51
|
Siddiqui AN, Siddiqui N, Khan RA, Kalam A, Jabir NR, Kamal MA, Firoz CK, Tabrez S. Neuroprotective Role of Steroidal Sex Hormones: An Overview. CNS Neurosci Ther 2016; 22:342-50. [PMID: 27012165 PMCID: PMC6492877 DOI: 10.1111/cns.12538] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/21/2016] [Accepted: 02/21/2016] [Indexed: 12/11/2022] Open
Abstract
Progesterone, estrogens, and testosterone are the well-known steroidal sex hormones, which have been reported to have "nonreproductive "effects in the brain, specifically in the neuroprotection and neurotrophy. In the last one decade, there has been a surge in the research on the role of these hormones in neuroprotection and their positive impact on different brain injuries. The said interest has been sparked by a desire to understand the action and mechanisms of these steroidal sex hormones throughout the body. The aim of this article was to highlight the potential outcome of the steroidal hormones, viz. progesterone, estrogens, and testosterone in terms of their role in neuroprotection and other brain injuries. Their possible mechanism of action at both genomic and nongenomic level will be also discussed. As far as our knowledge goes, we are for the first time reporting neuroprotective effect and possible mechanism of action of these hormones in a single article.
Collapse
Affiliation(s)
- Ali Nasir Siddiqui
- Department of Pharmaceutical Medicine, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Nahida Siddiqui
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Rashid Ali Khan
- Department of Pharmaceutical Medicine, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Abul Kalam
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Nasimudeen R Jabir
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW, Australia
| | | | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
52
|
Aminmansour B, Asnaashari A, Rezvani M, Ghaffarpasand F, Amin Noorian SM, Saboori M, Abdollahzadeh P. Effects of progesterone and vitamin D on outcome of patients with acute traumatic spinal cord injury; a randomized, double-blind, placebo controlled study. J Spinal Cord Med 2016; 39:272-280. [PMID: 26832888 PMCID: PMC5073761 DOI: 10.1080/10790268.2015.1114224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Steroid hormones offer promising therapeutic perspectives during the acute phase of spinal cord injury (SCI) while the role of progesterone and vitamin D remain controversial. The aim of the current study was to investigate the effects of progesterone and vitamin D on functional outcome of patients with acute traumatic SCI. METHODS This was a randomized clinical trial including 64 adult patients with acute traumatic SCI admitted within 8 hours of injury. All the patients received methylprednisolone on admission according to standard protocol (30 mg/kg as bolus dose and 15 mg/kg each 3 hours up to 24 hours). Patients were randomly assigned to receive intramuscular injection of 0.5 mg/kg progesterone twice daily and 5µg/kg oral vitamin D3 twice daily up to 5 days (n = 32) or placebo (n = 32). Patients were visited 6 days, 3 and 6 months after injury and motor and sensory function was assessed according to American Spinal Injury Association (ASIA) score. RESULTS There was no significant difference between two study groups regarding age (P = 0.341), sex (P = 0.802) and therapy lag (P = 0.609). The motor powers and sensory function increased significantly after 6 months in both study groups. Those who received progesterone and vitamin D had significantly higher motor powers and sensory function after 6 months of therapy. Those who received the therapy within 4 hours of injury, had significantly higher motor powers and sensory function 6 months after treatment in progesterone and vitamin D group. Therapy lag was negatively associated with 6-month motor powers and sensory function in progesterone and vitamin D group. CONCLUSIONS Administration of progesterone and vitamin D in acute phase of traumatic SCI is associated with better functional recovery and outcome.
Collapse
Affiliation(s)
- Bahram Aminmansour
- Department of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Asnaashari
- Department of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Rezvani
- Department of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Masih Saboori
- Department of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Abdollahzadeh
- Department of Psychiatry, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
53
|
Coronel MF, Raggio MC, Adler NS, De Nicola AF, Labombarda F, González SL. Progesterone modulates pro-inflammatory cytokine expression profile after spinal cord injury: Implications for neuropathic pain. J Neuroimmunol 2016; 292:85-92. [DOI: 10.1016/j.jneuroim.2016.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/30/2022]
|
54
|
Kaka G, Yaghoobi K, Davoodi S, Hosseini SR, Sadraie SH, Mansouri K. Assessment of the Neuroprotective Effects of Lavandula angustifolia Extract on the Contusive Model of Spinal Cord Injury in Wistar Rats. Front Neurosci 2016; 10:25. [PMID: 26903793 PMCID: PMC4744928 DOI: 10.3389/fnins.2016.00025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/19/2016] [Indexed: 12/22/2022] Open
Abstract
Introduction: Spinal cord injury (SCI) involves a primary trauma and secondary cellular processes that can lead to severe damage to the nervous system, resulting in long-term spinal deficits. At the cellular level, SCI causes astrogliosis, of which glial fibrillary acidic protein (GFAP) is a major index. Objective: The aim of this study was to investigate the neuroprotective effects of Lavandula angustifolia (Lav) on the repair of spinal cord injuries in Wistar rats. Materials and Methods: Forty-five female rats were randomly divided into six groups of seven rats each: the intact, sham, control (SCI), Lav 100, Lav 200, and Lav 400 groups. Every week after SCI onset, all animals were evaluated for behavior outcomes by the Basso, Beattie, and Bresnahan (BBB) score. H&E staining was performed to examine the lesions post-injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP) testing was performed to detect the recovery of neural conduction. Results: BBB scores were significantly increased and delayed responses on sensory tests were significantly decreased in the Lav 200 and Lav 400 groups compared to the control group. The greatest decrease of GFAP was evident in the Lav 200 and Lav 400 groups. EMG results showed significant improvement in the hindlimbs in the Lav 200 and Lav 400 groups compared to the control group. Cavity areas significantly decreased and the number of ventral motor neurons significantly increased in the Lav 200 and Lav 400 groups. Conclusion: Lav at doses of 200 and 400 mg/kg can promote structural and functional recovery after SCI. The neuroprotective effects of L. angustifolia can lead to improvement in the contusive model of SCI in Wistar rats.
Collapse
Affiliation(s)
- Gholamreza Kaka
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Kayvan Yaghoobi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Shaghayegh Davoodi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Seyed R Hosseini
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Seyed H Sadraie
- Department of Anatomy, School of Medicine, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Korosh Mansouri
- Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences Tehran, Iran
| |
Collapse
|
55
|
Porcu P, Barron AM, Frye CA, Walf AA, Yang SY, He XY, Morrow AL, Panzica GC, Melcangi RC. Neurosteroidogenesis Today: Novel Targets for Neuroactive Steroid Synthesis and Action and Their Relevance for Translational Research. J Neuroendocrinol 2016; 28:12351. [PMID: 26681259 PMCID: PMC4769676 DOI: 10.1111/jne.12351] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/12/2015] [Accepted: 12/12/2015] [Indexed: 12/19/2022]
Abstract
Neuroactive steroids are endogenous neuromodulators synthesised in the brain that rapidly alter neuronal excitability by binding to membrane receptors, in addition to the regulation of gene expression via intracellular steroid receptors. Neuroactive steroids induce potent anxiolytic, antidepressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the GABAA receptor. They also exert neuroprotective, neurotrophic and antiapoptotic effects in several animal models of neurodegenerative diseases. Neuroactive steroids regulate many physiological functions, such as the stress response, puberty, the ovarian cycle, pregnancy and reward. Their levels are altered in several neuropsychiatric and neurological diseases and both preclinical and clinical studies emphasise a therapeutic potential of neuroactive steroids for these diseases, whereby symptomatology ameliorates upon restoration of neuroactive steroid concentrations. However, direct administration of neuroactive steroids has several challenges, including pharmacokinetics, low bioavailability, addiction potential, safety and tolerability, which limit its therapeutic use. Therefore, modulation of neurosteroidogenesis to restore the altered endogenous neuroactive steroid tone may represent a better therapeutic approach. This review summarises recent approaches that target the neuroactive steroid biosynthetic pathway at different levels aiming to promote neurosteroidogenesis. These include modulation of neurosteroidogenesis through ligands of the translocator protein 18 kDa and the pregnane xenobiotic receptor, as well as targeting of specific neurosteroidogenic enzymes such as 17β-hydroxysteroid dehydrogenase type 10 or P450 side chain cleavage. Enhanced neurosteroidogenesis through these targets may be beneficial not only for neurodegenerative diseases, such as Alzheimer's disease and age-related dementia, but also for neuropsychiatric diseases, including alcohol use disorders.
Collapse
Affiliation(s)
- Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Anna M. Barron
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba, Japan
| | - Cheryl Anne Frye
- Institute of Arctic Biology, The University of Alaska–Fairbanks, Fairbanks, AK, USA
- The University at Albany, Albany, NY, USA
| | - Alicia A. Walf
- Institute of Arctic Biology, The University of Alaska–Fairbanks, Fairbanks, AK, USA
- The University at Albany, Albany, NY, USA
- Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Song-Yu Yang
- Department of Developmental Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Xue-Ying He
- Department of Developmental Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - A. Leslie Morrow
- Departments of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Gian Carlo Panzica
- Department of Neuroscience, University of Turin, and NICO - Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Roberto C. Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
56
|
Jiang C, Zuo F, Wang Y, Lu H, Yang Q, Wang J. Progesterone Changes VEGF and BDNF Expression and Promotes Neurogenesis After Ischemic Stroke. Mol Neurobiol 2016. [PMID: 26746666 DOI: 10.1007/s12035-015-9651-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Studies have shown that progesterone enhances functional recovery after ischemic stroke, but the underlying mechanisms are not completely understood. Therefore, we investigated the effect of progesterone on vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and neurogenesis in a rodent stroke model. Rats underwent permanent middle cerebral artery occlusion (pMCAO) and then received intraperitoneal injections of progesterone (15 mg/kg) or vehicle at 1 h followed by subcutaneous injections at 6, 24, and 48 h. We examined VEGF and BDNF expression by Western blotting and/or immunostaining and microvessel density by lectin immunostaining. Neurogenesis in the subventricular zone was determined by immunostaining of Ki67 and doublecortin, and double BrdU/Nestin immunostaining. We calculated brain water content with the wet-dry weight method on day 3 and assessed neurologic deficits with the modified neurological severity score on days 1, 3, 7, and 14. Progesterone-treated rats showed a significant decrease in VEGF expression, but an increase in BDNF expression, compared with that of vehicle-treated pMCAO rats on day 3 post-occlusion. Progesterone did not alter the microvessel density, but it reduced brain water content compared with that in vehicle-treated rats on day 3 post-occlusion. Progesterone treatment increased the numbers of newly generated neurons in the subventricular zone and doublecortin-positive cells in the peri-infarct region on day 7 post-occlusion. In addition, progesterone improved neurologic function on days 7 and 14 post-occlusion. Our data suggest that the enhancement of endogenous BDNF and subsequent neurogenesis could partially underlie the neuroprotective effects of progesterone.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, People's Republic of China.
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| | - Fangfang Zuo
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, People's Republic of China
| | - Yuejuan Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, People's Republic of China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400044, China
| | - Jian Wang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
57
|
Labombarda F, Jure I, Gonzalez S, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF. A functional progesterone receptor is required for immunomodulation, reduction of reactive gliosis and survival of oligodendrocyte precursors in the injured spinal cord. J Steroid Biochem Mol Biol 2015; 154:274-84. [PMID: 26369614 DOI: 10.1016/j.jsbmb.2015.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 12/22/2022]
Abstract
The anti-inflammatory effects of progesterone have been increasingly recognized in several neuropathological models, including spinal cord inflammation. In the present investigation, we explored the regulation of proinflammatory factors and enzymes by progesterone at several time points after spinal cord injury (SCI) in male rats. We also demonstrated the role of the progesterone receptor (PR) in inhibiting inflammation and reactive gliosis, and in enhancing the survival of oligodendrocyte progenitors cells (OPC) in injured PR knockout (PRKO) mice receiving progesterone. First, after SCI in rats, progesterone greatly attenuated the injury-induced hyperexpression of the mRNAs of interleukin 1β (IL1β), IL6, tumor necrosis factor alpha (TNFα), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), all involved in oligodendrocyte damage. Second, the role of the PR was investigated in PRKO mice after SCI, in which progesterone failed to reduce the high expression of IL1β, IL6, TNFα and IκB-α mRNAs, the latter being considered an index of reduced NF-κB transactivation. These effects occurred in a time framework coincident with a reduction in the astrocyte and microglial responses. In contrast to wild-type mice, progesterone did not increase the density of OPC and did not prevent apoptotic death of these cells in PRKO mice. Our results support a role of PR in: (a) the anti-inflammatory effects of progesterone; (b) the modulation of astrocyte and microglial responses and (c) the prevention of OPC apoptosis, a mechanism that would enhance the commitment of progenitors to the remyelination pathway in the injured spinal cord.
Collapse
Affiliation(s)
- Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Ignacio Jure
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina
| | - Susana Gonzalez
- Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Laboratory of Nociception and Neuropathic Pain, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina
| | - Rachida Guennoun
- U1195 Inserm and Université Paris-Sud, 94276 Le Kremlin-Bicêtre, France
| | | | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
58
|
The progesterone receptor agonist Nestorone holds back proinflammatory mediators and neuropathology in the wobbler mouse model of motoneuron degeneration. Neuroscience 2015; 308:51-63. [DOI: 10.1016/j.neuroscience.2015.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/20/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022]
|
59
|
Pandamooz S, Nabiuni M, Miyan J, Ahmadiani A, Dargahi L. Organotypic Spinal Cord Culture: a Proper Platform for the Functional Screening. Mol Neurobiol 2015; 53:4659-74. [PMID: 26310972 DOI: 10.1007/s12035-015-9403-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
Recent improvements in organotypic slice culturing and its accompanying technological innovations have made this biological preparation increasingly useful ex vivo experimental model. Among organotypic slice cultures obtained from various central nervous regions, spinal cord slice culture is an absorbing model that represents several unique advantages over other current in vitro and in vivo models. The culture of developing spinal cord slices, as allows real-time observation of embryonic cells behaviors, is an instrumental platform for developmental investigation. Importantly, due to the ability of ex vivo models to recapitulate different aspects of corresponding in vivo conditions, these models have been subject of various manipulations to derive disease-relevant slice models. Moreover spinal cord slice cultures represent a potential platform for screening of different pharmacological agents and evaluation of cell transplantation and neuroregenerative materials. In this review, we will focus on studies carried out using the ex vivo model of spinal cord slice cultures and main advantages linked to practicality of these slices in both normal and neuropathological diseases and summarize them in different categories based on application.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jaleel Miyan
- Neurobiology Research Group, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
60
|
Abstract
INTRODUCTION Neuropathic pain is difficult to relieve with standard analgesics and tends to be resistant to opioid therapy. Sigma-1 receptors activated during neuropathic injury may sustain pain. Neuropathic injury activates sigma-1 receptors, which results in activation of various kinases, modulates the activity of multiple ion channels, ligand activated ion channels and voltage-gated ion channels; alters monoamine neurotransmission and dampens opioid receptors G-protein activation. Activation of sigma-1 receptors tonically inhibits opioid receptor G-protein activation and thus dampens analgesic responses. Therefore, sigma-1 receptor antagonists are potential analgesics for neuropathic and adjuvants to opioid therapy. AREAS COVERED This article reviews the importance of sigma-1 receptors as pain generators in multiple animal models in order to illustrate both the importance of these unique receptors in pathologic pain and the potential benefits to sigma-1 receptor antagonists as analgesics. EXPERT OPINION Sigma-1 receptor antagonists have a great potential as analgesics for acute neuropathic injury (herpes zoster, acute postoperative pain and chemotherapy induced neuropathy) and may, as an additional benefit, prevent the development of chronic neuropathic pain. Antagonists are potentially effective as adjuvants to opioid therapy when used early to prevent analgesic tolerance. Drug development is complicated by the complexity of sigma-1 receptor pharmacodynamics and its multiple targets, the lack of a specific sigma-1 receptor antagonist, and potential side effects due to on-target toxicities (cognitive impairment, depression).
Collapse
Affiliation(s)
- Mellar P Davis
- Case Western Reserve University, Taussig Cancer Institute, Cleveland Clinic Lerner School of Medicine, Palliative Medicine and Supportive Oncology Services, Division of Solid Tumor, The Cleveland Clinic , 9500 Euclid Ave, Cleveland, OH 44195 , USA
| |
Collapse
|
61
|
Datto JP, Bastidas JC, Miller NL, Shah AK, Arheart KL, Marcillo AE, Dietrich WD, Pearse DD. Female Rats Demonstrate Improved Locomotor Recovery and Greater Preservation of White and Gray Matter after Traumatic Spinal Cord Injury Compared to Males. J Neurotrauma 2015; 32:1146-57. [PMID: 25715192 DOI: 10.1089/neu.2014.3702] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The possibility of a gender-related difference in recovery after spinal cord injury (SCI) remains a controversial subject. Current empirical animal research lacks sizable test groups to definitively determine whether significant differences exist. Evaluating locomotor recovery variances between sexes following a precise, clinically relevant spinal cord contusion model can provide valuable insight into a possible gender-related advantage in outcome post-SCI. In the current study, we hypothesized that by employing larger sample sizes in a reproducible contusive SCI paradigm, subtle distinctions in locomotor recovery between sexes, if they exist, would be elucidated through a broad range of behavioral tests. During 13 weeks of functional assessment after a thoracic (T8) contusive SCI in rat, significant differences owing to gender existed for the Basso, Beattie, and Bresnahan score and CatWalk hindlimb swing, support four, and single stance analyses. Significant differences in locomotor performance were noticeable as early as 4 weeks post-SCI. Stereological tissue-volume analysis determined that females, more so than males, also exhibited greater volumes of preserved gray and white matter within the injured cord segment as well as more spared ventral white matter area at the center of the lesion. The stereological tissue analysis differences favoring females directly correlated with the female rats' greater functional improvement observed at endpoint.
Collapse
Affiliation(s)
- Jeffrey P Datto
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Johana C Bastidas
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Nicole L Miller
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Anna K Shah
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Kristopher L Arheart
- 2 The Departments of Public Health Sciences, University of Miami Miller School of Medicine , Miami, Florida
| | - Alexander E Marcillo
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - W Dalton Dietrich
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida.,3 The Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida.,4 The Department of Cell Biology, University of Miami Miller School of Medicine , Miami, Florida.,5 The Department of Neurology, University of Miami Miller School of Medicine , Miami, Florida.,6 The Neuroscience Program, University of Miami Miller School of Medicine , Miami, Florida
| | - Damien D Pearse
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida.,3 The Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida.,6 The Neuroscience Program, University of Miami Miller School of Medicine , Miami, Florida.,7 The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
62
|
Cox A, Varma A, Banik N. Recent advances in the pharmacologic treatment of spinal cord injury. Metab Brain Dis 2015; 30:473-82. [PMID: 24833553 PMCID: PMC4233197 DOI: 10.1007/s11011-014-9547-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/10/2014] [Indexed: 12/16/2022]
Abstract
A need exists for the effective treatment of individuals suffering from spinal cord injury (SCI). Recent advances in the understanding of the pathophysiological mechanisms occurring in SCI have resulted in an expansion of new therapeutic targets. This review summarizes both preclinical and clinical findings investigating the mechanisms and cognate pharmacologic therapeutics targeted to modulate hypoxia, ischemia, excitotoxicity, inflammation, apoptosis, epigenetic alterations, myelin regeneration and scar remodeling. Successful modulation of these targets has been demonstrated in both preclinical and clinical studies with agents such as Oxycyte, Minocycline, Riluzole, Premarin, Cethrin, and ATI-355. The translation of these agents into clinical studies highlights the progress the field has made in the past decade. SCI proves to be a complex condition; the numerous pathophysiological mechanisms occurring at varying time points suggests that a single agent approach to the treatment of SCI may not be optimal. As the field continues to mature, the hope is that the knowledge gained from these studies will be applied to the development of an effective multi-pronged treatment strategy for SCI.
Collapse
Affiliation(s)
- April Cox
- Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas ST. MSC606, Charleston, SC, 29425, USA,
| | | | | |
Collapse
|
63
|
Guennoun R, Labombarda F, Gonzalez Deniselle MC, Liere P, De Nicola AF, Schumacher M. Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotection. J Steroid Biochem Mol Biol 2015; 146:48-61. [PMID: 25196185 DOI: 10.1016/j.jsbmb.2014.09.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023]
Abstract
Progesterone is a well-known steroid hormone, synthesized by ovaries and placenta in females, and by adrenal glands in both males and females. Several tissues are targets of progesterone and the nervous system is a major one. Progesterone is also locally synthesized by the nervous system and qualifies, therefore, as a neurosteroid. In addition, the nervous system has the capacity to bio-convert progesterone into its active metabolite allopregnanolone. The enzymes required for progesterone and allopregnanolone synthesis are widely distributed in brain and spinal cord. Increased local biosynthesis of pregnenolone, progesterone and 5α-dihydroprogesterone may be a part of an endogenous neuroprotective mechanism in response to nervous system injuries. Progesterone and allopregnanolone neuroprotective effects have been widely recognized. Multiple receptors or associated proteins may contribute to the progesterone effects: classical nuclear receptors (PR), membrane progesterone receptor component 1 (PGRMC1), membrane progesterone receptors (mPR), and γ-aminobutyric acid type A (GABAA) receptors after conversion to allopregnanolone. In this review, we will succinctly describe progesterone and allopregnanolone biosynthetic pathways and enzyme distribution in brain and spinal cord. Then, we will summarize our work on progesterone receptor distribution and cellular expression in brain and spinal cord; neurosteroid stimulation after nervous system injuries (spinal cord injury, traumatic brain injury, and stroke); and on progesterone and allopregnanolone neuroprotective effects in different experimental models including stroke and spinal cord injury. We will discuss in detail the neuroprotective effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABAA receptors.
Collapse
Affiliation(s)
- R Guennoun
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France.
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | | | - P Liere
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - M Schumacher
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France
| |
Collapse
|
64
|
Garcia-Ovejero D, González S, Paniagua-Torija B, Lima A, Molina-Holgado E, De Nicola AF, Labombarda F. Progesterone reduces secondary damage, preserves white matter, and improves locomotor outcome after spinal cord contusion. J Neurotrauma 2014; 31:857-71. [PMID: 24460450 DOI: 10.1089/neu.2013.3162] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Progesterone is an anti-inflammatory and promyelinating agent after spinal cord injury, but its effectiveness on functional recovery is still controversial. In the current study, we tested the effects of chronic progesterone administration on tissue preservation and functional recovery in a clinically relevant model of spinal cord lesion (thoracic contusion). Using magnetic resonance imaging, we observed that progesterone reduced both volume and rostrocaudal extension of the lesion at 60 days post-injury. In addition, progesterone increased the number of total mature oligodendrocytes, myelin basic protein immunoreactivity, and the number of axonal profiles at the epicenter of the lesion. Further, progesterone treatment significantly improved motor outcome as assessed using the Basso-Bresnahan-Beattie scale for locomotion and CatWalk gait analysis. These data suggest that progesterone could be considered a promising therapeutical candidate for spinal cord injury.
Collapse
Affiliation(s)
- Daniel Garcia-Ovejero
- 1 Laboratorio de Neuroinflamación, Hospital Nacional de Parapléjicos , Toledo, Spain
| | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
There is currently no standard pharmacological treatment for spinal cord injury. Here, we suggest that progesterone, a steroid hormone, may be a promising therapeutical candidate as it is already for traumatic brain injury, where it has reached phase II clinical trials. We rely on previous works showing anti-inflammatory, neuroprotective and promyelinating roles for progesterone after spinal cord injury and in our recent paper, in which we demonstrate that progesterone diminishes lesion, preserves white matter integrity and improves locomotor recovery in a clinically relevant model of spinal cord lesion.
Collapse
Affiliation(s)
- Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Institute of Biology and Experimental Medicine CONICET, Vuelta de Obligado 2490, Buenos Aires, Argentina ; Departament of Human Biochemistry, School of Medicine, Buenos Aires University, Paraguay 2155, Buenos Aires, Argentina
| | - Daniel Garcia-Ovejero
- Neuroinflammation Laboratory, National Hospital For Paraplegics, (SESCAM), Toledo, Spain
| |
Collapse
|
66
|
Progesterone attenuates experimental subarachnoid hemorrhage-induced vasospasm by upregulation of endothelial nitric oxide synthase via Akt signaling pathway. BIOMED RESEARCH INTERNATIONAL 2014; 2014:207616. [PMID: 24949428 PMCID: PMC4052693 DOI: 10.1155/2014/207616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/23/2014] [Indexed: 01/20/2023]
Abstract
Cerebral vasospasm is the leading cause of mortality and morbidity in patients after aneurysmal subarachnoid hemorrhage (SAH). However, the mechanism and adequate treatment of vasospasm are still elusive. In the present study, we evaluate the effect and possible mechanism of progesterone on SAH-induced vasospasm in a two-hemorrhage rodent model of SAH. Progesterone (8 mg/kg) was subcutaneously injected in ovariectomized female Sprague-Dawley rats one hour after SAH induction. The degree of vasospasm was determined by averaging the cross-sectional areas of basilar artery 7 days after first SAH. Expressions of endothelial nitric oxide synthase (eNOS) and phosphorylated Akt (phospho-Akt) in basilar arteries were evaluated. Prior to perfusion fixation, there were no significant differences among the control and treated groups in physiological parameters recorded. Progesterone treatment significantly (P < 0.01) attenuated SAH-induced vasospasm. The SAH-induced suppression of eNOS protein and phospho-Akt were relieved by progesterone treatment. This result further confirmed that progesterone is effective in preventing SAH-induced vasospasm. The beneficial effect of progesterone might be in part related to upregulation of expression of eNOS via Akt signaling pathway after SAH. Progesterone holds therapeutic promise in the treatment of cerebral vasospasm following SAH.
Collapse
|
67
|
Nicotra L, Tuke J, Grace PM, Rolan PE, Hutchinson MR. Sex differences in mechanical allodynia: how can it be preclinically quantified and analyzed? Front Behav Neurosci 2014; 8:40. [PMID: 24592221 PMCID: PMC3923156 DOI: 10.3389/fnbeh.2014.00040] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
Translating promising preclinical drug discoveries to successful clinical trials remains a significant hurdle in pain research. Although animal models have significantly contributed to understanding chronic pain pathophysiology, the majority of research has focused on male rodents using testing procedures that produce sex difference data that do not align well with comparable clinical experiences. Additionally, the use of animal pain models presents ongoing ethical challenges demanding continuing refinement of preclinical methods. To this end, this study sought to test a quantitative allodynia assessment technique and associated statistical analysis in a modified graded nerve injury pain model with the aim to further examine sex differences in allodynia. Graded allodynia was established in male and female Sprague Dawley rats by altering the number of sutures placed around the sciatic nerve and quantified by the von Frey test. Linear mixed effects modeling regressed response on each fixed effect (sex, oestrus cycle, pain treatment). On comparison with other common von Frey assessment techniques, utilizing lower threshold filaments than those ordinarily tested, at 1 s intervals, appropriately and successfully investigated female mechanical allodynia, revealing significant sex and oestrus cycle difference across the graded allodynia that other common behavioral methods were unable to detect. Utilizing this different von Frey approach and graded allodynia model, a single suture inflicting less allodynia was sufficient to demonstrate exaggerated female mechanical allodynia throughout the phases of dioestrus and pro-oestrus. Refining the von Frey testing method, statistical analysis technique and the use of a graded model of chronic pain, allowed for examination of the influences on female mechanical nociception that other von Frey methods cannot provide.
Collapse
Affiliation(s)
- Lauren Nicotra
- Department of Pharmacology, Neuroimmunopharmacology, The University of Adelaide Adelaide, SA, Australia
| | - Jonathan Tuke
- Faculty of Engineering, School of Mathematical Sciences, Computer Science and Mathematics, The University of Adelaide Adelaide, SA, Australia
| | - Peter M Grace
- Department of Psychology and Neuroscience, The University of Colorado Boulder, CO, USA
| | - Paul E Rolan
- Department of Pharmacology, Neuroimmunopharmacology, The University of Adelaide Adelaide, SA, Australia
| | - Mark R Hutchinson
- Department of Physiology, Neuroimmunopharmacology, The University of Adelaide Adelaide, SA, Australia
| |
Collapse
|
68
|
Wali B, Ishrat T, Won S, Stein DG, Sayeed I. Progesterone in experimental permanent stroke: a dose-response and therapeutic time-window study. Brain 2014; 137:486-502. [PMID: 24374329 PMCID: PMC3914469 DOI: 10.1093/brain/awt319] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/10/2013] [Accepted: 09/23/2013] [Indexed: 11/14/2022] Open
Abstract
Currently, the only approved treatment for ischaemic stroke is tissue plasminogen activator, a clot-buster. This treatment can have dangerous consequences if not given within the first 4 h after stroke. Our group and others have shown progesterone to be beneficial in preclinical studies of stroke, but a progesterone dose-response and time-window study is lacking. We tested male Sprague-Dawley rats (12 months old) with permanent middle cerebral artery occlusion or sham operations on multiple measures of sensory, motor and cognitive performance. For the dose-response study, animals received intraperitoneal injections of progesterone (8, 16 or 32 mg/kg) at 1 h post-occlusion, and subcutaneous injections at 6 h and then once every 24 h for 7 days. For the time-window study, the optimal dose of progesterone was given starting at 3, 6 or 24 h post-stroke. Behavioural recovery was evaluated at repeated intervals. Rats were killed at 22 days post-stroke and brains extracted for evaluation of infarct volume. Both 8 and 16 mg/kg doses of progesterone produced attenuation of infarct volume compared with the placebo, and improved functional outcomes up to 3 weeks after stroke on locomotor activity, grip strength, sensory neglect, gait impairment, motor coordination and spatial navigation tests. In the time-window study, the progesterone group exhibited substantial neuroprotection as late as 6 h after stroke onset. Compared with placebo, progesterone showed a significant reduction in infarct size with 3- and 6-h delays. Moderate doses (8 and 16 mg/kg) of progesterone reduced infarct size and improved functional deficits in our clinically relevant model of stroke. The 8 mg/kg dose was optimal in improving motor, sensory and memory function, and this effect was observed over a large therapeutic time window. Progesterone shows promise as a potential therapeutic agent and should be examined for safety and efficacy in a clinical trial for ischaemic stroke.
Collapse
Affiliation(s)
- Bushra Wali
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
69
|
Melcangi RC, Giatti S, Calabrese D, Pesaresi M, Cermenati G, Mitro N, Viviani B, Garcia-Segura LM, Caruso D. Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog Neurobiol 2014; 113:56-69. [DOI: 10.1016/j.pneurobio.2013.07.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/17/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022]
|
70
|
Elkabes S, Nicot AB. Sex steroids and neuroprotection in spinal cord injury: a review of preclinical investigations. Exp Neurol 2014; 259:28-37. [PMID: 24440641 DOI: 10.1016/j.expneurol.2014.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/25/2013] [Accepted: 01/04/2014] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is a debilitating condition that affects motor, sensory and autonomic functions. Subsequent to the first mechanical trauma, secondary events, which include inflammation and glial activation, exacerbate tissue damage and worsen functional deficits. Although these secondary injury mechanisms are amenable to therapeutic interventions, the efficacy of current approaches is inadequate. Further investigations are necessary to implement new therapies that can protect neural cells and attenuate some of the detrimental effects of inflammation while promoting regeneration. Studies on different animal models of SCI indicated that sex steroids, especially 17β-estradiol and progesterone, exert neuroprotective, anti-apoptotic and anti-inflammatory effects, ameliorate tissue sparing and improve functional deficits in SCI. As sex steroid receptors are expressed in a variety of cells including neurons, glia and immune system-related cells which infiltrate the injury epicenter, sex steroids could impact multiple processes simultaneously and in doing so, influence the outcomes of SCI. However, the translation of these pre-clinical findings into the clinical setting presents challenges such as the narrow therapeutic time window of sex steroid administration, the diversity of treatment regimens that have been employed in animal studies and the lack of sufficient information regarding the persistence of the effects in chronic SCI. The current review will summarize some of the major findings in this field and will discuss the challenges associated with the implementation of sex steroids as a promising treatment in human SCI.
Collapse
Affiliation(s)
- Stella Elkabes
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| | - Arnaud B Nicot
- UMR 1064, INSERM, Nantes, France; Faculté de Médecine, Université de Nantes, France; ITUN, CHU de Nantes, France
| |
Collapse
|
71
|
Espinosa-García C, Aguilar-Hernández A, Cervantes M, Moralí G. Effects of progesterone on neurite growth inhibitors in the hippocampus following global cerebral ischemia. Brain Res 2014; 1545:23-34. [DOI: 10.1016/j.brainres.2013.11.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/19/2013] [Accepted: 11/28/2013] [Indexed: 01/17/2023]
|
72
|
Dinc C, Iplikcioglu AC, Atabey C, Eroglu A, Topuz K, Ipcioglu O, Demirel D. Comparison of deferoxamine and methylprednisolone: protective effect of pharmacological agents on lipid peroxidation in spinal cord injury in rats. Spine (Phila Pa 1976) 2013; 38:E1649-55. [PMID: 24108296 DOI: 10.1097/brs.0000000000000055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN Experimental study. OBJECTIVE To investigate the protective effect of deferoxamine (DFO) administration in comparison with methylprednisolone (MP) on lipid peroxidation and antioxidants after spinal cord injury (SCI) in rats. SUMMARY OF BACKGROUND DATA DFO is used for treating an iron-chelating agent, which is also used in the treatment of iron poisoning and thalassaemia. The neuroprotective effect of DFO was evaulated as a therapeutic agent for SCI. METHODS Forty Wistar rats were randomly divided into 5 groups as sham laminectomy (n = 8), laminectomy with SCI (n = 8), laminectomy with SCI and 0.9% saline intraperitoneal (i.p.) (n = 8), laminectomy with SCI and 30 mg/kg MP i.p. (n = 8), and laminectomy with SCI and 30 mg/kg DFO i.p. (n = 8). Neurological deficits were examined 24 hours after trauma, and all rats were killed. Spinal cord segments were harvested for both biochemical and histopathological evaluation. RESULTS At 24 hours post-SCI, whereas malondialdehyde levels were increased, superoxide dismutase, catalase, and glutathione peroxidase levels were decreased in groups I, II, and III. MP and DFO treatment decreased MDA levels and increased superoxide dismutase CAT, and glutathione peroxidase levels in control and study groups. There was no statistically significant difference between treatment with MP and DFO (P> 0.05). All rats were paraplegic after SCI, except in the sham group. Histopathological improvement was observed in control and study groups. CONCLUSION This study indicates that beneficial effects may be provided and further studies need to investigate the dose-dependent beneficial and side effects of DFO in SCI. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Cem Dinc
- *Department of Neurosurgery, Eyup Government Hospital, Istanbul, Turkey †Department of Neurosurgery, Bayindir Icerenkoy Hospital, Istanbul, Turkey; and Departments of ‡Neurosurgery §Biochemistry; and ¶Pathology, Haydarpasa Training Hospital, Gulhane Military Medical Academy, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
73
|
Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF, Guennoun R. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2013; 113:6-39. [PMID: 24172649 DOI: 10.1016/j.pneurobio.2013.09.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/15/2013] [Accepted: 09/21/2013] [Indexed: 02/08/2023]
Abstract
Progesterone is commonly considered as a female reproductive hormone and is well-known for its role in pregnancy. It is less well appreciated that progesterone and its metabolite allopregnanolone are also male hormones, as they are produced in both sexes by the adrenal glands. In addition, they are synthesized within the nervous system. Progesterone and allopregnanolone are associated with adaptation to stress, and increased production of progesterone within the brain may be part of the response of neural cells to injury. Progesterone receptors (PR) are widely distributed throughout the brain, but their study has been mainly limited to the hypothalamus and reproductive functions, and the extra-hypothalamic receptors have been neglected. This lack of information about brain functions of PR is unexpected, as the protective and trophic effects of progesterone are much investigated, and as the therapeutic potential of progesterone as a neuroprotective and promyelinating agent is currently being assessed in clinical trials. The little attention devoted to the brain functions of PR may relate to the widely accepted assumption that non-reproductive actions of progesterone may be mainly mediated by allopregnanolone, which does not bind to PR, but acts as a potent positive modulator of γ-aminobutyric acid type A (GABA(A) receptors. The aim of this review is to critically discuss effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABA(A) receptors, with main focus on the brain.
Collapse
Affiliation(s)
- M Schumacher
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France.
| | - C Mattern
- M et P Pharma AG, Emmetten, Switzerland
| | - A Ghoumari
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - J P Oudinet
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - P Liere
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Sitruk-Ware
- Population Council and Rockefeller University, New York, USA
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Guennoun
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
74
|
Sohrabji F, Bake S, Lewis DK. Age-related changes in brain support cells: Implications for stroke severity. Neurochem Int 2013; 63:291-301. [PMID: 23811611 PMCID: PMC3955169 DOI: 10.1016/j.neuint.2013.06.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/31/2013] [Accepted: 06/19/2013] [Indexed: 12/14/2022]
Abstract
Stroke is one of the leading causes of adult disability and the fourth leading cause of mortality in the US. Stroke disproportionately occurs among the elderly, where the disease is more likely to be fatal or lead to long-term supportive care. Animal models, where the ischemic insult can be controlled more precisely, also confirm that aged animals sustain more severe strokes as compared to young animals. Furthermore, the neuroprotection usually seen in younger females when compared to young males is not observed in older females. The preclinical literature thus provides a valuable resource for understanding why the aging brain is more susceptible to severe infarction. In this review, we discuss the hypothesis that stroke severity in the aging brain may be associated with reduced functional capacity of critical support cells. Specifically, we focus on astrocytes, that are critical for detoxification of the brain microenvironment and endothelial cells, which play a crucial role in maintaining the blood brain barrier. In view of the sex difference in stroke severity, this review also discusses studies of middle-aged acyclic females as well as the effects of the estrogen on astrocytes and endothelial cells.
Collapse
Affiliation(s)
- Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Texas A&M HSC College of Medicine, Bryan, TX 77807, United States.
| | | | | |
Collapse
|
75
|
Duncan KA, Moon J, Vartosis D, Zee I. Injury-induced expression of glial androgen receptor in the zebra finch brain. J Neurotrauma 2013; 30:1919-24. [PMID: 23819447 DOI: 10.1089/neu.2013.2951] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Astrogliosis occurs following injury to the zebra finch brain. To date, only estrogen synthase (aromatase) has been identified in injury-induced astrocytes. The expression of other steroidogenic enzymes or their receptors remains unknown in the avian brain. However, in mammals, an upregulation of androgen receptors has been identified in glial cells. The aim of this study was to determine if the androgen receptor is upregulated following injury in adult zebra finches. Finches were given a single penetrating injury and brain tissue was collected 24 or 72 h later. Expression of androgen receptor was examined using immunohistochemistry and quantified using quantitative polymerase chain reaction (qPCR) analysis. Androgen receptors were localized to astrocytes versus neurons, further solidifying the role for astrocytes in neural recovery.
Collapse
Affiliation(s)
- Kelli A Duncan
- Department of Biology, Vassar College , Poughkeepsie, New York
| | | | | | | |
Collapse
|
76
|
Johann S, Beyer C. Neuroprotection by gonadal steroid hormones in acute brain damage requires cooperation with astroglia and microglia. J Steroid Biochem Mol Biol 2013. [PMID: 23196064 DOI: 10.1016/j.jsbmb.2012.11.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neuroactive steroids 17β-estradiol and progesterone control a broad spectrum of neural functions. Besides their roles in the regulation of classical neuroendocrine loops, they strongly influence motor and cognitive systems, behavior, and modulate brain performance at almost every level. Such a statement is underpinned by the widespread and lifelong expression pattern of all types of classical and non-classical estrogen and progesterone receptors in the CNS. The life-sustaining power of neurosteroids for tattered or seriously damaged neurons aroused interest in the scientific community in the past years to study their ability for therapeutic use under neuropathological challenges. Documented by excellent studies either performed in vitro or in adequate animal models mimicking acute toxic or chronic neurodegenerative brain disorders, both hormones revealed a high potency to protect neurons from damage and saved neural systems from collapse. Unfortunately, neurons, astroglia, microglia, and oligodendrocytes are comparably target cells for both steroid hormones. This hampers the precise assignment and understanding of neuroprotective cellular mechanisms activated by both steroids. In this article, we strive for a better comprehension of the mutual reaction between these steroid hormones and the two major glial cell types involved in the maintenance of brain homeostasis, astroglia and microglia, during acute traumatic brain injuries such as stroke and hypoxia. In particular, we attempt to summarize steroid-activated cellular signaling pathways and molecular responses in these cells and their contribution to dampening neuroinflammation and neural destruction. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Sonja Johann
- Institute of Neuroanatomy, RWTH Aachen University, D-52074 Aachen, Germany
| | | |
Collapse
|
77
|
Coronel MF, Labombarda F, De Nicola AF, González SL. Progesterone reduces the expression of spinal cyclooxygenase-2 and inducible nitric oxide synthase and prevents allodynia in a rat model of central neuropathic pain. Eur J Pain 2013; 18:348-59. [PMID: 23929706 DOI: 10.1002/j.1532-2149.2013.00376.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) results in the development of chronic pain that is refractory to conventional treatment. Progesterone, a neuroprotective steroid, may offer a promising perspective in pain modulation after central injury. Here, we explore the impact of progesterone administration on the post-injury inflammatory cascade involving the enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) at the spinal cord level. We also analyse pain behaviours, the profile of glial cell activation, and IκB-α mRNA levels, as an index of NF-κB transactivation. METHODS We used biochemical, immunohistochemical and molecular techniques, as well as behavioural studies, to investigate the effects of progesterone in a well-characterized model of central neuropathic pain. RESULTS Injured animals receiving progesterone presented reduced mRNA levels of the proinflammatory enzymes, as well as decreased COX-2 activity and nitrite levels, as compared to vehicle-treated injured rats. Further, animals receiving the steroid exhibited lower levels of IκB-α mRNA, suggesting decreased NF-κB transactivation. Progesterone administration also attenuated the injury-induced increase in the number of glial fibrillary acidic protein and OX-42 positive cells both at early and late time points after injury, and prevented the development of mechanical and thermal allodynia. Further, when injured rats received early progesterone administration for a critical period of time after injury, they did not display allodynic behaviours even after the treatment had stopped. CONCLUSIONS Our results suggest that progesterone, by modulating early neuroinflammatory events triggered after SCI, may represent a useful strategy to prevent the development of central chronic pain.
Collapse
Affiliation(s)
- M F Coronel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
78
|
Neuroprotection by steroids after neurotrauma in organotypic spinal cord cultures: A key role for progesterone receptors and steroidal modulators of GABAA receptors. Neuropharmacology 2013; 71:46-55. [DOI: 10.1016/j.neuropharm.2013.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/21/2013] [Accepted: 03/03/2013] [Indexed: 11/23/2022]
|
79
|
Deutsch ER, Espinoza TR, Atif F, Woodall E, Kaylor J, Wright DW. Progesterone's role in neuroprotection, a review of the evidence. Brain Res 2013; 1530:82-105. [PMID: 23872219 DOI: 10.1016/j.brainres.2013.07.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
The sex hormone progesterone has been shown to improve outcomes in animal models of a number of neurologic diseases, including traumatic brain injury, ischemia, spinal cord injury, peripheral nerve injury, demyelinating disease, neuromuscular disorders, and seizures. Evidence suggests it exerts its neuroprotective effects through several pathways, including reducing edema, improving neuronal survival, and modulating inflammation and apoptosis. In this review, we summarize the functional outcomes and pathophysiologic mechanisms attributed to progesterone treatment in neurologic disease. We then comment on the breadth of evidence for the use of progesterone in each neurologic disease family. Finally, we provide support for further human studies using progesterone to treat several neurologic diseases.
Collapse
Affiliation(s)
- Eric R Deutsch
- Emergency Neurosciences, Department of Emergency Medicine, Emory University School of Medicine, 49 Jesse Hill Jr. Drive, FOB Suite 126, Atlanta, GA 30303, USA.
| | | | | | | | | | | |
Collapse
|
80
|
Bharne AP, Upadhya MA, Shelkar GP, Singru PS, Subhedar NK, Kokare DM. Neuroprotective effect of cocaine- and amphetamine-regulated transcript peptide in spinal cord injury in mice. Neuropharmacology 2013; 67:126-35. [DOI: 10.1016/j.neuropharm.2012.10.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 10/13/2012] [Accepted: 10/20/2012] [Indexed: 10/27/2022]
|
81
|
Arevalo MA, Santos-Galindo M, Acaz-Fonseca E, Azcoitia I, Garcia-Segura LM. Gonadal hormones and the control of reactive gliosis. Horm Behav 2013; 63:216-21. [PMID: 22401743 DOI: 10.1016/j.yhbeh.2012.02.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 01/08/2023]
Abstract
Astrocytes and microglia respond to central nervous system (CNS) injury with changes in morphology, proliferation, migration and expression of inflammatory regulators. This phenomenon is known as reactive gliosis. Activation of astrocytes and microglia after acute neural insults, such as stroke or traumatic CNS injury, is considered to be an adaptive response that contributes to minimize neuronal damage. However, reactive gliosis may amplify CNS damage under chronic neurodegenerative conditions. Progesterone, estradiol and testosterone have been shown to control reactive gliosis in different models of CNS injury, modifying the number of reactive astrocytes and reactive microglia and the expression of anti-inflammatory and proinflammatory mediators. The actions of gonadal hormones on reactive gliosis involve different mechanisms, including the modulation of the activity of steroid receptors, such as estrogen receptors α and β, the regulation of nuclear factor-κB mediated transcription of inflammatory molecules and the recruitment of the transcriptional corepressor c-terminal binding protein to proinflammatory promoters. In addition, the Parkinson's disease related gene parkin and the endocannabinoid system also participate in the regulation of reactive gliosis by estradiol. The control exerted by gonadal hormones on reactive gliosis may affect the response of neural tissue to trauma and neurodegeneration and may contribute to sex differences in the manifestation of neurodegenerative diseases. However, the precise functional consequences of the regulation of reactive gliosis by gonadal hormones under acute and chronic neurodegenerative conditions are still not fully clarified.
Collapse
|
82
|
Ye JN, Chen XS, Su L, Liu YL, Cai QY, Zhan XL, Xu Y, Zhao SF, Yao ZX. Progesterone alleviates neural behavioral deficits and demyelination with reduced degeneration of oligodendroglial cells in cuprizone-induced mice. PLoS One 2013; 8:e54590. [PMID: 23359803 PMCID: PMC3554738 DOI: 10.1371/journal.pone.0054590] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 12/14/2012] [Indexed: 12/30/2022] Open
Abstract
Demyelination occurs widely in neurodegenerative diseases. Progesterone has neuroprotective effects, is known to reduce the clinical scores and the inflammatory response. Progesterone also promotes remyelination in experimental autoimmune encephalomyelitis and cuprizone-induced demyelinating brain. However, it still remains unclear whether progesterone can alleviate neural behavioral deficits and demyelination with degeneration of oligodendroglial cells in cuprizone-induced mice. In this study, mice were fed with 0.2% cuprizone to induce demyelination, and treated with progesterone to test its potential protective effect on neural behavioral deficits, demyelination and degeneration of oligodendroglial cells. Our results showed noticeable alleviation of neural behavioral deficits following progesterone treatment as assessed by changes in average body weight, and activity during the open field and Rota-rod tests when compared with the vehicle treated cuprizone group. Progesterone treatment alleviated demyelination as shown by Luxol fast blue staining, MBP immunohistochemical staining, and electron microscopy. There was an obvious decrease in TUNEL and Caspase-3-positive apoptotic cells, and an increase in the number of oligodendroglial cells staining positive for PDGFRα, Olig2, Sox10 and CC-1 antibody in the brains of cuprizone-induced mice after progesterone administration. These results indicate that progesterone can alleviate neural behavioral deficits and demyelination against oligodendroglial cell degeneration in cuprizone-induced mice.
Collapse
Affiliation(s)
- Jian-Ning Ye
- Department of Neurology, Xin Qiao Hospital, Third Military Medical University, Chongqing, China
| | - Xing-Shu Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Le Su
- Squadron 9 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Yun-Lai Liu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Qi-Yan Cai
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Xiao-Li Zhan
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Yan Xu
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Shi-Fu Zhao
- Department of Neurology, Xin Qiao Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (Z-XY) (SZ); (S-FZ) (ZY)
| | - Zhong-Xiang Yao
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
- Department of Physiology, Third Military Medical University, Chongqing, China
- * E-mail: (Z-XY) (SZ); (S-FZ) (ZY)
| |
Collapse
|
83
|
Giatti S, Boraso M, Melcangi RC, Viviani B. Neuroactive steroids, their metabolites, and neuroinflammation. J Mol Endocrinol 2012; 49:R125-34. [PMID: 22966132 DOI: 10.1530/jme-12-0127] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuroinflammation represents a common feature of many neurodegenerative diseases implicated both in their onset and progression. Neuroactive steroids act as physiological regulators and protective agents in the nervous system. Therefore, the attention of biomedical research has been recently addressed in evaluating whether neuroactive steroids, such as progestagens, androgens, and estrogens may also affect neuroinflammatory pathways. Observations so far obtained suggest a general anti-inflammatory effect with a beneficial relapse on several neurodegenerative experimental models, thus confirming the potentiality of a neuroprotective strategy based on neuroactive steroids. In this scenario, neuroactive steroid metabolism and the sophisticated machinery involved in their signaling are becoming especially attractive. In particular, because metabolism of neuroactive steroids as well as expression of their receptors is affected during the course of neurodegenerative events, a crucial role of progesterone and testosterone metabolites in modulating neuroinflammation and neurodegeneration may be proposed. In the present review, we will address this issue, providing evidence supporting the hypothesis that the efficacy of neuroactive steroids could be improved through the use of their metabolites.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy
| | | | | | | |
Collapse
|
84
|
Giatti S, Caruso D, Boraso M, Abbiati F, Ballarini E, Calabrese D, Pesaresi M, Rigolio R, Santos-Galindo M, Viviani B, Cavaletti G, Garcia-Segura LM, Melcangi RC. Neuroprotective effects of progesterone in chronic experimental autoimmune encephalomyelitis. J Neuroendocrinol 2012; 24:851-61. [PMID: 22283602 DOI: 10.1111/j.1365-2826.2012.02284.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Observations so far obtained in experimental autoimmune encephalomyelitis (EAE) have revealed the promising neuroprotective effects exerted by progesterone (PROG). The findings suggest that this neuroactive steroid may potentially represent a therapeutic tool for multiple sclerosis (MS). However, up to now, the efficacy of PROG has been only tested in the acute phase of the disease, whereas it is well known that MS expresses different features depending on the phase of the disease. Accordingly, we have evaluated the effect of PROG treatment in EAE induced in Dark Agouti rats (i.e. an experimental model showing a protracted relapsing EAE). Data obtained 45 days after EAE induction show that PROG treatment exerts a beneficial effect on clinical score, confirming surrogate parameters of spinal cord damage in chronic EAE (i.e. reactive microglia, cytokine levels, activity of the Na(+) ,K(+) -ATPase pump and myelin basic protein expression). An increase of the levels of dihydroprogesterone and isopregnanolone (i.e. two PROG metabolites) was also observed in the spinal cord after PROG treatment. Taken together, these results indicate that PROG is effective in reducing the severity of chronic EAE and, consequently, may have potential with respect to MS treatment.
Collapse
Affiliation(s)
- S Giatti
- Department of Endocrinology, Pathophysiology and Applied Biology, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghoumari AM. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci 2012; 6:10. [PMID: 22347156 PMCID: PMC3274763 DOI: 10.3389/fnins.2012.00010] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/16/2012] [Indexed: 11/15/2022] Open
Abstract
Progesterone is well known as a female reproductive hormone and in particular for its role in uterine receptivity, implantation, and the maintenance of pregnancy. However, neuroendocrine research over the past decades has established that progesterone has multiple functions beyond reproduction. Within the nervous system, its neuromodulatory and neuroprotective effects are much studied. Although progesterone has been shown to also promote myelin repair, its influence and that of other steroids on myelination and remyelination is relatively neglected. Reasons for this are that hormonal influences are still not considered as a central problem by most myelin biologists, and that neuroendocrinologists are not sufficiently concerned with the importance of myelin in neuron functions and viability. The effects of progesterone in the nervous system involve a variety of signaling mechanisms. The identification of the classical intracellular progesterone receptors as therapeutic targets for myelin repair suggests new health benefits for synthetic progestins, specifically designed for contraceptive use and hormone replacement therapies. There are also major advantages to use natural progesterone in neuroprotective and myelin repair strategies, because progesterone is converted to biologically active metabolites in nervous tissues and interacts with multiple target proteins. The delivery of progesterone however represents a challenge because of its first-pass metabolism in digestive tract and liver. Recently, the intranasal route of progesterone administration has received attention for easy and efficient targeting of the brain. Progesterone in the brain is derived from the steroidogenic endocrine glands or from local synthesis by neural cells. Stimulating the formation of endogenous progesterone is currently explored as an alternative strategy for neuroprotection, axonal regeneration, and myelin repair.
Collapse
|
86
|
Bieberich E. It's a lipid's world: bioactive lipid metabolism and signaling in neural stem cell differentiation. Neurochem Res 2012; 37:1208-29. [PMID: 22246226 DOI: 10.1007/s11064-011-0698-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/31/2011] [Indexed: 01/20/2023]
Abstract
Lipids are often considered membrane components whose function is to embed proteins into cell membranes. In the last two decades, studies on brain lipids have unequivocally demonstrated that many lipids have critical cell signaling functions; they are called "bioactive lipids". Pioneering work in Dr. Robert Ledeen's laboratory has shown that two bioactive brain sphingolipids, sphingomyelin and the ganglioside GM1 are major signaling lipids in the nuclear envelope. In addition to derivatives of the sphingolipid ceramide, the bioactive lipids discussed here belong to the classes of terpenoids and steroids, eicosanoids, and lysophospholipids. These lipids act mainly through two mechanisms: (1) direct interaction between the bioactive lipid and a specific protein binding partner such as a lipid receptor, protein kinase or phosphatase, ion exchanger, or other cell signaling protein; and (2) formation of lipid microdomains or rafts that regulate the activity of a group of raft-associated cell signaling proteins. In recent years, a third mechanism has emerged, which invokes lipid second messengers as a regulator for the energy and redox balance of differentiating neural stem cells (NSCs). Interestingly, developmental niches such as the stem cell niche for adult NSC differentiation may also be metabolic compartments that respond to a distinct combination of bioactive lipids. The biological function of these lipids as regulators of NSC differentiation will be reviewed and their application in stem cell therapy discussed.
Collapse
Affiliation(s)
- Erhard Bieberich
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street Room CA4012, Augusta, GA 30912, USA.
| |
Collapse
|
87
|
Meyer M, Gonzalez Deniselle M, Gargiulo-Monachelli G, Garay L, Schumacher M, Guennoun R, De Nicola A. Progesterone effects on neuronal brain-derived neurotrophic factor and glial cells during progression of Wobbler mouse neurodegeneration. Neuroscience 2012; 201:267-79. [DOI: 10.1016/j.neuroscience.2011.11.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/27/2011] [Accepted: 11/12/2011] [Indexed: 01/09/2023]
|
88
|
Nicotra L, Loram LC, Watkins LR, Hutchinson MR. Toll-like receptors in chronic pain. Exp Neurol 2011; 234:316-29. [PMID: 22001158 DOI: 10.1016/j.expneurol.2011.09.038] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 12/16/2022]
Abstract
Proinflammatory central immune signaling contributes significantly to the initiation and maintenance of heightened pain states. Recent discoveries have implicated the innate immune system, pattern recognition Toll-like receptors in triggering these proinflammatory central immune signaling events. These exciting developments have been complemented by the discovery of neuronal expression of Toll-like receptors, suggesting pain pathways can be activated directly by the detection of pathogen associated molecular patterns or danger associated molecular patterns. This review will examine the evidence to date implicating Toll-like receptors and their associated signaling components in heightened pain states. In addition, insights into the impact Toll-like receptors have on priming central immune signaling systems for heightened pain states will be discussed. The influence possible sex differences in Toll-like receptor signaling have for female pain and the recognition of small molecule xenobiotics by Toll-like receptors will also be reviewed.
Collapse
Affiliation(s)
- Lauren Nicotra
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, South Australia, 5005, Australia
| | | | | | | |
Collapse
|