51
|
Iwagaki Y, Sakamoto Y, Sugawara S, Mizowaki Y, Yamamoto K, Sugawara T, Kimura K, Tsuduki T. Identification of Characteristic Components and Foodstuffs in Healthy Japanese Diet and the Health Effects of a Diet with Increased Use Frequency of these Foodstuffs. Mol Nutr Food Res 2017; 61. [PMID: 28834090 DOI: 10.1002/mnfr.201700430] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/08/2017] [Indexed: 12/12/2022]
Abstract
SCOPE Our recent study showed that the 1975 Japanese diet exhibited strong health benefits. In the current study, we aimed to develop a diet with even higher health benefits. METHODS First, to determine the characteristic components in the 1975 diet, we used mass spectrometry for analysis of Japanese diets from several years and performed principal component analysis. Next, a diet with an increased use frequency of foodstuffs contained characteristic components (the modified diet) was prepared and fed to mice. RESULTS Performed principal component analysis revealed that the 1975 diet contained 14 characteristic components that were found in fish, fruits, vegetables, seaweed, soybean foods, soup stock "dashi", and fermented seasoning. Based on these, the modified diet was prepared and fed to mice. The liver total cholesterol and serum LDL cholesterol decreased significantly in mice fed the modified diet and serum total cholesterol showed a downward trend, compared to mice fed the 1975 diet. There was no difference between the modified diet and the control groups. In addition, serum adiponectin level increased in mice fed the modified diet and serum TBARS and IL-6 levels decreased. CONCLUSION By modifying the 1975 diet, it was possible to make a diet with more benefit.
Collapse
Affiliation(s)
- Yui Iwagaki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai, Japan
| | - Yu Sakamoto
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai, Japan
| | - Saeko Sugawara
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai, Japan
| | - Yui Mizowaki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai, Japan
| | - Kazushi Yamamoto
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai, Japan
| | - Tatsuya Sugawara
- Laboratory of Marine Bioproducts Technology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuhiko Kimura
- Department of Farm Management, Miyagi University, Sendai, Japan
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai, Japan
| |
Collapse
|
52
|
Central Administration of 1-Deoxynojirimycin Attenuates Hypothalamic Endoplasmic Reticulum Stress and Regulates Food Intake and Body Weight in Mice with High-Fat Diet-Induced Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3607089. [PMID: 28798799 PMCID: PMC5535735 DOI: 10.1155/2017/3607089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022]
Abstract
The α-glucosidase inhibitor, 1-deoxynojirimycin (DNJ), is widely used for its antiobesity and antidiabetic effects. Researchers have demonstrated that DNJ regulates body weight by increasing adiponectin levels, which affects energy intake and prevents diet-induced obesity. However, the mechanism by which centrally administered DNJ exerts anorexigenic effects has not been studied until now. We investigated the effect of DNJ in the hypothalamus of mice with high-fat diet-induced obesity. Results showed that intracerebroventricular (ICV) administration of DNJ reduced hypothalamic ER stress, which activated the leptin-induced Janus-activated kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) signaling pathway to cause appetite suppression. We conclude that DNJ may reduce obesity by moderating feeding behavior and ER stress in the hypothalamic portion of the central nervous system (CNS).
Collapse
|
53
|
E S, Yamamoto K, Sakamoto Y, Mizowaki Y, Iwagaki Y, Kimura T, Nakagawa K, Miyazawa T, Tsuduki T. Intake of mulberry 1-deoxynojirimycin prevents colorectal cancer in mice. J Clin Biochem Nutr 2017; 61:47-52. [PMID: 28751809 PMCID: PMC5525018 DOI: 10.3164/jcbn.16-94] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022] Open
Abstract
The effect of 1-deoxynojirimycin, a caloric restriction mimetic, was examined in ICR mice with azoxymethane dextran sodium sulfate-induced colorectal cancer. Azoxymethane is a carcinogen (10 mg/kg body weight), and 2% dextran sodium sulfate (w/v) used as a colitis-inducing agent. Mice were separated into 5 groups: a group without colorectal cancer fed a normal diet (CO– group), and groups with colorectal cancer fed a normal diet (CO+ group), a calorie-restricted diet (caloric restriction group), and diets including 0.02% and 0.1% 1-deoxynojirimycin (l-1-deoxynojirimycin and H-1-deoxynojirimycin groups). The tumor incidence and number were reduced significantly in the caloric restriction group compared to the CO+ group, and were also suppressed in a dose-dependent manner by 1-deoxynojirimycin. mRNA for anti-apoptotic Bcl-2 was decreased and that for pro-apoptotic Bax was increased in the carcinoma tissue of CR, l-1-deoxynojirimycin and H-1-deoxynojirimycin groups. These results suggest that caloric restriction and 1-deoxynojirimycin inhibit growth of colorectal cancer by inducing apoptosis in an induced cancer model in mice.
Collapse
Affiliation(s)
- Shuang E
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Kazushi Yamamoto
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Yu Sakamoto
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Yui Mizowaki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Yui Iwagaki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Toshiyuki Kimura
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agriculture, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Teruo Miyazawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agriculture, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
54
|
Mizowaki Y, Sugawara S, Yamamoto K, Sakamoto Y, Iwagaki Y, Kawakami Y, Igarashi M, Tsuduki T. Comparison of the Effects of the 1975 Japanese Diet and the Modern Mediterranean Diet on Lipid Metabolism in Mice. J Oleo Sci 2017; 66:507-519. [DOI: 10.5650/jos.ess16241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yui Mizowaki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| | - Saeko Sugawara
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| | - Kazushi Yamamoto
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| | - Yu Sakamoto
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| | - Yui Iwagaki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| | - Yuki Kawakami
- Faculty of Health and Welfare Science, Okayama Prefectural University
| | - Miki Igarashi
- Laboratory for Metabolic Homeostasis, Center for Integrative Medical Sciences, RIKEN Yokohama Branch
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| |
Collapse
|
55
|
Troxerutin Attenuates Enhancement of Hepatic Gluconeogenesis by Inhibiting NOD Activation-Mediated Inflammation in High-Fat Diet-Treated Mice. Int J Mol Sci 2016; 18:ijms18010031. [PMID: 28029143 PMCID: PMC5297666 DOI: 10.3390/ijms18010031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022] Open
Abstract
Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD)-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA) was used to inhibit endoplasmic reticulum stress (ER stress). Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB) p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD) expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2), by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect.
Collapse
|
56
|
Gao K, Zheng C, Wang T, Zhao H, Wang J, Wang Z, Zhai X, Jia Z, Chen J, Zhou Y, Wang W. 1-Deoxynojirimycin: Occurrence, Extraction, Chemistry, Oral Pharmacokinetics, Biological Activities and In Silico Target Fishing. Molecules 2016; 21:1600. [PMID: 27886092 PMCID: PMC6273535 DOI: 10.3390/molecules21111600] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 11/25/2022] Open
Abstract
1-Deoxynojirimycin (DNJ, C₆H13NO₄, 163.17 g/mol), an alkaloid azasugar or iminosugar, is a biologically active natural compound that exists in mulberry leaves and Commelina communis (dayflower) as well as from several bacterial strains such as Bacillus and Streptomyces species. Deoxynojirimycin possesses antihyperglycemic, anti-obesity, and antiviral features. Therefore, the aim of this detailed review article is to summarize the existing knowledge on occurrence, extraction, purification, determination, chemistry, and bioactivities of DNJ, so that researchers may use it to explore future perspectives of research on DNJ. Moreover, possible molecular targets of DNJ will also be investigated using suitable in silico approach.
Collapse
Affiliation(s)
- Kuo Gao
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Chenglong Zheng
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
- Beijing Gulou Hospital of Traditional Chinese Medicine, 13 DouFuChi Hutong, Dongcheng District, Beijing 100009, China.
| | - Tong Wang
- Beijing Gulou Hospital of Traditional Chinese Medicine, 13 DouFuChi Hutong, Dongcheng District, Beijing 100009, China.
| | - Huihui Zhao
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Juan Wang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Zhiyong Wang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Xing Zhai
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Zijun Jia
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Yingwu Zhou
- Beijing Gulou Hospital of Traditional Chinese Medicine, 13 DouFuChi Hutong, Dongcheng District, Beijing 100009, China.
| | - Wei Wang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| |
Collapse
|
57
|
Sugiyama M, Takahashi M, Katsube T, Koyama A, Itamura H. Effects of Applied Nitrogen Amounts on the Functional Components of Mulberry (Morus alba L.) Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6923-6929. [PMID: 27579496 DOI: 10.1021/acs.jafc.6b01922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study investigated the effects of applied nitrogen amounts on specific functional components in mulberry (Morus alba L.) leaves. The relationships between mineral elements and the functional components in mulberry leaves were examined using mulberry trees cultivated in different soil conditions in four cultured fields. Then, the relationships between the nitrogen levels and the leaf functional components were studied by culturing mulberry in plastic pots and experimental fields. In the common cultured fields, total nitrogen was negatively correlated with the chlorogenic acid content (R(2) = -0.48) and positively correlated with the 1-deoxynojirimycin content (R(2) = 0.60). Additionally, differences in nitrogen fertilizer application levels affected each functional component in mulberry leaves. For instance, with increased nitrogen levels, the chlorogenic acid and flavonol contents significantly decreased, but the 1-deoxynojirimycin content significantly increased. Selection of the optimal nitrogen application level is necessary to obtain the desired functional components from mulberry leaves.
Collapse
Affiliation(s)
- Mari Sugiyama
- Resource and Environment Research Division, Shimane Agricultural Technology Center , 2440 Ashiwata-cho, Izumo, Shimane 693-0035, Japan
| | - Makoto Takahashi
- Resource and Environment Research Division, Shimane Agricultural Technology Center , 2440 Ashiwata-cho, Izumo, Shimane 693-0035, Japan
- Department of Agriculture, Forestry, and Fishery, Shimane Prefectural Government , 1 Tonomachi, Matsue, Shimane 690-8501, Japan
| | - Takuya Katsube
- Department of Biological Applications, Shimane Institute for Industrial Technology , 1 Hokuryo-cho, Matsue, Shimane 690-0816, Japan
| | - Akio Koyama
- National Institute of Agrobiological Sciences , 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Urasoe Silver Human Resources Center , 1-7-2 Inanse, Urasoe, Okinawa 901-2128, Japan
| | - Hiroyuki Itamura
- Faculty of Life and Environmental Science, Shimane University , 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
58
|
Sugiyama M, Katsube T, Koyama A, Itamura H. Effect of solar radiation on the functional components of mulberry (Morus alba L.) leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3915-3921. [PMID: 26756109 DOI: 10.1002/jsfa.7614] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/15/2015] [Accepted: 01/05/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The functional components of mulberry leaves have attracted the attention of the health food industry, and increasing their concentrations is an industry goal. This study investigated the effects of solar radiation, which may influence the production of flavonol and 1-deoxynojirimycin (DNJ) functional components in mulberry leaves, by comparing a greenhouse (poor solar radiation) and outdoor (rich solar radiation) setting. RESULTS The level of flavonol in leaves cultivated in the greenhouse was markedly decreased when compared with those cultivated outdoors. In contrast, the DNJ content in greenhouse-cultivated plants was increased only slightly when compared with those cultivated outdoors. Interestingly, the flavonol content was markedly increased in the upper leaves of mulberry trees that were transferred from a greenhouse to the outdoors compared with those cultivated only in the outdoors. CONCLUSION Solar radiation conditions influence the synthesis of flavonol and DNJ, the functional components of mulberry leaves. Under high solar radiation, the flavonol level becomes very high but the DNJ level becomes slightly lower, suggesting that the impact of solar radiation is great on flavonol but small on DNJ synthesis. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mari Sugiyama
- Shimane Agricultural Technology Center, 2440 Ashiwata-cho, Izumo, Shimane, 693-0035, Japan
| | - Takuya Katsube
- Shimane Institute for Industrial Technology, 1 Hokuryo-cho, Matsue, Shimane, 690-0816, Japan
| | - Akio Koyama
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
- Urasoe Silver Human Resources Center, 1-7-2 Inanse, Urasoe, Okinawa, 901-2128, Japan
| | - Hiroyuki Itamura
- Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane, 690-8504, Japan
| |
Collapse
|
59
|
High dietary cholesterol intake during lactation promotes development of fatty liver in offspring of mice. Mol Nutr Food Res 2016; 60:1110-7. [DOI: 10.1002/mnfr.201500736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/28/2015] [Accepted: 01/17/2016] [Indexed: 02/05/2023]
|
60
|
Sakamoto Y, Yamamoto K, Hatakeyama Y, Tsuduki T. Effects of Fatty Acid Quality and Quantity in the Japanese Diet on the Suppression of Lipid Accumulation. J Oleo Sci 2016; 65:61-73. [DOI: 10.5650/jos.ess15150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yu Sakamoto
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| | - Kazushi Yamamoto
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| | - Yu Hatakeyama
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| |
Collapse
|
61
|
Liu Q, Li X, Li C, Zheng Y, Peng G. 1-Deoxynojirimycin Alleviates Insulin Resistance via Activation of Insulin Signaling PI3K/AKT Pathway in Skeletal Muscle of db/db Mice. Molecules 2015; 20:21700-14. [PMID: 26690098 PMCID: PMC6331926 DOI: 10.3390/molecules201219794] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 11/16/2022] Open
Abstract
1-Deoxynojirimycin (DNJ) is widely used for the treatment of diabetes mellitus as an inhibitor of intestinal α-glucosidase. However, there are few reports about its effect on insulin sensitivity improvement. The aim of the present study was to investigate whether DNJ decreased hyperglycemia by improving insulin sensitivity. An economical method was established to prepare large amounts of DNJ. Then, db/db mice were treated with DNJ intravenously (20, 40 and 80 mg·kg(-1)·day(-1)) for four weeks. Blood glucose and biochemical analyses were conducted to evaluate the therapeutic effects on hyperglycemia and the related molecular mechanisms in skeletal muscle were explored. DNJ significantly reduced body weight, blood glucose and serum insulin levels. DNJ treatment also improved glucose tolerance and insulin tolerance. Moreover, although expressions of total protein kinase B (AKT), phosphatidylinositol 3 kinase (PI3K), insulin receptor beta (IR-β), insulin receptor substrate-1 (IRS1) and glucose transporter 4 (GLUT4) in skeletal muscle were not affected, GLUT4 translocation and phosphorylation of Ser473-AKT, p85-PI3K, Tyr1361-IR-β and Tyr612-IRS1 were significantly increased by DNJ treatment. These results indicate that DNJ significantly improved insulin sensitivity via activating insulin signaling PI3K/AKT pathway in skeletal muscle of db/db mice.
Collapse
Affiliation(s)
- Qingpu Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xuan Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Cunyu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China.
| | - Yunfeng Zheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China.
| | - Guoping Peng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China.
| |
Collapse
|
62
|
Chen GH, Tong JJ, Wang F, Hu XQ, Li XW, Tao F, Wei ZJ. Chronic adjunction of 1-deoxynojirimycin protects from age-related behavioral and biochemical changes in the SAMP8 mice. AGE (DORDRECHT, NETHERLANDS) 2015; 37:102. [PMID: 26400487 PMCID: PMC5005858 DOI: 10.1007/s11357-015-9839-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/15/2015] [Indexed: 05/24/2023]
Abstract
Several studies have indicated that a caloric restriction mimetic or treatment for type 2 diabetes may reverse brain aging. Therefore, we investigated the effect of 1-deoxynojirimycin (DNJ), an alkaloid acting as an inhibitor of α-glucosidase, on age-related behavioral and biochemical changes. SAMP8 mice were randomly assigned to a control group labeled "old" or to the 10- or 20-mg/kg/day DNJ groups. The mice in the DNJ groups were administered DNJ orally from 3 to 9 months of age, and then, a "young" control group was added to analyze the age effect. The old controls exhibited significant declines in sensorimotor ability, open-field anxiety, spatial and nonspatial memory abilities, and age-related biochemical changes, including decreased serum insulin level; increased levels of insulin-like growth factor 1 receptor, presynaptic protein synaptotagmin-1, and astrocyte activation; and decreased levels of insulin receptor, brain-derived neurotrophic factor, presynaptic protein syntaxin-1, and acetylation of histones H4 at lysine 8 in the dorsal hippocampus. Significant correlations exist between the age-related behavioral deficits and the serological and histochemical data. Chronic DNJ treatment alleviated these age-related changes, and the 20-mg/kg/day DNJ group showed more significant improvement. Thus, DNJ may have the potential to maintain successful brain aging.
Collapse
Affiliation(s)
- Gui-Hai Chen
- Department of Neurology, the Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Hefei, 238000, People's Republic of China.
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, People's Republic of China.
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Jing-Jing Tong
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Fang Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Xue-Qin Hu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, People's Republic of China
| | - Xue-Wei Li
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Fei Tao
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Zhao-Jun Wei
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, People's Republic of China.
| |
Collapse
|
63
|
Yamamoto K, E S, Hatakeyama Y, Sakamoto Y, Tsuduki T. High-fat diet intake from senescence inhibits the attenuation of cell functions and the degeneration of villi with aging in the small intestine, and inhibits the attenuation of lipid absorption ability in SAMP8 mice. J Clin Biochem Nutr 2015; 57:204-11. [PMID: 26566305 PMCID: PMC4639591 DOI: 10.3164/jcbn.15-60] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/25/2015] [Indexed: 12/12/2022] Open
Abstract
We examined the effect of a high-fat diet from senescence as a means of preventing malnutrition among the elderly. The senescence-accelerated mouse P8 was used and divided into three groups. The 6C group was given a normal diet until 6 months old. The 12N group was given a normal diet until 12 months old. The 12F group was given a normal diet until 6 months old and then a high-fat diet until 12 months old. In the oral fat tolerance test, there was a decrease in area under the curve for serum triacylglycerol level in the 12N group and a significant increase in the 12F group, suggesting that the attenuation of lipid absorption ability with aging was delayed by a high-fat diet from senescence. To examine this mechanism, histological analysis in the small intestine was performed. As a result, the degeneration of villi with aging was inhibited by the high-fat diet. There was also a significant decrease in length of villus in the small intestine in the 12N group and a significant increase in the 12F group. The high-fat diet from senescence inhibited the degeneration of villi with aging in the small intestine, and inhibited the attenuation of lipid absorption ability.
Collapse
Affiliation(s)
- Kazushi Yamamoto
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| | - Shuang E
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| | - Yu Hatakeyama
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| | - Yu Sakamoto
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| |
Collapse
|
64
|
Lee NK, Jeong JH, Oh J, Kim Y, Ha YS, Jeong YS. Conversion of Flavonols Kaempferol and Quercetin in Mulberry (M
orus Alba
L.) Leaf Using Plant-Fermenting L
actobacillus Plantarum. J Food Biochem 2015. [DOI: 10.1111/jfbc.12176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nam Keun Lee
- Department of Food Science and Technology; Chonbuk National University; Jeonju 561-756 Korea
- Research Center for Industrial Development of Biofood Materials; Chonbuk National University; Jeonju 561-756 Korea
| | - Jong Hoon Jeong
- Department of Food Science and Technology; Chonbuk National University; Jeonju 561-756 Korea
| | - Jisun Oh
- Department of Food Science and Technology; Chonbuk National University; Jeonju 561-756 Korea
- Research Center for Industrial Development of Biofood Materials; Chonbuk National University; Jeonju 561-756 Korea
| | - Younghoon Kim
- BK21 Plus Graduate Program; Department of Animal Science; Institute Agricultural Science & Technology; Chonbuk National University; Jeonju 561-756 Korea
| | - Young Sik Ha
- R&D Center; Seoul Dairy Cooperative; Ansan Korea
| | - Yong-Seob Jeong
- Department of Food Science and Technology; Chonbuk National University; Jeonju 561-756 Korea
- Research Center for Industrial Development of Biofood Materials; Chonbuk National University; Jeonju 561-756 Korea
| |
Collapse
|
65
|
High Dietary Fat Intake during Lactation Promotes the Development of Social Stress-Induced Obesity in the Offspring of Mice. Nutrients 2015; 7:5916-32. [PMID: 26193313 PMCID: PMC4517034 DOI: 10.3390/nu7075257] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 01/05/2023] Open
Abstract
This study examined how a maternal high-fat diet (HD) during lactation and exposure of offspring to isolation stress influence the susceptibility of offspring to the development of obesity. C57BL/6J mice were fed a commercial diet (CD) during pregnancy and a CD or HD during lactation. Male offspring were weaned at three weeks of age, fed a CD until seven weeks of age, and fed a CD or HD until 11 weeks of age. Offspring were housed alone (isolation stress) or at six per cage (ordinary circumstances). Thus, offspring were assigned to one of eight groups: dams fed a CD or HD during lactation and offspring fed a CD or HD and housed under ordinary circumstances or isolation stress. Serum corticosterone level was significantly elevated by isolation stress. High-fat feeding of offspring reduced their serum corticosterone level, which was significantly elevated by a maternal HD. A maternal HD and isolation stress had combined effects in elevating the serum corticosterone level. These findings suggest that a maternal HD during lactation enhances the stress sensitivity of offspring. White adipose tissue weights were significantly increased by a maternal HD and isolation stress and by their combination. In addition, significant adipocyte hypertrophy was induced by a maternal HD and isolation stress and exacerbated by their combination. Thus, a maternal HD and isolation stress promote visceral fat accumulation and adipocyte hypertrophy, accelerating the progression of obesity through their combined effects. The mechanism may involve enhanced fatty acid synthesis and lipid influx from blood into adipose tissue. These findings demonstrate that a maternal HD during lactation may increase the susceptibility of offspring to the development of stress-induced obesity.
Collapse
|
66
|
Wang GQ, Zhu L, Ma ML, Chen XC, Gao Y, Yu TY, Yang GS, Pang WJ. Mulberry 1-Deoxynojirimycin Inhibits Adipogenesis by Repression of the ERK/PPARγ Signaling Pathway in Porcine Intramuscular Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6212-6220. [PMID: 26075699 DOI: 10.1021/acs.jafc.5b01680] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Intramuscular fat (IMF), which is modulated by adipogenensis of intramuscular adipocytes, plays a key role in pork quality associated with marbling, juiceness, and flavor. However, the regulatory mechanism of 1-deoxynojirimycin (DNJ) on adipogenesis is still unknown. Here, we found that both DNJ (2.0, 3.0, 4.0, 5.0, and 6.0 μM) and rosiglitazone (RSG; 0.1, 0.2, 0.3, 0.4, and 0.5 mM) had no effect on cell viability. Moreover, 4 μM DNJ significantly inhibited adipogenesis, whereas 0.4 mM RSG increased lipogenesis of porcine intramuscular adipocytes. Interestingly, DNJ sharply inhibited phosphorylation of extracellular regulated protein kinases 1/2 (ERK1/2), but did not change phosphorylation of AKT (protein kinase B) in intramuscular adipocytes. We further found that the inhibitory adipogenesis of DNJ was attenuated by RSG via up-regulation of PPARγ. On the basis of the above findings, we suggest that DNJ inhibited adipogenesis through the ERK/PPARγ signaling pathway in porcine intramuscular adipocytes.
Collapse
|
67
|
Deng MJ, Lin XD, Lin QT, Wen DF, Zhang ML, Wang XQ, Gao HC, Xu JP. A 1H-NMR Based Study on Hemolymph Metabolomics in Eri Silkworm after Oral Administration of 1-Deoxynojirimycin. PLoS One 2015; 10:e0131696. [PMID: 26148185 PMCID: PMC4492494 DOI: 10.1371/journal.pone.0131696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2023] Open
Abstract
We aimed to investigate whether 1-deoxynojirimycin (DNJ) modulates glycometabolism and has toxicity in Eri silkworm (Samia cynthia ricini, Saturniidae). In this paper, hemolymph metabolites were used to explore metabolic changes after oral administration of DNJ or mulberry latex and to characterize the biological function of DNJ at the metabolic and systemic levels. Hemolymph samples were collected from fourth-instar larvae of Eri silkworm and ex-vivo high-resolution 1H nuclear magnetic resonance (NMR) spectra were acquired from the collected hemolymph samples. Then the obtained spectra were analyzed by principal component analysis (PCA) and independent-samples t-test. Metabolic pattern recognition analysis of hemolymph samples indicated that the groups of 0.25% DNJ, latex, and the mixture of 0.5% DNJ and latex (1:1) were significantly different from the control group. Moreover, compared to the control group, the groups of 0.25% DNJ, latex, and the mixture of 0.5% DNJ and latex (1:1) showed the decreased levels of citrate, succinate, fumarate, malate, and glutamine in hemolymph, the groups of 0.25% DNJ and the mixture of 0.5% DNJ and latex (1:1) showed the increased levels of trehalose and lactate. In addition, mulberry leaves exude latex was highly toxic to Eri silkworm because rich unidentified high-molecular-weight factor (s) acted as toxic substances. In our results, latex caused 20 deaths among 50 fourth-instar larvae of Eri silkmoth, but DNJ or the mixture did not caused death. All these results suggest that DNJ has a positive impact on the reverse glycometabolism by modulating glycometabolism and inhibiting glucogenesis and energy metabolism. DNJ is a secure substance as a single-ingredient antidiabetic medicine due to its nontoxicity and bioactivity.
Collapse
Affiliation(s)
- Ming-Jie Deng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Dong Lin
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, China
| | - Qiu-Ting Lin
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, China
| | - De-Fu Wen
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mei-Ling Zhang
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, China
| | - Xian-Qin Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, China
| | - Hong-Chang Gao
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, China
- * E-mail: (JPX); (HCG)
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- * E-mail: (JPX); (HCG)
| |
Collapse
|
68
|
Tallini LR, Pedrazza GP, Bordignon SADL, Costa AC, Steppe M, Fuentefria A, Zuanazzi JA. Analysis of flavonoids in Rubus erythrocladus and Morus nigra leaves extracts by liquid chromatography and capillary electrophoresis. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
69
|
Kitano Y, Nakamura Y, E S, Hatakeyama Y, Yamamoto K, Sakamoto Y, Tsuduki T, Nakagawa K, Miyazawa T. Effect of a Traditional Japanese Dish Consisting of Boiled Fish Paste on Lipid Metabolism in Rats. J JPN SOC FOOD SCI 2015. [DOI: 10.3136/nskkk.62.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | - Shuang E
- Graduate School of Agriculture, Tohoku University
| | | | | | - Yu Sakamoto
- Graduate School of Agriculture, Tohoku University
| | | | | | | |
Collapse
|
70
|
Do HJ, Chung JH, Hwang JW, Kim OY, Lee JY, Shin MJ. 1-deoxynojirimycin isolated from Bacillus subtilis improves hepatic lipid metabolism and mitochondrial function in high-fat-fed mice. Food Chem Toxicol 2014; 75:1-7. [PMID: 25445511 DOI: 10.1016/j.fct.2014.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 01/07/2023]
Abstract
The aim of this study was to determine whether 1-deoxynojirimycin (DNJ) isolated from Bacillus subtilis MORI beneficially influences lipid metabolism and mitochondrial function in the liver of mice fed a high-fat diet in addition to the anti-obesity properties of DNJ. Male C57BL/6 mice (n = 29; 5 weeks old) were randomly assigned to three groups: normal control diet (CTL, n = 10), high-fat diet (HF, n = 10), and high-fat diet supplemented with DNJ (DNJ, n = 9). After 12 weeks, the HF group exhibited higher overall weight gain, of the liver, and of various fat pads than the CTL and DNJ groups did. The HF group also showed greater expression of C/EBPα and CD36 mRNA in the liver than that in the CTL and/or DNJ groups. In addition, mRNA expressions of AAC and FAS were lower, while mRNA expression of PGC-1β was higher in the liver of the DNJ group than that of the HF group. The hepatic expression of p-AMPK/AMPK was higher in the DNJ group than in the HF group. This study provides novel insight into the protective effect of DNJ supplementation against obesity-induced hepatic lipid abnormalities and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hyun Ju Do
- Department of Food and Nutrition, Korea University, Seoul 136-704, Republic of Korea
| | - Ji Hyung Chung
- Department of Applied Bioscience, CHA University, Gyeonggi-do 463-400, Republic of Korea
| | - Ji Won Hwang
- Department of Food and Nutrition, Korea University, Seoul 136-704, Republic of Korea; Department of Public Health Sciences, Graduate School, Korea University, Seoul 136-703, Republic of Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan, Republic of Korea
| | - Jae-Yeon Lee
- R&D Center for Natural Science, Biotopia Co., Ltd., Chuncheon 200-883, Republic of Korea
| | - Min-Jeong Shin
- Department of Food and Nutrition, Korea University, Seoul 136-704, Republic of Korea; Department of Public Health Sciences, Graduate School, Korea University, Seoul 136-703, Republic of Korea; Korea University Guro Hospital, Korea University, Seoul 152-703, Republic of Korea.
| |
Collapse
|
71
|
Yang Y, Yang X, Xu B, Zeng G, Tan J, He X, Hu C, Zhou Y. Chemical constituents of Morus alba L. and their inhibitory effect on 3T3-L1 preadipocyte proliferation and differentiation. Fitoterapia 2014; 98:222-227. [PMID: 25128426 DOI: 10.1016/j.fitote.2014.08.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 01/08/2023]
Abstract
Mulberry leaf, an important traditional Chinese medicine, possesses many biological activities, including effects of anti-obesity. However, which constituents of mulberry leaf are responsible for its anti-adipogenic action is unclear. This study primarily investigated the chemical constituents from mulberry leaf and their bioactivity on the proliferation and differentiation of 3T3-L1 preadipocytes. A new flavane derivative, (2S)-4'-hydroxy-7-methoxy-8-prenylflavan (1), together with twelve known compounds including three flavanes (2-4), three chalcones (5-7), two flavones (8-9), two benzofurans (10-11) and two coumarin (12-13) was isolated from mulberry leaf. The structure of the new compound was elucidated by various spectroscopic methods including UV, HR-ESI-MS, (1)H and (13)C NMR and CD. The results of activity screening showed that compound 2, 6 and 7 inhibited the proliferation and differentiation of 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Yongyu Yang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiding Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Bing Xu
- Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen 518029, China
| | - Guangyao Zeng
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jianbing Tan
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xi He
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Changping Hu
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - YingJun Zhou
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
72
|
1-Deoxynojirimycin attenuates high glucose-accelerated senescence in human umbilical vein endothelial cells. Exp Gerontol 2014; 55:63-9. [DOI: 10.1016/j.exger.2014.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 12/11/2022]
|
73
|
Wang T, Li CQ, Zhang H, Li JW. Response surface optimized extraction of 1-deoxynojirimycin from mulberry leaves (Morus alba L.) and preparative separation with resins. Molecules 2014; 19:7040-56. [PMID: 24886934 PMCID: PMC6271188 DOI: 10.3390/molecules19067040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 11/22/2022] Open
Abstract
In the present study, the extraction technology and preparative separation of 1-deoxynojirimycin from mulberry leaves were systematically investigated. Four extraction parameters (ethanol concentration, extraction temperature, extraction time and ratio of solvent to sample) were explored by response surface methodology (RSM). The results indicated that the maximal yield of 1-deoxynojirimycin was achieved with an ethanol concentration of 55%, extraction temperature of 80 °C, extraction time of 1.2 h and ratio of solvent to sample of 12:1. The extraction yield under these optimum conditions was found to be 256 mg/100 g dry mulberry leaves. A column packed with a selected resin was used to perform dynamic adsorption and desorption tests to optimize the separation process. The results show that the preparative separation of 1-deoxynojirimycin from mulberry leaves can be easily and effectively done by adopting 732 resin. In conclusion, 732 resin is the most appropriate for the separation of 1-deoxynojirimycin from other components in mulberry leaves extracts, and its adsorption behavior can be described with Langmuir isotherms and a two-step adsorption kinetics model. The recovery and purity of 1-deoxynojirimycin in the final product were 90.51% and 15.3%, respectively.
Collapse
Affiliation(s)
- Teng Wang
- Department of Pharmaceutical Engineering, Beijing Institute of Petro-chemical Technology, Beijing 102617, China
| | - Cui-Qing Li
- Department of Chemical Engineering, Beijing Institute of Petro-chemical Technology, Beijing 102617, China.
| | - Hong Zhang
- Department of Chemical Engineering, Beijing Institute of Petro-chemical Technology, Beijing 102617, China
| | - Ji-Wen Li
- College of Science, Agricultural University of Hebei, Baoding 071001, China
| |
Collapse
|
74
|
Hasan S, Singh K, Danisuddin M, Verma PK, Khan AU. Inhibition of major virulence pathways of Streptococcus mutans by quercitrin and deoxynojirimycin: a synergistic approach of infection control. PLoS One 2014; 9:e91736. [PMID: 24622055 PMCID: PMC3951425 DOI: 10.1371/journal.pone.0091736] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/13/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES To evaluate the synergistic effect of Quercitrin and Deoxynojirimycin (DNJ) together with their individual inhibitory effect against virulence pathways of Streptococcus mutans. METHODOLOGY MICs of both the compounds were determined by the microdilution method, followed by their in vitrosynergy using checkerboard and time kill assay. The nature of interaction was classified as synergistic on the basis of fractional inhibitory concentration index (FICI) value of ≤0.5. Furthermore, the activity of Quercitrin and DNJ was evaluated individually and in combination against various cariogenic properties of S. mutans UA159 such as acidogenesis, aciduracity, glucan production, hydrophobicity, biofilm and adherence. Moreover, expression of virulent genes in S. mutans was analysed by quantitative RT- PCR (qRT-PCR) and inhibition of F1F0-ATPase, lactate dehydrogenase and enolase was also evaluated. Finally, scanning electron microscopy (SEM) was used to investigate structural obliteration of biofilm. RESULTS The in vitro synergism between Quercitrin and DNJ was observed, with a FICI of 0.313. Their MIC values were found to be 64 μg/ml and 16 μg/ml respectively. The synergistic combination consistently showed best activity against all the virulence factors as compared to Quercitrin and DNJ individually. A reduction in glucan synthesis and biofilm formation was observed at different phases of growth. The qRT-PCR revealed significant downregulation of various virulent genes. Electron micrographs depicted the obliteration of biofilm as compared to control and the activity of cariogenic enzymes was also inhibited. CONCLUSIONS The whole study reflects a prospective role of Quercitrin and DNJ in combination as a potent anticariogenic agent against S. mutans.
Collapse
Affiliation(s)
- Sadaf Hasan
- Medical Microbiology and Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Kunal Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Mohd Danisuddin
- Medical Microbiology and Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Praveen K. Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Asad U. Khan
- Medical Microbiology and Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
75
|
Liu C, Wang CH, Liu J, Xu L, Xiang W, Wang YC. Optimization of Microwave-Assisted Technology for Extracting 1-deoxynojirimycin from Mulberry Tea by Response Surface Methodology. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2014. [DOI: 10.3136/fstr.20.599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
76
|
Kitano Y, Honma T, Hatakeyama Y, Jibu Y, Kawakami Y, Tsuduki T, Nakagawa K, Miyazawa T. Effects of Historical Differences in Components of the Japanese Diet on the Risk of Obesity in Mice. ACTA ACUST UNITED AC 2014. [DOI: 10.4327/jsnfs.67.73] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|