel C, McCorkle KW, Edens NK, Garvey SM. Effects of Running Wheel Activity and Dietary HMB and β-alanine Co-Supplementation on Muscle Quality in Aged Male Rats. J Nutr Health Aging 2017; 21:554-561. [PMID: 28448086 DOI: 10.1007/s12603-016-0810-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Loss of skeletal muscle function is linked to increased risk for loss of health and independence in older adults. Dietary interventions that can enhance aging muscle function, alone or in combination with exercise, may offer an effective way to reduce these risks. The goal of this study was to evaluate the muscular effects of beta-hydroxy-beta-methylbutyrate (HMB) and beta-alanine (β-Ala) co-supplementation in aged Sprague-Dawley rats with voluntary access to running wheels (RW). METHODS Aged (20 months) rats were housed with ad libitum access to RW while on a purified diet for 4 weeks, then balanced for RW activity and assigned to either a control or an experimental diet (control + HMB and β-Ala) for the next 4 weeks (n = 10/group). At the end of the study, we assessed muscle size, in situ force and fatigability in the medial gastrocnemius muscles, as well as an array of protein markers related to various age- and activity-responsive signaling pathways. RESULTS Dietary HMB+β-Ala did not improve muscle force or fatigue resistance, but a trend for increased muscle cross-sectional area (CSA) was observed (P = 0.077). As a result, rats on the experimental diet exhibited reduced muscle quality (force/CSA; P = 0.032). Dietary HMB+β-Ala reduced both the abundance of PGC1-α (P = 0.050) and the ratio of the lipidated to non-lipidated forms of microtubule-associated protein 1 light chain 3 beta (P = 0.004), markers of mitochondrial biogenesis and autophagy, respectively. Some alterations in myostatin signaling also occurred in the dietary HMB+β-Ala group. There was an unexpected difference (P = 0.046) in RW activity, which increased throughout the study in the animals on the control diet, but not in animals on the experimental diet. CONCLUSIONS These data suggest that the short-term addition of dietary HMB+β-Ala to modest physical activity provided little enhancement of muscle function in this model of uncomplicated aging.
Collapse
Affiliation(s)
- D W Russ
- David W. Russ, PT, Ph.D. Associate Professor, Division of Physical Therapy , School of Rehab and Communication Sciences, Ohio University, W279 Grover Center, Athens, OH 45701, (ph.)740-566-0022, (fax)740-593-0293,
| | | | | | | | | |
Collapse
|
58
|
Li TS, Shi H, Wang L, Yan CZ. Effect of Bone Marrow Mesenchymal Stem Cells on Satellite Cell Proliferation and Apoptosis in Immobilization-Induced Muscle Atrophy in Rats. Med Sci Monit 2016; 22:4651-4660. [PMID: 27898654 PMCID: PMC5132424 DOI: 10.12659/msm.898137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/11/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Muscle atrophy due to disuse occurs along with adverse physiological and functional changes, but bone marrow stromal cells (MSCs) may be able to act as muscle satellite cells to restore myofibers. Thus, we investigated whether MSCs could enhance the proliferation of satellite cells and suppress myonuclear apoptosis during immobilization. MATERIAL AND METHODS We isolated, purified, amplified, and identified MSCs. Rats (n=48) were randomized into 3 groups: WB group (n=16), IM-PBS group (n=16), and IM-MSC (n=16). Rat hind limbs were immobilized for 14 d, treated with MSCs or phosphate-buffered saline (PBS), and then studied using immunohistochemistry and Western blot analysis to characterize the proteins involved. Apoptosis was assessed by terminal deoxynucleotidyl transferase (TdT)-mediated deoxy-UTP nick end labeling (TUNEL) method. RESULTS We compared muscle mass, cross-sectional areas, and peak tetanic forces and noted insignificant differences between PBS- and MSC-treated animals, but satellite cell proliferation was significantly greater after MSC treatment (p<0.05). Apoptotic myonuclei were reduced (p<0.05) after MSC treatment as well. Pro-apoptotic Bax was down-regulated and anti-apoptotic Bcl-2 and p-Akt protein were upregulated (p<0.05). CONCLUSIONS MSCs injected during hind limb immobilization can maintain satellite cell activity by suppressing myonuclear apoptosis.
Collapse
Affiliation(s)
- Tie-Shan Li
- Department of Neurology and Neuromuscular Center, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
- Department of Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Hao Shi
- Shandong Rehabilitation Research Center, Jinan, Shandong, P.R. China
| | - Lin Wang
- Department of Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Chuan-Zhu Yan
- Department of Neurology and Neuromuscular Center, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
- Brain Science Research Institute, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
59
|
Munroe M, Pincu Y, Merritt J, Cobert A, Brander R, Jensen T, Rhodes J, Boppart MD. Impact of β-hydroxy β-methylbutyrate (HMB) on age-related functional deficits in mice. Exp Gerontol 2016; 87:57-66. [PMID: 27887984 DOI: 10.1016/j.exger.2016.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 01/03/2023]
Abstract
β-Hydroxy β-methylbutyrate (HMB) is a metabolite of the essential amino acid leucine. Recent studies demonstrate a decline in plasma HMB concentrations in humans across the lifespan, and HMB supplementation may be able to preserve muscle mass and strength in older adults. However, the impact of HMB supplementation on hippocampal neurogenesis and cognition remains largely unexplored. The purpose of this study was to simultaneously evaluate the impact of HMB on muscle strength, neurogenesis and cognition in young and aged mice. In addition, we evaluated the influence of HMB on muscle-resident mesenchymal stem/stromal cell (Sca-1+CD45-; mMSC) function to address these cells potential to regulate physiological outcomes. Three month-old (n=20) and 24 month-old (n=18) female C57BL/6 mice were provided with either Ca-HMB or Ca-Lactate in a sucrose solution twice per day for 5.5weeks at a dose of 450mg/kg body weight. Significant decreases in relative peak and mean force, balance, and neurogenesis were observed in aged mice compared to young (age main effects, p≤0.05). Short-term HMB supplementation did not alter activity, balance, neurogenesis, or cognitive function in young or aged mice, yet HMB preserved relative peak force in aged mice. mMSC gene expression was significantly reduced with age, but HMB supplementation was able to recover expression of select growth factors known to stimulate muscle repair (HGF, LIF). Overall, our findings demonstrate that while short-term HMB supplementation does not appear to affect neurogenesis or cognitive function in young or aged mice, HMB may maintain muscle strength in aged mice in a manner dependent on mMSC function.
Collapse
Affiliation(s)
- Michael Munroe
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yair Pincu
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jennifer Merritt
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Adam Cobert
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryan Brander
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tor Jensen
- Division of Biomedical Sciences, Carle Hospital, Urbana, IL 61801, USA
| | - Justin Rhodes
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
60
|
Nakanishi R, Hirayama Y, Tanaka M, Maeshige N, Kondo H, Ishihara A, Roy RR, Fujino H. Nucleoprotein supplementation enhances the recovery of rat soleus mass with reloading after hindlimb unloading-induced atrophy via myonuclei accretion and increased protein synthesis. Nutr Res 2016; 36:1335-1344. [PMID: 27866827 DOI: 10.1016/j.nutres.2016.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/06/2016] [Accepted: 10/20/2016] [Indexed: 01/08/2023]
Abstract
Hindlimb unloading results in muscle atrophy and a period of reloading has been shown to partially recover the lost muscle mass. Two of the mechanisms involved in this recovery of muscle mass are the activation of protein synthesis pathways and an increase in myonuclei number. The additional myonuclei are provided by satellite cells that are activated by the mechanical stress associated with the reloading of the muscles and eventually incorporated into the muscle fibers. Amino acid supplementation with exercise also can increase skeletal muscle mass through enhancement of protein synthesis and nucleotide supplements can promote cell cycle activity. Therefore, we hypothesized that nucleoprotein supplementation, a combination of amino acids and nucleotides, would enhance the recovery of muscle mass to a greater extent than reloading alone after a period of unloading. Adult rats were assigned to 4 groups: control, hindlimb unloaded (HU; 14 days), reloaded (5 days) after hindlimb unloading (HUR), and reloaded after hindlimb unloading with nucleoprotein supplementation (HUR + NP). Compared with the HUR group, the HUR + NP group had larger soleus muscles and fiber cross-sectional areas, higher levels of phosphorylated rpS6, and higher numbers of myonuclei and myogenin-positive cells. These results suggest that nucleoprotein supplementation has a synergistic effect with reloading in recovering skeletal muscle properties after a period of unloading via rpS6 activation and satellite cell differentiation and incorporation into the muscle fibers. Therefore, this supplement may be an effective therapeutic regimen to include in rehabilitative strategies for a variety of muscle wasting conditions such as aging, cancer cachexia, muscular dystrophy, bed rest, and cast immobilization.
Collapse
Affiliation(s)
- Ryosuke Nakanishi
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan
| | - Yusuke Hirayama
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan
| | - Minoru Tanaka
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan; Department of Physical Therapy, Osaka Yukioka College of Health Science, 1-1-41 Soujiji, Ibaraki 567-0801, Japan
| | - Noriaki Maeshige
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, 3-40 Shiojicho, Nagoya 467-8611, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsucho, Kyoto 606-8501, Japan
| | - Roland R Roy
- Brain Research Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-7239, USA
| | - Hidemi Fujino
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan.
| |
Collapse
|
61
|
Characterisation of equine satellite cell transcriptomic profile response to β-hydroxy-β-methylbutyrate (HMB). Br J Nutr 2016; 116:1315-1325. [PMID: 27691998 PMCID: PMC5082287 DOI: 10.1017/s000711451600324x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
β-Hydroxy-β-methylbutyrate (HMB) is a popular ergogenic
aid used by human athletes and as a supplement to sport horses, because of its ability to
aid muscle recovery, improve performance and body composition. Recent findings suggest
that HMB may stimulate satellite cells and affect expressions of genes regulating skeletal
muscle cell growth. Despite the scientific data showing benefits of HMB supplementation in
horses, no previous study has explained the mechanism of action of HMB in this species.
The aim of this study was to reveal the molecular background of HMB action on equine
skeletal muscle by investigating the transcriptomic profile changes induced by HMB in
equine satellite cells in vitro. Upon isolation from the
semitendinosus muscle, equine satellite cells were cultured until the
2nd day of differentiation. Differentiating cells were incubated with HMB for 24 h. Total
cellular RNA was isolated, amplified, labelled and hybridised to microarray slides.
Microarray data validation was performed with real-time quantitative PCR. HMB induced
differential expressions of 361 genes. Functional analysis revealed that the main
biological processes influenced by HMB in equine satellite cells were related to muscle
organ development, protein metabolism, energy homoeostasis and lipid metabolism. In
conclusion, this study demonstrated for the first time that HMB has the potential to
influence equine satellite cells by controlling global gene expression. Genes and
biological processes targeted by HMB in equine satellite cells may support HMB utility in
improving growth and regeneration of equine skeletal muscle; however, the overall role of
HMB in horses remains equivocal and requires further proteomic, biochemical and
pharmacokinetic studies.
Collapse
|
62
|
Teixeira GR, Gobbo LA, Santos NJD, Araújo RGD, Santos CCD, Malheiro OCDM, Castoldi RC, Camargo-Filho JCS, Papoti M. The effect of β-hydroxy-β-methylbutyrate (HMB) on the morphology of skeletal muscle after concurrent training. MOTRIZ: REVISTA DE EDUCACAO FISICA 2016. [DOI: 10.1590/s1980-6574201600030010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
63
|
Kao M, Columbus DA, Suryawan A, Steinhoff-Wagner J, Hernandez-Garcia A, Nguyen HV, Fiorotto ML, Davis TA. Enteral β-hydroxy-β-methylbutyrate supplementation increases protein synthesis in skeletal muscle of neonatal pigs. Am J Physiol Endocrinol Metab 2016; 310:E1072-84. [PMID: 27143558 PMCID: PMC4935142 DOI: 10.1152/ajpendo.00520.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/13/2016] [Indexed: 01/07/2023]
Abstract
Many low-birth weight infants are at risk for poor growth due to an inability to achieve adequate protein intake. Administration of the amino acid leucine stimulates protein synthesis in skeletal muscle of neonates. To determine the effects of enteral supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) on protein synthesis and the regulation of translation initiation and degradation pathways, overnight-fasted neonatal pigs were studied immediately (F) or fed one of five diets for 24 h: low-protein (LP), high-protein (HP), or LP diet supplemented with 4 (HMB4), 40 (HMB40), or 80 (HMB80) μmol HMB·kg body wt(-1)·day(-1) Cell replication was assessed from nuclear incorporation of BrdU in the longissimus dorsi (LD) muscle and jejunum crypt cells. Protein synthesis rates in LD, gastrocnemius, rhomboideus, and diaphragm muscles, lung, and brain were greater in HMB80 and HP and in brain were greater in HMB40 compared with LP and F groups. Formation of the eIF4E·eIF4G complex and S6K1 and 4E-BP1 phosphorylation in LD, gastrocnemius, and rhomboideus muscles were greater in HMB80 and HP than in LP and F groups. Phosphorylation of eIF2α and eEF2 and expression of SNAT2, LAT1, MuRF1, atrogin-1, and LC3-II were unchanged. Numbers of BrdU-positive myonuclei in the LD were greater in HMB80 and HP than in the LP and F groups; there were no differences in jejunum. The results suggest that enteral supplementation with HMB increases skeletal muscle protein anabolism in neonates by stimulation of protein synthesis and satellite cell proliferation.
Collapse
Affiliation(s)
- Michelle Kao
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Daniel A Columbus
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Julia Steinhoff-Wagner
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Adriana Hernandez-Garcia
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
64
|
Brioche T, Pagano AF, Py G, Chopard A. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention. Mol Aspects Med 2016; 50:56-87. [PMID: 27106402 DOI: 10.1016/j.mam.2016.04.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
Identification of cost-effective interventions to maintain muscle mass, muscle strength, and physical performance during muscle wasting and aging is an important public health challenge. It requires understanding of the cellular and molecular mechanisms involved. Muscle-deconditioning processes have been deciphered by means of several experimental models, bringing together the opportunities to devise comprehensive analysis of muscle wasting. Studies have increasingly recognized the importance of fatty infiltrations or intermuscular adipose tissue for the age-mediated loss of skeletal-muscle function and emphasized that this new important factor is closely linked to inactivity. The present review aims to address three main points. We first mainly focus on available experimental models involving cell, animal, or human experiments on muscle wasting. We next point out the role of intermuscular adipose tissue in muscle wasting and aging and try to highlight new findings concerning aging and muscle-resident mesenchymal stem cells called fibro/adipogenic progenitors by linking some cellular players implicated in both FAP fate modulation and advancing age. In the last part, we review the main data on the efficiency and molecular and cellular mechanisms by which exercise, replacement hormone therapies, and β-hydroxy-β-methylbutyrate prevent muscle wasting and sarcopenia. Finally, we will discuss a potential therapeutic target of sarcopenia: glucose 6-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Thomas Brioche
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France.
| | - Allan F Pagano
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Guillaume Py
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Angèle Chopard
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| |
Collapse
|
65
|
Vallejo J, Spence M, Cheng AL, Brotto L, Edens NK, Garvey SM, Brotto M. Cellular and Physiological Effects of Dietary Supplementation with β-Hydroxy-β-Methylbutyrate (HMB) and β-Alanine in Late Middle-Aged Mice. PLoS One 2016; 11:e0150066. [PMID: 26953693 PMCID: PMC4783107 DOI: 10.1371/journal.pone.0150066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 02/09/2016] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB), in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR) calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, P<0.01; caffeine, P = 0.03; ionomycin, P = 0.03). HMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03) and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, P<0.01). Furthermore, an ex vivo muscle contractility study was performed on EDL and soleus muscle from 19 month old, male C57BL/6nTac mice. For 8 weeks, mice were fed control AIN-93M diet, diet with HMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02). At submaximal frequency of stimulation (20 Hz), EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025) and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021). Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (P<0.025), while HMB reduced the time to reach peak contractile force (TTP), with a significant effect at 80 Hz (P = 0.0156). In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice.
Collapse
Affiliation(s)
- Julian Vallejo
- Muscle Biology Research Group, School of Nursing & Health Studies, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Madoka Spence
- Muscle Biology Research Group, School of Nursing & Health Studies, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - An-Lin Cheng
- Muscle Biology Research Group, School of Nursing & Health Studies, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Leticia Brotto
- Muscle Biology Research Group, School of Nursing & Health Studies, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Neile K. Edens
- Abbott Nutrition R&D, Columbus, Ohio, United States of America
| | - Sean M. Garvey
- Abbott Nutrition R&D, Columbus, Ohio, United States of America
- * E-mail: (MB); (SG)
| | - Marco Brotto
- Muscle Biology Research Group, School of Nursing & Health Studies, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
- * E-mail: (MB); (SG)
| |
Collapse
|
66
|
Girón MD, Vílchez JD, Salto R, Manzano M, Sevillano N, Campos N, Argilés JM, Rueda R, López-Pedrosa JM. Conversion of leucine to β-hydroxy-β-methylbutyrate by α-keto isocaproate dioxygenase is required for a potent stimulation of protein synthesis in L6 rat myotubes. J Cachexia Sarcopenia Muscle 2016; 7:68-78. [PMID: 27065075 PMCID: PMC4799859 DOI: 10.1002/jcsm.12032] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND L-Leu and its metabolite β-hydroxy-β-methylbutyrate (HMB) stimulate muscle protein synthesis enhancing the phosphorylation of proteins that regulate anabolic signalling pathways. Alterations in these pathways are observed in many catabolic diseases, and HMB and L-Leu have proven their anabolic effects in in vivo and in vitro models. The aim of this study was to compare the anabolic effects of L-Leu and HMB in myotubes grown in the absence of any catabolic stimuli. METHODS Studies were conducted in vitro using rat L6 myotubes under normal growth conditions (non-involving L-Leu-deprived conditions). Protein synthesis and mechanistic target of rapamycin signalling pathway were determined. RESULTS Only HMB was able to increase protein synthesis through a mechanism that involves the phosphorylation of the mechanistic target of rapamycin as well as its downstream elements, pS6 kinase, 4E binding protein-1, and eIF4E. HMB was significantly more effective than L-Leu in promoting these effects through an activation of protein kinase B/Akt. Because the conversion of L-Leu to HMB is limited in muscle, L6 cells were transfected with a plasmid that codes for α-keto isocaproate dioxygenase, the key enzyme involved in the catabolic conversion of α-keto isocaproate into HMB. In these transfected cells, L-Leu was able to promote protein synthesis and mechanistic target of rapamycin regulated pathway activation equally to HMB. Additionally, these effects of leucine were reverted to a normal state by mesotrione, a specific inhibitor of α-keto isocaproate dioxygenase. CONCLUSION Our results suggest that HMB is an active L-Leu metabolite able to maximize protein synthesis in skeletal muscle under conditions, in which no amino acid deprivation occurred. It may be proposed that supplementation with HMB may be very useful to stimulate protein synthesis in wasting conditions associated with chronic diseases, such as cancer or chronic heart failure.
Collapse
Affiliation(s)
- María D Girón
- Department of Biochemistry and Molecular Biology II School of Pharmacy, University of Granada Granada Spain
| | - José D Vílchez
- Department of Biochemistry and Molecular Biology II School of Pharmacy, University of Granada Granada Spain
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II School of Pharmacy, University of Granada Granada Spain
| | | | - Natalia Sevillano
- Department of Biochemistry and Molecular Biology II School of Pharmacy, University of Granada Granada Spain
| | | | - Josep M Argilés
- Cancer Research Group, Department de Bioquimica I Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona Spain
| | | | | |
Collapse
|
67
|
Bhullar AS, Putman CT, Mazurak VC. Potential Role of Omega-3 Fatty Acids on the Myogenic Program of Satellite Cells. Nutr Metab Insights 2016; 9:1-10. [PMID: 26884682 PMCID: PMC4747635 DOI: 10.4137/nmi.s27481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle loss is associated with aging as well as pathological conditions. Satellite cells (SCs) play an important role in muscle regeneration. Omega-3 fatty acids are widely studied in a variety of muscle wasting diseases; however, little is known about their impact on skeletal muscle regeneration. The aim of this review is to evaluate studies examining the effect of omega-3 fatty acids, α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid on the regulation of SC proliferation and differentiation. This review highlights mechanisms by which omega-3 fatty acids may modulate the myogenic program of the stem cell population within skeletal muscles and identifies considerations for future studies. It is proposed that minimally three myogenic transcriptional regulatory factors, paired box 7 (Pax7), myogenic differentiation 1 protein, and myogenin, should be measured to confirm the stage of SCs within the myogenic program affected by omega-3 fatty acids.
Collapse
Affiliation(s)
- Amritpal S Bhullar
- M.Sc, Faculty of Agricultural, Life, and Environmental Science, Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada
| | - Charles T Putman
- PhD, Associate Professor, Faculty of Physical Education and Recreation and Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Vera C Mazurak
- PhD, Associate Professor, Faculty of Agricultural, Life, and Environmental Science, Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
68
|
Pereira MG, Silva MT, da Cunha FM, Moriscot AS, Aoki MS, Miyabara EH. Leucine supplementation improves regeneration of skeletal muscles from old rats. Exp Gerontol 2015; 72:269-77. [DOI: 10.1016/j.exger.2015.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022]
|
69
|
Dutt V, Gupta S, Dabur R, Injeti E, Mittal A. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. Pharmacol Res 2015; 99:86-100. [DOI: 10.1016/j.phrs.2015.05.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/24/2015] [Accepted: 05/24/2015] [Indexed: 12/11/2022]
|
70
|
Wu H, Xia Y, Jiang J, Du H, Guo X, Liu X, Li C, Huang G, Niu K. Effect of beta-hydroxy-beta-methylbutyrate supplementation on muscle loss in older adults: A systematic review and meta-analysis. Arch Gerontol Geriatr 2015; 61:168-75. [DOI: 10.1016/j.archger.2015.06.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/27/2015] [Accepted: 06/29/2015] [Indexed: 11/25/2022]
|
71
|
Russ DW, Acksel C, Boyd IM, Maynard J, McCorkle KW, Edens NK, Garvey SM. Dietary HMB and β-alanine co-supplementation does not improve in situ muscle function in sedentary, aged male rats. Appl Physiol Nutr Metab 2015; 40:1294-301. [PMID: 26579948 DOI: 10.1139/apnm-2015-0391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study evaluated the effects of dietary β-hydroxy-β-methylbutyrate (HMB) combined with β-alanine (β-Ala) in sedentary, aged male rats. It has been suggested that dietary HMB or β-Ala supplementation may mitigate age-related declines in muscle strength and fatigue resistance. A total of 20 aged Sprague-Dawley rats were studied. At age 20 months, 10 rats were administered a control, purified diet and 10 rats were administered a purified diet supplemented with both HMB and β-Ala (HMB+β-Ala) for 8 weeks (approximately equivalent to 3 and 2.4 g per day human dose). We measured medial gastrocnemius (MG) size, force, fatigability, and myosin composition. We also evaluated an array of protein markers related to muscle mitochondria, protein synthesis and breakdown, and autophagy. HMB+β-Ala had no significant effects on body weight, MG mass, force or fatigability, myosin composition, or muscle quality. Compared with control rats, those fed HMB+β-Ala exhibited a reduced (41%, P = 0.039) expression of muscle RING-finger protein 1 (MURF1), a common marker of protein degradation. Muscle from rats fed HMB+β-Ala also exhibited a 45% reduction (P = 0.023) in p70s6K phosphorylation following fatiguing stimulation. These data suggest that HMB+β-Ala at the dose studied may reduce muscle protein breakdown by reducing MURF1 expression, but has minimal effects on muscle function in this model of uncomplicated aging. They do not, however, rule out potential benefits of HMB+β-Ala co-supplementation at other doses or durations of supplementation in combination with exercise or in situations where extreme muscle protein breakdown and loss of mass occur (e.g., bedrest, cachexia, failure-to-thrive).
Collapse
Affiliation(s)
- David W Russ
- a Laboratory for Integrative Muscle Biology, Division of Physical Therapy, School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH 45701, USA.,b Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| | - Cara Acksel
- a Laboratory for Integrative Muscle Biology, Division of Physical Therapy, School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH 45701, USA.,c Division of Nutrition, School of Applied Health Sciences and Wellness, Ohio University, Athens, OH 45701, USA
| | - Iva M Boyd
- a Laboratory for Integrative Muscle Biology, Division of Physical Therapy, School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH 45701, USA
| | - John Maynard
- a Laboratory for Integrative Muscle Biology, Division of Physical Therapy, School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH 45701, USA
| | - Katherine W McCorkle
- a Laboratory for Integrative Muscle Biology, Division of Physical Therapy, School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH 45701, USA
| | - Neile K Edens
- d Abbott Nutrition R&D, 3300 Stelzer Road, Columbus, OH 43219, USA
| | - Sean M Garvey
- d Abbott Nutrition R&D, 3300 Stelzer Road, Columbus, OH 43219, USA
| |
Collapse
|
72
|
Attenuation of autophagic-proteolysis in C2C12 cells by saccharopine. Mol Cell Biochem 2015; 410:93-100. [DOI: 10.1007/s11010-015-2541-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/18/2015] [Indexed: 12/18/2022]
|
73
|
Salto R, Vílchez JD, Girón MD, Cabrera E, Campos N, Manzano M, Rueda R, López-Pedrosa JM. β-Hydroxy-β-Methylbutyrate (HMB) Promotes Neurite Outgrowth in Neuro2a Cells. PLoS One 2015; 10:e0135614. [PMID: 26267903 PMCID: PMC4534402 DOI: 10.1371/journal.pone.0135614] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/24/2015] [Indexed: 01/11/2023] Open
Abstract
β-Hydroxy-β-methylbutyrate (HMB) has been shown to enhance cell survival, differentiation and protein turnover in muscle, mainly activating phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases/ extracellular-signal-regulated kinases (MAPK/ERK) signaling pathways. Since these two pathways are related to neuronal survival and differentiation, in this study, we have investigated the neurotrophic effects of HMB in mouse neuroblastoma Neuro2a cells. In Neuro2a cells, HMB promotes differentiation to neurites independent from any effects on proliferation. These effects are mediated by activation of both the PI3K/Akt and the extracellular-signal-regulated kinases (ERK1/2) signaling as demonstrated by the use of specific inhibitors of these two pathways. As myocyte-enhancer factor 2 (MEF2) family of transcription factors are involved in neuronal survival and plasticity, the transcriptional activity and protein levels of MEF2 were also evaluated. HMB promoted MEF2-dependent transcriptional activity mediated by the activation of Akt and ERK1/2 pathways. Furthermore, HMB increases the expression of brain glucose transporters 1 (GLUT1) and 3 (GLUT3), and mTOR phosphorylation, which translates in a higher protein synthesis in Neuro2a cells. Furthermore, Torin1 and rapamycin effects on MEF2 transcriptional activity and HMB-dependent neurite outgrowth support that HMB acts through mTORC2. Together, these findings provide clear evidence to support an important role of HMB in neurite outgrowth.
Collapse
Affiliation(s)
- Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- * E-mail:
| | - Jose D. Vílchez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - María D. Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - Elena Cabrera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
74
|
The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 2015; 48:41-51. [DOI: 10.1007/s00726-015-2067-1] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/29/2015] [Indexed: 01/30/2023]
|
75
|
Kim M, Sung B, Kang YJ, Kim DH, Lee Y, Hwang SY, Yoon JH, Yoo MA, Kim CM, Chung HY, Kim ND. The combination of ursolic acid and leucine potentiates the differentiation of C2C12 murine myoblasts through the mTOR signaling pathway. Int J Mol Med 2015; 35:755-62. [PMID: 25529824 DOI: 10.3892/ijmm.2014.2046] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/08/2014] [Indexed: 11/06/2022] Open
Abstract
Aging causes phenotypic changes in skeletal muscle progenitor cells that lead to the progressive loss of myogenic differentiation and thus a decrease in muscle mass. The naturally occurring triterpene, ursolic acid, has been reported to be an effective agent for the prevention of muscle loss by suppressing degenerative muscular dystrophy. Leucine, a branched-chain amino acid, and its metabolite, β-hydroxy-β-methylbutyric acid, have been reported to enhance protein synthesis in skeletal muscle. Therefore, the aim of the present study was to investigate whether the combination of ursolic acid and leucine promotes greater myogenic differentiation compared to either agent alone in C2C12 murine myoblasts. Morphological changes were observed and creatine kinase (CK) activity analysis was performed to determine the conditions through which the combination of ursolic acid and leucine would exert the most prominent effects on muscle cell differentiation. The effect of the combination of ursolic acid and leucine on the expression of myogenic differentiation marker genes was examined by RT-PCR and western blot analysis. The combination of ursolic acid (0.5 µM) and leucine (10 µM) proved to be the most effective in promoting myogenic differentiation. The combination of ursolic acid and leucine significantly increased CK activity than treatment with either agent alone. The level of myosin heavy chain, a myogenic differentiation marker protein, was also enhanced by the combination of ursolic acid and leucine. The combination of ursolic acid and leucine significantly induced the expression of myogenic differentiation marker genes, such as myogenic differentiation 1 (MyoD) and myogenin, at both the mRNA and protein level. In addition, the number of myotubes and the fusion index were increased. These findings indicate that the combination of ursolic acid and leucine promotes muscle cell differentiation, thus suggesting that this combination of agents may prove to be beneficial in increasing muscle mass.
Collapse
Affiliation(s)
- Minjung Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Bokyung Sung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Yong Jung Kang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Dong Hwan Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Yujin Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Seong Yeon Hwang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Jeong-Hyun Yoon
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Mi-Ae Yoo
- Department of Molecular Biology, Pusan National University, Busan 609‑735, Republic of Korea
| | - Cheol Min Kim
- Research Center for Anti‑Aging Technology Development, Pusan National University, Busan 609‑735, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| |
Collapse
|
76
|
Girón MD, Vílchez JD, Shreeram S, Salto R, Manzano M, Cabrera E, Campos N, Edens NK, Rueda R, López-Pedrosa JM. β-Hydroxy-β-methylbutyrate (HMB) normalizes dexamethasone-induced autophagy-lysosomal pathway in skeletal muscle. PLoS One 2015; 10:e0117520. [PMID: 25658432 PMCID: PMC4319954 DOI: 10.1371/journal.pone.0117520] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/27/2014] [Indexed: 01/07/2023] Open
Abstract
Dexamethasone-induced muscle atrophy is due to an increase in protein breakdown and a decrease in protein synthesis, associated with an over-stimulation of the autophagy-lysosomal pathway. These effects are mediated by alterations in IGF-1 and PI3K/Akt signaling. In this study, we have investigated the effects of β-Hydroxy-β-methylbutyrate (HMB) on the regulation of autophagy and proteosomal systems. Rats were treated during 21 days with dexamethasone as a model of muscle atrophy. Co-administration of HMB attenuated the effects promoted by dexamethasone. HMB ameliorated the loss in body weight, lean mass and the reduction of the muscle fiber cross-sectional area (shrinkage) in gastrocnemius muscle. Consequently, HMB produced an improvement in muscle strength in the dexamethasone-treated rats. To elucidate the molecular mechanisms responsible for these effects, rat L6 myotubes were used. In these cells, HMB significantly attenuated lysosomal proteolysis induced by dexamethasone by normalizing the changes observed in autophagosome formation, LC3 II, p62 and Bnip3 expression after dexamethasone treatment. HMB effects were mediated by an increase in FoxO3a phosphorylation and concomitant decrease in FoxO transcriptional activity. The HMB effect was due to the restoration of Akt signaling diminished by dexamethasone treatment. Moreover, HMB was also involved in the regulation of the activity of ubiquitin and expression of MurF1 and Atrogin-1, components of the proteasome system that are activated or up-regulated by dexamethasone. In conclusion, in vivo and in vitro studies suggest that HMB exerts protective effects against dexamethasone-induced muscle atrophy by normalizing the Akt/FoxO axis that controls autophagy and ubiquitin proteolysis.
Collapse
Affiliation(s)
- María D. Girón
- Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
- * E-mail:
| | - Jose D. Vílchez
- Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
| | | | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
| | | | - Elena Cabrera
- Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
| | | | - Neile K. Edens
- Abbott Nutrition R&D, Columbus, Ohio, United States of America
| | | | | |
Collapse
|
77
|
Lee AJ, Beno DWA, Zhang X, Shapiro R, Mason M, Mason-Bright T, Surber B, Edens NK. A (14)C-leucine absorption, distribution, metabolism and excretion (ADME) study in adult Sprague-Dawley rat reveals β-hydroxy-β-methylbutyrate as a metabolite. Amino Acids 2015; 47:917-24. [PMID: 25618754 PMCID: PMC4412734 DOI: 10.1007/s00726-015-1920-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/10/2015] [Indexed: 12/25/2022]
Abstract
Leucine is an essential branched-chain amino acid that acts as a substrate for protein synthesis and as a signaling molecule. Leucine not incorporated into muscle protein is ultimately oxidized through intermediates such as β-hydroxy-β-methylbutyrate (HMB) which itself is reported to enhance muscle mass and function in rats and humans. HMB has been reported in the plasma following oral leucine administration in sheep and pigs but not in Sprague–Dawley rats, the standard preclinical model. Therefore, we conducted radiolabeled absorption, distribution, metabolism and excretion (ADME) studies in rats using a low (3 mg/kg) or high dose (1,000 mg/kg) of 14C-leucine. Blood, tissue, and urine samples were analyzed for 14C-leucine and its metabolites by HPLC–MS. Our results show for the first time that 14C-HMB appears in plasma and urine of rats following an oral dose of 14C-leucine. 14C-leucine appears in plasma as 14C-α-ketoisocaproic acid (KIC) with a slower time course than 14C-HMB, a putative product of KIC. Further, two novel metabolites of leucine were detected in urine, N-acetyl leucine and glycyl leucine. Mass balance studies demonstrate that excretory routes accounted for no more than 0.9 % of the radiolabel and approximately 61 % of the dose was recovered in the carcass. Approximately 65 % of the dose was recovered in total, suggesting that approximately one-third of the leucine dose is oxidized to CO2. In conclusion, this study demonstrates endogenous production of HMB from leucine in adult rats, a standard preclinical model used to guide design of clinical trials in nutrition.
Collapse
Affiliation(s)
- Anthony J Lee
- Drug Metabolism and Pharmacokinetics, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Muscle-specific GSK-3β ablation accelerates regeneration of disuse-atrophied skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2014; 1852:490-506. [PMID: 25496993 DOI: 10.1016/j.bbadis.2014.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Abstract
Muscle wasting impairs physical performance, increases mortality and reduces medical intervention efficacy in chronic diseases and cancer. Developing proficient intervention strategies requires improved understanding of the molecular mechanisms governing muscle mass wasting and recovery. Involvement of muscle protein- and myonuclear turnover during recovery from muscle atrophy has received limited attention. The insulin-like growth factor (IGF)-I signaling pathway has been implicated in muscle mass regulation. As glycogen synthase kinase 3 (GSK-3) is inhibited by IGF-I signaling, we hypothesized that muscle-specific GSK-3β deletion facilitates the recovery of disuse-atrophied skeletal muscle. Wild-type mice and mice lacking muscle GSK-3β (MGSK-3β KO) were subjected to a hindlimb suspension model of reversible disuse-induced muscle atrophy and followed during recovery. Indices of muscle mass, protein synthesis and proteolysis, and post-natal myogenesis which contribute to myonuclear accretion, were monitored during the reloading of atrophied muscle. Early muscle mass recovery occurred more rapidly in MGSK-3β KO muscle. Reloading-associated changes in muscle protein turnover were not affected by GSK-3β ablation. However, coherent effects were observed in the extent and kinetics of satellite cell activation, proliferation and myogenic differentiation observed during reloading, suggestive of increased myonuclear accretion in regenerating skeletal muscle lacking GSK-3β. This study demonstrates that muscle mass recovery and post-natal myogenesis from disuse-atrophy are accelerated in the absence of GSK-3β.
Collapse
|
79
|
Alway SE, Bennett BT, Wilson JC, Sperringer J, Mohamed JS, Edens NK, Pereira SL. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats. J Appl Physiol (1985) 2014; 118:319-30. [PMID: 25414242 DOI: 10.1152/japplphysiol.00674.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (-24.8% vs. -10.7%, P < 0.05) and tetanic force (-43.7% vs. -25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (-25.2% vs. -16.0%, P < 0.05) and force (-45.7 vs. -34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (-39.9% vs. -23.9%, P < 0.05) and soleus (-37.2% vs. -17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (-45.6% vs. -21.5%, P <0.05) and soleus muscle fiber cross-sectional area (-38.7% vs. -10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is by itself insufficient to improve muscle recovery following a period of atrophy in old rats.
Collapse
Affiliation(s)
- Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; West Virginia Center for Clinical and Translational Science Institute, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Brian T Bennett
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Joseph C Wilson
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Justin Sperringer
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Junaith S Mohamed
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | | | | |
Collapse
|
80
|
Alway SE, Myers MJ, Mohamed JS. Regulation of satellite cell function in sarcopenia. Front Aging Neurosci 2014; 6:246. [PMID: 25295003 PMCID: PMC4170136 DOI: 10.3389/fnagi.2014.00246] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/01/2014] [Indexed: 01/08/2023] Open
Abstract
The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell) function that is impacted by the environment (niche) of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse, or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins, and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration). While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function.
Collapse
Affiliation(s)
- Stephen E. Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia Clinical and Translational Science Institute, Morgantown, WV, USA
- Center for Cardiovascular and Respiratory Sciences, Morgantown, WV, USA
| | - Matthew J. Myers
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Junaith S. Mohamed
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
81
|
Szcześniak KA, Ostaszewski P, Fuller JC, Ciecierska A, Sadkowski T. Dietary supplementation of β-hydroxy-β-methylbutyrate in animals - a review. J Anim Physiol Anim Nutr (Berl) 2014; 99:405-17. [DOI: 10.1111/jpn.12234] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/06/2014] [Indexed: 01/10/2023]
Affiliation(s)
- K. A. Szcześniak
- Department of Physiological Sciences; Faculty of Veterinary Medicine; Warsaw University of Life Science - SGGW; Warsaw Poland
| | - P. Ostaszewski
- Department of Physiological Sciences; Faculty of Veterinary Medicine; Warsaw University of Life Science - SGGW; Warsaw Poland
| | - J. C. Fuller
- Metabolic Technologies, Inc.; Iowa State University Research Park; Ames IA USA
| | - A. Ciecierska
- Department of Physiological Sciences; Faculty of Veterinary Medicine; Warsaw University of Life Science - SGGW; Warsaw Poland
| | - T. Sadkowski
- Department of Physiological Sciences; Faculty of Veterinary Medicine; Warsaw University of Life Science - SGGW; Warsaw Poland
| |
Collapse
|
82
|
Dirks ML, Wall BT, Nilwik R, Weerts DHJM, Verdijk LB, van Loon LJC. Skeletal muscle disuse atrophy is not attenuated by dietary protein supplementation in healthy older men. J Nutr 2014; 144:1196-203. [PMID: 24919692 DOI: 10.3945/jn.114.194217] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Short successive periods of muscle disuse, due to injury or illness, can contribute significantly to the loss of muscle mass with aging (sarcopenia). It has been suggested that increasing the protein content of the diet may be an effective dietary strategy to attenuate muscle disuse atrophy. We hypothesized that protein supplementation twice daily would preserve muscle mass during a short period of limb immobilization. Twenty-three healthy older (69 ± 1 y) men were subjected to 5 d of one-legged knee immobilization by means of a full-leg cast with (PRO group; n = 11) or without (CON group; n = 12) administration of a dietary protein supplement (20.7 g of protein, 9.3 g of carbohydrate, and 3.0 g of fat) twice daily. Two d prior to and immediately after the immobilization period, single-slice computed tomography scans of the quadriceps and single-leg 1 repetition maximum strength tests were performed to assess muscle cross-sectional area (CSA) and leg muscle strength, respectively. Additionally, muscle biopsies were collected to assess muscle fiber characteristics as well as mRNA and protein expression of selected genes. Immobilization decreased quadriceps' CSAs by 1.5 ± 0.7% (P < 0.05) and 2.0 ± 0.6% (P < 0.05), and muscle strength by 8.3 ± 3.3% (P < 0.05) and 9.3 ± 1.6% (P < 0.05) in the CON and PRO groups, respectively, without differences between groups. Skeletal muscle myostatin, myogenin, and muscle RING-finger protein-1 (MuRF1) mRNA expression increased following immobilization in both groups (P < 0.05), whereas muscle atrophy F-box/atrogen-1 (MAFBx) mRNA expression increased in the PRO group only (P < 0.05). In conclusion, dietary protein supplementation (∼20 g twice daily) does not attenuate muscle loss during short-term muscle disuse in healthy older men. This trial was registered at clinicaltrials.gov as NCT01588808.
Collapse
Affiliation(s)
- Marlou L Dirks
- NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University, Maastricht, The Netherlands; and
| | - Benjamin T Wall
- NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University, Maastricht, The Netherlands; and
| | - Rachel Nilwik
- NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University, Maastricht, The Netherlands; and
| | - Daniëlle H J M Weerts
- NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University, Maastricht, The Netherlands; and
| | - Lex B Verdijk
- NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University, Maastricht, The Netherlands; and
| | - Luc J C van Loon
- NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University, Maastricht, The Netherlands; and
| |
Collapse
|
83
|
Smith HK, Matthews KG, Oldham JM, Jeanplong F, Falconer SJ, Bass JJ, Senna-Salerno M, Bracegirdle JW, McMahon CD. Translational signalling, atrogenic and myogenic gene expression during unloading and reloading of skeletal muscle in myostatin-deficient mice. PLoS One 2014; 9:e94356. [PMID: 24718581 PMCID: PMC3981781 DOI: 10.1371/journal.pone.0094356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/14/2014] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscles of myostatin null (Mstn(−/−)) mice are more susceptible to atrophy during hind limb suspension (HS) than are muscles of wild-type mice. Here we sought to elucidate the mechanism for this susceptibility and to determine if Mstn(−/−) mice can regain muscle mass after HS. Male Mstn(−/−) and wild-type mice were subjected to 0, 2 or 7 days of HS or 7 days of HS followed by 1, 3 or 7 days of reloading (n = 6 per group). Mstn(−/−) mice lost more mass from muscles expressing the fast type IIb myofibres during HS and muscle mass was recovered in both genotypes after reloading for 7 days. Concentrations of MAFbx and MuRF1 mRNA, crucial ligases regulating the ubiquitin-proteasome system, but not MUSA1, a BMP-regulated ubiquitin ligase, were increased more in muscles of Mstn(−/−) mice, compared with wild-type mice, during HS and concentrations decreased in both genotypes during reloading. Similarly, concentrations of LC3b, Gabarapl1 and Atg4b, key effectors of the autophagy-lysosomal system, were increased further in muscles of Mstn(−/−) mice, compared with wild-type mice, during HS and decreased in both genotypes during reloading. There was a greater abundance of 4E-BP1 and more bound to eIF4E in muscles of Mstn(−/−) compared with wild-type mice (P<0.001). The ratio of phosphorylated to total eIF2α increased during HS and decreased during reloading, while the opposite pattern was observed for rpS6. Concentrations of myogenic regulatory factors (MyoD, Myf5 and myogenin) mRNA were increased during HS in muscles of Mstn(−/−) mice compared with controls (P<0.001). We attribute the susceptibility of skeletal muscles of Mstn(−/−) mice to atrophy during HS to an up- and downregulation, respectively, of the mechanisms regulating atrophy of myofibres and translation of mRNA. These processes are reversed during reloading to aid a faster rate of recovery of muscle mass in Mstn(−/−) mice.
Collapse
Affiliation(s)
- Heather K. Smith
- Department of Sport and Exercise Science, University of Auckland, Auckland, New Zealand
| | | | - Jenny M. Oldham
- AgResearch Ltd., Ruakura Agricultural Centre, Hamilton, New Zealand
| | - Ferenc Jeanplong
- AgResearch Ltd., Ruakura Agricultural Centre, Hamilton, New Zealand
| | | | - James J. Bass
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
84
|
Piccioni A, Gaetani E, Palladino M, Gatto I, Smith RC, Neri V, Marcantoni M, Giarretta I, Silver M, Straino S, Capogrossi M, Landolfi R, Pola R. Sonic hedgehog gene therapy increases the ability of the dystrophic skeletal muscle to regenerate after injury. Gene Ther 2014; 21:413-21. [PMID: 24572787 DOI: 10.1038/gt.2014.13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 01/04/2014] [Accepted: 01/15/2014] [Indexed: 11/09/2022]
Abstract
The Hedgehog (Hh) pathway is a crucial regulator of muscle development during embryogenesis. We have previously demonstrated that Sonic hedgehog (Shh) regulates postnatal myogenesis in the adult skeletal muscle both directly, by acting on muscle satellite cells, and indirectly, by promoting the production of growth factors from interstitial fibroblasts. Here, we show that in mdx mice, the murine equivalent of Duchenne muscular dystrophy in humans, progression of the dystrophic pathology corresponds to progressive inhibition of the Hh signaling pathway in the skeletal muscle. We also show that the upregulation of the Hh pathway in response to injury and during regeneration is significantly impaired in mdx muscle. Shh treatment increases the proliferative potential of satellite cells isolated from the muscles of mdx mice. This treatment also increases the production of proregenerative factors, such as insulin-like growth factor-1 and vascular endothelial growth factor, from fibroblasts isolated from the muscle of mdx mice. In vivo, overexpression of the Hh pathway using a plasmid encoding the human Shh gene promotes successful regeneration after injury in terms of increased number of proliferating myogenic cells and newly formed myofibers, as well as enhanced vascularization and decreased fibrosis.
Collapse
Affiliation(s)
- A Piccioni
- 1] Department of Medicine, A. Gemelli University Hospital, Catholic University School of Medicine, Rome, Italy [2] Division of Cardiovascular Research, Steward St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - E Gaetani
- Department of Medicine, A. Gemelli University Hospital, Catholic University School of Medicine, Rome, Italy
| | - M Palladino
- 1] Department of Medicine, A. Gemelli University Hospital, Catholic University School of Medicine, Rome, Italy [2] Division of Cardiovascular Research, Steward St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - I Gatto
- Department of Medicine, A. Gemelli University Hospital, Catholic University School of Medicine, Rome, Italy
| | - R C Smith
- Division of Cardiovascular Research, Steward St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - V Neri
- 1] Department of Medicine, A. Gemelli University Hospital, Catholic University School of Medicine, Rome, Italy [2] Division of Cardiovascular Research, Steward St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - M Marcantoni
- Department of Medicine, A. Gemelli University Hospital, Catholic University School of Medicine, Rome, Italy
| | - I Giarretta
- Department of Medicine, A. Gemelli University Hospital, Catholic University School of Medicine, Rome, Italy
| | - M Silver
- Division of Cardiovascular Research, Steward St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - S Straino
- 1] Laboratory of Vascular Pathology, IDI IRCCS Research Institute, Rome, Italy [2] Explora Biotech, srl, Rome, Italy
| | - M Capogrossi
- Laboratory of Vascular Pathology, IDI IRCCS Research Institute, Rome, Italy
| | - R Landolfi
- Department of Medicine, A. Gemelli University Hospital, Catholic University School of Medicine, Rome, Italy
| | - R Pola
- 1] Department of Medicine, A. Gemelli University Hospital, Catholic University School of Medicine, Rome, Italy [2] Division of Cardiovascular Research, Steward St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
85
|
Ehling S, Reddy TM. Investigation of the presence of β-hydroxy-β-methylbutyric acid and α-hydroxyisocaproic acid in bovine whole milk and fermented dairy products by a validated liquid chromatography-mass spectrometry method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1506-1511. [PMID: 24495238 DOI: 10.1021/jf500026s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A simple, rugged, quantitative, and confirmatory method based on liquid chromatography-mass spectrometry was developed and comprehensively validated for the analysis of the leucine metabolites β-hydroxy-β-methylbutyric acid (HMB) and α-hydroxyisocaproic acid (HICA) in bovine whole milk and yogurt. Mean accuracy (90-110% for HMB and 85-115% for HICA) and total precision (<10% RSD in most cases, except for <20% RSD for HMB at the limit of quantitation) at four concentration levels across three validation runs have been determined. Limits of quantitation for HMB and HICA in whole milk were 20 and 5 μg/L, respectively. Measured concentrations of HMB and HICA were <20-29 and 32-37 μg/L, respectively, in bovine whole milk and <5 and 3.0-15.2 mg/L, respectively, in yogurt. These concentrations are insufficient by large margins to deliver any musculoskeletal benefits, and fortification of milk and dairy products with HMB and/or HICA appears to be justified.
Collapse
Affiliation(s)
- Stefan Ehling
- Abbott Laboratories, 3300 Stelzer Road, Columbus, Ohio 43219, United States
| | | |
Collapse
|
86
|
Bennett BT, Mohamed JS, Alway SE. Effects of resveratrol on the recovery of muscle mass following disuse in the plantaris muscle of aged rats. PLoS One 2013; 8:e83518. [PMID: 24349525 PMCID: PMC3861503 DOI: 10.1371/journal.pone.0083518] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/05/2013] [Indexed: 12/19/2022] Open
Abstract
Aging is associated with poor skeletal muscle regenerative ability following extended periods of hospitalization and other forms of muscular disuse. Resveratrol (3,5,4’-trihydroxystilbene) is a natural phytoalexin which has been shown in skeletal muscle to improve oxidative stress levels in muscles of aged rats. As muscle disuse and reloading after disuse increases oxidative stress, we hypothesized that resveratrol supplementation would improve muscle regeneration after disuse. A total of thirty-six male Fisher 344 × Brown Norway rats (32 mo.) were treated with either a water vehicle or resveratrol via oral gavage. The animals received hindlimb suspension for 14 days. Thereafter, they were either sacrificed or allowed an additional 14 day period of cage ambulation during reloading. A total of six rats from the vehicle and the resveratrol treated groups were used for the hindlimb suspension and recovery protocols. Furthermore, two groups of 6 vehicle treated animals maintained normal ambulation throughout the experiment, and were used as control animals for the hindlimb suspension and reloading groups. The data show that resveratrol supplementation was unable to attenuate the decreases in plantaris muscle wet weight during hindlimb suspension but it improved muscle mass during reloading after hindlimb suspension. Although resveratrol did not prevent fiber atrophy during the period of disuse, it increased the fiber cross sectional area of type IIA and IIB fibers in response to reloading after hindlimb suspension. There was a modest enhancement of myogenic precursor cell proliferation in resveratrol-treated muscles after reloading, but this failed to reach statistical significance. The resveratrol-associated improvement in type II fiber size and muscle mass recovery after disuse may have been due to decreases in the abundance of pro-apoptotic proteins Bax, cleaved caspase 3 and cleaved caspase 9 in reloaded muscles. Resveratrol appears to have modest therapeutic benefits for improving muscle mass after disuse in aging.
Collapse
Affiliation(s)
- Brian T. Bennett
- Laboratory of Muscle Biology and Sarcopenia Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- West Virginia Center for Clinical and Translational Science Institute, Morgantown, West Virginia, United States of America
| | - Junaith S. Mohamed
- Laboratory of Muscle Biology and Sarcopenia Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- West Virginia Center for Clinical and Translational Science Institute, Morgantown, West Virginia, United States of America
| | - Stephen E. Alway
- Laboratory of Muscle Biology and Sarcopenia Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- West Virginia Center for Clinical and Translational Science Institute, Morgantown, West Virginia, United States of America
- Center for Cardiovascular, and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- *
| |
Collapse
|