51
|
Affiliation(s)
- Nezahat Ozlem Arat
- a University of Montreal, Institute of Research in Immunology and Cancer ; Montreal , Canada
| | | |
Collapse
|
52
|
Citterio E. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work. Front Genet 2015; 6:282. [PMID: 26442100 PMCID: PMC4561801 DOI: 10.3389/fgene.2015.00282] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/23/2015] [Indexed: 01/23/2023] Open
Abstract
Ubiquitination is a reversible protein modification broadly implicated in cellular functions. Signaling processes mediated by ubiquitin (ub) are crucial for the cellular response to DNA double-strand breaks (DSBs), one of the most dangerous types of DNA lesions. In particular, the DSB response critically relies on active ubiquitination by the RNF8 and RNF168 ub ligases at the chromatin, which is essential for proper DSB signaling and repair. How this pathway is fine-tuned and what the functional consequences are of its deregulation for genome integrity and tissue homeostasis are subject of intense investigation. One important regulatory mechanism is by reversal of substrate ubiquitination through the activity of specific deubiquitinating enzymes (DUBs), as supported by the implication of a growing number of DUBs in DNA damage response processes. Here, we discuss the current knowledge of how ub-mediated signaling at DSBs is controlled by DUBs, with main focus on DUBs targeting histone H2A and on their recent implication in stem cell biology and cancer.
Collapse
Affiliation(s)
- Elisabetta Citterio
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam Netherlands
| |
Collapse
|
53
|
Obrist F, Manic G, Kroemer G, Vitale I, Galluzzi L. Trial Watch: Proteasomal inhibitors for anticancer therapy. Mol Cell Oncol 2015; 2:e974463. [PMID: 27308423 PMCID: PMC4904962 DOI: 10.4161/23723556.2014.974463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 01/12/2023]
Abstract
The so-called "ubiquitin-proteasome system" (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients.
Collapse
Affiliation(s)
- Florine Obrist
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | | | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- Department of Biology, University of Rome “Tor Vergata”
| | - Lorenzo Galluzzi
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
54
|
Rufini A, Cavallo F, Condò I, Fortuni S, De Martino G, Incani O, Di Venere A, Benini M, Massaro DS, Arcuri G, Serio D, Malisan F, Testi R. Highly specific ubiquitin-competing molecules effectively promote frataxin accumulation and partially rescue the aconitase defect in Friedreich ataxia cells. Neurobiol Dis 2015; 75:91-9. [PMID: 25549872 PMCID: PMC4358773 DOI: 10.1016/j.nbd.2014.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022] Open
Abstract
Friedreich ataxia is an inherited neurodegenerative disease that leads to progressive disability. There is currently no effective treatment and patients die prematurely. The underlying genetic defect leads to reduced expression of the mitochondrial protein frataxin. Frataxin insufficiency causes mitochondrial dysfunction and ultimately cell death, particularly in peripheral sensory ganglia. There is an inverse correlation between the amount of residual frataxin and the severity of disease progression; therefore, therapeutic approaches aiming at increasing frataxin levels are expected to improve patients' conditions. We previously discovered that a significant amount of frataxin precursor is degraded by the ubiquitin/proteasome system before its functional mitochondrial maturation. We also provided evidence for the therapeutic potential of small molecules that increase frataxin levels by docking on the frataxin ubiquitination site, thus preventing frataxin ubiquitination and degradation. We called these compounds ubiquitin-competing molecules (UCM). By extending our search for effective UCM, we identified a set of new and more potent compounds that more efficiently promote frataxin accumulation. Here we show that these compounds directly interact with frataxin and prevent its ubiquitination. Interestingly, these UCM are not effective on the ubiquitin-resistant frataxin mutant, indicating their specific action on preventing frataxin ubiquitination. Most importantly, these compounds are able to promote frataxin accumulation and aconitase rescue in cells derived from patients, strongly supporting their therapeutic potential.
Collapse
Affiliation(s)
- Alessandra Rufini
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy; Fratagene Therapeutics Ltd., 22 Northumberland Rd., Dublin, Ireland
| | - Francesca Cavallo
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Ivano Condò
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Silvia Fortuni
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy; Fratagene Therapeutics Ltd., 22 Northumberland Rd., Dublin, Ireland
| | - Gabriella De Martino
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Ottaviano Incani
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Almerinda Di Venere
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Monica Benini
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Damiano Sergio Massaro
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Gaetano Arcuri
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Dario Serio
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Florence Malisan
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Roberto Testi
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy; Fratagene Therapeutics Ltd., 22 Northumberland Rd., Dublin, Ireland.
| |
Collapse
|
55
|
Abstract
The diverse roles of deubiquitinating enzymes, or DUBs, in determining the fate of specific proteins continue to unfold. Concurrent with the revelation of DUBs as potential therapeutic targets are publications of small molecule inhibitors of these enzymes. In this review, we summarize these molecules and their associated data and suggest additional experiments to further validate and characterize these compounds. We believe the field of drug discovery against DUBs is still in its infancy, but advances in assay development, biophysical techniques, and screening libraries hold promise for identifying suitable agents that could advance into the clinic.
Collapse
Affiliation(s)
- Chudi Ndubaku
- Department of Discovery Chemistry, Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | | |
Collapse
|
56
|
Abstract
The human genome encodes several hundred E3 ubiquitin ligases containing RING domains, and around 28 containing HECT domains. These enzymes catalyze the transfer of ubiquitin from E2 enzyme thioesters to a huge range of substrates and play crucial roles in many cellular functions. This makes them attractive potential therapeutic targets. However, they have proven difficult to inhibit: very few good inhibitors exist for RING domain ligases, and none have been described for HECT ligases. Here we show that bicyclic peptides isolated by phage display [Heinis C, Rutherford T, Freund S, Winter G (2009) Nat Chem Biol. 5(7):502-507] can target the E2 binding sites on the HECT domains of Smurf2, Nedd4, Mule/Huwe1, and WWP1, and thus act as specific inhibitors of these enzymes in vitro. By screening for displacement of one of these peptides from Smurf2, we were able to identify a small molecule, heclin (HECT ligase inhibitor), which inhibits several HECT ligases in tissue culture cells. In vitro, heclin does not block E2 binding but causes a conformational change that results in oxidation of the active site Cys. This demonstrates that HECT domains are potentially druggable and provides molecules that may be of experimental use. Heclin kills HEK293 cells growing in culture, consistent with an essential role for HECT ligase activity in mammalian cells.
Collapse
|
57
|
Wondrak GT, Lobato-Gil S, Aillet F, Lang V, Rodriguez MS. The Ubiquitin-Proteasome System (UPS) as a Cancer Drug Target: Emerging Mechanisms and Therapeutics. STRESS RESPONSE PATHWAYS IN CANCER 2014. [PMCID: PMC7121086 DOI: 10.1007/978-94-017-9421-3_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Ubiquitin-Proteasome System (UPS) plays an important role in the setting of the cellular response to multiple stress signals. Although the primary function of ubiquitin was initially associated with proteolysis, it is now considered as a key regulator of protein function controlling, among other functions, signalling cascades, transcription, apoptosis or oncogenesis. Failure at any level of the UPS is associated with the development of multiple pathologies including metabolic problems, immune diseases, inflammation and cancer. The successful use of the proteasome inhibitor Bortezomib (Velcade) in the treatment of multiple myeloma (MM) and mantle cell lymphoma (MCL) revealed the potential of the UPS as pharmacological target. Ten years later, new inhibitors tackling not only the proteasome but also different subsets of enzymes which conjugate or de-conjugate ubiquitin or ubiquitin-like molecules, have been developed. Most of them are excellent tools to characterize better the emerging molecular mechanisms regulating distinct critical cellular processes. Some of them have been launched already while many others are still in pre-clinical development. This chapter updates some of the most successful efforts to develop and characterize inhibitors of the UPS which tackle mechanisms involved in cancer. Particular attention has been dedicated to updating the status of the clinical trials of these inhibitors.
Collapse
Affiliation(s)
- Georg T. Wondrak
- Dept. of Pharmacology and Toxicology, Univ. of Arizona, College of Pharm. & The Univ. of Arizona Cancer Ctr., Tucson, Arizona USA
| | | | | | | | | |
Collapse
|
58
|
Galdeano C, Gadd MS, Soares P, Scaffidi S, Van Molle I, Birced I, Hewitt S, Dias DM, Ciulli A. Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von Hippel-Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J Med Chem 2014; 57:8657-63. [PMID: 25166285 PMCID: PMC4207132 DOI: 10.1021/jm5011258] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
E3 ubiquitin ligases are attractive targets in the ubiquitin-proteasome system, however, the development of small-molecule ligands has been rewarded with limited success. The von Hippel-Lindau protein (pVHL) is the substrate recognition subunit of the VHL E3 ligase that targets HIF-1α for degradation. We recently reported inhibitors of the pVHL:HIF-1α interaction, however they exhibited moderate potency. Herein, we report the design and optimization, guided by X-ray crystal structures, of a ligand series with nanomolar binding affinities.
Collapse
Affiliation(s)
- Carles Galdeano
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee , Dow Street, Dundee, DD1 5EH, Scotland, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Vriend J, Reiter RJ. Melatonin and ubiquitin: what's the connection? Cell Mol Life Sci 2014; 71:3409-18. [PMID: 24920061 PMCID: PMC11113875 DOI: 10.1007/s00018-014-1659-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/09/2014] [Accepted: 05/27/2014] [Indexed: 12/29/2022]
Abstract
Melatonin has been widely studied for its role in photoperiodism in seasonal breeders; it is also a potent antioxidant. Ubiquitin, a protein also widespread in living cells, contributes to many cellular events, although the most well known is that of tagging proteins for destruction by the proteasome. Herein, we suggest a model in which melatonin interacts with the ubiquitin-proteasome system to regulate a variety of seemingly unrelated processes. Ubiquitin, for example, is a major regulator of central activity of thyroid hormone type 2 deiodinase; the subsequent regulation of T3 may be central to the melatonin-induced changes in seasonal reproduction and seasonal changes in metabolism. Both melatonin and ubiquitin also have important roles in protecting cells from oxidative stress. We discuss the interaction of melatonin and the ubiquitin-proteasome system in oxidative stress through regulation of the ubiquitin-activating enzyme, E1. Previous reports have shown that glutathiolation of this enzyme protects proteins from unnecessary degradation. In addition, evidence is discussed concerning the interaction of ubiquitin and melatonin in activation of the transcription factor NF-κB as well as modulating cellular levels of numerous signal transducing factors including the tumor suppressor, p53. Some of the actions of melatonin on the regulatory particle of the proteasome appear to be related to its inhibition of the calcium-dependent calmodulin kinase II, an enzyme which reportedly copurifies with proteasomes. Many of the actions of melatonin on signal transduction are similar to those of a proteasome inhibitor. While these actions of melatonin could be explained by a direct inhibitory action on the catalytic core particle of the proteasome, this has not been experimentally verified. If our hypothesis of melatonin as a general inhibitor of the ubiquitin-proteasome system is confirmed, it is predicted that more examples of this interaction will be demonstrated in a variety of tissues in which ubiquitin and melatonin co-exist. Furthermore, the hypothesis of melatonin as an inhibitor of the ubiquitin-proteasome system will be a very useful model for clinical testing of melatonin.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada,
| | | |
Collapse
|
60
|
Abstract
Ubiquitin is a small 8.5 kDa protein that is conjugated to a target protein in a concerted three step enzymatic process. Ubiquitin addition can drastically affect function or target the modified protein for degradation. Ubiquitin modifications have important regulatory roles in disease progression, such as in cancer and neurodegenerative diseases to name a few. As a consequence, it is imperative to identify important ubiquitin targets to elucidate the role of the modification. Proteomic studies have sought to understand this role by identifying proteome-wide ubiquitylated proteins. Two central ideas have developed to characterize the ubiquitylome: affinity purification of ubiquitylated proteins and optimization of GG-peptide enrichment. In this review, we will discuss recent advances in both approaches and discuss how these studies are essential to pharmacoproteomics.
Collapse
Affiliation(s)
- Tanya R Porras-Yakushi
- California Institute of Technology, Beckman Institute, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | | |
Collapse
|
61
|
Zhang W, Sidhu SS. Development of inhibitors in the ubiquitination cascade. FEBS Lett 2013; 588:356-67. [PMID: 24239534 PMCID: PMC7094371 DOI: 10.1016/j.febslet.2013.11.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 12/16/2022]
Abstract
The ubiquitin proteasome system (UPS) is essential in regulating myriad aspects of protein functions. It is therefore a fundamentally important regulatory mechanism that impacts most if not all aspects of cellular processes. Indeed, malfunction of UPS components is implicated in human diseases such as neurodegenerative and immunological disorders and many cancers. The success of proteasome inhibitors in cancer therapy suggests that modulating enzymes in the ubiquitination cascade would be clinically important for therapeutic benefits. In this review, we summarize advances in developing inhibitors of a variety of UPS components. In particular, we highlight recent work done on the protein engineering of ubiquitin as modulators of the UPS, a novel approach that may shed light on innovative drug discovery in the future.
Collapse
Affiliation(s)
- Wei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada.
| |
Collapse
|