51
|
Encapsulation of β-carotene in oleogel-in-water Pickering emulsion with improved stability and bioaccessibility. Int J Biol Macromol 2020; 164:1432-1442. [DOI: 10.1016/j.ijbiomac.2020.07.227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/18/2020] [Accepted: 07/23/2020] [Indexed: 01/19/2023]
|
52
|
Liu N, Lu Y, Zhang Y, Gao Y, Mao L. Surfactant addition to modify the structures of ethylcellulose oleogels for higher solubility and stability of curcumin. Int J Biol Macromol 2020; 165:2286-2294. [PMID: 33096181 DOI: 10.1016/j.ijbiomac.2020.10.115] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/25/2022]
Abstract
The current study developed ethylcellulose (EC) based oleogels with the addition of a surface active ingredient (sorbitan monopalmitate, SP), in order to increase the active loading of curcumin by reducing lipid oxidation, improving curcumin solubility and chemical stability. With the increase in SP content, EC oleogels had more compact gel networks with evenly distributed smaller pores. Rheological analysis revealed that the gels had shear-thinning behavior, and higher concentration of SP contributed to the systems with higher viscosity. The inclusion of SP also worked to reinforce gel strength as determined by frequency sweep, creep recovery and textural analyses. EC oleogels with higher content of SP were capable to hold more liquid oil during centrifugation, and the T2 relaxation time was much lower as determined by NMR. Peroxide value of the oleogels was significantly lower in the systems with SP, and a SP content of 4% or 6% was effective in inhibiting lipid oxidation during storage. When curcumin was incorporated within the gel networks, its effective concentration was more retained with the addition of SP, as no curcumin crystals were detected by DSC during a 9-day storage test, and curcumin had much higher retention when exposed to UV light for 8 h.
Collapse
Affiliation(s)
- Nan Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yao Lu
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanhui Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
53
|
Zhang M, Feng K, Huang G, Xin Y, Xiao J, Cao Y, Ludescher R, Ho CT, Huang Q. Assessment of Oral Bioavailability and Biotransformation of Emulsified Nobiletin Using In Vitro and In Vivo Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11412-11420. [PMID: 32935545 DOI: 10.1021/acs.jafc.0c04450] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nobiletin has received much attention for its promising biological activities. Owing to its limited solubility, various encapsulation strategies have been developed to enhance nobiletin bioavailability. However, the understanding of the bioavailability and biotransformation of nobiletin in vivo and the correlation between in vitro and in vivo data remains limited. This study developed a high-loading nobiletin (1%) emulsion. The in vitro models, which combined pH-stat lipolysis with a Franz cell, showed very good correlation with in vivo data for the relative bioavailability. Rat studies showed that nobiletin had a high absolute bioavailability (≈20% for oil suspension). Besides, the emulsification improved the amount of bioavailable nobiletin and its major metabolite in the blood by about two times, as compared to an oil suspension. This work provides scientific insights into a rapid screening method for delivery systems and a better understanding of the biological fate of nobiletin in vivo.
Collapse
Affiliation(s)
- Man Zhang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick 08901, New Jersey, United States
| | - Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
| | - Guiying Huang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Yanping Xin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
| | - Richard Ludescher
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick 08901, New Jersey, United States
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick 08901, New Jersey, United States
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick 08901, New Jersey, United States
| |
Collapse
|
54
|
Perspective on oleogelator mixtures, structure design and behaviour towards digestibility of oleogels. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
55
|
Role of antioxidants on physicochemical properties and in vitro bioaccessibility of β-carotene loaded nanoemulsion under thermal and cold plasma discharge accelerated tests. Food Chem 2020; 339:128157. [PMID: 33152897 DOI: 10.1016/j.foodchem.2020.128157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 01/22/2023]
Abstract
The effects of water soluble antioxidant (ascorbic acid and EDTA), fat soluble antioxidant (α-tocopherol) and amphiphilic antioxidant (ascorbyl palmitate; AP) on the chemical physics and bioaccessibility of β-carotene loaded nanoemulsions (CNE) were investigated. During accelerated storage at 45 °C for 15 days, AP showed the highest protective actions against particle size growth, color fading, lipid oxidation, and β-carotene degradation in CNE (p < 0.05). CNE with AP was then subjected to treat with cold plasma (CP) induced reactive species system under various powers and contact times compared to control. AP was able to protect physical and oxidative stabilities of CNE as well as β-carotene integrity. The highest in vitro lipid digestibility, bioaccessibility and β-carotene stability were found in CNE with AP (p < 0.05). However, those properties were lowered after CP exposure. The results indicated that AP was a promising antioxidant in improving physical stability, oxidative stability, β-carotene retention, and β-carotene bioaccessibility of CNE.
Collapse
|
56
|
Nian Y, Yuan L, Zhao D, Li C. Synergistic enhancement of loading contents and chemical stability of lycopene distributing both inside and on the oil/water interface. J Food Sci 2020; 85:3244-3252. [PMID: 32869332 DOI: 10.1111/1750-3841.15414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 11/28/2022]
Abstract
Loading contents and chemical stability of lycopene were synergistically enhanced after dispersion in genipin-crosslinked-chitosan (CS) stabilized high internal phase emulsions (HIPEs). HIPEs could be prepared with the parameters for the emulsifiers of CS concentration from 0.5 to 5 mg/mL, pH value from 5.5 to 7.5, and CS/genipin mass ratio from 2:1 to 20:1. High loading content of lycopene, up to 0.25 wt% was achieved, with emulsifier in the final system only 1 mg/mL. As the loading contents were elevated, increasing amount of lycopene distributed in HIPEs in the form of insoluble crystals. Meanwhile, density of oil droplets decreased and the shape changed from polygon to sphere, which is supposed to be related to the interaction between the crystal and the oil-water interface. Stability of lycopene against ultraviolet, temperature, hydrogen peroxide, and iron ions was improved significantly, which could be ascribed to the layer of genipin-crosslinked-CS on oil droplet surface and the crystal status of lycopene. The storage stability of lycopene was improved tremendously after encapsulation by HIPEs. PRACTICAL APPLICATION: Low loading content of lycopene in emulsion systems is not conducive to the evaluation of its biological function in subsequent experiments, as well as their real application in food industry. It is also crucial to improve the stability of lycopene for the practical application in food industry. In this work, the loading content in delivery system and the chemical stability of lycopene are improved through encapsulation with high internal phase emulsions (HIPEs). The significance of these results may have implications in fields spanning from colloidal science to functional foods applications.
Collapse
Affiliation(s)
- Yingqun Nian
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Lei Yuan
- Centre of Physical & Chemic Analyses and Bio-tech, Tibet Agricultural & Animal Husbandry University, No. 100 Yucai West Road, Bayi District, Tibet Autonomous Region, Linzhi City
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| |
Collapse
|
57
|
Ramírez-Carrasco P, Paredes-Toledo J, Romero-Hasler P, Soto-Bustamante E, Díaz-Calderón P, Robert P, Giménez B. Effect of Adding Curcumin on the Properties of Linseed Oil Organogels Used as Fat Replacers in Pâtés. Antioxidants (Basel) 2020; 9:antiox9080735. [PMID: 32796756 PMCID: PMC7463781 DOI: 10.3390/antiox9080735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/01/2022] Open
Abstract
Beeswax-based organogels were formulated with linseed oil and curcumin according to a statistical design to increase the oxidative stability of spreadable meat products (pâté) where these organogels (OGCur) were incorporated as fat substitutes. The organogels obtained under optimal conditions (9.12% beeswax, 0.54% curcumin) showed a mechanical strength similar to pork backfat determined by back extrusion and high oil binding capacity (OBC; over 90%). The incorporation of curcumin at this concentration did not lead to any change in the arrangement of the crystal network, OBC, and mechanical, thermal, or rheological properties of the organogels. Beeswax organogels with and without curcumin, with a β’ orthorhombic subcell structure, showed a predominant elastic behavior and a melting event wider and shifted to lower temperatures than pure beeswax, suggesting a plasticizer effect of the oil in the wax crystals. The oxidative stability of the organogels under accelerated oxidation conditions increased due to the incorporation of curcumin. A decrease in the curcumin content was found from day 4 at 60 °C, together with a significantly lower formation of both peroxides and malonaldehyde. When pork backfat was partially or totally replaced by OGCur in pâtés, a noticeable protective effect of curcumin against lipid oxidation was found during chilled storage
Collapse
Affiliation(s)
- Patricia Ramírez-Carrasco
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, 8380494 Santiago, Chile; (P.R.-C.); (P.R.)
| | - Javier Paredes-Toledo
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Av. Ecuador 3769, Estación Central, 9170124 Santiago, Chile;
| | - Patricio Romero-Hasler
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, 8380494 Santiago, Chile; (P.R.-H.); (E.S.-B.)
| | - Eduardo Soto-Bustamante
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, 8380494 Santiago, Chile; (P.R.-H.); (E.S.-B.)
| | - Paulo Díaz-Calderón
- Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Avda. Monseñor Álvaro del Portillo 12,455, Las Condes, 7620001 Santiago, Chile;
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Avda. Monseñor Álvaro del Portillo 12,455, Las Condes, 7620001 Santiago, Chile
| | - Paz Robert
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, 8380494 Santiago, Chile; (P.R.-C.); (P.R.)
| | - Begoña Giménez
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Av. Ecuador 3769, Estación Central, 9170124 Santiago, Chile;
- Correspondence:
| |
Collapse
|
58
|
Effect of different oleogelators on lipolysis and curcuminoid bioaccessibility upon in vitro digestion of sunflower oil oleogels. Food Chem 2020; 314:126146. [DOI: 10.1016/j.foodchem.2019.126146] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/29/2019] [Accepted: 12/29/2019] [Indexed: 12/27/2022]
|
59
|
Zhang R, Belwal T, Li L, Lin X, Xu Y, Luo Z. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydr Polym 2020; 242:116388. [PMID: 32564856 DOI: 10.1016/j.carbpol.2020.116388] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Many bioactive food ingredients were encapsulated in different forms to improve their stability and bioavailability. Emulsions have showed excellent properties in encapsulation, controlled release, and targeted delivery of bioactives. Polysaccharides are widely available and have different structures with different advantages including non-toxic, easily digested, biocompatible and can keep stable over a wide range of pH and temperatures. In this review, the most common polysaccharides and polysaccharide based complexes as emulsifiers to stabilize emulsions in recent ten years are described. The close relationships between the types and structures of polysaccharides and their emulsifying capacities are discussed. In addition, the absorption and bioavailability of bioactive food components loaded in polysaccharide stabilized emulsions are summarized. The main goal of the review is to emphasize the important roles of polysaccharides in stabilizing emulsions. Moreover, speculations regarded to some issues for the further exploration and possible onward developments of polysaccharides stabilized emulsions are also discussed.
Collapse
Affiliation(s)
- Ruyuan Zhang
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Xingyu Lin
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Yanqun Xu
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China; Fuli Institute of Food Science, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
60
|
Kajiki T, Komba S, Iwaura R. Supramolecular Organogelation Directed by Weak Noncovalent Interactions in Palmitoylated 1,5-Anhydro-d-Glucitol Derivatives. Chempluschem 2020; 85:701-710. [PMID: 32267103 DOI: 10.1002/cplu.202000147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Indexed: 01/11/2023]
Abstract
We synthesized a series of novel alicyclic compounds by modifying 1,5-anhydro-d-glucitol with two to four palmitoyl chains, and we explored their self-assembly and gelation behaviors in paraffin. The obtained organogels were studied by field emission scanning electron microscopy, atomic force microscopy, variable-temperature Fourier transform IR spectroscopy, X-ray diffraction analysis, polarized optical microscopy, and transmission spectroscopy. While all the palmitoylated derivatives spontaneously formed fibrous networks and gelated the paraffin, an acetylated derivative of 1,5-anhydro-d-glucitol did not gelatinize the solvent, thus indicating the importance of aliphatic chains for gelation. Interestingly, α- and β- d-glucopyranose with five palmitoyl chains neither gelatinized the solvent nor formed fibrous networks, thus suggesting that the absence of C-1 substitution in 1,5-anhydro-d-glucitol is important for gelation. Fourier transform IR spectroscopy suggested that the formation of weak hydrogen bonds between the carbonyl groups and the C-H groups was the driving force for formation of the supramolecular fibers and for gelation of the solvent.
Collapse
Affiliation(s)
- Takahito Kajiki
- SUNUS CO., LTD., 3-20 Nan-ei, Kagoshima, Kagoshima, 891-0196, Japan
| | - Shiro Komba
- Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Rika Iwaura
- Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| |
Collapse
|
61
|
Pavoni L, Perinelli DR, Bonacucina G, Cespi M, Palmieri GF. An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E135. [PMID: 31940900 PMCID: PMC7023169 DOI: 10.3390/nano10010135] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/10/2023]
Abstract
The interest around essential oils is constantly increasing thanks to their biological properties exploitable in several fields, from pharmaceuticals to food and agriculture. However, their widespread use and marketing are still restricted due to their poor physico-chemical properties; i.e., high volatility, thermal decomposition, low water solubility, and stability issues. At the moment, the most suitable approach to overcome such limitations is based on the development of proper formulation strategies. One of the approaches suggested to achieve this goal is the so-called encapsulation process through the preparation of aqueous nano-dispersions. Among them, micro- and nanoemulsions are the most studied thanks to the ease of formulation, handling and to their manufacturing costs. In this direction, this review intends to offer an overview of the formulation, preparation and stability parameters of micro- and nanoemulsions. Specifically, recent literature has been examined in order to define the most common practices adopted (materials and fabrication methods), highlighting their suitability and effectiveness. Finally, relevant points related to formulations, such as optimization, characterization, stability and safety, not deeply studied or clarified yet, were discussed.
Collapse
Affiliation(s)
| | | | | | - Marco Cespi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (D.R.P.); (G.B.); (G.F.P.)
| | | |
Collapse
|
62
|
Pușcaș A, Mureșan V, Socaciu C, Muste S. Oleogels in Food: A Review of Current and Potential Applications. Foods 2020; 9:E70. [PMID: 31936353 PMCID: PMC7022307 DOI: 10.3390/foods9010070] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Legislative limitations of the use of trans and saturated fatty acids, the rising concerns among consumers about the negative effects of some fats on human health, and environmental and health considerations regarding the increased use of palm fat in food and biodiesel production drove to innovations in reformulating fat-containing food products. Oleogelation is one of the most in-trend methods for reducing or replacing the unhealthy and controversial fats in food products. Different edible oleogels are being formulated by various techniques and used in spreads, bakeries, confectioneries, and dairy and meat products. This review exclusively focuses on up-to-date applications of oleogels in food and mechanisms of gelation, and discusses the properties of new products. Research has produced acceptable reformulated food products with similar technological and rheological properties as the reference products or even products with improved techno-functionality; however, there is still a high need to improve oleogelation methods, as well as the technological process of oleogel-based foods products. Despite other strategies that aim to reduce or replace the occurrence of trans and saturated fats in food, oleogelation presents a great potential for industrial application in the future due to nutritional and environmental considerations.
Collapse
Affiliation(s)
- Andreea Pușcaș
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.P.); (S.M.)
| | - Vlad Mureșan
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.P.); (S.M.)
| | - Carmen Socaciu
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Sevastița Muste
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.P.); (S.M.)
| |
Collapse
|
63
|
Lu X, Zhu J, Pan Y, Huang Q. Assessment of dynamic bioaccessibility of curcumin encapsulated in milled starch particle stabilized Pickering emulsions using TNO's gastrointestinal model. Food Funct 2020; 10:2583-2594. [PMID: 31011719 DOI: 10.1039/c8fo02495b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pickering emulsions stabilized by milled starch particles have been developed as a novel food-grade formulation to enhance the bioaccessibility of poorly soluble bioactive compounds (i.e., curcumin) by controlling the digestion of lipids in the human gastrointestinal (GI) tract. The dynamic bioaccessibilities of curcumin with and without encapsulation in the Pickering emulsion were evaluated using the dynamic TNO's gastrointestinal (TIM-1) model. For comparison, their digestion profiles were also studied using the in vitro pH-stat lipolysis model. With the combination of two in vitro models, the effect of the milled starch particle stabilized Pickering emulsions on the bioaccessibility of curcumin was fully revealed. There are large differences between the bioaccessibility values of curcumin samples obtained by these two models. Simulated small intestinal lipolysis in the pH-stat model revealed that the bioaccessibility of curcumin encapsulated in the Pickering emulsion was 27.6%, which was larger than 22.1% for free curcumin suspended in the bulk oil phase. The bioaccessibility of curcumin was 50.7% in the emulsion system and 7.8% in the bulk oil when using the TIM-1 model, which simulated the digestion conditions of the entire human GI tract. The digestion mechanism of the milled starch particle stabilized Pickering emulsions in the upper GI tract was well elucidated by the TIM-1 model. The gradual release and improved dissolution profile of the milled starch particle stabilized Pickering emulsions highlighted their potential as delivery systems for lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Xuanxuan Lu
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Rd, New Brunswick, New Jersey 08901, USA.
| | | | | | | |
Collapse
|
64
|
Ashkar A, Rosen-Kligvasser J, Lesmes U, Davidovich-Pinhas M. Controlling lipid intestinal digestibility using various oil structuring mechanisms. Food Funct 2020; 11:7495-7508. [DOI: 10.1039/d0fo00223b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This research demonstrates the ability to direct the rate and extent of lipid hydrolysis of oleogels using a combination of different structuring agents.
Collapse
Affiliation(s)
- Areen Ashkar
- Faculty of Biotechnology and Food Engineering
- Technion
- Israel
| | | | - Uri Lesmes
- Faculty of Biotechnology and Food Engineering
- Technion
- Israel
- Russell-Berrie Nanotechnology Institute
- Technion – Israel Institute of Technology
| | - Maya Davidovich-Pinhas
- Faculty of Biotechnology and Food Engineering
- Technion
- Israel
- Russell-Berrie Nanotechnology Institute
- Technion – Israel Institute of Technology
| |
Collapse
|
65
|
Lu X, Huang Q. Stability andin vitrodigestion study of curcumin-encapsulated in different milled cellulose particle stabilized Pickering emulsions. Food Funct 2020; 11:606-616. [DOI: 10.1039/c9fo02029b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Figurein vitrolipolysis of curcumin encapsulated Pickering emulsions stabilized by milled cellulose.
Collapse
Affiliation(s)
- Xuanxuan Lu
- Department of Food Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- Department of Food Science
| | - Qingrong Huang
- Department of Food Science
- Rutgers
- The State University of New Jersey
- New Brunswick
- USA
| |
Collapse
|
66
|
Tian Y, Acevedo NC. Role of supramolecular policosanol oleogels in the protection of retinyl palmitate against photodegradation. RSC Adv 2020; 10:2526-2535. [PMID: 35496095 PMCID: PMC9048806 DOI: 10.1039/c9ra07820g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/06/2020] [Indexed: 11/21/2022] Open
Abstract
Exposure of retinyl palmitate (RP) to ultraviolet radiation can lead to its photo-degradation and loss of biological activity.
Collapse
Affiliation(s)
- Yixing Tian
- Department of Food Science and Human Nutrition
- Iowa State University
- Ames
- USA
| | - Nuria C. Acevedo
- Department of Food Science and Human Nutrition
- Iowa State University
- Ames
- USA
| |
Collapse
|
67
|
Wijaya W, Zheng H, Zheng T, Su S, Patel AR, Van der Meeren P, Huang Q. Improved bioaccessibility of polymethoxyflavones loaded into high internal phase emulsions stabilized by biopolymeric complexes: A dynamic digestion study via TNO's gastrointestinal model. Curr Res Food Sci 2019; 2:11-19. [PMID: 32914106 PMCID: PMC7473367 DOI: 10.1016/j.crfs.2019.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this work, the bioaccessibility of polymethoxyflavones (PMFs) loaded in high internal phase emulsions (HIPE, ϕoil = 0.82) stabilized by whey protein isolate (WPI)-low methoxy pectin (LMP) complexes was evaluated using in vitro lipolysis and dynamic in vitro intestinal digestion studies. PMFs loaded HIPE was prepared by using aqueous dispersion of pre-formed biopolymeric complexes (WPI-LMP, 2:1 ratio) as the external phase and medium chain triglycerides oil (containing PMFs extracted from citrus peel) as the dispersed phase. The in vitro lipolysis study revealed that PMFs in HIPE became bioaccessible much higher than PMFs in medium chain triacylglycerols oil (MCT oil). In addition, by simulating the entire human gastrointestinal (GI) tract, the GI model TIM-1 demonstrated a 5- and 2-fold increase in the total bioaccessibility for two major PMFs encapsulated in HIPE, i.e. tangeretin (TAN) and nobiletin (NOB), respectively, as opposed to PMFs in MCT oil. Together these results from the digestion study showed that the incorporation of a high amount of PMFs into the viscoelastic matrix of HIPE could represent an innovative and effective way to design an oral delivery system. Such a system could be used to control and to improve the delivery of lipophilic bioactive compounds within the different compartments of the digestive tract, especially the human upper GI tract.
Collapse
Affiliation(s)
- Wahyu Wijaya
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Huijuan Zheng
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Ting Zheng
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Shiwei Su
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Ashok R Patel
- Guangdong Technion Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, China
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| |
Collapse
|
68
|
Development and Characterization of Lipid-Based Nanosystems: Effect of Interfacial Composition on Nanoemulsion Behavior. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02372-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
69
|
Zhong L, Ma N, Wu Y, Zhao L, Ma G, Pei F, Hu Q. Gastrointestinal fate and antioxidation of β-carotene emulsion prepared by oat protein isolate-Pleurotus ostreatus β-glucan conjugate. Carbohydr Polym 2019; 221:10-20. [DOI: 10.1016/j.carbpol.2019.05.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022]
|
70
|
Wei Z, Huang Q. Developing organogel-based Pickering emulsions with improved freeze-thaw stability and hesperidin bioaccessibility. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
71
|
Cui M, Mao L, Lu Y, Yuan F, Gao Y. Effect of monoglyceride content on the solubility and chemical stability of β-carotene in organogels. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
72
|
Li L, Wan W, Cheng W, Liu G, Han L. Oxidatively stable curcumin‐loaded oleogels structured by β‐sitosterol and lecithin: physical characteristics and release behaviour
in vitro. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14208] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Linlin Li
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Wenbo Wan
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Weiwei Cheng
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Guoqin Liu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
| | - Lipeng Han
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 China
| |
Collapse
|
73
|
Chen S, Han Y, Huang J, Dai L, Du J, McClements DJ, Mao L, Liu J, Gao Y. Fabrication and Characterization of Layer-by-Layer Composite Nanoparticles Based on Zein and Hyaluronic Acid for Codelivery of Curcumin and Quercetagetin. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16922-16933. [PMID: 30985111 DOI: 10.1021/acsami.9b02529] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The utilization of layer-by-layer composite nanoparticles fabricated from zein and hyaluronic acid (HA) for the codelivery of curcumin and quercetagetin was investigated. A combination of hydrophobic effects and hydrogen bonding was responsible for the interaction of zein with both curcumin and quercetagetin inside the nanoparticles. Electrostatic attraction and hydrogen bonding were mainly responsible for the layer-by-layer deposition of hyaluronic acid on the surfaces of the nanoparticles. The secondary structure of zein was altered by the presence of the two nutraceuticals and HA. The optimized nanoparticle formulation contained relatively small particles ( d = 231.2 nm) that were anionic (ζ = -30.5 mV). The entrapment efficiency and loading capacity were 69.8 and 2.5% for curcumin and 90.3 and 3.5% for quercetagetin, respectively. Interestingly, the morphology of the nanoparticles depended on their composition. In particular, they changed from coated nanoparticles to nanoparticle-filled microgels as the level of HA increased. The nanoparticles were effective at reducing light and thermal degradation of the two encapsulated nutraceuticals and remained physically stable throughout 6 months of long-term storage. In addition, the nanoparticles were shown to slowly release the nutraceuticals under simulated gastrointestinal tract conditions, which may help improve their oral bioavailability. In summary, we have shown that layer-by-layer composite nanoparticles based on zein and HA are an effective codelivery system for two bioactive compounds.
Collapse
Affiliation(s)
- Shuai Chen
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Yahong Han
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Jingyang Huang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Lei Dai
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Juan Du
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control , Zhengzhou University of Light Industry , Zhengzhou 450001 , China
| | - David Julian McClements
- Department of Food Science , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Like Mao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Jinfang Liu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Yanxiang Gao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| |
Collapse
|
74
|
Wang Q, Decker EA, Rao J, Chen B. A combination of monoacylglycerol crystalline network and hydrophilic antioxidants synergistically enhances the oxidative stability of gelled algae oil. Food Funct 2019; 10:315-324. [PMID: 30574982 DOI: 10.1039/c8fo00997j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, base algae oil was gelled through the formation of a crystal network using food-grade monoacylglycerol (MAG). The impact of the MAG concentration (5, 10, 20 wt%) and water content (0, 5 wt%) on the physical properties and oxidative stability of the gelled algae oil was systematically investigated. The antioxidative activity of 300 μM hydrophilic antioxidant, i.e., ascorbic acid and green tea extract, on the oxidative stability of the gelled algae oil by 20 wt% of MAG was also examined. The results obtained clearly showed that the melting temperature, melting of entropy, and complex modulus of the algae oil increased with increasing the MAG concentration. The addition of 5 wt% water could negatively affect the strength of the MAG crystal network, while a physically stable gel system could only be formed with 20 wt% MAG. The stronger crystal network formed by 20 wt% MAG retarded the lipid oxidation of algae oil due to the creation of a physical barrier to restrain the attack from oxygen. The addition of green tea extract could further synergize with the MAG crystalline network by forming a thermodynamic barrier to effectively quench the radicals, thus prolonging the oxidative stability of algae oil 4-fold longer than that of the base algae oil.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | | | | | | |
Collapse
|
75
|
Zhu J, Huang Q. Nanoencapsulation of functional food ingredients. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 88:129-165. [PMID: 31151723 DOI: 10.1016/bs.afnr.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many functional food ingredients are poorly soluble in water, susceptible to chemical degradation, and incompatible with surrounding food matrix. Other issues are related to limited oral bioavailability, unpleasant sensory properties, and poor release profiles. Nanoencapsulation of functional food ingredients can help increase their water solubility/dispersibility in foods and beverages, improve their bioavailability by exhibiting good dose-dependent functionalities, mask undesired flavors/tastes to reduce the adverse effect on mouth-feel, enhance shelf-life and compatibility during production, storage, transportation and utilization of food products, and control release rate or specific delivery environment for better performance on their functionalities. This chapter provides an overview of different delivery systems for different functional food ingredients, the types of materials suitable for wall materials or building blocks of nanocapsules, the fabrication methods to assemble different delivery systems and release these active ingredients under different physiological conditions.
Collapse
Affiliation(s)
- Jieyu Zhu
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States.
| |
Collapse
|
76
|
Cerqueira MA, Pinheiro AC, Pastrana LM, Vicente AA. Amphiphilic Modified Galactomannan as a Novel Potential Carrier for Hydrophobic Compounds. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
77
|
Mao L, Lu Y, Cui M, Miao S, Gao Y. Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Crit Rev Food Sci Nutr 2019; 60:1651-1666. [PMID: 30892058 DOI: 10.1080/10408398.2019.1587737] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gels are viscoelastic systems built up with a liquid phase entrapped in a three-dimensional network, which can behave as carriers for bioactive food ingredients. Many attempts have been made to design gel structures in the water phase (hydrogels, emulsion gels, bigels) or oil phase (organogels, bigels) in order to improve their delivery performances. Hydrogels are originated from proteins or polysaccharides, which are suitable for the delivery of hydrophilic ingredients. Organogels are mainly built up with the self-assembling of gelator molecules in the oil phase, and they offer good carriers for lipophilic ingredients. Emulsion gels and bigels, containing both aqueous and oil domains, can provide accommodations for lipophilic and hydrophilic ingredients simultaneously. Gel structures (e.g. rheology, texture, water holding capacity, swelling ratio) can be modulated by choosing different gelators, modifying gelation techniques, and the involvement of other ingredients (e.g. oils, emulsifiers, minerals, acids), which then alter the diffusion and release of the bioactive ingredients incorporated. Various studies have proved that gel-based delivery systems are able to improve the stability and bioavailability of many bioactive food ingredients. This review provides a state-to-art overview of different gel-based delivery systems, highlighting the significance of structure-functionality relationship, to provide advanced knowledge for the design of novel functional foods.
Collapse
Affiliation(s)
- Like Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yao Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengnan Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Song Miao
- Teagasc Food Research Centre, Fermoy, Ireland
| | - Yanxiang Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
78
|
Wei Z, Huang Q. Assembly of Protein-Polysaccharide Complexes for Delivery of Bioactive Ingredients: A Perspective Paper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1344-1352. [PMID: 30640454 DOI: 10.1021/acs.jafc.8b06063] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protein-polysaccharide complexes can be created in various ways (physical mixing, enzymatic cross-linking, chemical cross-linking, and Maillard reaction), and diverse protein-polysaccharide complexes are generally grouped into non-covalent and covalent complexes. Delivery systems constructed through assembly of protein-polysaccharide complexes (DSAPC) consist of emulsion-based delivery systems, capsule-based delivery systems, molecular complexes, nanogels, core-shell particles, composite nanoparticles, and micelles. DSAPC are effective delivery vehicles in enhancing the overall efficacy of bioactive ingredients, and DSAPC may possess multiple advantages over other delivery vehicles in bioactive ingredient delivery. However, designing and applying DSAPC are still faced with some challenges, such as low loading of bioactive ingredients. Efforts are required to reconsider and improve efficiency of DSAPC in many aspects, such as controlled release and targeted delivery. On the basis of more comprehensive and deeper understandings, DSAPC can be designed more rationally for delivery of bioactive ingredients.
Collapse
Affiliation(s)
- Zihao Wei
- Department of Food Science , Rutgers, The State University of New Jersey , 65 Dudley Road , New Brunswick , New Jersey 08901 , United States
| | - Qingrong Huang
- Department of Food Science , Rutgers, The State University of New Jersey , 65 Dudley Road , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
79
|
Wei Z, Zhu P, Huang Q. Investigation of ovotransferrin conformation and its complexation with sugar beet pectin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
80
|
Zhu Y, Zhou Y, Tian T, Wang Z, Qi B, Zhang X, Liu J, Li Y, Jiang L, Wang Z. In vitro Simulated Digestion and Microstructure of Peppermint Oil Nanoemulsion. J Oleo Sci 2019; 68:863-871. [PMID: 31484902 DOI: 10.5650/jos.ess19102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The variations in average particle size, zeta potential, free fatty acids (FFA) release rate, and the bioavailability of menthol under in vitro simulated digestion conditions of peppermint oil nanoemulsion were investigated. 3D confocal laser scanning microscopy and Cryo-scanning electron microscopy were used to observe the microstructure characteristics of peppermint oil nanoemulsion, which indicated that soybean protein was completely adsorbed at the oil-water interface of the nanoemulsion and presented a core shell structure. And the results indicated that FFA release rate and menthol bioavailability of peppermint oil nanoemulsion prepared by using high-pressure homogenization were much higher. In the simulated gastric digestion phase, the average particle size and the zeta potential of the nanoemulsion increased, and droplet polymerization appeared. After the simulated intestinal, the interfacial protein of nanoemulsion was hydrolyzed, and the oil droplets were digested, which resulted in the decreased particle size and increased absolute value of zeta potential.
Collapse
Affiliation(s)
- Ying Zhu
- College of Food Science, Northeast Agricultural University
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University
| | - Yan Zhou
- College of Food Science, Northeast Agricultural University
| | - Tian Tian
- College of Food Science, Northeast Agricultural University
| | - Zhaoyun Wang
- College of Food Science, Northeast Agricultural University
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University
| | - Xiaoyuan Zhang
- College of Food Science, Northeast Agricultural University
| | | | - Yang Li
- College of Food Science, Northeast Agricultural University
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University
| |
Collapse
|
81
|
Dai L, Wei Y, Sun C, Mao L, McClements DJ, Gao Y. Development of protein-polysaccharide-surfactant ternary complex particles as delivery vehicles for curcumin. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.052] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
82
|
Martins AJ, Vicente AA, Cunha RL, Cerqueira MA. Edible oleogels: an opportunity for fat replacement in foods. Food Funct 2018; 9:758-773. [PMID: 29417124 DOI: 10.1039/c7fo01641g] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The scientific and industrial communities have been giving great attention to the development of new bio-based materials with potential use in innovative technological applications. Among these materials are the structures with gel-like behavior that can be used in the cosmetic, pharmaceutical and food industries, aiming at controlling the physical properties of the final products. In the past ten years, words like oleogels and organogels have been increasingly used, the existing number of manuscripts and patents being proof of this tendency. In the food industry, oleogels can be used to control phase separation, and decrease the mobility and migration of the oil phase, providing solid-like properties without using high levels of saturated fatty acids as well as to be a carrier of bioactive compounds. In most cases, their main features are related to the reorganization process of gelators after an increase of the temperature, above the melting or glass transition temperature of the materials, known as the direct method, but it is also possible to develop oleogels by indirect methods, such as emulsification and the solvent exchange technique. In the direct methods, the reorganization is able to physically entrap oil leading to different physicochemical properties, the rheological behavior and texture properties being the frequently most studied ones. This review overviews the use of food grade and bio-based structurants to produce edible oleogels, aiming at fat replacement and structure-tailoring. Gelation mechanisms and oil phases used during oleogel production are discussed, as well as the current food applications and future trends for this kind of structure.
Collapse
Affiliation(s)
- Artur J Martins
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | |
Collapse
|
83
|
Zafrani Y, Kaizerman D, Hadar M, Bigan N, Granot E, Ghosh M, Adler-Abramovich L, Patolsky F, Cohen Y. Pillararene-Based Two-Component Thixotropic Supramolecular Organogels: Complementarity and Multivalency as Prominent Motifs. Chemistry 2018; 24:15750-15755. [PMID: 29745993 DOI: 10.1002/chem.201801418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/09/2018] [Indexed: 02/05/2023]
Abstract
Rationally designed two-component supramolecular organogels based on multiple chemical interactions between percarboxylato- and peramino-pillararenes are described. Mixing low concentration solutions (<1 % w/v) of decacarboxylato-pillar[5]arene (1) with decaamino-pillar[5]arenes (2 b-d) affords, rapidly and without heating, organogels displaying an exceptional combination of properties. These supramolecular organogels, the characteristics of which are tunable, were found to be thixotropic and thermally stable, with Tgel values in some cases exceeding the boiling point of the embedded solvent. It is demonstrated that both structural complementarity and multivalency are important determinants in the gelation process of these attractive soft materials.
Collapse
Affiliation(s)
- Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.,Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 740000, Israel
| | - Dana Kaizerman
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Nitzan Bigan
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Eran Granot
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Moumita Ghosh
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Fernando Patolsky
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|
84
|
Tian Y, Acevedo NC. Kinetic study on photostability of retinyl palmitate entrapped in policosanol oleogels. Food Chem 2018; 255:252-259. [DOI: 10.1016/j.foodchem.2018.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/01/2022]
|
85
|
Esposito CL, Kirilov P, Roullin VG. Organogels, promising drug delivery systems: an update of state-of-the-art and recent applications. J Control Release 2018; 271:1-20. [DOI: 10.1016/j.jconrel.2017.12.019] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 12/23/2022]
|
86
|
Rajkumari S, Sanatombi K. Nutritional value, phytochemical composition, and biological activities of edible Curcuma species: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1387556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - K. Sanatombi
- Department of Biotechnology, Manipur University, Imphal, India
| |
Collapse
|
87
|
Andrade J, Wright AJ, Corredig M. In vitro digestion behavior of water-in-oil-in-water emulsions with gelled oil-water inner phases. Food Res Int 2017; 105:41-51. [PMID: 29433230 DOI: 10.1016/j.foodres.2017.10.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
Double emulsions may be able to protect and release in a controlled manner bioactive compounds during digestion of food matrices. It was hypothesized that the physical state and solid content in the inner phases of water-in-oil-in-water (W1/O/W2) emulsions may affect the overall stability and the release behavior of bioactives during in vitro digestion. Therefore, hydrophobic (phytosterols or Vitamin D3) and hydrophilic (Vitamin B12) molecules were incorporated in double emulsions prepared either with a liquid (soybean oil - SO) or oil-fat gel (soybean oil+trimyristin - STO) lipid phase and liquid internal aqueous phase. In addition, the impact of a gelled inner aqueous phase was studied, using high methoxyl pectin. W1/O/W2 emulsions were prepared with polyglycerol polyricinoleate (PGPR) and sodium caseinate as emulsifiers. After the 30min in vitro gastric stage, all double emulsions showed no significant change in size. Lipid crystals were visible in the STO emulsions. Fat crystallization, and the formation of an oil fat gel, led to coalescence of the inner aqueous droplets. The inner aqueous droplets were no longer visible by confocal microscopy after the initial stages of 2h in vitro duodenal digestion. Fat crystals and droplets of non-spherical shape were also noted in the STO double emulsions up to 25min of in vitro duodenal stage. Overall, the STO emulsions had a higher extent of free fatty acid release and consequent bioactive transfer compared to the SO emulsions. The presence of the medium chain fatty acids (from trimyristin), in addition to the surface-to-core distribution of the hydrophobic bioactives within the oil droplet were key factors in lipid digestibility and bioactive release. The STO and SO samples did not differ in terms of the release of the hydrophilic molecule, vitamin B12, over time. On the other hand, there was a significant increase in the stability of the inner water phase, after gastric digestion, when this phase was gelled with high methoxyl pectin. This work demonstrated that the physical properties of the different internal phases of W1/O/W2 influenced lipid digestion and bioactive transfer kinetics during in vitro digestion.
Collapse
Affiliation(s)
- Jonathan Andrade
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Grupo de Engenharia e Espectroscopia de Materiais, Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil.
| | - Amanda J Wright
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Milena Corredig
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
88
|
Fan Y, Gao L, Yi J, Zhang Y, Yokoyama W. Development of β-Carotene-Loaded Organogel-Based Nanoemulsion with Improved In Vitro and In Vivo Bioaccessibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6188-6194. [PMID: 28696684 DOI: 10.1021/acs.jafc.7b02125] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
β-Carotene (BC), a naturally occurring lipophilic carotenoid, is beneficial for human health. However, its water solubility and bioavailability are low. In this study, organogel-based nanoemulsion was successfully prepared to improve the loading amount, solubility, and bioavailability of BC. Corn oil was selected as the oil phase for the organogel as a result of the greatest release amount of BC. Tween 20 was optimized as the emulsifier based on the highest extent of lipolysis and BC bioaccessibility. The nanoemulsion was a better alternative than the organogel according to both the extent of lipolysis and BC bioaccessibility. Cellular uptake of BC was significantly improved through organogel-based nanoemulsion compared to BC suspension. Caveolae-/lipid-raft-mediated route was the main endocytosis pathway. Pharmacokinetic results confirmed that the in vivo bioavailability of BC in nanoemulsion was 11.5-fold higher than that of BC oil. The information obtained suggested that organogel-based nanoemulsion may be an effective encapsulation system for delivery of insoluble and indigestible bioactive compounds.
Collapse
Affiliation(s)
- Yuting Fan
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University , Shenzhen, Guangdong 518060, People's Republic of China
| | - Luyu Gao
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University , Shenzhen, Guangdong 518060, People's Republic of China
| | - Jiang Yi
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University , Shenzhen, Guangdong 518060, People's Republic of China
| | - Yuzhu Zhang
- Western Regional Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA) , Albany, California 94710, United States
| | - Wallace Yokoyama
- Western Regional Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA) , Albany, California 94710, United States
| |
Collapse
|
89
|
Zhou X, Zhang B, Cui Y, Chen S, Teng Z, Lu G, Wang J, Deng X. Curcumin Promotes the Clearance of Listeria monocytogenes both In Vitro and In Vivo by Reducing Listeriolysin O Oligomers. Front Immunol 2017; 8:574. [PMID: 28567044 PMCID: PMC5434164 DOI: 10.3389/fimmu.2017.00574] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/28/2017] [Indexed: 01/28/2023] Open
Abstract
The pore-forming toxin listeriolysin O (LLO), an essential virulence factor that is secreted by Listeria monocytogenes (L. monocytogenes), is responsible for bacterial breaching at the phagosomal membranes and subsequent release into the cytoplasm; it cannot be recognized by the host immune system. The vital role that LLO plays in bacterial pathogenicity and evading host immune clearance makes this virulence a promising target for addressing L. monocytogenes infection. In this study, we hypothesized that curcumin, a polyphenol derived from turmeric that could effectively inhibit LLO pore-forming activity, might be useful in the prevention or treatment of L. monocytogenes infection. Thus, the in vitro protective effects of curcumin against L. monocytogenes infection by targeting LLO were assessed via hemolytic activity assays, cytotoxicity tests, intracellular growth assays, and confocal microscopy. Our results revealed that treating infected macrophages with curcumin can lead to a decrease in LLO-mediated bacteria phagosomal escape and limit the intracellular growth of L. monocytogenes. Moreover, results from animal experiments show that this natural compound effectively increases protection against bacterial infection and helps the host to clear the invading pathogen completely from an animal model, establishing it as a potent antagonist of L. monocytogenes. The results from our molecular modeling and mutational analysis demonstrated that curcumin directly engages with domains 2 and 4 of LLO, thereby decreasing the hemolytic activity of LLO by influencing its oligomerization. Taken together, these results suggest that, as an antitoxin agent, curcumin can be further developed into a novel therapy against L. monocytogenes infections by targeting LLO.
Collapse
Affiliation(s)
- Xuan Zhou
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yumei Cui
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuiye Chen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zihao Teng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gejin Lu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
90
|
Fan Y, Yi J, Zhang Y, Wen Z, Zhao L. Physicochemical stability and in vitro bioaccessibility of β-carotene nanoemulsions stabilized with whey protein-dextran conjugates. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.09.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
91
|
Tan H, Zhao L, Tian S, Wen H, Gou X, Ngai T. Gelatin Particle-Stabilized High-Internal Phase Emulsions for Use in Oral Delivery Systems: Protection Effect and in Vitro Digestion Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:900-907. [PMID: 28064487 DOI: 10.1021/acs.jafc.6b04705] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The potential application of Pickering high-internal phase emulsions (HIPEs) in the food and pharmaceutical industries has yet to be fully developed. Herein, we synthesized fairly monodisperse, nontoxic, autofluorescent gelatin particles for use as sole stabilizers for fabricating oil-in-water (O/W) HIPEs in an effort to improve the protection and bioaccessibility of entrapped β-carotene. Our results showed that the concentration of gelatin particles determined the formation, microstructure, droplet size distribution, and digestion profile of the HIPEs. For storage stability, the retention of β-carotene in HIPEs was significantly higher than in dispersion in bulk oil, even after storage for 27 days. In addition, in vitro digestion experiments indicated that the bioaccessibility of β-carotene was improved 5-fold in HIPEs. This study will help establish a correlation between the physicochemical properties of gelatin particle-stabilized HIPEs with their applications in the oral delivery of bioactive nutraceuticals.
Collapse
Affiliation(s)
- Huan Tan
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University , Chengdu 610052, P. R. China
| | - Lifeng Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University , Chengdu 610052, P. R. China
| | - Sisi Tian
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University , Chengdu 610065, P. R. China
| | - Hui Wen
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University , Chengdu 610065, P. R. China
| | - Xiaojun Gou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University , Chengdu 610052, P. R. China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, NT, Hong Kong
| |
Collapse
|
92
|
Huang Z, Xu L, Zhu X, Hu J, Peng H, Zeng Z, Xiong H. Stability and Bioaccessibility of Fucoxanthin in Nanoemulsions Prepared from Pinolenic Acid-contained Structured Lipid. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2017. [DOI: 10.1515/ijfe-2016-0273] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract:
Fucoxanthin intake has been correlated with the functions of anti-obesity and anti-oxidation, but applications of it in functional food or dietary supplements are still challenging due to its poor water-solubility, chemical instability, and low bioavailability. In this work, to study physicochemical and biological properties of fucoxanthin nanoemulsions, we investigated the influence of emulsion particle diameter on the stability of fucoxanthin during storage time and bioaccessibility in-vitro digestion. The structured lipid that enriched pinolenic acid at sn-2 position was chosen as the oil phase and the fucoxanthin oil-in-water nanoemulsions with droplet diameters of 344, 173, and 98 nm were prepared through a high-pressure microfluidizer. Then fucoxanthin emulsions were stored for 28 days at 4, 37, and 55 °C. Results showed that the physical stabilities of droplets were decreased with increases in the initial size and storage temperature, while the change of fucoxanthin retention indicated that fucoxanthin chemical stability was improved with increasing emulsion particle size. The augmentation of lipolysis and the value of free fatty acids (FFA) released in vitro digestion proved that digestion stability of fucoxanthin emulsion reduced with decreasing initial particle diameter, which was probably attributed to the increased surface area interacting with pancreatic lipase with decreasing droplet size. In addition, the concentrations of fucoxanthin in micelle phase were appreciable increased as droplet size decreased. Therefore, the bioaccessibility of fucoxanthin was improved. These results may benefit the optimization of an emulsion-based delivery system for fucoxanthin in food applications.
Collapse
|
93
|
O′Sullivan CM, Davidovich-Pinhas M, Wright AJ, Barbut S, Marangoni AG. Ethylcellulose oleogels for lipophilic bioactive delivery – effect of oleogelation on in vitro bioaccessibility and stability of beta-carotene. Food Funct 2017; 8:1438-1451. [DOI: 10.1039/c6fo01805j] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The in vitro lipolysis and β-carotene (BC) transfer from oil to aqueous phase of canola oil ethylcellulose (EC) oleogels were measured using a static monocompartmental model simulating oral, gastric, and duodenal digestive stages.
Collapse
Affiliation(s)
| | - Maya Davidovich-Pinhas
- Faculty of Biotechnology and Food Engineering
- Technion Israel Institute of Technology
- Haifa
- Israel
| | - Amanda J. Wright
- Department of Human Health and Nutritional Sciences
- University of Guelph
- Guelph
- Canada
| | - Shai Barbut
- Department of Food Science
- University of Guelph
- Guelph
- N1G2W1 Canada
| | | |
Collapse
|
94
|
Gharibzahedi SMT, Mohammadnabi S. Characterizing the novel surfactant-stabilized nanoemulsions of stinging nettle essential oil: Thermal behaviour, storage stability, antimicrobial activity and bioaccessibility. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.10.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
95
|
O'Sullivan CM, Barbut S, Marangoni AG. Edible oleogels for the oral delivery of lipid soluble molecules: Composition and structural design considerations. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.08.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
96
|
Encapsulation of curcumin in polysaccharide-based hydrogel beads: Impact of bead type on lipid digestion and curcumin bioaccessibility. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.02.036] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
97
|
Lu M, Cao Y, Ho CT, Huang Q. Development of Organogel-Derived Capsaicin Nanoemulsion with Improved Bioaccessibility and Reduced Gastric Mucosa Irritation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4735-4741. [PMID: 27170269 DOI: 10.1021/acs.jafc.6b01095] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Capsaicin (CAP) is the major active component in chili peppers with health-promoting benefits. However, the low bioavailability and irritating quality of CAP greatly limit its applications in functional foods. The objective of this study was to develop a food-grade nanoemulsion to increase the dissolution and bioaccessibility of CAP and to alleviate its irritating effects. To achieve this goal, CAP was first dissolved in medium-chain triacylglycerol (MCT), followed by the addition of sucrose stearate S-370 as organogelator to develop CAP-loaded organogel. The oil-in-water (O/W) emulsion was formed using organogel as the oil phase and Tween 80 as the emulsifier. After ultrasonication treatment, droplet sizes of emulsion were decreased to 168 nm with enhanced dissolution rate and bioaccessibility. In vivo study further confirmed the reduced rat gastric mucosa irritation caused by CAP. The organogel-derived nanoemulsion was proved to be an effective delivery system for CAP-based functional food products.
Collapse
Affiliation(s)
- Muwen Lu
- Department of Food Science, Rutgers University , 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Yong Cao
- College of Food Science, South China Agricultural University , Guangzhou 510642, People's Republic of China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University , 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Qingrong Huang
- Department of Food Science, Rutgers University , 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
98
|
Liu W, Zhai Y, Heng X, Che FY, Chen W, Sun D, Zhai G. Oral bioavailability of curcumin: problems and advancements. J Drug Target 2016; 24:694-702. [PMID: 26942997 DOI: 10.3109/1061186x.2016.1157883] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Weidong Liu
- Department of Pharmacy, Linyi People’s Hospital Affiliated to Shandong University, Linyi, China
| | - Yingjie Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| | - Xueyuan Heng
- Department of Clinical Medicine, Linyi People’s Hospital Affiliated to Shandong University, Linyi, China
| | - Feng Yuan Che
- Department of Clinical Medicine, Linyi People’s Hospital Affiliated to Shandong University, Linyi, China
| | - Wenjun Chen
- Department of Clinical Medicine, Linyi People’s Hospital Affiliated to Shandong University, Linyi, China
| | - Dezhong Sun
- Department of Clinical Medicine, Linyi People’s Hospital Affiliated to Shandong University, Linyi, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| |
Collapse
|
99
|
Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.12.035] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
100
|
Rao PJ, Khanum H. A green chemistry approach for nanoencapsulation of bioactive compound – Curcumin. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.08.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|