51
|
Sun L, Wang F, Chen H, Liu D, Qu T, Li X, Xu D, Liu F, Yin Z, Chen Y. Co-Transplantation of Human Umbilical Cord Mesenchymal Stem Cells and Human Neural Stem Cells Improves the Outcome in Rats with Spinal Cord Injury. Cell Transplant 2019; 28:893-906. [PMID: 31012325 PMCID: PMC6719499 DOI: 10.1177/0963689719844525] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Neural stem cells (NSCs) and mesenchymal stem cells (MSCs) are promising graft materials for cell therapies in spinal cord injury (SCI) models. Previous studies have demonstrated that MSCs can regulate the microenvironment of NSCs and promote their survival rate. Furthermore, several studies indicate that MSCs can reduce stem cell transplantation-linked tumor formation. To our knowledge, no previous studies have determined whether co-transplantation of human umbilical cord mesenchymal stem cells (hUC-MSCs) and human neural stem cells (hNSCs) could improve the outcome in rats with SCI. Therefore, we investigated whether the transplantation of hUC-MSCs combined with hNSCs through an intramedullary injection can improve the outcome of rats with SCI, and explored the underlying mechanisms. In this study, a moderate spinal cord contusion model was established in adult female Wistar rats using an NYU impactor. In total, 108 spinal cord-injured rats were randomly selected and divided into the following five groups: 1) hUC-MSCs group, 2) hNSCs group, 3) hUC-MSCs+hNSCs group, 4) PBS (control) group, and 5) a Sham group. Basso, Beattie and Bresnahan (BBB) behavioral test scores were used to evaluate the motor function of all animals before and after the SCI weekly through the 8th week. Two weeks after transplantation, some rats were sacrificed, immunofluorescence and immunohistochemistry were performed to evaluate the survival and differentiation of the transplanted stem cells, and brain-derived neurotrophic factor (BDNF) was detected by ELISA in the injured spinal cords. At the end of the experiment, we evaluated the remaining myelin sheath and anterior horn neurons in the injured spinal cords using Luxol Fast Blue (LFB) staining. Our results demonstrated that the surviving stem cells in the hUC-MSCs+hNSCs group were significantly increased compared with those in the hUC-MSCs alone and the hNSCs alone groups 2 weeks post-transplantation. Furthermore, the results of the BBB scores and the remaining myelin sheath evaluated via LFB staining in the injured spinal cords demonstrated that the most significantly improved outcome occurred in the hUC-MSCs+hNSCs group. The hUC-MSCs alone and the hNSCs alone groups also had a better outcome compared with that of the PBS-treated group. In conclusion, the present study demonstrates that local intramedullary subacute transplantation of hUC-MSCs, hNSCs, or hUC-MSCs+hNSCs significantly improves the outcome in an in vivo moderate contusion SCI model, and that co-transplantation of hUC-MSCs and hNSCs displayed the best outcome in our experiment.
Collapse
Affiliation(s)
- Lei Sun
- 1 Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, China.,2 Department of Orthopaedics, Taian City Central Hospital, Shandong, China.,3 Department of Orthopaedics, Qian Fo Shan Hospital, Shandong University, Jinan, China
| | - Fan Wang
- 3 Department of Orthopaedics, Qian Fo Shan Hospital, Shandong University, Jinan, China
| | - Heng Chen
- 4 R&D, Cell and Tissue Bank of Shandong Province, Jinan, China
| | - Dong Liu
- 4 R&D, Cell and Tissue Bank of Shandong Province, Jinan, China
| | - Tingyu Qu
- 5 Department of Psychiatry, College of Medicine, University of Illinois at Chicago, USA
| | - Xiaofeng Li
- 1 Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, China
| | - Daxia Xu
- 1 Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Liu
- 2 Department of Orthopaedics, Taian City Central Hospital, Shandong, China
| | - Zhanmin Yin
- 2 Department of Orthopaedics, Taian City Central Hospital, Shandong, China
| | - Yunzhen Chen
- 1 Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
52
|
Feter N, Penny J, Freitas M, Rombaldi A. Effect of physical exercise on hippocampal volume in adults: Systematic review and meta-analysis. Sci Sports 2018. [DOI: 10.1016/j.scispo.2018.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
53
|
Li X, Wu Q, Xie C, Wang C, Wang Q, Dong C, Fang L, Ding J, Wang T. Blocking of BDNF-TrkB signaling inhibits the promotion effect of neurological function recovery after treadmill training in rats with spinal cord injury. Spinal Cord 2018; 57:65-74. [DOI: 10.1038/s41393-018-0173-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 11/09/2022]
|
54
|
Yang E, Gavini K, Bhakta A, Dhanasekaran M, Khan I, Parameshwaran K. Streptozotocin induced hyperglycemia stimulates molecular signaling that promotes cell cycle reentry in mouse hippocampus. Life Sci 2018; 205:131-135. [DOI: 10.1016/j.lfs.2018.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 01/12/2023]
|
55
|
Monteagudo A, Feola J, Natola H, Ji C, Pröschel C, Johnson GVW. Depletion of astrocytic transglutaminase 2 improves injury outcomes. Mol Cell Neurosci 2018; 92:128-136. [PMID: 29969654 DOI: 10.1016/j.mcn.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/12/2023] Open
Abstract
Astrocytes play an indispensable role in maintaining a healthy, functional neural network in the central nervous system (CNS). A primary function of CNS astrocytes is to support the survival and function of neurons. In response to injury, astrocytes take on a reactive phenotype, which alters their molecular functions. Reactive astrocytes have been reported to be both beneficial and harmful to the CNS recovery process subsequent to injury. Understanding the molecular processes and regulatory proteins that determine the extent to which an astrocyte hinders or supports neuronal survival is important within the context of CNS repair. One protein that plays a role in modulating cellular survival is transglutaminase 2 (TG2). Global deletion of TG2 results in beneficial outcomes subsequent to in vivo ischemic brain injury. Ex vivo studies have also implicated TG2 as a negative regulator of astrocyte viability subsequent to injury. In this study we show that knocking down TG2 in astrocytes significantly increases their ability to protect neurons from oxygen glucose deprivation (OGD)/reperfusion injury. To begin to understand how deletion of TG2 in astrocytes improves their ability to protect neurons from injury, we performed transcriptome analysis of wild type and TG2-/- astrocytes. TG2 deletion resulted in alterations in genes involved in extracellular matrix remodeling, cell adhesion and axon growth/guidance. In addition, the majority of genes that showed increases in the TG2-/- astrocytes had predicted cJun/AP-1 binding motifs in their promoters. Furthermore, phospho-cJun levels were robustly elevated in TG2-/- astrocytes, a finding which was consistent with the increase in expression of AP-1 responsive genes. These in vitro data were subsequently extended into an in vivo model to determine whether the absence of astrocytic TG2 improves outcomes after CNS injury. Our results show that, following a spinal cord injury, scar formation is significantly attenuated in mice with astrocyte-specific TG2 deletion compared to mice expressing normal TG2 levels. Taken together, these data indicate that TG2 plays a pivotal role in mediating reactive astrocyte properties following CNS injury. Further, the data suggest that limiting the AP-1 mediated pro-survival injury response may be a contributing factor to that the detrimental effects of astrocytic TG2.
Collapse
Affiliation(s)
- Alina Monteagudo
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Julianne Feola
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA
| | - Heather Natola
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA
| | - Changyi Ji
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA; Stem Cell and Regenerative Medicine Institute, University of Rochester, Rochester, NY 14642, USA
| | - Gail V W Johnson
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA; Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
56
|
Local BDNF Delivery to the Injured Cervical Spinal Cord using an Engineered Hydrogel Enhances Diaphragmatic Respiratory Function. J Neurosci 2018; 38:5982-5995. [PMID: 29891731 DOI: 10.1523/jneurosci.3084-17.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
We developed an innovative biomaterial-based approach to repair the critical neural circuitry that controls diaphragm activation by locally delivering brain-derived neurotrophic factor (BDNF) to injured cervical spinal cord. BDNF can be used to restore respiratory function via a number of potential repair mechanisms; however, widespread BDNF biodistribution resulting from delivery methods such as systemic injection or lumbar puncture can lead to inefficient drug delivery and adverse side effects. As a viable alternative, we developed a novel hydrogel-based system loaded with polysaccharide-BDNF particles self-assembled by electrostatic interactions that can be safely implanted in the intrathecal space for achieving local BDNF delivery with controlled dosing and duration. Implantation of BDNF hydrogel after C4/C5 contusion-type spinal cord injury (SCI) in female rats robustly preserved diaphragm function, as assessed by in vivo recordings of compound muscle action potential and electromyography amplitudes. However, BDNF hydrogel did not decrease lesion size or degeneration of cervical motor neuron soma, suggesting that its therapeutic mechanism of action was not neuroprotection within spinal cord. Interestingly, BDNF hydrogel significantly preserved diaphragm innervation by phrenic motor neurons (PhMNs), as assessed by detailed neuromuscular junction morphological analysis and retrograde PhMN labeling from diaphragm using cholera toxin B. Furthermore, BDNF hydrogel enhanced the serotonergic axon innervation of PhMNs that plays an important role in modulating PhMN excitability. Our findings demonstrate that local BDNF hydrogel delivery is a robustly effective and safe strategy to restore diaphragm function after SCI. In addition, we demonstrate novel therapeutic mechanisms by which BDNF can repair respiratory neural circuitry.SIGNIFICANCE STATEMENT Respiratory compromise is a leading cause of morbidity and mortality following traumatic spinal cord injury (SCI). We used an innovative biomaterial-based drug delivery system in the form of a hydrogel that can be safely injected into the intrathecal space for achieving local delivery of brain-derived neurotrophic factor (BDNF) with controlled dosing and duration, while avoiding side effects associated with other delivery methods. In a clinically relevant rat model of cervical contusion-type SCI, BDNF hydrogel robustly and persistently improved diaphragmatic respiratory function by enhancing phrenic motor neuron (PhMN) innervation of the diaphragm neuromuscular junction and by increasing serotonergic innervation of PhMNs in ventral horn of the cervical spinal cord. These exciting findings demonstrate that local BDNF hydrogel delivery is a safe and robustly effective strategy to maintain respiratory function after cervical SCI.
Collapse
|
57
|
Acute intermittent hypoxia and rehabilitative training following cervical spinal injury alters neuronal hypoxia- and plasticity-associated protein expression. PLoS One 2018; 13:e0197486. [PMID: 29775479 PMCID: PMC5959066 DOI: 10.1371/journal.pone.0197486] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/03/2018] [Indexed: 01/24/2023] Open
Abstract
One of the most promising approaches to improve recovery after spinal cord injury (SCI) is the augmentation of spontaneously occurring plasticity in uninjured neural pathways. Acute intermittent hypoxia (AIH, brief exposures to reduced O2 levels alternating with normal O2 levels) initiates plasticity in respiratory systems and has been shown to improve recovery in respiratory and non-respiratory spinal systems after SCI in experimental animals and humans. Although the mechanism by which AIH elicits its effects after SCI are not well understood, AIH is known to alter protein expression in spinal neurons in uninjured animals. Here, we examine hypoxia- and plasticity-related protein expression using immunofluorescence in spinal neurons in SCI rats that were treated with AIH combined with motor training, a protocol which has been demonstrated to improve recovery of forelimb function in this lesion model. Specifically, we assessed protein expression in spinal neurons from animals with incomplete cervical SCI which were exposed to AIH treatment + motor training either for 1 or 7 days. AIH treatment consisted of 10 episodes of AIH: (5 min 11% O2: 5 min 21% O2) for 7 days beginning at 4 weeks post-SCI. Both 1 or 7 days of AIH treatment + motor training resulted in significantly increased expression of the transcription factor hypoxia-inducible factor-1α (HIF-1α) relative to normoxia-treated controls, in neurons both proximal (cervical) and remote (lumbar) to the SCI. All other markers examined were significantly elevated in the 7 day AIH + motor training group only, at both cervical and lumbar levels. These markers included vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and phosphorylated and nonphosphorylated forms of the BDNF receptor tropomyosin-related kinase B (TrkB). In summary, AIH induces plasticity at the cellular level after SCI by altering the expression of major plasticity- and hypoxia-related proteins at spinal regions proximal and remote to the SCI. These changes occur under the same AIH protocol which resulted in recovery of limb function in this animal model. Thus AIH, which induces plasticity in spinal circuitry, could also be an effective therapy to restore motor function after nervous system injury.
Collapse
|
58
|
Frank LR, Roynard PFP. Veterinary Neurologic Rehabilitation: The Rationale for a Comprehensive Approach. Top Companion Anim Med 2018; 33:49-57. [PMID: 30236409 DOI: 10.1053/j.tcam.2018.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/07/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022]
Abstract
The increase in client willingness to pursue surgical procedures, the heightened perceived value of veterinary patients, and the desire to provide comprehensive medical care have driven the recent demand of using an integrative treatment approach in veterinary rehabilitation. Physical therapy following neurologic injury has been the standard of care in human medicine for decades, whereas similar rehabilitation techniques have only recently been adapted and utilized in veterinary medicine. Spinal cord injury is the most common neurologic disease currently addressed by veterinary rehabilitation specialists and will be the primary focus of this review; however, research in other neurologic conditions will also be discussed. Of particular interest, to clients and veterinarians are techniques and modalities used to promote functional recovery after neurologic injury, which can mean the difference between life and death for many veterinary patients. The trend in human neurologic rehabilitation, often regardless of etiology, is a multimodal approach to therapy. Evidence supports faster and improved recoveries in people after neurologic injury using a combination of rehabilitation techniques. Although the primary neurological disorders researched tend to be spinal cord injury, peripheral neuropathies, allodynia, multiple sclerosis, and strokes-many correlations can be made to common veterinary neurological disorders. Such comprehensive protocols entail gait training activities in combination with neuromuscular electrical stimulation and directed exercises. Additionally, pain-relieving and functional benefits are bolstered when acupuncture is used in addition to rehabilitation. Studies, both laboratory and clinical, support the use of acupuncture in the management of neurologic conditions in small animals, specifically in cases of intervertebral disc disease, other myelopathies, and neuropathic pain conditions. Acupuncture's ability to promote analgesia, stimulate trophic factors, and decrease inflammation, including neuroinflammation, make it an alluring adjunct therapy after neurologic injury. Although there is limited research in veterinary medicine on physical techniques that expedite recovery after neurologic injury, there are sparse publications on clinical veterinary research suggesting the benefits of acupuncture, rehabilitation, and LASER in dogs with intervertebral disk disease. Accordingly, due to the relative lack of evidence-based studies in veterinary neurologic rehabilitation, much of the data available is human or laboratory-animal based, however, evidence supports the utilization of an early, comprehensive treatment protocol for optimal neurologic recovery. The rationale for why an integrative approach is critical will be detailed in this review; in addition, literature on specific physical rehabilitation techniques that have evidence of improved recoveries after neurologic injury, will be addressed.
Collapse
Affiliation(s)
- Lauren R Frank
- Physical Rehabilitation and Acupuncture Service, Long Island Veterinary Specialists, Plainview, NY, USA
| | - Patrick F P Roynard
- Neurology/Neurosurgery Department, Long Island Veterinary Specialists, Plainview, NY, USA; Fipapharm, Mont-Saint-Aignan, France.
| |
Collapse
|
59
|
Aijie C, Xuan L, Huimin L, Yanli Z, Yiyuan K, Yuqing L, Longquan S. Nanoscaffolds in promoting regeneration of the peripheral nervous system. Nanomedicine (Lond) 2018; 13:1067-1085. [PMID: 29790811 DOI: 10.2217/nnm-2017-0389] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ability to surgically repair peripheral nerve injuries is urgently needed. However, traditional tissue engineering techniques, such as autologous nerve transplantation, have some limitations. Therefore, tissue engineered autologous nerve grafts have become a suitable choice for nerve repair. Novel tissue engineering techniques derived from nanostructured conduits have been shown to be superior to other successful functional neurological structures with different scaffolds in terms of providing the required structures and properties. Additionally, different biomaterials and growth factors have been added to nerve scaffolds to produce unique biological effects that promote nerve regeneration and functional recovery. This review summarizes the application of different nanoscaffolds in peripheral nerve repair and further analyzes how the nanoscaffolds promote peripheral nerve regeneration.
Collapse
Affiliation(s)
- Chen Aijie
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction & Detection in Tissue Engineering, Guangzhou 510515, China
| | - Lai Xuan
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
| | - Liang Huimin
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
| | - Zhang Yanli
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
| | - Kang Yiyuan
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
| | - Lin Yuqing
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
| | - Shao Longquan
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction & Detection in Tissue Engineering, Guangzhou 510515, China
| |
Collapse
|
60
|
Tree shrew neural stem cell transplantation promotes functional recovery of tree shrews with a hemi‑sectioned spinal cord injury by upregulating nerve growth factor expression. Int J Mol Med 2018. [PMID: 29532893 PMCID: PMC5881798 DOI: 10.3892/ijmm.2018.3553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to determine the effect of implanted neural stem cells (NSCs) on the functional recovery of tree shrews (TSs) subjected to hemi-sectioned spinal cord injury (hSCI), and to investigate the possible mechanism involved. NSCs (passage 2), derived from the hippocampus of TSs (embryonic day 20), were labeled with Hoechst 33342 and transplanted intraspinally into the hSC of TSs at thoracic level 10 in the acute (immediately after injury) and chronic (day 9 post-injury) stages. The Basso-Beattie-Bresnahan (BBB) score was recorded from days 1 to 16 post-injury, and the survival, migration, differentiation and neurotrophic factor (NTF) expression in vivo were detected. In vitro and in vivo, the expanded NSCs were able to differentiate into neurons and astrocytes, and secreted a variety of NTFs, including ciliary NTF, transforming growth factor-β1, glial cell line-derived NTF, nerve growth factor (NGF), brain-derived NTF and insulin-like growth factor. Following transplantation, the BBB score in the TSs with chronic-stage transplantation exhibited a statistically significant increase, while there was no significant difference in the acute group, compared with the control group. This corresponded with the marked upregulation of NGF indicated by reverse transcription-quantitative polymerase chain reaction. In conclusion, the transplantation of NSCs into the hSC in the chronic phase, but not the acute stage, of hSCI in non-human primate TSs is effective and associated with upregulated NGF expression. These findings may provide novel strategies for the treatment of SCI in clinical patients.
Collapse
|
61
|
Opposing Roles of Estradiol and Testosterone on Stress-Induced Visceral Hypersensitivity in Rats. THE JOURNAL OF PAIN 2018; 19:764-776. [PMID: 29496640 DOI: 10.1016/j.jpain.2018.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/30/2018] [Accepted: 02/14/2018] [Indexed: 12/19/2022]
Abstract
Chronic stress produces maladaptive pain responses, manifested as alterations in pain processing and exacerbation of chronic pain conditions including irritable bowel syndrome. Female predominance, especially during reproductive years, strongly suggests a role of gonadal hormones. However, gonadal hormone modulation of stress-induced pain hypersensitivity is not well understood. In the present study, we tested the hypothesis that estradiol is pronociceptive and testosterone is antinociceptive in a model of stress-induced visceral hypersensitivity (SIVH) in rats by recording the visceromotor response to colorectal distention after a 3-day forced swim (FS) stress paradigm. FS induced visceral hypersensitivity that persisted at least 2 weeks in female, but only 2 days in male rats. Ovariectomy blocked and orchiectomy facilitated SIVH. Furthermore, estradiol injection in intact male rats increased SIVH and testosterone in intact female rats attenuated SIVH. Western blot analyses indicated estradiol increased excitatory glutamate ionotropic receptor NMDA type subunit 1 expression and decreased inhibitory metabotropic glutamate receptor 2 expression after FS in male thoracolumbar spinal cord. In addition, the presence of estradiol during stress increased spinal brain-derived neurotrophic factor (BDNF) expression independent of sex. In contrast, testosterone blocked the stress-induced increase in BDNF expression in female rats. These data suggest that estradiol facilitates and testosterone attenuates SIVH by modulating spinal excitatory and inhibitory glutamatergic receptor expression. PERSPECTIVE SIVH is more robust in female rats. Estradiol facilitates whereas testosterone dampens the development of SIVH. This could partially explain the greater prevalence of certain chronic visceral pain conditions in women. An increase in spinal BDNF is concomitant with increased stress-induced pain. Pharmaceutical interventions targeting this molecule could provide promising alleviation of SIVH in women.
Collapse
|
62
|
Duan HQ, Wu QL, Yao X, Fan BY, Shi HY, Zhao CX, Zhang Y, Li B, Sun C, Kong XH, Zhou XF, Feng SQ. Nafamostat mesilate attenuates inflammation and apoptosis and promotes locomotor recovery after spinal cord injury. CNS Neurosci Ther 2018; 24:429-438. [PMID: 29352519 DOI: 10.1111/cns.12801] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/23/2022] Open
Abstract
AIM Spinal cord injury (SCI) leads to severe neural damage for which there is currently no effective treatment. Exploration of the neuroprotective effect among clinically approved drugs will speed up clinical translation of SCI. Nafamostat mesilate (NM) as a synthetic serine protease inhibitor has been used clinically in pancreatitis treatments. However, its effectiveness in SCI is unknown. The aim of this study was to confirm the efficacy of NM in ameliorating SCI. METHODS Intraperitoneal administration of NM was performed on a contusion SCI model in Wistar rat. Hematoxylin and eosin staining (H&E staining) and Luxol fast blue (LFB) staining were used to observe the histological lesions. Apoptosis was examined by TUNEL staining, Annexin V-FITC/PI, caspase-3, and Bcl-2. Cytokines and neurotrophins were tested by Western blot. Locomotion recovery assessed by hindlimb BBB score and the inclined plane test. RESULTS Nafamostat mesilate treatment significantly improved locomotion recovery as assessed by hindlimb BBB scores and the inclined plane test. H&E staining and LFB staining showed a significant increase in spared tissue in both gray matter and white matter. NM decreased the expression of the proinflammatory cytokines TNF-α and IL-6. In addition, apoptosis was also significantly decreased, as shown by TUNEL staining and Annexin V-FITC/PI and by Western blotting for caspase-3 and Bcl-2 expression. Due to the mechanism of action of NM as a serine protease inhibitor, the drug decreased thrombin expression in the damaged spinal cord. Furthermore, NM increased the expression of neurotrophins (NT-3, BDNF, and NGF). CONCLUSIONS Upon NM treatment, the functional and histological outcomes were improved, and microenvironment upon SCI was modulated. As a clinically approved drug, NM holds promise for clinical use after spinal cord injury.
Collapse
Affiliation(s)
- Hui-Quan Duan
- Department of Orthopaedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiu-Li Wu
- Department of Orthopaedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Yao
- Department of Orthopaedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Tianjin, China
| | - Bao-You Fan
- Department of Orthopaedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-Yu Shi
- Department of Orthopaedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen-Xi Zhao
- Department of Orthopaedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhang
- Department of Orthopaedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Li
- Department of Orthopaedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Sun
- Department of Orthopaedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Xin-Fu Zhou
- School of Pharmacology and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shi-Qing Feng
- Department of Orthopaedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
63
|
Wang T, Fang X, Yin ZS. Endothelial progenitor cell-conditioned medium promotes angiogenesis and is neuroprotective after spinal cord injury. Neural Regen Res 2018; 13:887-895. [PMID: 29863020 PMCID: PMC5998635 DOI: 10.4103/1673-5374.232484] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Endothelial progenitor cells secrete a variety of growth factors that inhibit inflammation, promote angiogenesis and exert neuroprotective effects. Therefore, in this study, we investigated whether endothelial progenitor cell-conditioned medium might have therapeutic effectiveness for the treatment of spinal cord injury using both in vitro and in vivo experiments. After primary culture of bone marrow-derived macrophages, lipopolysaccharide stimulation was used to classically activate macrophages to their proinflammatory phenotype. These cells were then treated with endothelial progenitor cell-conditioned medium or control medium. Polymerase chain reaction was used to determine mRNA expression levels of related inflammatory factors. Afterwards, primary cultures of rat spinal cord neuronal cells were prepared and treated with H2O2 and either endothelial progenitor cell-conditioned medium or control medium. Hoechst 33258 and propidium iodide staining were used to calculate the proportion of neurons undergoing apoptosis. Aortic ring assay was performed to assess the effect of endothelial progenitor cell-conditioned medium on angiogenesis. Compared with control medium, endothelial progenitor cell-conditioned medium mitigated the macrophage inflammatory response at the spinal cord injury site, suppressed apoptosis, and promoted angiogenesis. Next, we used a rat model of spinal cord injury to examine the effects of the endothelial progenitor cell-conditioned medium in vivo. The rats were randomly administered intraperitoneal injection of PBS, control medium or endothelial progenitor cell-conditioned medium, once a day, for 6 consecutive weeks. Immunohistochemistry was used to observe neuronal morphology. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay was performed to detect the proportion of apoptotic neurons in the gray matter. The Basso, Beattie and Bresnahan Locomotor Rating Scale was used to evaluate the recovery of motor function of the bilateral hind limbs after spinal cord injury. Compared with the other two groups, the number of axons was increased, cavities in the spinal cord were decreased, the proportion of apoptotic neurons in the gray matter was reduced, and the Basso, Beattie and Bresnahan score was higher in the endothelial progenitor cell-conditioned medium group. Taken together, the in vivo and in vitro results suggest that endothelial progenitor cell-conditioned medium suppresses inflammation, promotes angiogenesis, provides neuroprotection, and promotes functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Tao Wang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University; Department of Spine Surgery, Hefei Binhu Hospital, the Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiao Fang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zong-Sheng Yin
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
64
|
Yan X, Huang G, Liu Q, Zheng J, Chen H, Huang Q, Chen J, Huang H. Withaferin A protects against spinal cord injury by inhibiting apoptosis and inflammation in mice. PHARMACEUTICAL BIOLOGY 2017; 55:1171-1176. [PMID: 28228044 PMCID: PMC6130570 DOI: 10.1080/13880209.2017.1288262] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/22/2016] [Accepted: 01/13/2017] [Indexed: 05/31/2023]
Abstract
CONTEXT Withaferin A (WFA) exhibits diverse pharmaceutical applications on human diseases, including rheumatoid arthritis, cancers and microbial infection. OBJECTIVE We evaluated the neuroprotective role of WFA using a mouse model of spinal cord injury (SCI). MATERIALS AND METHODS BALB/c mice were administrated 10 mg/kg of WFA. Gene expression was measured by real-time PCR, western blot and immunohistochemistry. Cell morphology and apoptosis were determined by H&E staining and TUNEL assay. Motor function was evaluated by the BBB functional scale for continuous 7 weeks. RESULTS WFA significantly improved neurobehavioural function and alleviated histological alteration of spinal cord tissues in traumatized mice. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) significantly increased in WFA-treated mice. Meanwhile, the expression of Nogo-A and RhoA remarkably decreased in the presence of WFA. Furthermore, the apoptotic cell death was attenuated in mice treated with WFA (31.48 ± 2.50% vs. 50.08 ± 2.08%) accompanied by decreased bax and increased bcl-2. In addition, WFA decreased the expression of pro-inflammatory mediators such as IL-1β (11.20 ± 1.96 ng/mL vs. 17.59 ± 1.42 ng/mL) and TNF-α (57.38 ± 3.57 pg/mL vs. 95.06 ± 9.13 pg/mL). The anti-inflammatory cytokines including TGF-β1 (14.32 ± 1.04 pg/mL vs. 9.37 ± 1.17 pg/mL) and IL-10 (116.80 ± 6.91 pg/mL vs. 72.33 ± 9.35 pg/mL) were elevated after WFA administration. DISCUSSION AND CONCLUSION This study demonstrated that WFA has a neuroprotective role by inhibition of apoptosis and inflammation after SCI in mice.
Collapse
Affiliation(s)
- Xianlei Yan
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Guangxiang Huang
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Quan Liu
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jiemin Zheng
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Hongmou Chen
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Qidan Huang
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jiakang Chen
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Heqing Huang
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
65
|
Díaz-Lucena D, Gutierrez-Mecinas M, Moreno B, Martínez-Sánchez JL, Pifarré P, García A. Mechanisms Involved in the Remyelinating Effect of Sildenafil. J Neuroimmune Pharmacol 2017; 13:6-23. [PMID: 28776122 DOI: 10.1007/s11481-017-9756-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022]
Abstract
Remyelination occurs in demyelinated lesions in multiple sclerosis (MS) and pharmacological treatments that enhance this process will critically impact the long term functional outcome in the disease. Sildenafil, a cyclic GMP (cGMP)-specific phosphodiesterase 5 inhibitor (PDE5-I), is an oral vasodilator drug extensively used in humans for treatment of erectile dysfunction and pulmonary arterial hypertension. PDE5 is expressed in central nervous system (CNS) neuronal and glial populations and in endothelial cells and numerous studies in rodent models of neurological disease have evidenced the neuroprotective potential of PDE5-Is. Using myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) as a MS model, we previously showed that daily administration of sildenafil starting at peak disease rapidly ameliorates clinical symptoms while administration at symptoms onset prevents disease progression. These beneficial effects of the drug involved down-regulation of adaptive and innate immune responses, protection of axons and oligodendrocytes (OLs) and promotion of remyelination. In this work we have investigated mechanisms involved in the remyelinating effect of sildenafil. Using demyelinated organotypic cerebellar slice cultures we demonstrate that sildenafil stimulates remyelination by direct effects on CNS cells in a nitric oxide (NO)-cGMP-protein kinase G (PKG)-dependent manner. We also show that sildenafil treatment enhances OL maturation and induces expression of the promyelinating factor ciliary neurotrophic factor (CNTF) in spinal cord of EAE mice and in cerebellar slice cultures. Furthermore, we demonstrate that sildenafil promotes a M2 phenotype in bone marrow derived macrophages (BMDM) and increases myelin phagocytosis in these cells and in M2 microglia/macrophages in the spinal cord of EAE mice. Taken together these data indicate that promotion of OL maturation directly or through induction of growth factor expression, regulation of microglia/macrophage inflammatory phenotype and clearance of myelin debris may be relevant mechanisms involved in sildenafil enhancement of remyelination in demyelinated tissue and further support the contention that this well tolerated drug could be useful for ameliorating MS pathology.
Collapse
Affiliation(s)
- Daniela Díaz-Lucena
- Institute of Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,Institute of Neuropathology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, 08097, Barcelona, Spain
| | - María Gutierrez-Mecinas
- Institute of Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,Institute of Neuroscience and Psychology, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Beatriz Moreno
- Institute of Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,Basic Sciences Department, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195, Barcelona, Spain
| | - José Lupicinio Martínez-Sánchez
- Institute of Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,Barts Cancer Institute, London, EC1M 6BQ, UK
| | - Paula Pifarré
- Institute of Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain. .,Centre for Genomic Regulation CRG, PRBB Building, 08003, Barcelona, Spain.
| | - Agustina García
- Institute of Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
66
|
Tu WZ, Jiang SH, Zhang L, Li SS, Gu PP, He R, Hu J, Gao LP, Sun QS. Electro-acupuncture at Governor Vessel improves neurological function in rats with spinal cord injury. Chin J Integr Med 2017:10.1007/s11655-017-2968-9. [PMID: 28762132 DOI: 10.1007/s11655-017-2968-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To determine the effects of electro-acupuncture (EA) at Governor Vessel (GV) on the locomotor function in spinal cord injury (SCI) rats and explore the underlying mechanism. METHODS Thirtytwo male Sprague-Dawley rats were randomly divided into four groups namely: the sham group (with sham operation); the untreated group (without treatment after spinal cord impact); the EA-1 group [EA applied at Baihui (GV 20) and Fengfu (GV 16) after spinal cord impact] and the EA-2 group [with EA applied at Dazhui (GV 14) and Mingmen (GV 4) after spinal cord impact]. Real-time quantitative-polymerase chain reaction (RT-PCR) and Western Blotting were used to assess changes in the mRNA and protein expression levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) at 7 weeks following EA administration. In addition, the Basso-Beattie-Bresnahan (BBB) Locomotor Rating Scale was assessed at 1 day, 1 week, 3 weeks and 7 weeks post-injury. RESULTS The results showed that EA stimulation induced neuroprotective effects after SCI correlated with the up-regulation of BDNF and NT-3 (P<0.05). Furthermore, EA stimulation at GV 14 and GV 4 could significantly promote the recovery of locomotor function and this may be linked to the up-regulation of BDNF and NT-3 (P<0.05). CONCLUSIONS EA treatment applied at GV acupoints either within the injury site or adjacent undamaged regions near the brain can improve functional recovery, which may be correlated with the upregulation of BDNF and NT-3. In addition, it would be more effective to administer EA at GV 14 and GV 4 near the injury site of the SCI rats.
Collapse
Affiliation(s)
| | - Song-He Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Li Zhang
- Department of Rehabilitation, Dongyang People's Hospital, Dongyang 322100, Zhejiang Province, China
| | - Si-Si Li
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Peng-Peng Gu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Rong He
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Jie Hu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Li-Ping Gao
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Qiang-San Sun
- Department of Rehabilitation Medicine, The Second Hospital of Shandong University, Jinan, 250033, China.
| |
Collapse
|
67
|
Delaney AM, Adams CF, Fernandes AR, Al-Shakli AF, Sen J, Carwardine DR, Granger N, Chari DM. A fusion of minicircle DNA and nanoparticle delivery technologies facilitates therapeutic genetic engineering of autologous canine olfactory mucosal cells. NANOSCALE 2017; 9:8560-8566. [PMID: 28613324 DOI: 10.1039/c7nr00811b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Olfactory ensheathing cells (OECs) promote axonal regeneration and improve locomotor function when transplanted into the injured spinal cord. A recent clinical trial demonstrated improved motor function in domestic dogs with spinal injury following autologous OEC transplantation. Their utility in canines offers promise for human translation, as dogs are comparable to humans in terms of clinical management and genetic/environmental variation. Moreover, the autologous, minimally invasive derivation of OECs makes them viable for human spinal injury investigation. Genetic engineering of transplant populations may augment their therapeutic potential, but relies heavily on viral methods which have several drawbacks for clinical translation. We present here the first proof that magnetic particles deployed with applied magnetic fields and advanced DNA minicircle vectors can safely bioengineer OECs to secrete a key neurotrophic factor, with an efficiency approaching that of viral vectors. We suggest that our alternative approach offers high translational potential for the delivery of augmented clinical cell therapies.
Collapse
Affiliation(s)
- Alexander M Delaney
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Krupka AJ, Fischer I, Lemay MA. Transplants of Neurotrophin-Producing Autologous Fibroblasts Promote Recovery of Treadmill Stepping in the Acute, Sub-Chronic, and Chronic Spinal Cat. J Neurotrauma 2017; 34:1858-1872. [PMID: 27829315 PMCID: PMC5444492 DOI: 10.1089/neu.2016.4559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Adult cats show limited spontaneous locomotor capabilities following spinal transection, but recover treadmill stepping with body-weight-supported training. Delivery of neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and neurotrophic factor 3 (NT-3) can substitute for body-weight-supported training, and promotes a similar recovery in a shorter period of time. Autologous cell grafts would negate the need for the immunosuppressive agents currently used with most grafts, but have not shown functional benefits in incomplete spinal cord injury models and have never been tested in complete transection or chronic injury models. In this study, we explored the effects of autologous fibroblasts, prepared from the individual cats and modified to produce BDNF and NT-3, on the recovery of locomotion in acute, sub-chronic and chronic full-transection models of spinal injury. Fourteen female cats underwent complete spinal transection at T11/T12. Cats were separated into four groups: sham graft at the time of injury, and BDNF and NT-3 producing autologous fibroblasts grafted at the time of injury, 2 weeks after injury, or 6 weeks after injury. Kinematics were recorded 3 and 5 weeks after cell graft. Additional kinematic recordings were taken for some cats until 12 weeks post-graft. Eleven of 12 cats with neurotrophin-producing grafts recovered plantar weight-bearing stepping at treadmill speeds from 0.3 to 0.8 m/sec within 5 weeks of grafting, whereas control cats recovered poor quality stepping at low speeds only (≤ 0.4 m/sec). Further, kinematic measures in cats with grafts were closer to pre-transection values than those for controls, and recovery was maintained up to 12 weeks post-grafting. Our results show that not only are autologous neurotrophin-producing grafts effective at promoting recovery of locomotion, but that delayed delivery of neurotrophins does not diminish the therapeutic effect, and may improve outcome.
Collapse
Affiliation(s)
| | - Itzhak Fischer
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Michel A. Lemay
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
69
|
Huang YJ, Lee KH, Grau JW. Complete spinal cord injury (SCI) transforms how brain derived neurotrophic factor (BDNF) affects nociceptive sensitization. Exp Neurol 2017; 288:38-50. [PMID: 27818188 DOI: 10.1016/j.expneurol.2016.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 11/17/2022]
Abstract
Noxious stimulation can induce a lasting increase in neural excitability within the spinal cord (central sensitization) that can promote pain and disrupt adaptive function (maladaptive plasticity). Brain-derived neurotrophic factor (BDNF) is known to regulate the development of plasticity and has been shown to impact the development of spinally-mediated central sensitization. The latter effect has been linked to an alteration in GABA-dependent inhibition. Prior studies have shown that, in spinally transected rats, exposure to regular (fixed spaced) stimulation can counter the development of maladaptive plasticity and have linked this effect to an up-regulation of BDNF. Here it is shown that application of the irritant capsaicin to one hind paw induces enhanced mechanical reactivity (EMR) after spinal cord injury (SCI) and that the induction of this effect is blocked by pretreatment with fixed spaced shock. This protective effect was eliminated if rats were pretreated with the BDNF sequestering antibody TrkB-IgG. Intrathecal (i.t.) application of BDNF prevented, but did not reverse, capsaicin-induced EMR. BDNF also attenuated cellular indices (ERK and pERK expression) of central sensitization after SCI. In uninjured rats, i.t. BDNF enhanced, rather than attenuated, capsaicin-induced EMR and ERK/pERK expression. These opposing effects were related to a transformation in GABA function. In uninjured rats, BDNF reduced membrane-bound KCC2 and the inhibitory effect of the GABAA agonist muscimol. After SCI, BDNF increased KCC2 expression, which would help restore GABAergic inhibition. The results suggest that SCI transforms how BDNF affects GABA function and imply that the clinical usefulness of BDNF will depend upon the extent of fiber sparing.
Collapse
Affiliation(s)
- Yung-Jen Huang
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Kuan H Lee
- Center for Pain Research, Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
70
|
Kwan T, Floyd CL, Kim S, King PH. RNA Binding Protein Human Antigen R Is Translocated in Astrocytes following Spinal Cord Injury and Promotes the Inflammatory Response. J Neurotrauma 2017; 34:1249-1259. [PMID: 27852147 DOI: 10.1089/neu.2016.4757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inflammation plays a prominent role in the events following traumatic injury to the central nervous system (CNS). The initial inflammatory response is driven by mediators such as tumor necrosis factor α and interleukin 1β, which are produced by activated astrocytes and microglia at the site of injury. These factors are regulated post-transcriptionally by RNA binding proteins (RBP) that interact with adenylate and uridylate-rich elements (ARE) in the 3'-untranslated region of the messenger RNA (mRNA). Human antigen R (HuR) is one of these RBPs and generally functions as a positive regulator of ARE-containing mRNAs. Here, we hypothesized that HuR plays an important role in the induction of cytokine and chemokines in astrocytes following traumatic injury. Using a mouse model of spinal cord injury, we found HuR to be extensively translocated to the cytoplasm in astrocytes at the level of injury, consistent with its activation. In an in vitro stretch injury model of CNS trauma, we observed a similar cytoplasmic shift of HuR in astrocytes and an attenuation of cytokine induction with HuR knockdown. RNA kinetics and luciferase assays suggested that the effect was more related to transcription than RNA destabilization. A small molecule inhibitor of HuR suppressed cytokine induction of injured astrocytes and reduced chemoattraction for neutrophils and microglia. In summary, HuR is activated in astrocytes in the early stages of CNS trauma and positively regulates the molecular response of key inflammatory mediators in astrocytes. Our findings suggest that HuR may be a therapeutic target in acute CNS trauma for blunting secondary tissue injury triggered by the inflammatory response.
Collapse
Affiliation(s)
- Thaddaeus Kwan
- 1 Department of Neurology, University of Alabama , Birmingham, Alabama
| | - Candace L Floyd
- 2 Department of Physical Medicine and Rehabilitation, University of Alabama , Birmingham, Alabama
| | - Soojin Kim
- 1 Department of Neurology, University of Alabama , Birmingham, Alabama.,4 Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| | - Peter H King
- 1 Department of Neurology, University of Alabama , Birmingham, Alabama.,3 Department of Cell, Developmental and Integrative Biology, University of Alabama , Birmingham, Alabama.,4 Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| |
Collapse
|
71
|
Rodríguez-Barrera R, Flores-Romero A, Fernández-Presas AM, García-Vences E, Silva-García R, Konigsberg M, Blancas-Espinoza L, Buzoianu-Anguiano V, Soria-Zavala K, Suárez-Meade P, Ibarra A. Immunization with neural derived peptides plus scar removal induces a permissive microenvironment, and improves locomotor recovery after chronic spinal cord injury. BMC Neurosci 2017; 18:7. [PMID: 28056790 PMCID: PMC5217189 DOI: 10.1186/s12868-016-0331-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/27/2016] [Indexed: 11/17/2022] Open
Abstract
Background Immunization with neural derived peptides (INDP) as well as scar removal—separately—have shown to induce morphological and functional improvement after spinal cord injury (SCI). In the present study, we compared the effect of INDP alone versus INDP with scar removal on motor recovery, regeneration-associated and cytokine gene expression, and axonal regeneration after chronic SCI. Scar removal was conducted through a single incision with a double-bladed scalpel along the stump, and scar renewal was halted by adding α,α′-dipyridyl. Results During the chronic injury stage, two experiments were undertaken. The first experiment was aimed at testing the therapeutic effect of INDP combined with scar removal. Sixty days after therapeutic intervention, the expression of genes encoding for TNFα, IFNγ, IL4, TGFβ, BDNF, IGF1, and GAP43 was evaluated at the site of injury. Tyrosine hydroxylase and 5-hydroxytryptamine positive fibers were also studied. Locomotor evaluations showed a significant recovery in the group treated with scar removal + INDP. Moreover; this group presented a significant increase in IL4, TGFβ, BDNF, IGF1, and GAP43 expression, but a decrease of TNFα and IFNγ. Also, the spinal cord of animals receiving both treatments presented a significant increase of serotonergic and catecholaminergic fibers as compared to other the groups. The second experiment compared the results of the combined approach versus INDP alone. Rats receiving INDP likewise showed improved motor recovery, although on a lesser scale than those who received the combined treatment. An increase in inflammation and regeneration-associated gene expression, as well as in the percentage of serotonergic and catecholaminergic fibers was observed in INDP-treated rats to a lesser degree than those in the combined therapy group. Conclusions These findings suggest that INDP, both alone and in combination with scar removal, could modify the non-permissive microenvironment prevailing at the chronic phase of SCI, providing the opportunity of improving motor recovery.
Collapse
Affiliation(s)
- Roxana Rodríguez-Barrera
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Centro de Investigación del Proyecto CAMINA A.C., Ciudad de México, Mexico.,Posgrado en Biología Experimental, UAMI, Ciudad de México, Mexico
| | - Adrián Flores-Romero
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Centro de Investigación del Proyecto CAMINA A.C., Ciudad de México, Mexico
| | | | - Elisa García-Vences
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Centro de Investigación del Proyecto CAMINA A.C., Ciudad de México, Mexico
| | | | - Mina Konigsberg
- Lab. Bioenergética y Envejecimiento Celular, UAMI, Ciudad de México, Mexico
| | - Liliana Blancas-Espinoza
- Centro de Investigación del Proyecto CAMINA A.C., Ciudad de México, Mexico.,Hospital de Pediatría CMN Siglo XXI, Ciudad de México, Mexico
| | | | - Karla Soria-Zavala
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Centro de Investigación del Proyecto CAMINA A.C., Ciudad de México, Mexico
| | - Paola Suárez-Meade
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico. .,Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico. .,Centro de Investigación del Proyecto CAMINA A.C., Ciudad de México, Mexico.
| |
Collapse
|
72
|
Guo Y, Ma Y, Pan YL, Zheng SY, Wang JW, Huang GC. Jisuikang, a Chinese herbal formula, increases neurotrophic factor expression and promotes the recovery of neurological function after spinal cord injury. Neural Regen Res 2017; 12:1519-1528. [PMID: 29089999 PMCID: PMC5649474 DOI: 10.4103/1673-5374.215264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Chinese medicine compound, Jisuikang, can promote recovery of neurological function by inhibiting lipid peroxidation, scavenging oxygen free radicals, and effectively improving the local microenvironment after spinal cord injury. However, the mechanism remains unclear. Thus, we established a rat model of acute spinal cord injury using a modified version of Allen's method. Jisuikang (50, 25, and 12.5 g/kg/d) and prednisolone were administered 30 minutes after anesthesia. Basso, Beattie, and Bresnahan locomotor scale scores and the oblique board test showed improved motor function recovery in the prednisone group and moderate-dose Jisuikang group compared with the other groups at 3-7 days post-injury. The rats in the moderate-dose Jisuikang group recovered best at 14 days post-injury. Hematoxylin-eosin staining and transmission electron microscopy showed that the survival rate of neurons in treatment groups increased after 3-7 days of administration. Further, the structure of neurons and glial cells was more distinct, especially in prednisolone and moderate-dose Jisuikang groups. Western blot assay and immunohistochemistry showed that expression of brain-derived neurotrophic factor (BDNF) in injured segments was maintained at a high level after 7-14 days of treatment. In contrast, expression of nerve growth factor (NGF) was down-regulated at 7 days after spinal cord injury. Real-time fluorescence quantitative polymerase chain reaction showed that expression of BDNF and NGF mRNA was induced in injured segments by prednisolone and Jisuikang. At 3-7 days after injury, the effect of prednisolone was greater, while 14 days after injury, the effect of moderate-dose Jisuikang was greater. These results confirm that Jisuikang can upregulate BDNF and NGF expression for a prolonged period after spinal cord injury and promote repair of acute spinal cord injury, with its effect being similar to prednisolone.
Collapse
Affiliation(s)
- Yang Guo
- Institute of Traumatology & Orthopedics and Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yong Ma
- Institute of Traumatology & Orthopedics and Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.,Department of Traumatology & Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ya-Lan Pan
- Institute of Traumatology & Orthopedics and Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Su-Yang Zheng
- Institute of Traumatology & Orthopedics and Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jian-Wei Wang
- Department of Traumatology & Orthopedics, Wuxi Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, China
| | - Gui-Cheng Huang
- Institute of Traumatology & Orthopedics and Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
73
|
Hodgetts SI, Harvey AR. Neurotrophic Factors Used to Treat Spinal Cord Injury. VITAMINS AND HORMONES 2016; 104:405-457. [PMID: 28215303 DOI: 10.1016/bs.vh.2016.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The application of neurotrophic factors as a therapy to improve morphological and behavioral outcomes after experimental spinal cord injury (SCI) has been the focus of many studies. These studies vary markedly in the type of neurotrophic factor that is delivered, the mode of administration, and the location, timing, and duration of the treatment. Generally, the majority of studies have had significant success if neurotrophic factors are applied in or close to the lesion site during the acute or the subacute phase after SCI. Comparatively fewer studies have administered neurotrophic factors in order to directly target the somata of injured neurons. The mode of delivery varies between acute injection of recombinant proteins, subacute or chronic delivery using a variety of strategies including osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells, or precursor/stem cells. In this brief review, we summarize the state of play of many of the therapies using these factors, most of which have been undertaken in rodent models of SCI.
Collapse
Affiliation(s)
- S I Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, WA, Australia; Western Australian Neuroscience Research Institute, Perth, WA, Australia.
| | - A R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, WA, Australia; Western Australian Neuroscience Research Institute, Perth, WA, Australia
| |
Collapse
|
74
|
Batty NJ, Fenrich KK, Fouad K. The role of cAMP and its downstream targets in neurite growth in the adult nervous system. Neurosci Lett 2016; 652:56-63. [PMID: 27989572 DOI: 10.1016/j.neulet.2016.12.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 01/23/2023]
Abstract
Injured neurons in the adult mammalian central nervous system (CNS) have a very limited capacity for axonal regeneration and neurite outgrowth. This inability to grow new axons or to regrow injured axons is due to the presence of molecules that inhibit axonal growth, and age related changes in the neuron's innate growth capabilities. Available levels of cAMP are thought to have an important role in linking both of these factors. Elevated levels of cAMP in the developing nervous system are important for the guidance and stability of growth cones. As the nervous system matures, cAMP levels decline and the growth promoting effects of cAMP diminish. It has frequently been demonstrated that increasing neuronal cAMP can enhance neurite growth and regeneration. Some methods used to increase cAMP include administration of cAMP agonists, conditioning lesions, or electrical stimulation. Furthermore, it has been proposed that multiple stages of cAMP induced growth exist, one directly caused by its downstream effector Protein Kinase A (PKA) and one caused by the eventual upregulation of gene transcription. Although the role cAMP in promoting axon growth is well accepted, the downstream pathways that mediate cAMP-mediated axonal growth are less clear. This is partly because various key studies that explored the link between PKA and axonal outgrowth relied on the PKA inhibitors KT5720 and H89. More recent studies have shown that both of these drugs are less specific than initially thought and can inhibit a number of other signalling molecules including the Exchange Protein Activated by cAMP (EPAC). Consequently, it has recently been shown that a number of intracellular signalling pathways previously attributed to PKA can now be attributed solely to activation of EPAC specific pathways, or the simultaneous co-activation of PKA and EPAC specific pathways. These new studies open the door to new potential treatments for repairing the injured spinal cord.
Collapse
Affiliation(s)
- Nicholas J Batty
- Neuroscience and Mental Health Institute, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada; Department of Physical Therapy, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada; Department of Physical Therapy, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada.
| |
Collapse
|
75
|
|
76
|
Uchida S, Hayakawa K, Ogata T, Tanaka S, Kataoka K, Itaka K. Treatment of spinal cord injury by an advanced cell transplantation technology using brain-derived neurotrophic factor-transfected mesenchymal stem cell spheroids. Biomaterials 2016; 109:1-11. [DOI: 10.1016/j.biomaterials.2016.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 01/01/2023]
|
77
|
Côté MP, Murray M, Lemay MA. Rehabilitation Strategies after Spinal Cord Injury: Inquiry into the Mechanisms of Success and Failure. J Neurotrauma 2016; 34:1841-1857. [PMID: 27762657 DOI: 10.1089/neu.2016.4577] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Body-weight supported locomotor training (BWST) promotes recovery of load-bearing stepping in lower mammals, but its efficacy in individuals with a spinal cord injury (SCI) is limited and highly dependent on injury severity. While animal models with complete spinal transections recover stepping with step-training, motor complete SCI individuals do not, despite similarly intensive training. In this review, we examine the significant differences between humans and animal models that may explain this discrepancy in the results obtained with BWST. We also summarize the known effects of SCI and locomotor training on the muscular, motoneuronal, interneuronal, and supraspinal systems in human and non-human models of SCI and address the potential causes for failure to translate to the clinic. The evidence points to a deficiency in neuronal activation as the mechanism of failure, rather than muscular insufficiency. While motoneuronal and interneuronal systems cannot be directly probed in humans, the changes brought upon by step-training in SCI animal models suggest a beneficial re-organization of the systems' responsiveness to descending and afferent feedback that support locomotor recovery. The literature on partial lesions in humans and animal models clearly demonstrate a greater dependency on supraspinal input to the lumbar cord in humans than in non-human mammals for locomotion. Recent results with epidural stimulation that activates the lumbar interneuronal networks and/or increases the overall excitability of the locomotor centers suggest that these centers are much more dependent on the supraspinal tonic drive in humans. Sensory feedback shapes the locomotor output in animal models but does not appear to be sufficient to drive it in humans.
Collapse
Affiliation(s)
- Marie-Pascale Côté
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Marion Murray
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Michel A Lemay
- 2 Department of Bioengineering, Temple University , Philadelphia, Pennsylvania
| |
Collapse
|
78
|
Hernandez-Torres V, Gransee HM, Mantilla CB, Wang Y, Zhan WZ, Sieck GC. BDNF effects on functional recovery across motor behaviors after cervical spinal cord injury. J Neurophysiol 2016; 117:537-544. [PMID: 27832605 DOI: 10.1152/jn.00654.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
Unilateral C2 cervical spinal cord hemisection (SH) disrupts descending excitatory drive to phrenic motor neurons, thereby paralyzing the ipsilateral diaphragm muscle (DIAm) during ventilatory behaviors. Recovery of rhythmic DIAm activity ipsilateral to injury occurs over time, consistent with neuroplasticity and strengthening of spared synaptic inputs to phrenic motor neurons. Localized intrathecal delivery of brain-derived neurotrophic factor (BDNF) to phrenic motor neurons after SH enhances recovery of eupneic DIAm activity. However, the impact of SH and BDNF treatment on the full range of DIAm motor behaviors has not been fully characterized. We hypothesized that all DIAm motor behaviors are affected by SH and that intrathecal BDNF enhances the recovery of both ventilatory and higher force, nonventilatory motor behaviors. An intrathecal catheter was placed in adult, male Sprague-Dawley rats at C4 to chronically infuse artificial cerebrospinal fluid (aCSF) or BDNF. DIAm electromyography (EMG) electrodes were implanted bilaterally to record activity across motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), sighs, airway occlusion, and sneezing. After SH, ipsilateral DIAm EMG activity was evident in only 43% of aCSF-treated rats during eupnea, and activity was restored in all rats after BDNF treatment. The amplitude of DIAm EMG (root mean square, RMS) was reduced following SH during eupnea and hypoxia-hypercapnia in aCSF-treated rats, and BDNF treatment promoted recovery in both conditions. The amplitude of DIAm RMS EMG during sighs, airway occlusion, and sneezing was not affected by SH or BDNF treatment. We conclude that the effects of SH and BDNF treatment on DIAm activity depend on motor behavior. NEW & NOTEWORTHY This study demonstrates that after unilateral C2 spinal cord hemisection (SH), there are differences in the spontaneous recovery of diaphragm (DIAm) electromyographic activity during ventilatory compared with more forceful, nonventilatory motor behaviors. Furthermore, we show that intrathecal delivery of brain-derived neurotrophic factor (BDNF) at the level of the phrenic motor neuron pool enhances recovery of ipsilateral DIAm activity following SH, exerting main effects on recovery of ventilatory but not higher force, nonventilatory behaviors.
Collapse
Affiliation(s)
- Vivian Hernandez-Torres
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Heather M Gransee
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Carlos B Mantilla
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Yao Wang
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Wen-Zhi Zhan
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and
| | - Gary C Sieck
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and .,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
79
|
Wang Y, Zhang J, Han M, Liu B, Gao Y, Ma P, Zhang S, Zheng Q, Song X. SMND-309 promotes neuron survival through the activation of the PI3K/Akt/CREB-signalling pathway. PHARMACEUTICAL BIOLOGY 2016; 54:1982-1990. [PMID: 26911316 DOI: 10.3109/13880209.2015.1137951] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context In clinical practice, the promotion of neuron survival is necessary to recover neurological functions after the onset of stroke. Objective This study aimed to investigate the post-ischaemic neuroprotective effect of SMND-309, a novel metabolite of salvianolic acid, on differentiated SH-SY5Y cells. Materials and methods SH-SY5Y cells were differentiated by pre-treating with 5 μM all-trans-retinoic acid for 6 d. The differentiated SH-SY5Y cells were exposed to oxygen-glucose deprivation (OGD) for 2 h and reperfusion (R) for 24 h to induce OGD/R injury. After OGD injury, differentiated SH-SY5Y cells were treated with or without SMND-309 (5, 10, 20 μM) for another 24 h. Cell viability was detected through Cell counting kit-8 assay and lactate dehydrogenase leakage assay. Apoptosis was evaluated through flow cytometry, caspase-3 activity assay. Changes in protein levels were assessed through Western blot. Results SMND-309 ameliorated the degree of injury in the differentiated SH-SY5Y cells by increasing cell viabilities (5 μM, 65.4% ± 4.1%; 10 μM, 69.8% ± 3.7%; 20 μM, 75.3% ± 5.1%) and by reducing LDH activity (20 μM, 2.5 fold) upon OGD/R stimulation. Annexin V-fluorescein isothiocyanate/propidium iodide staining results suggested that apoptotic rate of differentiated SH-SY5Y cells decreased from 43.8% induced by OGD/R injury to 19.2% when the cells were treated with 20 μM SMND-309. SMND-309 significantly increased the Bcl-2 level of the injured differentiated SH-SY5Y cells but decreased the caspase-3 activity of these cells by 1.6-fold. In contrast, SMND-309 did not affect the Bax level of these cells. SMND-309 evidently increased the protein expression of BDNF when Akt and CREB were activated. This function was antagonized by the addition of LY294002. Conclusion SMND-309 can prevent neuronal cell death in vitro. This process may be related to the activation of the PI3K/Akt/CREB-signalling pathway.
Collapse
Affiliation(s)
- Youlei Wang
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| | - Jinjin Zhang
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| | - Meng Han
- b Zibo Occupational Disease Hospital , Zibo , PR China
| | - Bo Liu
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| | - Yulin Gao
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| | - Peng Ma
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| | - Songzi Zhang
- c School of Pharmacy , Taishan Medical College , Taian , PR China
| | - Qingyin Zheng
- a School of Special Education , Binzhou Medical University , Yantai , PR China
- d Department of Otolaryngology - HNS , Case Western Reserve University , Cleveland , OH , USA
| | - Xiaodong Song
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| |
Collapse
|
80
|
A novel approach for targeted delivery to motoneurons using cholera toxin-B modified protocells. J Neurosci Methods 2016; 273:160-174. [PMID: 27641118 DOI: 10.1016/j.jneumeth.2016.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Trophic interactions between muscle fibers and motoneurons at the neuromuscular junction (NMJ) play a critical role in determining motor function throughout development, ageing, injury, or disease. Treatment of neuromuscular disorders is hindered by the inability to selectively target motoneurons with pharmacological and genetic interventions. NEW METHOD We describe a novel delivery system to motoneurons using mesoporous silica nanoparticles encapsulated within a lipid bilayer (protocells) and modified with the atoxic subunit B of the cholera toxin (CTB) that binds to gangliosides present on neuronal membranes. RESULTS CTB modified protocells showed significantly greater motoneuron uptake compared to unmodified protocells after 24h of treatment (60% vs. 15%, respectively). CTB-protocells showed specific uptake by motoneurons compared to muscle cells and demonstrated cargo release of a surrogate drug. Protocells showed a lack of cytotoxicity and unimpaired cellular proliferation. In isolated diaphragm muscle-phrenic nerve preparations, preferential axon terminal uptake of CTB-modified protocells was observed compared to uptake in surrounding muscle tissue. A larger proportion of axon terminals displayed uptake following treatment with CTB-protocells compared to unmodified protocells (40% vs. 6%, respectively). COMPARISON WITH EXISTING METHOD(S) Current motoneuron targeting strategies lack the functionality to load and deliver multiple cargos. CTB-protocells capitalizes on the advantages of liposomes and mesoporous silica nanoparticles allowing a large loading capacity and cargo release. The ability of CTB-protocells to target motoneurons at the NMJ confers a great advantage over existing methods. CONCLUSIONS CTB-protocells constitute a viable targeted motoneuron delivery system for drugs and genes facilitating various therapies for neuromuscular diseases.
Collapse
|
81
|
Charsar BA, Urban MW, Lepore AC. Harnessing the power of cell transplantation to target respiratory dysfunction following spinal cord injury. Exp Neurol 2016; 287:268-275. [PMID: 27531634 DOI: 10.1016/j.expneurol.2016.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/29/2016] [Accepted: 08/12/2016] [Indexed: 12/13/2022]
Abstract
The therapeutic benefit of cell transplantation has been assessed in a host of central nervous system (CNS) diseases, including disorders of the spinal cord such as traumatic spinal cord injury (SCI). The promise of cell transplantation to preserve and/or restore normal function can be aimed at a variety of therapeutic mechanisms, including replacement of lost or damaged CNS cell types, promotion of axonal regeneration or sprouting, neuroprotection, immune response modulation, and delivery of gene products such as neurotrophic factors, amongst other possibilities. Despite significant work in the field of transplantation in models of SCI, limited attention has been directed at harnessing the therapeutic potential of cell grafting for preserving respiratory function after SCI, despite the critical role pulmonary compromise plays in patient outcome in this devastating disease. Here, we will review the limited number of studies that have demonstrated the therapeutic potential of intraspinal transplantation of a variety of cell types for addressing respiratory dysfunction in SCI.
Collapse
Affiliation(s)
- Brittany A Charsar
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 418, Philadelphia, PA, 19107, United States
| | - Mark W Urban
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 418, Philadelphia, PA, 19107, United States
| | - Angelo C Lepore
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 418, Philadelphia, PA, 19107, United States.
| |
Collapse
|
82
|
Acioglu C, Mirabelli E, Baykal AT, Ni L, Ratnayake A, Heary RF, Elkabes S. Toll like receptor 9 antagonism modulates spinal cord neuronal function and survival: Direct versus astrocyte-mediated mechanisms. Brain Behav Immun 2016; 56:310-24. [PMID: 27044334 DOI: 10.1016/j.bbi.2016.03.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 03/16/2016] [Accepted: 03/31/2016] [Indexed: 12/31/2022] Open
Abstract
Toll like receptors (TLRs) are expressed by cells of the immune system and mediate the host innate immune responses to pathogens. However, increasing evidence indicates that they are important contributors to central nervous system (CNS) function in health and in pathological conditions involving sterile inflammation. In agreement with this idea, we have previously shown that intrathecal administration of a TLR9 antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), ameliorates the outcomes of spinal cord injury (SCI). Although these earlier studies showed a marked effect of CpG ODN 2088 on inflammatory cells, the expression of TLR9 in spinal cord (SC) neurons and astrocytes suggested that the antagonist exerts additional effects through direct actions on these cells. The current study was undertaken to assess the direct effects of CpG ODN 2088 on SC neurons, astrocytes and astrocyte-neuron interactions, in vitro. We report, for the first time, that inhibition of TLR9 in cultured SC neurons alters their function and confers protection against kainic acid (KA)-induced excitotoxic death. Moreover, the TLR9 antagonist attenuated the KA-elicited endoplasmic reticulum (ER) stress response in neurons, in vitro. CpG ODN 2088 also reduced the transcript levels and release of chemokine (C-X-C) motif ligand 1 (CXCL1) and monocyte chemotactic protein 1 (MCP-1) by astrocytes and it diminished interleukin-6 (IL-6) release without affecting transcript levels in vitro. Conditioned medium (CM) of CpG ODN 2088-treated astroglial cultures decreased the viability of SC neurons compared to CM of vehicle-treated astrocytes. However, this toxicity was not observed when astrocytes were co-cultured with neurons. Although CpG ODN 2088 limited the survival-promoting effects of astroglia, it did not reduce neuronal viability compared to controls grown in the absence of astrocytes. We conclude that the TLR9 antagonist acts directly on both SC neurons and astrocytes. Neuronal TLR9 antagonism confers protection against excitotoxic death. It is likely that this neuroprotection is partly due to the attenuation of the ER stress response provoked by excitotoxicity. Although CpG ODN 2088 limits the supportive effects of astrocytes on neurons, it could potentially exert beneficial effects by decreasing the release of pro-inflammatory cytokines and chemokines by astroglia. These findings highlight the multiple roles of TLR9 in the SC and have implications for pathological conditions including SCI where excitotoxicity and neuroinflammation play a prominent role in neuronal degeneration.
Collapse
Affiliation(s)
- Cigdem Acioglu
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States; Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Kilis 7 Aralik University, 79000 Kilis, Turkey
| | - Ersilia Mirabelli
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States; Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem University, 34752 Istanbul, Turkey
| | - Li Ni
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Ayomi Ratnayake
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Robert F Heary
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Stella Elkabes
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| |
Collapse
|
83
|
Li T, Li Q, Gong H, Chen ZF, Peng XW. Treatment with glial derived neurotropic factor (GDNF) attenuates oxidative damages of spinal injury in rat model. Saudi Pharm J 2016. [DOI: 10.1016/j.jsps.2016.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
84
|
Wang Y, Ni H, Zhang W, Wang X, Zhang H. Downregulation of miR-210 protected bupivacaine-induced neurotoxicity in dorsal root ganglion. Exp Brain Res 2015; 234:1057-65. [DOI: 10.1007/s00221-015-4513-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/23/2015] [Indexed: 12/25/2022]
|
85
|
Martínez-Gálvez G, Zambrano JM, Diaz Soto JC, Zhan WZ, Gransee HM, Sieck GC, Mantilla CB. TrkB gene therapy by adeno-associated virus enhances recovery after cervical spinal cord injury. Exp Neurol 2015; 276:31-40. [PMID: 26607912 DOI: 10.1016/j.expneurol.2015.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/12/2015] [Accepted: 11/18/2015] [Indexed: 12/12/2022]
Abstract
Unilateral cervical spinal cord hemisection at C2 (C2SH) interrupts descending bulbospinal inputs to phrenic motoneurons, paralyzing the diaphragm muscle. Recovery after C2SH is enhanced by brain derived neurotrophic factor (BDNF) signaling via the tropomyosin-related kinase subtype B (TrkB) receptor in phrenic motoneurons. The role for gene therapy using adeno-associated virus (AAV)-mediated delivery of TrkB to phrenic motoneurons is not known. The present study determined the therapeutic efficacy of intrapleural delivery of AAV7 encoding for full-length TrkB (AAV-TrkB) to phrenic motoneurons 3 days post-C2SH. Diaphragm EMG was recorded chronically in male rats (n=26) up to 21 days post-C2SH. Absent ipsilateral diaphragm EMG activity was verified 3 days post-C2SH. A greater proportion of animals displayed recovery of ipsilateral diaphragm EMG activity during eupnea by 14 and 21 days post-SH after AAV-TrkB (10/15) compared to AAV-GFP treatment (2/11; p=0.031). Diaphragm EMG amplitude increased over time post-C2SH (p<0.001), and by 14 days post-C2SH, AAV-TrkB treated animals displaying recovery achieved 48% of the pre-injury values compared to 27% in AAV-GFP treated animals. Phrenic motoneuron mRNA expression of glutamatergic AMPA and NMDA receptors revealed a significant, positive correlation (r(2)=0.82), with increased motoneuron NMDA expression evident in animals treated with AAV-TrkB and that displayed recovery after C2SH. Overall, gene therapy using intrapleural delivery of AAV-TrkB to phrenic motoneurons is sufficient to promote recovery of diaphragm activity, adding a novel potential intervention that can be administered after upper cervical spinal cord injury to improve impaired respiratory function.
Collapse
Affiliation(s)
- Gabriel Martínez-Gálvez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States; Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Juan M Zambrano
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States; Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Juan C Diaz Soto
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, United States
| | - Wen-Zhi Zhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States
| | - Heather M Gransee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States; Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, United States
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States; Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
86
|
Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord. Acta Biomater 2015; 27:140-150. [PMID: 26348141 DOI: 10.1016/j.actbio.2015.09.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/18/2015] [Accepted: 09/01/2015] [Indexed: 01/09/2023]
Abstract
Despite recent progress in enhancing axonal growth in the injured spinal cord, the guidance of regenerating axons across an extended lesion site remains a major challenge. To determine whether regenerating axons can be guided in rostrocaudal direction, we implanted 2mm long alginate-based anisotropic capillary hydrogels seeded with bone marrow stromal cells (BMSCs) expressing brain-derived neurotrophic factor (BDNF) or green fluorescent protein (GFP) as control into a C5 hemisection lesion of the rat spinal cord. Four weeks post-lesion, numerous BMSCs survived inside the scaffold channels, accompanied by macrophages, Schwann cells and blood vessels. Quantification of axons growing into channels demonstrated 3-4 times more axons in hydrogels seeded with BMSCs expressing BDNF (BMSC-BDNF) compared to control cells. The number of anterogradely traced axons extending through the entire length of the scaffold was also significantly higher in scaffolds with BMSC-BDNF. Increasing the channel diameters from 41μm to 64μm did not lead to significant differences in the number of regenerating axons. Lesions filled with BMSC-BDNF without hydrogels exhibited a random axon orientation, whereas axons were oriented parallel to the hydrogel channel walls. Thus, alginate-based scaffolds with an anisotropic capillary structure are able to physically guide regenerating axons. STATEMENT OF SIGNIFICANCE After injury, regenerating axons have to extend across the lesion site in the injured spinal cord to reestablish lost neuronal connections. While cell grafting and growth factor delivery can promote growth of injured axons, without proper guidance, axons rarely extend across the lesion site. Here, we show that alginate biomaterials with linear channels that are filled with cells expressing the growth-promoting neurotrophin BDNF promote linear axon extension throughout the channels after transplantation to the injured rat spinal cord. Animals that received the same cells but no alginate guidance structure did not show linear axonal growth and axons did not cross the lesion site. Thus, alginate-based scaffolds with a capillary structure are able to physically guide regenerating axons.
Collapse
|
87
|
Gill LC, Gransee HM, Sieck GC, Mantilla CB. Functional recovery after cervical spinal cord injury: Role of neurotrophin and glutamatergic signaling in phrenic motoneurons. Respir Physiol Neurobiol 2015; 226:128-36. [PMID: 26506253 DOI: 10.1016/j.resp.2015.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/15/2015] [Accepted: 10/17/2015] [Indexed: 11/19/2022]
Abstract
Cervical spinal cord injury (SCI) interrupts descending neural drive to phrenic motoneurons causing diaphragm muscle (DIAm) paralysis. Recent studies using a well-established model of SCI, unilateral spinal hemisection of the C2 segment of the cervical spinal cord (SH), provide novel information regarding the molecular and cellular mechanisms of functional recovery after SCI. Over time post-SH, gradual recovery of rhythmic ipsilateral DIAm activity occurs. Recovery of ipsilateral DIAm electromyogram (EMG) activity following SH is enhanced by increasing brain-derived neurotrophic factor (BDNF) in the region of the phrenic motoneuron pool. Delivery of exogenous BDNF either via intrathecal infusion or via mesenchymal stem cells engineered to release BDNF similarly enhance recovery. Conversely, recovery after SH is blunted by quenching endogenous BDNF with the fusion-protein TrkB-Fc in the region of the phrenic motoneuron pool or by selective inhibition of TrkB kinase activity using a chemical-genetic approach in TrkB(F616A) mice. Furthermore, the importance of BDNF signaling via TrkB receptors at phrenic motoneurons is highlighted by the blunting of recovery by siRNA-mediated downregulation of TrkB receptor expression in phrenic motoneurons and by the enhancement of recovery evident following virally-induced increases in TrkB expression specifically in phrenic motoneurons. BDNF/TrkB signaling regulates synaptic plasticity in various neuronal systems, including glutamatergic pathways. Glutamatergic neurotransmission constitutes the main inspiratory-related, excitatory drive to motoneurons, and following SH, spontaneous neuroplasticity is associated with increased expression of ionotropic N-methyl-d-aspartate (NMDA) receptors in phrenic motoneurons. Evidence for the role of BDNF/TrkB and glutamatergic signaling in recovery of DIAm activity following cervical SCI is reviewed.
Collapse
Affiliation(s)
- Luther C Gill
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55906, United States
| | - Heather M Gransee
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55906, United States
| | - Gary C Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55906, United States; Department of Anesthesiology, Mayo Clinic, Rochester, MN 55906, United States
| | - Carlos B Mantilla
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55906, United States; Department of Anesthesiology, Mayo Clinic, Rochester, MN 55906, United States.
| |
Collapse
|
88
|
Lang H, Xing Y, Brown LN, Samuvel DJ, Panganiban CH, Havens LT, Balasubramanian S, Wegner M, Krug EL, Barth JL. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve. Sci Rep 2015; 5:13383. [PMID: 26307538 PMCID: PMC4549618 DOI: 10.1038/srep13383] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/24/2015] [Indexed: 12/14/2022] Open
Abstract
The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Yazhi Xing
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - LaShardai N Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Devadoss J Samuvel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Clarisse H Panganiban
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Luke T Havens
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | | | - Michael Wegner
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Edward L Krug
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
89
|
Ji XC, Dang YY, Gao HY, Wang ZT, Gao M, Yang Y, Zhang HT, Xu RX. Local Injection of Lenti-BDNF at the Lesion Site Promotes M2 Macrophage Polarization and Inhibits Inflammatory Response After Spinal Cord Injury in Mice. Cell Mol Neurobiol 2015; 35:881-90. [PMID: 25840805 PMCID: PMC11486196 DOI: 10.1007/s10571-015-0182-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/14/2015] [Indexed: 12/28/2022]
Abstract
There is much evidence to suggest that brain-derived neurotrophic factor (BDNF) is a prominent candidate in promoting neuroprotection, axonal regeneration, and synaptic plasticity following spinal cord injury (SCI). Although some evidence indicates that BDNF has potent anti-oxidative effects and may be involved in the regulation of the immune response, the effects of BDNF in the inflammatory response during the course of secondary damage after SCI is still unclear. The present study was designed to investigate the effects of BDNF with a special focus on their effect on macrophage polarization after SCI. Adult C57 mice underwent T10 spinal cord clip compression injury and received lenti-BDNF vector injections at the epicenter of the lesion site. Four days later, total BDNF levels were greatly increased in animals that received lenti-BDNF injections. Confocal imaging showed that more than 80 % of the lenti-virus infected cells were CD11b-positive macrophages. In addition, the expression of arginase-1 and CD206 (associated with M2 macrophage phenotype) significantly increased in the animals that received lenti-BDNF injections compared with those that received lenti-EGFP injections. On the contrary, the expression of CD16/32 and inducible nitric oxide synthase (M1 phenotype marker) was down-regulated as demonstrated using flow cytometry and immunohistochemistry. Furthermore, the production of interleukin 1β and tumor necrosis factor alpha was significantly reduced whereas the levels of interleukin 10 and interleukin 13 were elevated in subjects that received lenti-BDNF vector injections. The time course of functional recovery revealed that gradual recovery was observed in the subacute phase in lenti-BDNF group, little improvement was observed in lenti-EGFP group. At the axonal level, significant retraction of the CST axons were observed in lenti-EGFP injected animals relative to lenti-BDNF group by biotinylated dextran amine tracing. In addition, compared to lenti-BDNF group markedly demyelination was observed in the lenti-EGFP group using luxol fast blue staining. In conclusion, we found that BDNF could promote the shift of M1 to M2 phenotype and ameliorate the inflammatory microenvironment. Furthermore, the roles of BDNF in immunity modulation may enhance neuroprotective effects and partially contribute to the locomotor functional recovery after SCI.
Collapse
Affiliation(s)
- Xin-Chao Ji
- Graduate School, The Third Military Medical University, Chongqing, 400038 China
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing, PLA, Beijing, 100700 China
| | - Yuan-Yuan Dang
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing, PLA, Beijing, 100700 China
| | - Hong-Yan Gao
- Medical Administration Department, The Military General Hospital of Beijing, PLA, Beijing, 100700 China
| | - Zhao-Tao Wang
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing, PLA, Beijing, 100700 China
| | - Mou Gao
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing, PLA, Beijing, 100700 China
| | - Yi Yang
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing, PLA, Beijing, 100700 China
| | - Hong-Tian Zhang
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing, PLA, Beijing, 100700 China
- The Neurosurgical Research Center of Beijing Military Region PLA, Beijing, 100700 China
| | - Ru-Xiang Xu
- Graduate School, The Third Military Medical University, Chongqing, 400038 China
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing, PLA, Beijing, 100700 China
- The Neurosurgical Research Center of Beijing Military Region PLA, Beijing, 100700 China
| |
Collapse
|
90
|
Wang A, Brown EG, Lankford L, Keller BA, Pivetti CD, Sitkin NA, Beattie MS, Bresnahan JC, Farmer DL. Placental mesenchymal stromal cells rescue ambulation in ovine myelomeningocele. Stem Cells Transl Med 2015; 4:659-669. [PMID: 25911465 PMCID: PMC4449103 DOI: 10.5966/sctm.2014-0296] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/27/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Myelomeningocele (MMC)-commonly known as spina bifida-is a congenital birth defect that causes lifelong paralysis, incontinence, musculoskeletal deformities, and severe cognitive disabilities. The recent landmark Management of Myelomeningocele Study (MOMS) demonstrated for the first time in humans that in utero surgical repair of the MMC defect improves lower limb motor function, suggesting a capacity for improved neurologic outcomes in this disorder. However, functional recovery was incomplete, and 58% of the treated children were unable to walk independently at 30 months of age. In the present study, we demonstrate that using early gestation human placenta-derived mesenchymal stromal cells (PMSCs) to augment in utero repair of MMC results in significant and consistent improvement in neurologic function at birth in the rigorous fetal ovine model of MMC. In vitro, human PMSCs express characteristic MSC markers and trilineage differentiation potential. Protein array assays and enzyme-linked immunosorbent assay show that PMSCs secrete a variety of immunomodulatory and angiogenic cytokines. Compared with adult bone marrow MSCs, PMSCs secrete significantly higher levels of brain-derived neurotrophic factor and hepatocyte growth factor, both of which have known neuroprotective capabilities. In vivo, functional and histopathologic analysis demonstrated that human PMSCs mediate a significant, clinically relevant improvement in motor function in MMC lambs and increase the preservation of large neurons within the spinal cord. These preclinical results in the well-established fetal ovine model of MMC provide promising early support for translating in utero stem cell therapy for MMC into clinical application for patients. SIGNIFICANCE This study presents placenta-derived mesenchymal stromal cell (PMSC) treatment as a potential therapy for myelomeningocele (MMC). Application of PMSCs can augment current in utero surgical repair in the well-established and rigorously applied fetal lamb model of MMC. Treatment with human PMSCs significantly and dramatically improved neurologic function and preserved spinal cord neuron density in experimental animals. Sixty-seven percent of the PMSC-treated lambs were able to ambulate independently, with two exhibiting no motor deficits whatsoever. In contrast, none of the lambs treated with the vehicle alone were capable of ambulation. The locomotor rescue demonstrated in PMSC-treated lambs indicates great promise for future clinical trials to improve paralysis in children afflicted with MMC.
Collapse
Affiliation(s)
- Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis, Health System, Sacramento, California, USA; Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Erin G Brown
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis, Health System, Sacramento, California, USA; Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Lee Lankford
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis, Health System, Sacramento, California, USA; Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Benjamin A Keller
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis, Health System, Sacramento, California, USA; Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Christopher D Pivetti
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis, Health System, Sacramento, California, USA; Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Nicole A Sitkin
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis, Health System, Sacramento, California, USA; Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Michael S Beattie
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis, Health System, Sacramento, California, USA; Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jacqueline C Bresnahan
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis, Health System, Sacramento, California, USA; Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Diana L Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis, Health System, Sacramento, California, USA; Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
91
|
May Z, Fouad K, Shum-Siu A, Magnuson DSK. Challenges of animal models in SCI research: Effects of pre-injury task-specific training in adult rats before lesion. Behav Brain Res 2015; 291:26-35. [PMID: 25975172 DOI: 10.1016/j.bbr.2015.04.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 11/19/2022]
Abstract
A rarely explored subject in animal research is the effect of pre-injury variables on behavioral outcome post-SCI. Low reporting of such variables may underlie some discrepancies in findings between laboratories. Particularly, intensive task-specific training before a SCI might be important, considering that sports injuries are one of the leading causes of SCI. Thus, individuals with SCI often underwent rigorous training before their injuries. In the present study, we asked whether training before SCI on a grasping task or a swimming task would influence motor recovery in rats. Swim pre-training impaired recovery of swimming 2 and 4 weeks post-injury. This result fits with the idea of motor learning interference, which posits that learning something new may disrupt learning of a new task; in this case, learning strategies to compensate for functional loss after SCI. In contrast to swimming, grasp pre-training did not influence grasping ability after SCI at any time point. However, grasp pre-trained rats attempted to grasp more times than untrained rats in the first 4 weeks post-injury. Also, lesion volume of grasp pre-trained rats was greater than that of untrained rats, a finding which may be related to stress or activity. The increased participation in rehabilitative training of the pre-trained rats in the early weeks post-injury may have potentiated spontaneous plasticity in the spinal cord and counteracted the deleterious effect of interference and bigger lesions. Thus, our findings suggest that pre-training plays a significant role in recovery after CNS damage and needs to be carefully controlled for.
Collapse
Affiliation(s)
- Zacnicte May
- Faculty of Rehabilitation Research, University of Alberta, Edmonton, AB, Canada
| | - Karim Fouad
- Faculty of Rehabilitation Research, University of Alberta, Edmonton, AB, Canada
| | - Alice Shum-Siu
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - David S K Magnuson
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
92
|
Click-crosslinked injectable hyaluronic acid hydrogel is safe and biocompatible in the intrathecal space for ultimate use in regenerative strategies of the injured spinal cord. Methods 2015; 84:60-9. [PMID: 25846399 DOI: 10.1016/j.ymeth.2015.03.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/26/2015] [Indexed: 12/18/2022] Open
Abstract
Traumatic spinal cord injury (SCI) causes damage and degeneration at and around the lesion site resulting in a loss of function. SCI presents a complex regenerative problem due to the multiple aspects of growth inhibition and the heterogeneity in size, shape and extent of injury. Currently, there is no widely accepted treatment strategy available and delivering biomolecules to the central nervous system remains a challenge. With a view towards achieving local release, we designed a hydrogel that can be injected into the intrathecal space. Here we describe the synthesis and characterization of a click-crosslinked hyaluronic acid hydrogel and demonstrate controlled in vitro release of bioactive brain derived neurotrophic factor. Importantly, we demonstrate that this new hydrogel is both biocompatible in the intrathecal space based on immunohistochemistry of the host tissue response and safe based on behavioral analysis of locomotor function.
Collapse
|
93
|
Gransee HM, Zhan WZ, Sieck GC, Mantilla CB. Localized delivery of brain-derived neurotrophic factor-expressing mesenchymal stem cells enhances functional recovery following cervical spinal cord injury. J Neurotrauma 2014; 32:185-93. [PMID: 25093762 DOI: 10.1089/neu.2014.3464] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are important in modulating neuroplasticity and promoting recovery after spinal cord injury. Intrathecal delivery of BDNF enhances functional recovery following unilateral spinal cord hemisection (SH) at C2, a well-established model of incomplete cervical spinal cord injury. We hypothesized that localized delivery of BDNF-expressing mesenchymal stem cells (BDNF-MSCs) would promote functional recovery of rhythmic diaphragm activity after SH. In adult rats, bilateral diaphragm electromyographic (EMG) activity was chronically monitored to determine evidence of complete SH at 3 days post-injury, and recovery of rhythmic ipsilateral diaphragm EMG activity over time post-SH. Wild-type, bone marrow-derived MSCs (WT-MSCs) or BDNF-MSCs (2×10(5) cells) were injected intraspinally at C2 at the time of injury. At 14 days post-SH, green fluorescent protein (GFP) immunoreactivity confirmed MSCs presence in the cervical spinal cord. Functional recovery in SH animals injected with WT-MSCs was not different from untreated SH controls (n=10; overall, 20% at 7 days and 30% at 14 days). In contrast, functional recovery was observed in 29% and 100% of SH animals injected with BDNF-MSCs at 7 days and 14 days post-SH, respectively (n=7). In BDNF-MSCs treated SH animals at 14 days, root-mean-squared EMG amplitude was 63±16% of the pre-SH value compared with 12±9% in the control/WT-MSCs group. We conclude that localized delivery of BDNF-expressing MSCs enhances functional recovery of diaphragm muscle activity following cervical spinal cord injury. MSCs can be used to facilitate localized delivery of trophic factors such as BDNF in order to promote neuroplasticity following spinal cord injury.
Collapse
Affiliation(s)
- Heather M Gransee
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | | | | | | |
Collapse
|
94
|
The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine. Biomaterials 2014; 41:89-96. [PMID: 25522968 DOI: 10.1016/j.biomaterials.2014.11.031] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/30/2014] [Accepted: 11/08/2014] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is still a worldwide clinical challenge for which there is no viable therapeutic method. We focused on developing combinatorial methods targeting the complex pathological process of SCI. In this study, we implanted linear-ordered collagen scaffold (LOCS) fibers with collagen binding brain-derived neurotrophic factor (BDNF) by tagging a collagen-binding domain (CBD) (LOCS + CBD-BDNF) in completely transected canine SCI with multisystem rehabilitation to validate its potential therapeutic effect through a long-term (38 weeks) observation. We found that LOCS + CBD-BDNF implants strikingly promoted locomotion and functional sensory recovery, with some dogs standing unassisted and transiently moving. Further histological analysis showed that administration of LOCS + CBD-BDNF reduced lesion volume, decreased collagen deposits, promoted axon regeneration and improved myelination, leading to functional recovery. Collectively, LOCS + CBD-BDNF showed striking therapeutic effect on completely transected canine SCI model and it is the first time to report such breakthrough in the war with SCI. Undoubtedly, it is a potentially promising therapeutic method for SCI paralysis or other movement disorders caused by neurological diseases in the future.
Collapse
|
95
|
Smith PA. BDNF: No gain without pain? Neuroscience 2014; 283:107-23. [DOI: 10.1016/j.neuroscience.2014.05.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 12/22/2022]
|
96
|
Direct angiotensin type 2 receptor (AT2R) stimulation attenuates T-cell and microglia activation and prevents demyelination in experimental autoimmune encephalomyelitis in mice. Clin Sci (Lond) 2014; 128:95-109. [PMID: 25052203 DOI: 10.1042/cs20130601] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, we evaluated stimulation of the angiotensin type 2 receptor (AT2R) by the selective non-peptide agonist Compound 21 (C21) as a novel therapeutic concept for the treatment of multiple sclerosis using the model of experimental autoimmune encephalomyelitis (EAE) in mice. C57BL-6 mice were immunized with myelin-oligodendrocyte peptide and treated for 4 weeks with C21 (0.3 mg/kg/day i.p.). Potential effects on myelination, microglia and T-cell composition were estimated by immunostaining and FACS analyses of lumbar spinal cords. The in vivo study was complemented by experiments in aggregating brain cell cultures and microglia in vitro. In the EAE model, treatment with C21 ameliorated microglia activation and decreased the number of total T-cells and CD4+ T-cells in the spinal cord. Fluorescent myelin staining of spinal cords further revealed a significant reduction in EAE-induced demyelinated areas in lumbar spinal cord tissue after AT2R stimulation. C21-treated mice had a significantly better neurological score than vehicle-treated controls. In aggregating brain cell cultures challenged with lipopolysaccharide (LPS) plus interferon-γ (IFNγ), AT2R stimulation prevented demyelination, accelerated re-myelination and reduced the number of microglia. Cytokine synthesis and nitric oxide production by microglia in vitro were significantly reduced after C21 treatment. These results suggest that AT2R stimulation protects the myelin sheaths in autoimmune central nervous system inflammation by inhibiting the T-cell response and microglia activation. Our findings identify the AT2R as a potential new pharmacological target for demyelinating diseases such as multiple sclerosis.
Collapse
|
97
|
Spejo AB, Oliveira ALR. Synaptic rearrangement following axonal injury: Old and new players. Neuropharmacology 2014; 96:113-23. [PMID: 25445484 DOI: 10.1016/j.neuropharm.2014.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
Following axotomy, the contact between motoneurons and muscle fibers is disrupted, triggering a retrograde reaction at the neuron cell body within the spinal cord. Together with chromatolysis, a hallmark of such response to injury is the elimination of presynaptic terminals apposing to the soma and proximal dendrites of the injured neuron. Excitatory inputs are preferentially eliminated, leaving the cells under an inhibitory influence during the repair process. This is particularly important to avoid glutamate excitotoxicity. Such shift from transmission to a regeneration state is also reflected by deep metabolic changes, seen by the regulation of several genes related to cell survival and axonal growth. It is unclear, however, how exactly synaptic stripping occurs, but there is substantial evidence that glial cells play an active role in this process. In one hand, immune molecules, such as the major histocompatibility complex (MHC) class I, members of the complement family and Toll-like receptors are actively involved in the elimination/reapposition of presynaptic boutons. On the other hand, plastic changes that involve sprouting might be negatively regulated by extracellular matrix proteins such as Nogo-A, MAG and scar-related chondroitin sulfate proteoglycans. Also, neurotrophins, stem cells, physical exercise and several drugs seem to improve synaptic stability, leading to functional recovery after lesion. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Aline Barroso Spejo
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Alexandre L R Oliveira
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
98
|
Hayakawa K, Uchida S, Ogata T, Tanaka S, Kataoka K, Itaka K. Intrathecal injection of a therapeutic gene-containing polyplex to treat spinal cord injury. J Control Release 2014; 197:1-9. [PMID: 25449800 DOI: 10.1016/j.jconrel.2014.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/20/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is a serious clinical problem that suddenly deprives patients of neurologic function and drastically diminishes their quality of life. Gene introduction has the potential to be effective for various pathological states of SCI because various proteins can be produced just by modifying nucleic acid sequences. In addition, the sustainable protein expression allows to maintain its concentration at an effective level at the target site in the spinal cord. Here we propose an approach using a polyplex system composed of plasmid DNA (pDNA) and a cationic polymer, poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} [PAsp(DET)], that has high capacity to promote endosome escape and the long-term safety by self-catalytically degrading within a few days. We applied brain-derived neurotrophic factor (BDNF)-expressing pDNA for SCI treatment by intrathecal injection of PAsp(DET)/pDNA polyplex. A single administration of polyplex for experimental SCI provided sufficient therapeutic effects including prevention of neural cell death and enhancement of motor function recovery. This lasted for a few weeks after SCI, demonstrating the capability of this system to express BDNF in a safe and responsible manner for treatment of various pathological states in SCI.
Collapse
Affiliation(s)
- Kentaro Hayakawa
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for the Persons with Disabilities, Saitama, Japan; Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Uchida
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for the Persons with Disabilities, Saitama, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunori Kataoka
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Keiji Itaka
- Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
99
|
Harvey AR, Lovett SJ, Majda BT, Yoon JH, Wheeler LPG, Hodgetts SI. Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time? Brain Res 2014; 1619:36-71. [PMID: 25451132 DOI: 10.1016/j.brainres.2014.10.049] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022]
Abstract
A variety of neurotrophic factors have been used in attempts to improve morphological and behavioural outcomes after experimental spinal cord injury (SCI). Here we review many of these factors, their cellular targets, and their therapeutic impact on spinal cord repair in different, primarily rodent, models of SCI. A majority of studies report favourable outcomes but results are by no means consistent, thus a major aim of this review is to consider how best to apply neurotrophic factors after SCI to optimize their therapeutic potential. In addition to which factors are chosen, many variables need be considered when delivering trophic support, including where and when to apply a given factor or factors, how such factors are administered, at what dose, and for how long. Overall, the majority of studies have applied neurotrophic support in or close to the spinal cord lesion site, in the acute or sub-acute phase (0-14 days post-injury). Far fewer chronic SCI studies have been undertaken. In addition, comparatively fewer studies have administered neurotrophic factors directly to the cell bodies of injured neurons; yet in other instructive rodent models of CNS injury, for example optic nerve crush or transection, therapies are targeted directly at the injured neurons themselves, the retinal ganglion cells. The mode of delivery of neurotrophic factors is also an important variable, whether delivered by acute injection of recombinant proteins, sub-acute or chronic delivery using osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells or precursor/stem cells. Neurotrophic factors are often used in combination with cell or tissue grafts and/or other pharmacotherapeutic agents. Finally, the dose and time-course of delivery of trophic support should ideally be tailored to suit specific biological requirements, whether they relate to neuronal survival, axonal sparing/sprouting, or the long-distance regeneration of axons ending in a different mode of growth associated with terminal arborization and renewed synaptogenesis. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Sarah J Lovett
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Bernadette T Majda
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jun H Yoon
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Lachlan P G Wheeler
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Stuart I Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
100
|
Neural stem cells in the adult spinal cord. Exp Neurol 2014; 260:44-9. [DOI: 10.1016/j.expneurol.2013.01.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 11/20/2022]
|