51
|
Senthilkumar N, Thangam R, Murugan P, Suresh V, Kurinjimalar C, Kavitha G, Sivasubramanian S, Rengasamy R. Hepato‐protective effects of R‐phycoerythrin‐rich protein extract ofPortieria hornemannii(Lyngbye) Silva against DEN‐induced hepatocellular carcinoma. J Food Biochem 2018. [DOI: 10.1111/jfbc.12695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Ramar Thangam
- King Institute of Preventive Medicine & Research Chennai India
- Central Leather Research Institute Council for Scientific and Industrial Research Chennai India
| | - Pitchai Murugan
- Department of Medicinal Botany Sri Sairam Siddha Medical College and Research Centre Chennai India
- Centre for Advanced Studies in Botany University of Madras Chennai India
| | | | - Chidambaram Kurinjimalar
- Centre for Advanced Studies in Botany University of Madras Chennai India
- Central Leather Research Institute Council for Scientific and Industrial Research Chennai India
| | - Ganapathy Kavitha
- Centre for Advanced Studies in Botany University of Madras Chennai India
- Centre for Ocean Research Sathyabama University Chennai India
| | | | - Ramasamy Rengasamy
- Centre for Advanced Studies in Botany University of Madras Chennai India
| |
Collapse
|
52
|
C-phycocyanin to overcome the multidrug resistance phenotype in human erythroleukemias with or without interaction with ABC transporters. Biomed Pharmacother 2018; 106:532-542. [DOI: 10.1016/j.biopha.2018.06.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/26/2018] [Indexed: 01/12/2023] Open
|
53
|
Hao S, Yan Y, Li S, Zhao L, Zhang C, Liu L, Wang C. The In Vitro Anti-Tumor Activity of Phycocyanin against Non-Small Cell Lung Cancer Cells. Mar Drugs 2018; 16:md16060178. [PMID: 29882874 PMCID: PMC6025048 DOI: 10.3390/md16060178] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/01/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
Phycocyanin, a type of functional food colorant, is shown to have a potent anti-cancer property. Non-small cell lung cancer (NSCLC) is one of the most aggressive form of cancers with few effective therapeutic options. Previous studies have demonstrated that phycocyanin exerts a growth inhibitory effect on NSCLC A549 cells. However, its biological function and underlying regulatory mechanism on other cells still remain unknown. Here, we investigated the in vitro function of phycocyanin on three typical NSCLC cell lines, NCI-H1299, NCI-H460, and LTEP-A2, for the first time. The results showed that phycocyanin could significantly induce apoptosis, cell cycle arrest, as well as suppress cell migration, proliferation, and the colony formation ability of NSCLC cells through regulating multiple key genes. Strikingly, phycocyanin was discovered to affect the cell phenotype through regulating the NF-κB signaling of NSCLC cells. Our findings demonstrated the anti-neoplastic function of phycocyanin and provided valuable information for the regulation of phycocyanin in NSCLC cells.
Collapse
Affiliation(s)
- Shuai Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Yan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Shuang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Chan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
54
|
Xu W, Xiao Y, Luo P, Fan L. Preparation and characterization of C-phycocyanin peptide grafted N-succinyl chitosan by enzyme method. Int J Biol Macromol 2018; 113:841-848. [PMID: 29454954 DOI: 10.1016/j.ijbiomac.2018.02.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/09/2018] [Accepted: 02/11/2018] [Indexed: 12/22/2022]
Abstract
C‑phycocyanin peptide (CPC) grafted N‑succinyl chitosan (NSC) was prepared via the catalysis of Microbial transglutaminase (MTGase). The single factor experiment displayed that the degree of substitution (DS) of N‑succinyl chitosan‑C‑phycocyanin peptide (NSC‑CPC) depended on the reaction time, the reaction temperature and the reaction pH value. The CS, synthesized NSC and NSC‑CPC were characterized by Fourier transform infrared spectroscopy (FT-IR). NSC‑CPC showed excellent moisture absorption and retention ability. In vitro antioxidant activity assays demonstrated that, with the DS and concentration increasing of NSC‑CPC, the scavenging activity of 1,1‑Diphenyl‑2‑pic‑rylhydrazyl (DPPH) radical and hydroxyl radical increased. The methylthiazol tetrazolium (MTT) essay demonstrated that NSC‑CPC inhibited Hela cells while promoted the proliferation of L929 mouse fibroblasts. In conclusion, these results suggested the potential application of NSC‑CPC in pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Wenyan Xu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Yao Xiao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Pengfeng Luo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Lihong Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
55
|
de Morais MG, da Fontoura Prates D, Moreira JB, Duarte JH, Costa JAV. Phycocyanin from Microalgae: Properties, Extraction and Purification, with Some Recent Applications. Ind Biotechnol (New Rochelle N Y) 2018. [DOI: 10.1089/ind.2017.0009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Michele Greque de Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Denise da Fontoura Prates
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Juliana Botelho Moreira
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Jessica Hartwig Duarte
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| |
Collapse
|
56
|
An evidence of C16 fatty acid methyl esters extracted from microalga for effective antimicrobial and antioxidant property. Microb Pathog 2018; 115:233-238. [DOI: 10.1016/j.micpath.2017.12.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022]
|
57
|
Agro-Industrial Waste Based Phycocyanin Production fromOscillatoriasp. 50 A:daf-16 Modulating Effect inCaenorhabditis elegansand p53 Dependent Apoptosis in HeLa cells. ChemistrySelect 2017. [DOI: 10.1002/slct.201702460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
58
|
Sonani RR, Patel S, Bhastana B, Jakharia K, Chaubey MG, Singh NK, Madamwar D. Purification and antioxidant activity of phycocyanin from Synechococcus sp. R42DM isolated from industrially polluted site. BIORESOURCE TECHNOLOGY 2017; 245:325-331. [PMID: 28898827 DOI: 10.1016/j.biortech.2017.08.129] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
The cyanobacterium Synechococcus sp. R42DM, isolated from an industrially polluted site Vatva, Gujarat, India was recognized to produce phycocyanin (PC) as major phycobiliprotein. In present study, the combinatorial approach of chemical and physical methods i.e. Triton-X 100 treatment and ultra-sonication was designed for extraction of PC. From cell extract, the intact and functional-PC was purified up to purity 4.03 by ammonium sulphate fractionation and ion-exchange chromatography. The PC displayed considerable in vitro antioxidant and radical-scavenging activity. This PC was further noticed to scavenge intracellular-ROS and to increase tolerance against thermal and oxidative stress in Caenorhabditis elegans. Moreover, the PC was noticed to improve the physiological behaviour and longevity of C. elegans. In addition, the PC showed remarkable stability under physico-chemical stressors, which is desirable for their use in biomedical applications. In conclusion, present paper added up evidence in support of the prospective use of PC as an antioxidant nutraceutical.
Collapse
Affiliation(s)
- Ravi R Sonani
- Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388315, Anand, Gujarat, India
| | - Stuti Patel
- Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388315, Anand, Gujarat, India
| | - Bela Bhastana
- Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388315, Anand, Gujarat, India
| | - Kinnari Jakharia
- Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388315, Anand, Gujarat, India
| | - Mukesh G Chaubey
- Department of Biotechnology, Shree A. N. Patel PG Institute, Sardar Patel University, Anand 388001, Gujarat, India
| | - Niraj K Singh
- Department of Biotechnology, Shree A. N. Patel PG Institute, Sardar Patel University, Anand 388001, Gujarat, India
| | - Datta Madamwar
- Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388315, Anand, Gujarat, India.
| |
Collapse
|
59
|
Paliwal C, Mitra M, Bhayani K, Bharadwaj SVV, Ghosh T, Dubey S, Mishra S. Abiotic stresses as tools for metabolites in microalgae. BIORESOURCE TECHNOLOGY 2017; 244:1216-1226. [PMID: 28552566 DOI: 10.1016/j.biortech.2017.05.058] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 05/28/2023]
Abstract
Microalgae, due to various environmental stresses, constantly tune their cellular mechanisms to cope with them. The accumulation of the stress metabolites is closely related to the changes occurring in their metabolic pathways. The biosynthesis of metabolites can be triggered by a number of abiotic stresses like temperature, salinity, UV- radiation and nutrient deprivation. Although, microalgae have been considered as an alternative sustainable source for nutraceutical products like pigments and omega-3 polyunsaturated fatty acids (PUFAs) to cater the requirement of emerging human population but inadequate biomass generation makes the process economically impractical. The stress metabolism for carotenoid regulation in green algae is a 2-step metabolism. There are a few major stresses which can influence the formation of phycobiliprotein in cyanobacteria. This review would primarily focus on the cellular level changes under stress conditions and their corresponding effects on lipids (including omega-3 PUFAs), pigments and polymers.
Collapse
Affiliation(s)
- Chetan Paliwal
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, AcSIR-CSMCRI, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Madhusree Mitra
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, AcSIR-CSMCRI, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Khushbu Bhayani
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - S V Vamsi Bharadwaj
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, AcSIR-CSMCRI, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Tonmoy Ghosh
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, AcSIR-CSMCRI, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Sonam Dubey
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Sandhya Mishra
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, AcSIR-CSMCRI, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India.
| |
Collapse
|
60
|
Macedo D, Bertolin TE, Oro T, Backes LTH, Brás IC, Santos CN, Tenreiro S, Outeiro TF. Phycocyanin protects against Alpha-Synuclein toxicity in yeast. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
61
|
Jiang L, Wang Y, Yin Q, Liu G, Liu H, Huang Y, Li B. Phycocyanin: A Potential Drug for Cancer Treatment. J Cancer 2017; 8:3416-3429. [PMID: 29151925 PMCID: PMC5687155 DOI: 10.7150/jca.21058] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
Phycocyanin isolated from marine organisms has the characteristics of high efficiency and low toxicity, and it can be used as a functional food. It has been reported that phycocyanin has anti-oxidative function, anti-inflammatory activity, anti-cancer function, immune enhancement function, liver and kidney protection pharmacological effects. Thus, phycocyanin has an important development and utilization as a potential drug, and phycocyanin has become a new hot spot in the field of drug research. So far, there are more and more studies have shown that phycocyanin has the anti-cancer effect, which can block the proliferation of cancer cells and kill cancer cells. Phycocyanin exerts anti-cancer activity by blocking tumor cell cell cycle, inducing tumor cell apoptosis and autophagy, thereby phycocyanin can serve as a promising anti-cancer agent. This review discusses the therapeutic use of phycocyanin and focuses on the latest advances of phycocyanin as a promising anti-cancer drug.
Collapse
Affiliation(s)
- Liangqian Jiang
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Yujuan Wang
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Qifeng Yin
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Huihui Liu
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Yajing Huang
- Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Bing Li
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| |
Collapse
|
62
|
Fernandes E Silva E, Figueira FDS, Lettnin AP, Carrett-Dias M, Filgueira DDMVB, Kalil S, Trindade GS, Votto APDS. C-Phycocyanin: Cellular targets, mechanisms of action and multi drug resistance in cancer. Pharmacol Rep 2017; 70:75-80. [PMID: 29331790 DOI: 10.1016/j.pharep.2017.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/30/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023]
Abstract
C-Phycocyanin (C-PC) has been shown to be promising in cancer treatment; however, although several articles detailing this have been published, its main mechanisms of action and its cellular targets have not yet been defined, nor has a detailed exploration been conducted of its role in the resistance of cancer cells to chemotherapy, rendering clinical use impossible. From our extensive examination of the literature, we have determined as our main hypothesis that C-PC has no one specific target, but rather acts on the membrane, cytoplasm, and nucleus with diverse mechanisms of action. We highlight the cell targets with which C-PC interacts (the MDR1 gene, cytoskeleton proteins, and COX-2 enzyme) that make it capable of killing cells resistant to chemotherapy. We also propose future analyses of the interaction between C-PC and drug extrusion proteins, such as ABCB1 and ABCC1, using in silico and in vitro studies.
Collapse
Affiliation(s)
- Estela Fernandes E Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| | | | - Aline Portantiolo Lettnin
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| | - Michele Carrett-Dias
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| | - Daza de Moraes Vaz Batista Filgueira
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| | - Susana Kalil
- Escola de Química e Alimentos, FURG, Rio Grande, RS, Brazil.
| | - Gilma Santos Trindade
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| | - Ana Paula de Souza Votto
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| |
Collapse
|
63
|
Kose A, Ozen MO, Elibol M, Oncel SS. Investigation of in vitro digestibility of dietary microalga Chlorella vulgaris and cyanobacterium Spirulina platensis as a nutritional supplement. 3 Biotech 2017; 7:170. [PMID: 28660455 DOI: 10.1007/s13205-017-0832-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/15/2017] [Indexed: 12/28/2022] Open
Abstract
Microalgal proteins are promising sources for functional nutrition and a sustainable candidate for nutraceutical formulations. They also gain importance due to emerging focus on a healthy nutrition and increase in the number of chronic diseases. In this study, dried dietary species of microalga, Chlorella vulgaris, and cyanobacterium Spirulina platensis were hydrolyzed with pancreatin enzyme to obtain protein hydrolysates. The hydrolysis yield of biomass was 55.1 ± 0.1 and 64.8 ± 3.6% for C. vulgaris and S. platensis; respectively. Digestibility, as an indicator for dietary utilization, was also investigated. In vitro protein digestibility (IVPD) values depicted that cell wall structure due to the taxonomical differences affected both hydrolysis and digestibility yield of the crude biomass (p < 0.05). Epithelial cells (Vero) maintained their viability around 70%, even in relatively higher concentrations of hydrolysates in the culture. The protein hydrolysates showed no any antimicrobial activities. This study clearly shows that the conventional protein sources in nutraceutical formulations such as soy, whey, and fish proteins can be replaced by enzymatic hydrolysates of microalgae, which shows elevated digestibility values as a sustainable and reliable source.
Collapse
|
64
|
Liu C, Fu Y, Li CE, Chen T, Li X. Phycocyanin-Functionalized Selenium Nanoparticles Reverse Palmitic Acid-Induced Pancreatic β Cell Apoptosis by Enhancing Cellular Uptake and Blocking Reactive Oxygen Species (ROS)-Mediated Mitochondria Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4405-4413. [PMID: 28510423 DOI: 10.1021/acs.jafc.7b00896] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Accumulation of palmitic acid (PA) in human bodies could cause damage to pancreatic β cells and lead to chronic diseases by generation of reactive oxygen species (ROS). Therefore, it is of great significance to search for nutrition-available agents with antioxidant activity to protect pancreatic islet cells against PA-induced damage. Phycocyanin (PC) and selenium (Se) have been reported to have excellent antioxidant activity. In this study, PC-functionalized selenium nanoparticles (PC-SeNPs) were synthesized to investigate the in vitro protective effects on INS-1E rat insulinoma β cells against PA-induced cell death. A potent protective effect was achieved by regulation of particle size and PC content. Among three PC-SeNPs (165, 235, and 371 nm), PC-SeNPs-235 nm showed the highest cellular uptake and the best protective activities. For cell cycle analysis, PC-SeNPs showed a better protective effect on PA-induced INS-1E cell apoptosis than PC or SeNPs, and PC-SeNPs-235 nm exhibited the best effect. Further mechanistic studies demonstrated that PA induced overproduction of intracellular ROS, mitochondria fragmentation, activation of caspase-3, -8, and -9, and cleavage of PARP. However, pretreatment of the cells with PC-SeNPs effectively blocked these intracellular events, which suggests that PC-SeNPs could protect INS-1E cells against PA-induced cell apoptosis via attenuating oxidative stress and downstream signaling pathways. This finding provides a great promising nutritional approach for protection against diseases related to islet damage.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Yuanting Fu
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Chang-E Li
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University , Guangzhou 510632, China
| |
Collapse
|
65
|
Coating with Active Phytomolecules Enhances Anticancer Activity of Bio-Engineered Ag Nanocomplex. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1227-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
66
|
Bioactive Peptide of Marine Origin for the Prevention and Treatment of Non-Communicable Diseases. Mar Drugs 2017; 15:md15030067. [PMID: 28282929 PMCID: PMC5367024 DOI: 10.3390/md15030067] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022] Open
Abstract
Non-communicable diseases (NCD) are the leading cause of death and disability worldwide. The four main leading causes of NCD are cardiovascular diseases, cancers, respiratory diseases and diabetes. Recognizing the devastating impact of NCD, novel prevention and treatment strategies are extensively sought. Marine organisms are considered as an important source of bioactive peptides that can exert biological functions to prevent and treatment of NCD. Recent pharmacological investigations reported cardio protective, anticancer, antioxidative, anti-diabetic, and anti-obesity effects of marine-derived bioactive peptides. Moreover, there is available evidence supporting the utilization of marine organisms and its bioactive peptides to alleviate NCD. Marine-derived bioactive peptides are alternative sources for synthetic ingredients that can contribute to a consumer's well-being, as a part of nutraceuticals and functional foods. This contribution focus on the bioactive peptides derived from marine organisms and elaborates its possible prevention and therapeutic roles in NCD.
Collapse
|
67
|
Hadiyanto, Suzery M, Setyawan D, Majid D, Sutanto H. Encapsulation of phycocyanin-alginate for high stability and antioxidant activity. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1755-1315/55/1/012030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
68
|
Suzery M, Hadiyanto, Majid D, Setyawan D, Sutanto H. Improvement of Stability and Antioxidant Activities by Using Phycocyanin - Chitosan Encapsulation Technique. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1755-1315/55/1/012052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
69
|
Huang Y, He L, Song Z, Chan L, He J, Huang W, Zhou B, Chen T. Phycocyanin-based nanocarrier as a new nanoplatform for efficient overcoming of cancer drug resistance. J Mater Chem B 2017; 5:3300-3314. [DOI: 10.1039/c7tb00287d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The rational design of a novel phycocyanin-based nanosystem with bio-responsive properties to achieve prolonged blood circulation and overcome drug resistance without causing systemic toxicity.
Collapse
Affiliation(s)
- Yanyu Huang
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Lizhen He
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Zhenhuan Song
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Leung Chan
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Jintao He
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Wei Huang
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Binwei Zhou
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
70
|
Study of the Effects of Betaine and/or C-Phycocyanin on the Growth of Lung Cancer A549 Cells In Vitro and In Vivo. JOURNAL OF ONCOLOGY 2016; 2016:8162952. [PMID: 27635139 PMCID: PMC5011231 DOI: 10.1155/2016/8162952] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/27/2016] [Accepted: 07/31/2016] [Indexed: 01/01/2023]
Abstract
We investigated the effects of betaine, C-phycocyanin (C-PC), and their combined use on the growth of A549 lung cancer both in vitro and in vivo. When cells were coincubated with betaine and C-PC, an up to 60% decrease in viability was observed which is significant compared to betaine (50%) or C-PC treatment alone (no decrease). Combined treatment reduced the stimulation of NF-κB expression by TNF-α and increased the amount of the proapoptotic p38 MAPK. Interestingly, combined treatment induced a cell cycle arrest in G2/M phase for ~60% of cells. In vivo studies were performed in pathogen-free male nude rats injected with A549 cells in their right flank. Their daily food was supplemented with either betaine, C-PC, both, or neither. Compared to the control group, tumour weights and volumes were significantly reduced in either betaine- or C-PC-treated groups and no additional decrease was obtained with the combined treatment. This data indicates that C-PC and betaine alone may efficiently inhibit tumour growth in rats. The synergistic activity of betaine and C-PC on A549 cells growth observed in vitro remains to be further confirmed in vivo. The reason behind the nature of their interaction is yet to be sought.
Collapse
|
71
|
Medical Application of Spirulina platensis Derived C-Phycocyanin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7803846. [PMID: 27293463 PMCID: PMC4879233 DOI: 10.1155/2016/7803846] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/16/2016] [Accepted: 04/20/2016] [Indexed: 01/13/2023]
Abstract
Along with the development of marine biological pharmaceutical research, high-effective and low-toxic drugs and functional foods isolated from marine organisms have become a new field of pharmacy and bromatology. The pharmacological actions, such as anti-inflammation, antioxidation, antitumor, immunological enhancement, and hepatorenal protection of C-phycocyanin (C-PC) from Spirulina platensis, have been reported, and C-PC has important value of development and utilization either as drug or as functional food. There are many researches about the various pharmacological actions and mechanisms of C-PC, but related reports are only to some extent integrated deeply and accurately enough, which put some limitations to the further application of C-PC in medicine. Particularly, with the improvement of living standards and attention to health issues, C-PC being a functional food is preferred by more and more people. C-PC is easy to get, safe, and nontoxic; thus, it has a great potential of research and development as a drug or functional food. Here, the separation and purification, physicochemical properties, physiological and pharmacological activities, safety, and some applications are reviewed to provide relevant basis for the development of natural medicine and applied products.
Collapse
|
72
|
Deniz I, Ozen MO, Yesil-Celiktas O. Supercritical fluid extraction of phycocyanin and investigation of cytotoxicity on human lung cancer cells. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.10.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
73
|
Paswan MB, Chudasama MM, Mitra M, Bhayani K, George B, Chatterjee S, Mishra S. Fluorescence Quenching Property of C-Phycocyanin from Spirulina platensis and its Binding Efficacy with Viable Cell Components. J Fluoresc 2015; 26:577-83. [PMID: 26678758 DOI: 10.1007/s10895-015-1742-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/07/2015] [Indexed: 01/29/2023]
Abstract
Phycocyanin is a natural brilliant blue colored, fluorescent protein, which is commonly present in cyanobacteria. In this study, C-phycocyanin was extracted and purified from Spirulina platensis, which are multicellular and filamentous cyanobacteria of greater importance because of its various biological and pharmacological potential. It was analyzed for its binding affinity towards blood cells, algal cells, genomic DNA of microalgae, and bacteria at different temperature and incubation time. It showed good binding affinity with these components even at low concentration of 2.5 μM. The purpose of this study was to evaluate the applicability of C-phycocyanin as a green fluorescent dye substituting carcinogenic chemical dyes.
Collapse
Affiliation(s)
- Meenakshi B Paswan
- Institute of Forensic Science, Gujarat Forensic Sciences University, DFS Campus, Gandhinagar, Gujarat, India
| | - Meghna M Chudasama
- Institute of Forensic Science, Gujarat Forensic Sciences University, DFS Campus, Gandhinagar, Gujarat, India
| | - Madhusree Mitra
- Department of Salt and Marine Chemicals, CSIR- Central Salt and Marine Chemical Research Institute, Bhavnagar, Gujarat, 364002, India.,AcSIR, CSIR-CSMCRI, Bhavnagar, India
| | - Khushbu Bhayani
- Department of Salt and Marine Chemicals, CSIR- Central Salt and Marine Chemical Research Institute, Bhavnagar, Gujarat, 364002, India
| | - Basil George
- Department of Botany, CMS College, Kottayam, Kerala, Pin-686001, India
| | - Shruti Chatterjee
- Department of Salt and Marine Chemicals, CSIR- Central Salt and Marine Chemical Research Institute, Bhavnagar, Gujarat, 364002, India
| | - Sandhya Mishra
- Department of Salt and Marine Chemicals, CSIR- Central Salt and Marine Chemical Research Institute, Bhavnagar, Gujarat, 364002, India.
| |
Collapse
|
74
|
Bai S, Dai J, Xia M, Ruan J, Wei H, Yu D, Li R, Jing H, Tian C, Song L, Qiu D. Effects of intermediate metabolite carboxylic acids of TCA cycle on Microcystis with overproduction of phycocyanin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5531-5537. [PMID: 25342454 DOI: 10.1007/s11356-014-3730-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Toxic Microcystis species are the main bloom-forming cyanobacteria in freshwaters. It is imperative to develop efficient techniques to control these notorious harmful algal blooms (HABs). Here, we present a simple, efficient, and environmentally safe algicidal way to control Microcystis blooms, by using intermediate carboxylic acids from the tricarboxylic acid (TCA) cycle. The citric acid, alpha-ketoglutaric acid, succinic acid, fumaric acid, and malic acid all exhibited strong algicidal effects, and particularly succinic acid could cause the rapid lysis of Microcystis in a few hours. It is revealed that the Microcystis-lysing activity of succinic acid and other carboxylic acids was due to their strong acidic activity. Interestingly, the acid-lysed Microcystis cells released large amounts of phycocyanin, about 27-fold higher than those of the control. On the other hand, the transcription of mcyA and mcyD of the microcystin biosynthesis operon was not upregulated by addition of alpha-ketoglutaric acid and other carboxylic acids. Consider the environmental safety of intermediate carboxylic acids. We propose that administration of TCA cycle organic acids may not only provide an algicidal method with high efficiency and environmental safety but also serve as an applicable way to produce and extract phycocyanin from cyanobacterial biomass.
Collapse
Affiliation(s)
- Shijie Bai
- Institute of Hydrobiology, The Chinese Academy of Sciences and University of Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Li B, Gao MH, Chu XM, Teng L, Lv CY, Yang P, Yin QF. The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo. Eur J Pharmacol 2015; 749:107-14. [PMID: 25617793 DOI: 10.1016/j.ejphar.2015.01.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 01/05/2023]
Abstract
The anticancer effects and mechanism of all-trans retinoic acid (ATRA), C-phycocyanin (C-PC) or ATRA+C-PC on the growth of A549 cells were studied in in vitro and in vivo experiments. The effects of C-PC and ATRA on the growth of A549 cells were determined. The expression of CDK-4 and caspase-3, and the cellular apoptosis levels were detected. The tumor model was established by subcutaneous injection of A549 cells to the left axilla of the NU/NU mice. The weights of tumor and the spleen were tested. The viabilities of T-cells and spleen cells, TNF levels, the expression of Bcl-2 protein and Cyclin D1 gene were examined. Results showed both C-PC and ATRA could inhibit the growth of tumor cells in vivo and in vitro. ATRA+C-PC cooperatively showed a higher antitumor activity. The dosage of ATRA was reduced when it was administered with C-PC together, and the toxicity was reduced as well. ATRA+C-PC could decrease CDK-4 but increase caspase-3 protein expression level and induce cell apoptosis. ATRA alone could lower the activities of T lymphocytes and spleen weights, but the combination with C-PC could effectively promote viability of T cells and spleen. C-PC+ATRA could up-regulate TNF, and down-regulate Bcl-2 and Cyclin D1 gene. The combination might inhibit tumor growth by inhibiting the progress of cell cycle, inducing cell apoptosis and enhancing the body immunity.
Collapse
Affiliation(s)
- Bing Li
- Department of Biology, Medical College of Qingdao University, Qingdao 266021, China.
| | - Mei-Hua Gao
- Department of Immunology, Medical College of Qingdao University, Qingdao 266021, China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Medical College of Qingdao University, Qingdao 266021, China.
| | - Lei Teng
- Department of Biology, Medical College of Qingdao University, Qingdao 266021, China.
| | - Cong-Yi Lv
- Department of Biology, Medical College of Qingdao University, Qingdao 266021, China.
| | - Peng Yang
- Department of Biology, Medical College of Qingdao University, Qingdao 266021, China.
| | - Qi-Feng Yin
- Department of Biology, Medical College of Qingdao University, Qingdao 266021, China.
| |
Collapse
|
76
|
Thangam R, Sundarraj S, Vivek R, Suresh V, Sivasubramanian S, Paulpandi M, Karthick SV, Ragavi AS, Kannan S. Theranostic potentials of multifunctional chitosan–silver–phycoerythrin nanocomposites against triple negative breast cancer cells. RSC Adv 2015. [DOI: 10.1039/c4ra14043e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Study focused to the applications of nanocomposites with therapeutic and imaging functions against TNBC cells. The developed multifunctional nanocomposites exhibited cell imaging, cytotoxicity with apoptosis induction against cancer cells.
Collapse
Affiliation(s)
- Ramar Thangam
- Proteomics & Molecular Cell Physiology Lab
- Department of Zoology
- Bharathiar University
- Coimbatore-641 046
- India
| | - Shenbagamoorthy Sundarraj
- Proteomics & Molecular Cell Physiology Lab
- Department of Zoology
- Bharathiar University
- Coimbatore-641 046
- India
| | - Raju Vivek
- Proteomics & Molecular Cell Physiology Lab
- Department of Zoology
- Bharathiar University
- Coimbatore-641 046
- India
| | - Veeraperumal Suresh
- Department of Zoology
- School of Life Sciences
- Periyar University
- Salem-636 011
- India
| | | | - Manickam Paulpandi
- Proteomics & Molecular Cell Physiology Lab
- Department of Zoology
- Bharathiar University
- Coimbatore-641 046
- India
| | - S. Vignesh Karthick
- Department of Virology
- King Institute of Preventive Medicine & Research
- Chennai-600 032
- India
| | - A. Sri Ragavi
- Department of Virology
- King Institute of Preventive Medicine & Research
- Chennai-600 032
- India
| | - Soundarapandian Kannan
- Proteomics & Molecular Cell Physiology Lab
- Department of Zoology
- Bharathiar University
- Coimbatore-641 046
- India
| |
Collapse
|
77
|
|
78
|
Juin C, Chérouvrier JR, Thiéry V, Gagez AL, Bérard JB, Joguet N, Kaas R, Cadoret JP, Picot L. Microwave-assisted extraction of phycobiliproteins from Porphyridium purpureum. Appl Biochem Biotechnol 2014; 175:1-15. [PMID: 25231233 DOI: 10.1007/s12010-014-1250-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/10/2014] [Indexed: 12/24/2022]
Abstract
In the present study, microwave-assisted extraction was first employed to extract the phycobiliproteins of Porphyridium purpureum (Pp). Freeze-dried Pp cells were subjected to microwave-assisted extraction (MAE) to extract phycoerythin (PE), phycocyanin (PC), and allophycocyanin (APC). MAE combined reproducibility and high extraction yields and allowed a 180- to 1,080-fold reduction of the extraction time compared to a conventional soaking process. The maximal PE extraction yield was obtained after 10-s MAE at 40 °C, and PE was thermally damaged at temperatures higher than 40 °C. In contrast, a flash irradiation for 10 s at 100 °C was the best process to efficiently extract PC and APC, as it combined a high temperature necessary to extract them from the thylakoid membrane to a short exposure to thermal denaturation. The extraction order of the three phycobiliproteins was coherent with the structure of Pp phycobilisomes. Moreover, the absorption and fluorescence properties of MAE extracted phycobiliproteins were stable for several months after the microwave treatment. Scanning electron microscopy indicated that MAE at 100 °C induced major changes in the Pp cell morphology, including fusion of the exopolysaccharidic cell walls and cytoplasmic membranes of adjacent cells. As a conclusion, MAE is a fast and high yield process efficient to extract and pre-purify phycobiliproteins, even from microalgae containing a thick exopolysaccharidic cell wall.
Collapse
Affiliation(s)
- Camille Juin
- UMRi CNRS 7266 LIENSs University of La Rochelle, 17042, La Rochelle, France
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Chamorro-Cevallos G, Garduño-Siciliano L, Martínez-Galero E, Mojica-Villegas A, Pages N, Gutiérrez-Salmeán G. The protective effect of dietary Arthrospira (Spirulina) maxima against mutagenicity induced by benzo[alpha]pyrene in mice. J Med Food 2014; 17:527-34. [PMID: 24787733 PMCID: PMC4025567 DOI: 10.1089/jmf.2013.0109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Benzo[alpha]pyrene (B[α]P) was used to test the possible antimutagenic effects of Arthrospira (Spirulina) maxima (SP) on male and female mice. SP was orally administered at 0, 200, 400, or 800 mg/kg of body weight to animals of both sexes for 2 weeks before starting the B[α]P (intraperitoneal injection) at 125 mg/kg of body weight for 5 consecutive days. For the male dominant lethal test, each male was caged with two untreated females per week for 3 weeks. For the female dominant lethal test, each female was caged for 1 week with one untreated male. All the females were evaluated 13-15 days after mating for incidence of pregnancy, total corpora lutea, total implants and pre- and postimplant losses. SP protected from B[α]P-induced pre- and postimplant losses in the male dominant lethal test, and from B[α]P-induced postimplantation losses in treated females. Moreover, SP treatment significantly reduced the detrimental effect of B[α]P on the quality of mouse semen. Our results illustrate the protective effects of SP in relation to B[α]P-induced genetic damage to germ cells. We conclude that SP, owing mainly to the presence of phycocyanin, could be of potential clinical interest in cancer treatment or prevention of relapse.
Collapse
Affiliation(s)
- Germán Chamorro-Cevallos
- 1 Department of Pharmacy, National School of Biological , Sciences, Adolfo López Mateos Professional Unit, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
80
|
Optimized extraction of polysaccharides from Cymbopogon citratus and its biological activities. Int J Biol Macromol 2014; 65:415-23. [DOI: 10.1016/j.ijbiomac.2014.01.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/24/2013] [Accepted: 01/16/2014] [Indexed: 11/21/2022]
|
81
|
Pleurotus nebrodensis polysaccharide induces apoptosis in human non-small cell lung cancer A549 cells. Carbohydr Polym 2014; 104:246-52. [DOI: 10.1016/j.carbpol.2014.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 12/14/2022]
|
82
|
Yang F, Li B, Chu XM, Lv CY, Xu YJ, Yang P. Molecular mechanism of inhibitory effects of C-phycocyanin combined with all-trans-retinoic acid on the growth of HeLa cells in vitro. Tumour Biol 2014; 35:5619-28. [PMID: 24563337 DOI: 10.1007/s13277-014-1744-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/10/2014] [Indexed: 01/06/2023] Open
Abstract
We studied the effects of all-trans-retinoic acid (ATRA), C-phycocyanin (C-PC), or ATRA+C-PC on the growth of cervical cells (HeLa cells), cell cycle distribution, and apoptosis. The anticancer mechanism of the drug combination was revealed. MTT assay was adopted to determine the effects of C-PC and ATRA on the growth of HeLa cells. The expression quantities of cyclin-dependent kinase (CDK) 4, cyclin D1, Bcl-2, caspase-3, and CD59 were determined by in situ hybridization, immunofluorescence, immunohistochemistry staining, Western blot, and RT-PCR. TUNEL assay was adopted to determine the cellular apoptosis levels. Both C-PC and ATRA could inhibit the growth of HeLa cells, and the combination of ATRA+C-PC functioned cooperatively to induce apoptosis in HeLa cells. The dosage of ATRA was reduced when it cooperated with C-PC to reduce the toxicity. ATRA treated with C-PC could induce more cell cycle arrests than the single drug used by decrease in cyclin D1 and CDK4 expression. The combination of the two drugs could upregulate caspase-3 and downregulate the Bcl-2 gene and induce cell apoptosis. Moreover, the combination therapy has an important immunological significance in decreased expression of the CD59 protein. Singly, C-PC or ATRA could inhibit the growth of HeLa cells, and the effects of treatment were further enhanced in the combination group. In combination with C-PC, the dosage of ATRA was effectively reduced. The C-PC + ATRA combination might take effect by inhibiting the progress of the cell cycle, inducing cell apoptosis and promoting complement-mediated cytolysis.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biology, Medical College of Qingdao University, 38 Dengzhou Road, Qingdao, 266021, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
83
|
Preparation of phycocyanin microcapsules and its properties. FOOD AND BIOPRODUCTS PROCESSING 2014. [DOI: 10.1016/j.fbp.2013.07.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
84
|
CD59 underlines the antiatherosclerotic effects of C-phycocyanin on mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:729413. [PMID: 24319687 PMCID: PMC3844276 DOI: 10.1155/2013/729413] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/23/2013] [Accepted: 09/27/2013] [Indexed: 11/29/2022]
Abstract
The effects of C-phycocyanin (C-PC) on atherosclerosis and the regulatory effects of CD59 gene on anti-atherosclerotic roles of C-PC were investigated. Apolipoprotein E knockout (ApoE(−/−)) mice were randomly divided into four groups: control group, C-PC treatment group, CD59 transfection group and C-PC+CD59 synergy group. The mice were fed with high-fat-diet and treated with drug intervention at the same time. Results showed the atherosclerotic mouse model was successfully established. CD59 was over-expressed in blood and tissue cells. Single CD59 or C-PC could reduce blood lipid levels and promote the expression of anti-apoptotic Bcl-2 but inhibit pro-apoptotic Fas proteins in endothelial cells. The expression levels of cell cycle protein D1 (Cyclin D1) and mRNA levels of cyclin dependent protein kinase 4 (CDK4) in smooth muscle cells were restrained by CD59 and C-PC. CD59 or C-PC alone could inhibit the formation of atherosclerotic plaque by suppressing MMP-2 protein expression. In addition, C-PC could promote CD59 expression. So both CD59 and C-PC could inhibit the progress of atherosclerosis, and the anti-atherosclerotic effects of C-PC might be fulfilled by promoting CD59 expression, preventing smooth muscle cell proliferation and the apoptosis of endothelial cells, reducing blood fat levels, and at last inhibiting the development of atherosclerosis.
Collapse
|