51
|
Arendowski A, Sagandykova G, Mametov R, Rafińska K, Pryshchepa O, Pomastowski P. Nanostructured Layer of Silver for Detection of Small Biomolecules in Surface-Assisted Laser Desorption Ionization Mass Spectrometry. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4076. [PMID: 35744134 PMCID: PMC9227941 DOI: 10.3390/ma15124076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023]
Abstract
A facile approach for the synthesis of a silver nanostructured layer for application in surface-assisted laser desorption/ionization mass spectrometry of low-molecular-weight biomolecules was developed using electrochemical deposition. The deposition was carried out using the following silver salts: trifluoroacetate, acetate and nitrate, varying the voltage and time. The plate based on trifluoroacetate at 10 V for 15 min showed intense SALDI-MS responses for standards of various classes of compounds: fatty acids, cyclitols, saccharides and lipids at a concentration of 1 nmol/spot, with values of the signal-to-noise ratio ≥50. The values of the limit of detection were 0.71 µM for adonitol, 2.08 µM for glucose and 0.39 µM for palmitic acid per spot. SEM analysis of the plate showed anisotropic flower-like microstructures with nanostructures on their surface. The reduced chemical background in the low-mass region can probably be explained by the absence of stabilizers and reducing agents during the synthesis. The plate synthesized with the developed approach showed potential for future use in the analysis of low-molecular-weight compounds of biological relevance. The absence of the need for the utilization of sophisticated equipment and the synthesis time (10 min) may benefit large-scale applications of the layer for the detection of various types of small biomolecules.
Collapse
Affiliation(s)
- Adrian Arendowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (A.A.); (R.M.); (O.P.); (P.P.)
| | - Gulyaim Sagandykova
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (A.A.); (R.M.); (O.P.); (P.P.)
| | - Radik Mametov
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (A.A.); (R.M.); (O.P.); (P.P.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Oleksandra Pryshchepa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (A.A.); (R.M.); (O.P.); (P.P.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (A.A.); (R.M.); (O.P.); (P.P.)
| |
Collapse
|
52
|
Khadem H, Nemat H, Elliott J, Benaissa M. Signal fragmentation based feature vector generation in a model agnostic framework with application to glucose quantification using absorption spectroscopy. Talanta 2022; 243:123379. [DOI: 10.1016/j.talanta.2022.123379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022]
|
53
|
Tingting W, Chang C, Gu L, Su Y, Zhang M, Yang Y, Li J. Comparison of the functionality of egg white liquid with different desugaring treatments. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Wang Tingting
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
- School of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
- School of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
- School of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
- School of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
| | - Ming Zhang
- Guangzhou Beile Food Co., Ltd. Fengying Road No. 10‐1, High‐tech Industrial Park, Conghua Economic Development Zone Guangzhou, Guangdong, 510900 PR China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
- School of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
- Hunan Engineering and Technology Research Center for Food Flavors and Flavorings Jinshi, Hunan, 415400 China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
- School of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
- Hunan Engineering and Technology Research Center for Food Flavors and Flavorings Jinshi, Hunan, 415400 China
| |
Collapse
|
54
|
Pereira D, Bierlich J, Kobelke J, Ferreira MS. Hybrid sensor based on a hollow square core fiber for temperature independent refractive index detection. OPTICS EXPRESS 2022; 30:17754-17766. [PMID: 36221590 DOI: 10.1364/oe.456529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/24/2022] [Indexed: 06/16/2023]
Abstract
In this work, a hybrid sensor based on a section of hollow square core fiber (HSCF) spliced between two single mode fibers is proposed for the measurement of refractive index of liquids. The sensor, with a length of a few millimeters, operates in a transmission configuration. Due to the HSCF inner geometry, two different interferometers are generated. The first, a Mach-Zehnder interferometer, is insensitive to the external refractive index, and presents a sensitivity to temperature of (29.2 ± 1.1) pm/°C. The second one, a cladding modal interferometer, is highly sensitive to the external refractive index. An experimental resolution of 1.0 × 10-4 was achieved for this component. Due to the different responses of each interferometer to the parameters under study, a compensation method was developed to attain refractive index measurements that are temperature independent. The proposed sensor can find applications in areas where refractive index measurements are required and the control of room temperature is a challenge, such as in the food and beverage industry, as well as in biochemical or biomedical industries.
Collapse
|
55
|
Priyanga N, Sasikumar K, Raja AS, Pannipara M, Al-Sehemi AG, Michael RJV, Kumar MP, Alphonsa AT, Kumar GG. 3D CoMoO 4 nanoflake arrays decorated disposable pencil graphite electrode for selective and sensitive enzyme-less electrochemical glucose sensors. Mikrochim Acta 2022; 189:200. [PMID: 35474402 DOI: 10.1007/s00604-022-05270-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 12/29/2022]
Abstract
Three-dimensional (3D) cobalt molybdate (CoMoO4) hierarchical nanoflake arrays on pencil graphite electrode (PGE) (CoMoO4/PGE) are actualized via one-pot hydrothermal technique. The morphological features comprehend that the CoMoO4 nanoflake arrays expose the 3D, open, porous, and interconnected network architectures on PGE. The formation and growth mechanisms of CoMoO4 nanostructures on PGE are supported with different structural and morphological characterizations. The constructed CoMoO4/PGE is operated as an electrocatalytic probe in enzyme-less electrochemical glucose sensor (ELEGS), confronting the impairments of cost- and time-obsessed conventional electrode polishing and catalyst amendment progressions and obliged the employment of a non-conducting binder. The wide-opened interior and exterior architectures of CoMoO4 nanoflake arrays escalate the glucose utilization efficacy, whilst the intertwined nanoflakes and graphitic carbon layers, respectively, of CoMoO4 and PGE articulate the continual electron mobility and catalytically active channels of CoMoO4/PGE. It jointly escalates the ELEGS concerts of CoMoO4/PGE including high sensitivity (1613 μA mM-1 cm-2), wide linear glucose range (0.0003-10 mM), and low detection limit (0.12 µM) at a working potential of 0.65 V (vs. Ag/AgCl) together with the good recovery in human serum. Thus, the fabricated CoMoO4/PGE extends exclusive virtues of modest electrode production, virtuous affinity, swift response, and excellent sensitivity and selectivity, exposing innovative prospects to reconnoitring the economically viable ELEGSs with binder-free, affordable cost, and expansible 3D electrocatalytic probes.
Collapse
Affiliation(s)
- N Priyanga
- PG and Research Department of Chemistry, G.T.N Arts College (Autonomous), Dindigul, 624005, Tamil Nadu, India.,Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - K Sasikumar
- Department of Chemistry, Sacred Heart College (Autonomous), Tirupattur, 635601, Tamil Nadu, India
| | - A Sahaya Raja
- PG and Research Department of Chemistry, G.T.N Arts College (Autonomous), Dindigul, 624005, Tamil Nadu, India.
| | - Mehboobali Pannipara
- Research Center for Advanced Materials Science (RCAMS) and Department of Chemistry, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS) and Department of Chemistry, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - R Jude Vimal Michael
- Department of Chemistry, Sacred Heart College (Autonomous), Tirupattur, 635601, Tamil Nadu, India
| | - M Praveen Kumar
- Department of Materials Science and Engineering, University of Concepcion, Región del Bío Bío, Chile
| | - A Therasa Alphonsa
- PG and Research Department of Chemistry, Government Arts College, C.Mutlur, Chidambaram, 608102, Tamil Nadu, India
| | - G Gnana Kumar
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
56
|
Xu S, Bi J, Jin W, Fan B, Qian C. Determination of Polysaccharides Composition in Polygonatum sibiricum and Polygonatum odoratum by HPLC-FLD with Pre-column Derivatization. Heliyon 2022; 8:e09363. [PMID: 35586333 PMCID: PMC9109187 DOI: 10.1016/j.heliyon.2022.e09363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/19/2021] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
A high-performance liquid chromatography-fluorescence detection (HPLC-FLD) method was established for the determination of seven monosaccharides in Polygonatum sibiricum and Polygonatum odoratum. The polysaccharides were de-esterified, extracted, hydrolyzed and derivatized with p-aminobenzoic acid (PABA) to obtain fluorescently labeled monosaccharide compounds, which were finally detected by HPLC-FLD. Inertsil ODS-3, C18 chromatographic column (250 mm × 4.6 mm, 5 μm) was used for chromatography. The excitation wavelength (Ex) was 313 nm, and the emission wavelength (Em) was 358 nm. Ethyl acetate extraction reduced the peaks of chromatogram and improved the detection sensitivity than other agents. The established method had high sensitivity, strong specificity, good linear relationship and recovery efficiency. The results showed that the roots and fibrous roots of Polygonatum sibiricum and Polygonatum odoratum contained these seven monosaccharides, and the highest monosaccharide content was mannose. The method of PABA-HPLC-FLD for determination of monosaccharide content in Polygonatum sibiricum and Polygonatum odoratum was sensitive and accurate. The method established in this work provides a feasible analytical tool for the study of polysaccharides, and the findings on polysaccharides from Polygonatum sibiricum and Polygonatum odoratum can provide guidance for the natural medicine industry.
Collapse
Affiliation(s)
- Sheng Xu
- Hubei University of Science and Technology, China
| | - Jianli Bi
- Hubei University of Science and Technology, China
| | - Wenfang Jin
- Hubei University of Science and Technology, China
| | - Baolei Fan
- Hubei University of Science and Technology, China
- Corresponding author.
| | - Chunqi Qian
- Michigan State University, United States
- Corresponding author.
| |
Collapse
|
57
|
Muslu E, Eren E, Oksuz AU. Prussian Blue-Based Flexible Thin Film Nanoarchitectonics for Non-enzymatic Electrochemical Glucose Sensor. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02290-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
58
|
Zheng Y, Li Y, Fan L, Yao H, Zhang Z. An amphiprotic paper-based electrode for glucose detection based on layered carbon nanotubes with silver and polystyrene particles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1268-1278. [PMID: 35274112 DOI: 10.1039/d1ay01950c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a flexible amphiprotic amino-bonded carbon nanotube-Ag nanoparticle/polystyrene (CNT-NH2-Ag/PS) paper electrode was fabricated to measure glucose in human body fluids by a combination of vacuum filtration and high temperature baking. The front side of the fabricated paper electrode was hydrophobic and conductive, whereas its back side was hydrophilic and nonconductive. In the fabrication process, the coating sequence of CNT-NH2, Ag and PS was critical to determine the performance of the resulting CNT-NH2-Ag/PS electrode besides other parameters (e.g., amount of soluble starch, PS and Ag nanoparticles, type and amount of CNT-NH2, and electrode sensing area). Based on a series of experimental observations, the possible mechanism of glucose detection on the paper electrode was proposed, in which glucose was more favorable to migrate to the hydrophilic back side of the paper and interact with the active species (e.g., O2-) on the electrode surface. The electrochemical results showed that the CNT-NH2-Ag/PS paper electrode maintained stable electrochemical properties even after five cycles of use and 60 days of storage in air. The amphiprotic paper electrode demonstrated excellent sensing performance for glucose with a linear range of 1 μM to 1000 μM, a low detection limit of 0.2 μM, and a sensitivity of 31 333.0 μA mM-1 cm-2. The fabricated paper electrode was also successfully applied to detect different levels of glucose in complex human body fluids such as saliva, urine, and serum. These features make this type of paper electrode promising for glucose measurement.
Collapse
Affiliation(s)
- Yajun Zheng
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yu Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Libin Fan
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Hedan Yao
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| |
Collapse
|
59
|
Zhang Y, Hao S, Sun X, Zhang H, Ma Q, Zhai J, Dong S. A Self‐Powered Glucose Biosensor based on Mediator‐Free Hybrid Cu/Glucose Biofuel Cell for Flow Sensing of Glucose. ELECTROANAL 2022. [DOI: 10.1002/elan.202100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | | | - Junfeng Zhai
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences CHINA
| | | |
Collapse
|
60
|
Abuajah CI, Ogbonna AC, Chukeze EJ, Ikpeme CA, Asogwa KK. A glucose oxidase peroxidase-coupled continuous assay protocol for the determination of cellulase activity in the laboratory. Anal Biochem 2022; 647:114649. [DOI: 10.1016/j.ab.2022.114649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 11/01/2022]
|
61
|
Murugan P, Annamalai J, Atchudan R, Govindasamy M, Nallaswamy D, Ganapathy D, Reshetilov A, Sundramoorthy AK. Electrochemical Sensing of Glucose Using Glucose Oxidase/PEDOT:4-Sulfocalix [4]arene/MXene Composite Modified Electrode. MICROMACHINES 2022; 13:mi13020304. [PMID: 35208428 PMCID: PMC8877456 DOI: 10.3390/mi13020304] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022]
Abstract
Glucose is one of the most important monosaccharides found in the food, as a part of more complex structures, which is a primary energy source for the brain and body. Thus, the monitoring of glucose concentration is more important in food and biological samples in order to maintain a healthy lifestyle. Herein, an electrochemical glucose biosensor was fabricated by immobilization of glucose oxidase (GOX) onto poly(3,4-ethylenedioxythiophene):4-sulfocalix [4]arene (PEDOT:SCX)/MXene modified electrode. For this purpose, firstly, PEDOT was synthesized in the presence of SCX (counterion) by the chemical oxidative method. Secondly, MXene (a 2D layered material) was synthesized by using a high-temperature furnace under a nitrogen atmosphere. After that, PEDOT:SCX/MXene (1:1) dispersion was prepared by ultrasonication which was later utilized to prepare PEDOT:SCX/MXene hybrid film. A successful formation of PEDOT:SCX/MXene film was confirmed by HR-SEM, Fourier transform infrared (FT-IR), and Raman spectroscopies. Due to the biocompatibility nature, successful immobilization of GOX was carried out onto chitosan modified PEDOT:SCX/MXene/GCE. Moreover, the electrochemical properties of PEDOT:SCX/MXene/GOX/GCE was studied through cyclic voltammetry and amperometry methods. Interestingly, a stable redox peak of FAD-GOX was observed at a formal potential of –0.435 V on PEDOT:SCX/MXene/GOX/GCE which indicated a direct electron transfer between the enzyme and the electrode surface. PEDOT:SCX/MXene/GOX/GCE also exhibited a linear response against glucose concentrations in the linear range from 0.5 to 8 mM. The effect of pH, sensors reproducibility, and repeatability of the PEDOT:SCX/MXene/GOX/GCE sensor were studied. Finally, this new biosensor was successfully applied to detect glucose in commercial fruit juice sample with satisfactory recovery.
Collapse
Affiliation(s)
- Preethika Murugan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
| | - Jayshree Annamalai
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Mani Govindasamy
- Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City 243, Taiwan;
| | - Deepak Nallaswamy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India; (D.N.); (D.G.)
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India; (D.N.); (D.G.)
| | - Anatoly Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Centre for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Ashok K. Sundramoorthy
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India; (D.N.); (D.G.)
- Correspondence:
| |
Collapse
|
62
|
Eickelberg V, Lüersen K, Staats S, Rimbach G. Phenotyping of Drosophila Melanogaster-A Nutritional Perspective. Biomolecules 2022; 12:221. [PMID: 35204721 PMCID: PMC8961528 DOI: 10.3390/biom12020221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The model organism Drosophila melanogaster was increasingly applied in nutrition research in recent years. A range of methods are available for the phenotyping of D. melanogaster, which are outlined in the first part of this review. The methods include determinations of body weight, body composition, food intake, lifespan, locomotor activity, reproductive capacity and stress tolerance. In the second part, the practical application of the phenotyping of flies is demonstrated via a discussion of obese phenotypes in response to high-sugar diet (HSD) and high-fat diet (HFD) feeding. HSD feeding and HFD feeding are dietary interventions that lead to an increase in fat storage and affect carbohydrate-insulin homeostasis, lifespan, locomotor activity, reproductive capacity and stress tolerance. Furthermore, studies regarding the impacts of HSD and HFD on the transcriptome and metabolome of D. melanogaster are important for relating phenotypic changes to underlying molecular mechanisms. Overall, D. melanogaster was demonstrated to be a valuable model organism with which to examine the pathogeneses and underlying molecular mechanisms of common chronic metabolic diseases in a nutritional context.
Collapse
Affiliation(s)
- Virginia Eickelberg
- Department of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany; (K.L.); (S.S.); (G.R.)
| | | | | | | |
Collapse
|
63
|
Kil YS, Han AR, Hong MJ, Kim JB, Park PH, Choi H, Nam JW. 1H NMR-Based Chemometrics to Gain Insights Into the Bran of Radiation-Induced Colored Wheat Mutant. Front Nutr 2022; 8:806744. [PMID: 35059428 PMCID: PMC8764193 DOI: 10.3389/fnut.2021.806744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, wheat has attracted attention as a functional food, rather than a simple dietary energy source. Accordingly, whole-grain intake increases with an understanding of bioactive phytochemicals in bran. The development of colored wheat has drawn more attention to the value of bran owing to its nutritional quality, as well as the antioxidant properties of the colorant. The present 1H NMR-based chemometric study evaluated the compositional improvement of radiation-induced mutants in purple wheat by focusing on the predominant metabolites with high polarity. A total of 33 metabolites, including three choline derivatives, three sugar alcohols, four sugars, 13 amino acids, eight organic acids, and two nucleosides, were identified throughout the 1H NMR spectra, and quantification data were obtained for the identified metabolites via peak shape-based quantification. Principal component and hierarchical cluster analyses were conducted for performing multivariate analyses. The colored original wheat was found to exhibit improvements compared to yellow wheat in terms of the contents of primary metabolites, thus highlighting the importance of conducting investigations of polar metabolites. The chemometrics studies further revealed mutant lines with a compositional enhancement for metabolites, including lysine, proline, acetate, and glycerol.
Collapse
Affiliation(s)
- Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan-si, South Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Min-Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan-si, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, South Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, South Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, South Korea
| |
Collapse
|
64
|
Faura G, Boix-Lemonche G, Holmeide AK, Verkauskiene R, Volke V, Sokolovska J, Petrovski G. Colorimetric and Electrochemical Screening for Early Detection of Diabetes Mellitus and Diabetic Retinopathy-Application of Sensor Arrays and Machine Learning. SENSORS 2022; 22:s22030718. [PMID: 35161465 PMCID: PMC8839630 DOI: 10.3390/s22030718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 12/13/2022]
Abstract
In this review, a selection of works on the sensing of biomarkers related to diabetes mellitus (DM) and diabetic retinopathy (DR) are presented, with the scope of helping and encouraging researchers to design sensor-array machine-learning (ML)-supported devices for robust, fast, and cost-effective early detection of these devastating diseases. First, we highlight the social relevance of developing systematic screening programs for such diseases and how sensor-arrays and ML approaches could ease their early diagnosis. Then, we present diverse works related to the colorimetric and electrochemical sensing of biomarkers related to DM and DR with non-invasive sampling (e.g., urine, saliva, breath, tears, and sweat samples), with a special mention to some already-existing sensor arrays and ML approaches. We finally highlight the great potential of the latter approaches for the fast and reliable early diagnosis of DM and DR.
Collapse
Affiliation(s)
- Georgina Faura
- Center for Eye Research, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway; (G.F.); (G.B.-L.)
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Gerard Boix-Lemonche
- Center for Eye Research, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway; (G.F.); (G.B.-L.)
| | | | - Rasa Verkauskiene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania;
| | - Vallo Volke
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia;
- Institute of Biomedical and Transplant Medicine, Department of Medical Sciences, Tartu University Hospital, L. Puusepa Street, 51014 Tartu, Estonia
| | | | - Goran Petrovski
- Center for Eye Research, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway; (G.F.); (G.B.-L.)
- Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway
- Correspondence: ; Tel.: +47-9222-6158
| |
Collapse
|
65
|
Zhao F, Xie S, Li B, Zhang X. Functional nucleic acids in glycobiology: A versatile tool in the analysis of disease-related carbohydrates and glycoconjugates. Int J Biol Macromol 2022; 201:592-606. [PMID: 35031315 DOI: 10.1016/j.ijbiomac.2022.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
As significant components of the organism, carbohydrates and glycoconjugates play indispensable roles in energy supply, cell signaling, immune modulation, and tumor cell invasion, and function as biomarkers since aberrance of them has been proved to be associated with the emergence and development of certain diseases. Functional nucleic acids (FNAs) have properties including easy-to-synthesize, good stability, good biocompatibility, low cost, and high programmability, they have attracted significant research attention and been incorporated into biosensors for detecting disease-related carbohydrates and glycoconjugates. This review summarizes the construction strategies and biosensing applications of FNAs-based biosensors in glycobiology in terms of target recognition and signal transduction. By illustrating the mechanisms and comparing the performances, the challenges and development opportunities in this area have been critically elaborated. We believe that this review will provide a better understanding of the role of FNAs in the analysis of disease-related carbohydrates and glycoconjugates, and inspire further discovery in fields that include glycobiology, chemical biology, clinical diagnosis, and drug development.
Collapse
Affiliation(s)
- Furong Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
66
|
Varghese EV, Saidu FK, Schwandt C, Thomas G, Joseph A. Non‐Enzymatic Electrochemical Biosensing of Glucose Using Nanocomposites of Polyaniline Nanofibers and Silver. ChemistrySelect 2022. [DOI: 10.1002/slct.202103518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Carsten Schwandt
- Department of Materials Science and Metallurgy University of Cambridge Cambridge CB3 0FS United Kingdom
| | | | - Alex Joseph
- Department of Chemistry Newman College Thodupuzha Kerala 685585 India
| |
Collapse
|
67
|
Almutairi EM, Ghanem MA, Al-Warthan A, Shaik MR, Adil SF, Almutairi AM. Chemical deposition and exfoliation from liquid crystal template: Nickel/nickel (II) hydroxide nanoflakes electrocatalyst for a non-enzymatic glucose oxidation reaction. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
68
|
Sunoqrot S, Al-Hadid A, Manasrah A, Khnouf R, Hasan Ibrahim L. Immobilization of glucose oxidase on bioinspired polyphenol coatings as a high-throughput glucose assay platform. RSC Adv 2021; 11:39582-39592. [PMID: 35492494 PMCID: PMC9044463 DOI: 10.1039/d1ra07467a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/21/2021] [Indexed: 12/23/2022] Open
Abstract
Glucose oxidase (GOx) is an enzyme with important industrial and biochemical applications, particularly in glucose detection. Here we leveraged the oxidative self-polymerization phenomenon of simple polyphenols (pyrogallol or catechol) in the presence of polyethylenimine (PEI) to form adhesive coatings that enabled GOx immobilization on conventional multi-well plates. Immobilization was verified and optimized by directly measuring GOx activity inside the coated wells. Our results showed that incorporating PEI in polyphenol coatings enhanced their enzyme immobilization efficiency, with pyrogallol (PG)-based coatings displaying the greatest enzyme activity. The immobilized enzyme maintained similar affinity to glucose compared to the free enzyme. GOx-immobilized PG/PEI-coated wells exhibited intermediate recycling ability but excellent resistance to urea as a denaturing agent compared to the free enzyme. GOx-immobilized 96-well plates allowed the construction of a linear glucose calibration curve upon adding glucose standards, with a detection limit of 0.4–112.6 mg dL−1, which was comparable to commercially available enzymatic glucose assay kits. The assay platform was also capable of effectively detecting glucose in rat plasma samples. Our findings present a simple enzyme immobilization technique that can be used to construct a glucose assay platform in a convenient multi-well format for high-throughput glucose quantification. Glucose oxidase was immobilized on conventional multi-well plates via bioinspired polyphenol chemistry for convenient colorimetric quantitation of glucose.![]()
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan Amman 11733 Jordan +962 64291423 +962 64291511 ext. 197
| | - Amani Al-Hadid
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan Amman 11733 Jordan +962 64291423 +962 64291511 ext. 197
| | - Ahmad Manasrah
- Department of Mechanical Engineering, Faculty of Engineering and Technology, Al-Zaytoonah University of Jordan Amman 11733 Jordan
| | - Ruba Khnouf
- Department of Biomedical Engineering, Faculty of Engineering, Jordan University of Science and Technology Irbid 22110 Jordan
| | - Lina Hasan Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan Amman 11733 Jordan +962 64291423 +962 64291511 ext. 197
| |
Collapse
|
69
|
Zhang Y, Zhang Y, Yang C, Ma C, Zhang M, Tang J. Facile immobilization of glucose oxidase with Cu 3(PO 4) 2·3H 2O for glucose biosensing via smartphone. Colloids Surf B Biointerfaces 2021; 210:112259. [PMID: 34883340 DOI: 10.1016/j.colsurfb.2021.112259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022]
Abstract
A smartphone-based colorimetric platform for facile glucose detection was constructed below. First, glucose oxidase-Cu3(PO4)2·3H2O hybrid microflowers (GOx-HMFs) were facilely synthesized via biomineralization, which can react with glucose and 3,3',5,5'-tetramethylbenzidine to generate colored product. Next, the color information of product was real-time collected and processed via smartphone to realize accurate glucose detection. The as-constructed colorimetric platform based on GOx-HMFs and smartphone had wide linear range, high sensitivity and good selectivity for glucose detection, moreover, the detection process was convenient and efficient, which provided a new idea for glucose detection.
Collapse
Affiliation(s)
- Yuhang Zhang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Yan Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Chuankai Yang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Chunyun Ma
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Miaorong Zhang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China.
| | - Jianguo Tang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| |
Collapse
|
70
|
An interrelated CataFlower enzyme system for sensitively monitoring sweat glucose. Talanta 2021; 235:122799. [PMID: 34517657 DOI: 10.1016/j.talanta.2021.122799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/13/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
An accurate measurement of sweat glucose is a promising alternative to invasive finger prick blood test, and may provide effective self-monitoring of blood glucose with good patient compliance. Herein, an interrelated catalytic enzyme system has been developed, termed as CataFlower, which is composed of nanoflower MoS2 (peroxidase) decorated with GOx (glucose oxidase) and MnO2 (oxygen generator), and exhibits synergistic oxidative capability for sensitively monitoring sweat glucose. CataFlower can not only generate oxygen in situ to maximize GOx activity, but promote peroxidase-triggered H2O2 oxidation of methylene blue, resulting in sensitive colorimetric detection of glucose. We identify that CataFlower can precisely detect glucose with a detection limit of 10 μM, allowing for measuring glucose levels in different biological samples, such as blood and urine. Particularly, CataFlower is capable of monitoring dynamic changes in sweat glucose with high sensitivity and accuracy during exercise. Therefore, CataFlower provides a stepping stone to eliminate invasive blood tests, significantly improving the diagnosis and management of diabetes mellitus.
Collapse
|
71
|
Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska‐Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon‐Cochard C, Rose L, Ryser P, Scherer‐Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde‐Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes de Moraes M, Janeček Š, Lambers H, Salmon V, Tharayil N, McCormack ML. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. THE NEW PHYTOLOGIST 2021; 232:973-1122. [PMID: 34608637 PMCID: PMC8518129 DOI: 10.1111/nph.17572] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/22/2021] [Indexed: 05/17/2023]
Abstract
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
Collapse
Affiliation(s)
- Grégoire T. Freschet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
| | - Loïc Pagès
- UR 1115 PSHCentre PACA, site AgroparcINRAE84914Avignon cedex 9France
| | - Colleen M. Iversen
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Louise H. Comas
- USDA‐ARS Water Management Research Unit2150 Centre Avenue, Bldg D, Suite 320Fort CollinsCO80526USA
| | - Boris Rewald
- Department of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Catherine Roumet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Jitka Klimešová
- Department of Functional EcologyInstitute of Botany CASDukelska 13537901TrebonCzech Republic
| | - Marcin Zadworny
- Institute of DendrologyPolish Academy of SciencesParkowa 562‐035KórnikPoland
| | - Hendrik Poorter
- Plant Sciences (IBG‐2)Forschungszentrum Jülich GmbHD‐52425JülichGermany
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | | | - Thomas S. Adams
- Department of Plant SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Agnieszka Bagniewska‐Zadworna
- Department of General BotanyInstitute of Experimental BiologyFaculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznańskiego 661-614PoznańPoland
| | - A. Glyn Bengough
- The James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- School of Science and EngineeringUniversity of DundeeDundee,DD1 4HNUK
| | | | - Ivano Brunner
- Forest Soils and BiogeochemistrySwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
| | - Johannes H. C. Cornelissen
- Department of Ecological ScienceFaculty of ScienceVrije Universiteit AmsterdamDe Boelelaan 1085Amsterdam1081 HVthe Netherlands
| | - Eric Garnier
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Arthur Gessler
- Forest DynamicsSwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH Zurich8092ZurichSwitzerland
| | - Sarah E. Hobbie
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt PaulMN55108USA
| | - Ina C. Meier
- Functional Forest EcologyUniversity of HamburgHaidkrugsweg 122885BarsbütelGermany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation GroupDepartment of Environmental SciencesWageningen University and ResearchPO Box 476700 AAWageningenthe Netherlands
| | | | - Laura Rose
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
- Senckenberg Biodiversity and Climate Research Centre (BiK-F)Senckenberganlage 2560325Frankfurt am MainGermany
| | - Peter Ryser
- Laurentian University935 Ramsey Lake RoadSudburyONP3E 2C6Canada
| | | | - Nadejda A. Soudzilovskaia
- Environmental Biology DepartmentInstitute of Environmental SciencesCMLLeiden UniversityLeiden2300 RAthe Netherlands
| | - Alexia Stokes
- INRAEAMAPCIRAD, IRDCNRSUniversity of MontpellierMontpellier34000France
| | - Tao Sun
- Institute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Oscar J. Valverde‐Barrantes
- International Center for Tropical BotanyDepartment of Biological SciencesFlorida International UniversityMiamiFL33199USA
| | - Monique Weemstra
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Alexandra Weigelt
- Systematic Botany and Functional BiodiversityInstitute of BiologyLeipzig UniversityJohannisallee 21-23Leipzig04103Germany
| | - Nina Wurzburger
- Odum School of EcologyUniversity of Georgia140 E. Green StreetAthensGA30602USA
| | - Larry M. York
- Biosciences Division and Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Sarah A. Batterman
- School of Geography and Priestley International Centre for ClimateUniversity of LeedsLeedsLS2 9JTUK
- Cary Institute of Ecosystem StudiesMillbrookNY12545USA
| | - Moemy Gomes de Moraes
- Department of BotanyInstitute of Biological SciencesFederal University of Goiás1974690-900Goiânia, GoiásBrazil
| | - Štěpán Janeček
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawley (Perth)WA 6009Australia
| | - Hans Lambers
- School of Biological SciencesThe University of Western AustraliaCrawley (Perth)WAAustralia
| | - Verity Salmon
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Nishanth Tharayil
- Department of Plant and Environmental SciencesClemson UniversityClemsonSC29634USA
| | - M. Luke McCormack
- Center for Tree ScienceMorton Arboretum, 4100 Illinois Rt. 53LisleIL60532USA
| |
Collapse
|
72
|
Pak M, Moshaii A, Nikkhah M, Abbasian S, Siampour H. Nickel-gold bimetallic nanostructures with the improved electrochemical performance for non-enzymatic glucose determination. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
73
|
A Cu2O/PEDOT/graphene-modified electrode for the enzyme-free detection and quantification of glucose. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
74
|
Zhang H, Li X, Qian ZM, Wang S, Yang FQ. Glucose oxidase-mediated sodium alginate gelation: Equipment-Free detection of glucose in fruit samples. Enzyme Microb Technol 2021; 148:109805. [PMID: 34116756 DOI: 10.1016/j.enzmictec.2021.109805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
In this study, a paper-based sensor, combined with a visual distance-readout method, was developed to determine glucose in fruit samples based on the glucose oxidase-mediated sodium alginate gelation. The type of filter paper, the concentration of sodium alginate and the enzymatic reaction conditions were systematically investigated. Under optimal conditions, the increase in diffusion diameter showed a good linear relationship with glucose concentration between 1.4-7.0 mM, and the limit of quantification was 1.4 mM. Finally, the applicability of the proposed strategy was successfully verified by measuring glucose concentrations in fruit samples. The results generated by the developed paper-based sensor were in good agreement with the results obtained from a glucose assay kit. The recoveries were 91.8%-99.1%. In short, the present study developed a simple, low-cost and efficient method for assessing fruit quality and for guiding fruit intake for diabetic patients, especially in remote or resource-limited regions.
Collapse
Affiliation(s)
- Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Xiuzhu Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | | | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
75
|
Tong C, Hill CB, Zhou G, Zhang XQ, Jia Y, Li C. Opportunities for Improving Waterlogging Tolerance in Cereal Crops-Physiological Traits and Genetic Mechanisms. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081560. [PMID: 34451605 PMCID: PMC8401455 DOI: 10.3390/plants10081560] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 05/22/2023]
Abstract
Waterlogging occurs when soil is saturated with water, leading to anaerobic conditions in the root zone of plants. Climate change is increasing the frequency of waterlogging events, resulting in considerable crop losses. Plants respond to waterlogging stress by adventitious root growth, aerenchyma formation, energy metabolism, and phytohormone signalling. Genotypes differ in biomass reduction, photosynthesis rate, adventitious roots development, and aerenchyma formation in response to waterlogging. We reviewed the detrimental effects of waterlogging on physiological and genetic mechanisms in four major cereal crops (rice, maize, wheat, and barley). The review covers current knowledge on waterlogging tolerance mechanism, genes, and quantitative trait loci (QTL) associated with waterlogging tolerance-related traits, the conventional and modern breeding methods used in developing waterlogging tolerant germplasm. Lastly, we describe candidate genes controlling waterlogging tolerance identified in model plants Arabidopsis and rice to identify homologous genes in the less waterlogging-tolerant maize, wheat, and barley.
Collapse
Affiliation(s)
- Cen Tong
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Camilla Beate Hill
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Gaofeng Zhou
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Xiao-Qi Zhang
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Yong Jia
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Chengdao Li
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3-Baron-Hay Court, South Perth, WA 6151, Australia
- Correspondence: ; Tel.: +61-893-607-519
| |
Collapse
|
76
|
Microwave Planar Resonant Solutions for Glucose Concentration Sensing: A Systematic Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11157018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The measurement of glucose concentration finds interesting potential applications in both industry and biomedical contexts. Among the proposed solutions, the use of microwave planar resonant sensors has led to remarkable scientific activity during the last years. These sensors rely on the changes in the dielectric properties of the medium due to variations in the glucose concentration. These devices show electrical responses dependent on the surrounding dielectric properties, and therefore the changes in their response can be related to variations in the glucose content. This work shows an up-to-date review of this sensing approach after more than one decade of research and development. The attempts involved are sorted by the sensing parameter, and the computation of a common relative sensitivity to glucose is proposed as general comparison tool. The manuscript also discusses the key points of each sensor category and the possible future lines and challenges of the sensing approach.
Collapse
|
77
|
Becker M, Ahn K, Bacher M, Xu C, Sundberg A, Willför S, Rosenau T, Potthast A. Comparative hydrolysis analysis of cellulose samples and aspects of its application in conservation science. CELLULOSE (LONDON, ENGLAND) 2021; 28:8719-8734. [PMID: 34316103 PMCID: PMC8299441 DOI: 10.1007/s10570-021-04048-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Knowledge about the carbohydrate composition of pulp and paper samples is essential for their characterization, further processing, and understanding the properties. In this study, we compare sulfuric acid hydrolysis and acidic methanolysis, followed by GC-MS analysis of the corresponding products, by means of 42 cellulose and polysaccharide samples. Results are discussed and compared to solid-state NMR (crystallinity) and gel permeation chromatography (weight-averaged molecular mass) data. The use of the hydrolysis methods in the context of cellulose conservation science is evaluated, using e-beam treated and artificially aged cellulose samples. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10570-021-04048-6.
Collapse
Affiliation(s)
- Manuel Becker
- Department of Chemistry, Institute of Chemistry of Renewables, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, 1190 Austria
| | - Kyujin Ahn
- Department of Chemistry, Institute of Chemistry of Renewables, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, 1190 Austria
- National Archives of Korea, 30 Daewangpangyo-ro 851beon-gil, Sujeong-gu, Seongnam-si, Korea
| | - Markus Bacher
- Department of Chemistry, Institute of Chemistry of Renewables, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, 1190 Austria
| | - Chunlin Xu
- c/o Laboratory of Natural Materials Technology, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland
| | - Anna Sundberg
- c/o Laboratory of Natural Materials Technology, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland
| | - Stefan Willför
- c/o Laboratory of Natural Materials Technology, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewables, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, 1190 Austria
- c/o Laboratory of Natural Materials Technology, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland
| | - Antje Potthast
- Department of Chemistry, Institute of Chemistry of Renewables, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, 1190 Austria
| |
Collapse
|
78
|
Zou HY, Kong FY, Lu XY, Lu MJ, Zhu YC, Ban R, Zhao WW, Wang W. Enzymatic photoelectrochemical bioassay based on hierarchical CdS/NiO heterojunction for glucose determination. Mikrochim Acta 2021; 188:243. [PMID: 34231032 DOI: 10.1007/s00604-021-04882-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/31/2021] [Indexed: 01/19/2023]
Abstract
The design and development of a 3D hierarchical CdS/NiO heterojunction and its application in a self-powered cathodic photoelectrochemical (PEC) bioanalysis is introduced. Specifically, NiO nanoflakes (NFs) were in situ formed on carbon fibers via a facile liquid-phase deposition method followed by an annealing step and subsequent integration with CdS quantum dots (QDs). The glucose oxidase (GOx) was then coated on the photocathode to allow the determination of glucose. Under 5 W 410 nm LED light and at a working voltage of 0.0 V (vs. Ag/AgCl), this method can assay glucose concentrations down to 1.77×10-9 M. The linear range was 5×10-7 M to 1×10-3 M, and the relative standard deviation (RSD) was below 5%. The photocathodic biosensor achieved target detection with high sensitivity and selectivity. This work is expected to stimulate more passion in the development of innovative hierarchical heterostructures for advanced self-powered photocathodic bioanalysis. Design of 3D hierarchical CdS/NiO heterojunction and its application in a self-powered cathodic photoelectrochemical (PEC) bioanalysis.
Collapse
Affiliation(s)
- Hui-Yu Zou
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China. .,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xin-Yang Lu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Meng-Jiao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Yuan-Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China. .,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China.
| | - Rui Ban
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China. .,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
79
|
German N, Ramanaviciene A, Ramanavicius A. Dispersed Conducting Polymer Nanocomposites with Glucose Oxidase and Gold Nanoparticles for the Design of Enzymatic Glucose Biosensors. Polymers (Basel) 2021; 13:polym13132173. [PMID: 34209068 PMCID: PMC8271668 DOI: 10.3390/polym13132173] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Biosensors for the determination of glucose concentration have a great significance in clinical diagnosis, and in the food and pharmaceutics industries. In this research, short-chain polyaniline (PANI) and polypyrrole (Ppy)-based nanocomposites with glucose oxidase (GOx) and 6 nm diameter AuNPs (AuNPs(6 nm)) were deposited on the graphite rod (GR) electrode followed by the immobilization of GOx. Optimal conditions for the modification of GR electrodes by conducting polymer-based nanocomposites and GOx were elaborated. The electrodes were investigated by cyclic voltammetry and constant potential amperometry in the presence of the redox mediator phenazine methosulfate (PMS). The improved enzymatic biosensors based on GR/PANI-AuNPs(6 nm)-GOx/GOx and GR/Ppy-AuNPs(6 nm)-GOx/GOx electrodes were characterized by high sensitivity (65.4 and 55.4 μA mM−1 cm−2), low limit of detection (0.070 and 0.071 mmol L−1), wide linear range (up to 16.5 mmol L−1), good repeatability (RSD 4.67 and 5.89%), and appropriate stability (half-life period (τ1/2) was 22 and 17 days, respectively). The excellent anti-interference ability to ascorbic and uric acids and successful practical application for glucose determination in serum samples was presented for GR/PANI-AuNPs(6 nm)-GOx/GOx electrode.
Collapse
Affiliation(s)
- Natalija German
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (N.G.); (A.R.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (N.G.); (A.R.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
- Division of Materials Science and Electronics, State Scientific Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
80
|
Ramesh S, Karuppasamy K, Haldorai Y, Sivasamy A, Kim HS, Kim HS. Hexagonal nanostructured cobalt oxide @ nitrogen doped multiwalled carbon nanotubes/polypyyrole composite for supercapacitor and electrochemical glucose sensor. Colloids Surf B Biointerfaces 2021; 205:111840. [PMID: 33992823 DOI: 10.1016/j.colsurfb.2021.111840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/30/2022]
Abstract
Hexagonal nanostructured cobalt oxide @ N-doped MWCNT /polypyyrole (Co3O4/PPy@N-MWCNT) composite was produced by an ultrasonication-mediated solvothermal method for electrochemical supercapacitor and glucose sensor applications. The structural and electrochemical properties of the Co3O4/PPy@N-MWCNT were confirmed by various spectroscopic and microscopic techniques. The as-prepared electrode showed an excellent capacitance of ∼872 F/g at 0.5 A/g with a capacitance retention of 96.8 %, even after 10,000 cycles. In addition, analysis of the sensing activity of the composite materials towards the glucose detection showed excellent electrochemical sensing performance that includes the glucose linear limit of (10 to 0.15) μm, detection sensitivity of 195.72 μA/cm2/mM, and lower detection value of S = 0.07327 μA/cm2 @ R2 = 0.99. The as-prepared composite material can be a promising candidate for the electrochemical supercapacitor and the efficient sensing of glucose.
Collapse
Affiliation(s)
- Sivalingam Ramesh
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, Pildong-ro 1 gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Pildong-ro 1 gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Yuvaraj Haldorai
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Arumugam Sivasamy
- Chemical Engineering Area, Central Leather Research Institute (CLRI-CSIR), Adyar, Chennai, 600020, India
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Pildong-ro 1 gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Heung Soo Kim
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, Pildong-ro 1 gil, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
81
|
Donmez S. A novel electrochemical glucose biosensor based on a poly (L-aspartic acid)-modified carbon-paste electrode. Prep Biochem Biotechnol 2021; 50:961-967. [PMID: 32779995 DOI: 10.1080/10826068.2020.1805758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new amperometric biosensor was fabricated by means of electropolymerization of L-aspartic acid on a carbon-paste electrode (CPE) for the bioelectrochemical determination of glucose. The electropolymerization process was conducted via cyclic voltammetry (CV). The modified CPE with poly (L-aspartic acid) (PAA) provided free carboxyl groups so as to immobilize the glucose oxidase (GOx), and further, enhanced the electrocatalytic activity of the hydrogen peroxide (H2O2). The biosensor displayed both good stability and good bioactivity. The sensitivity of the prepared biosensor was 5.3 µA cm-2 mM-1. Its linear range extended from 0.05 mM to 1.0 mM, with the low limit of detection (LOD) being 69.2 µM. The Michaelis-Menten constant was found to be 1.17 mM. Furthermore, the biosensor showed good anti-interference ability in relation to dopamine, uric acid, and ascorbic acid. Taken together, these results demonstrate that PAA/CPE is a promising material for the fabrication of glucose biosensor.
Collapse
Affiliation(s)
- Soner Donmez
- Bucak School of Health, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
82
|
ElDash RM, Raslan MA, Shaheen SM, Sabri NA. The effect of morning versus evening administration of empagliflozin on its pharmacokinetics and pharmacodynamics characteristics in healthy adults: a two-way crossover, non-randomised trial. F1000Res 2021; 10:321. [PMID: 34123370 PMCID: PMC8167502 DOI: 10.12688/f1000research.51114.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 01/15/2023] Open
Abstract
Background: Empagliflozin is an SGLT2 inhibitor approved for use in patients with diabetes mellitus type 2 (DMT2) with or without other cardiovascular disease. Empagliflozin is taken once daily without rationale on the optimal timing for administration. This study aimed to determine the chronopharmacological effects of morning vs evening administration of empagliflozin (10 mg) in healthy Egyptian adults, by investigating the pharmacokinetics and pharmacodynamics parameters of empagliflozin depending on the intake time. Methods: An open label, sequential, two-way crossover trial comprised of two periods with a washout period of 7 days. All participants received a single oral dose of empagliflozin (JARDIANCE ®; 10 mg film coated tablet) in the evening, and after a seven-day washout period, the morning. Pharmacokinetics parameters (primary endpoints: t max (h), C max (ng/ml), AUC 0-t (ng.h/ml); secondary endpoints: AUC 0 to ∞(ng.h/ml)) were assessed. Method validation was done prior to injection in LC/MS/MS and samples were processed by Liquid-Liquid extraction. The pharmacodynamic profile (UGE 0-24) was determined after method validation (glucose hexokinase method). Results: T max increased by 35% in the evening phase compared to the morning phase, while C max decreased by -6.5% in the evening dose compared to the morning dose. Additionally, AUC 0 to ∞ increased in the evening phase by 8.25% compared to the morning phase. The mean cumulative amount of glucose excreted (UGE ( 0-24)) increased by 43% in the evening dose compared to the morning dose Conclusion: Despite the difference in pharmacokinetics parameters between evening and morning doses, C max, AUC 0-t, AUC 0-∞, didn't differ on the bioequivalence level. In addition, as UGE ( 0-24) didn't statistically differ, thus, we can conclude that there is no statistical significance between the morning and evening doses. Trial registration: Clinal Trials.gov, ID: NCT03895229 (registered on 29 th March 2019).
Collapse
Affiliation(s)
- Rana M. ElDash
- Pharmacy Practice Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | | | - Sara M. Shaheen
- Clinical Pharmacy Department, Faculty of Pharmacy, AinShms University, Cairo, 11566, Egypt
| | - Nagwa Ali Sabri
- Clinical Pharmacy Department, Faculty of Pharmacy, AinShms University, Cairo, 11566, Egypt
| |
Collapse
|
83
|
Zhang Y, Li X, Li J, Khan MZH, Ma F, Liu X. A novel zinc complex with antibacterial and antioxidant activity. BMC Chem 2021; 15:17. [PMID: 33722300 PMCID: PMC7962405 DOI: 10.1186/s13065-021-00745-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/05/2021] [Indexed: 12/25/2022] Open
Abstract
Background In order to enhance the antibacterial activity and reduce the toxicity of Zn2+, novel complexes of Zn(II) were synthesized. Results A water-soluble zinc-glucose-citrate complex (ZnGC) with antibacterial activity was synthesized at pH 6.5. The structure, morphology, characterization, acute toxicity, antibacterial and antioxidant activities, and in situ intestinal absorption were investigated. The results showed that zinc ion was linked with citrate by coordinate bond while the glucose was linked with it through intermolecular hydrogen bonding. The higher the molecular weight of sugar is, the more favorable it is to inhibit the formation of zinc citrate precipitation. Compared with ZnCl2, ZnGC complex presented better antibacterial activity against Staphylococcus aureus (S. aureus, Gram-positive) and Escherichia coli (E. coli, Gram-negative). Conclusions The results of acute toxicity showed no obvious toxicity in this test and in situ intestinal absorption study, suggesting that ZnGC complex could be used as a potential zinc supplement for zinc deficiency.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, School of Pharmacy, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Xiaojing Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, School of Pharmacy, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Jia Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, School of Pharmacy, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Md Zaved Hossain Khan
- Department of Chemical Engineering, Jashore University of Science and Technology, Jahsore, 7408, Bangladesh
| | - Fanyi Ma
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, School of Pharmacy, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Xiuhua Liu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, School of Pharmacy, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
84
|
Beaumont M, Tran R, Vera G, Niedrist D, Rousset A, Pierre R, Shastri VP, Forget A. Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules 2021; 22:1027-1052. [PMID: 33577286 PMCID: PMC7944484 DOI: 10.1021/acs.biomac.0c01406] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/29/2021] [Indexed: 12/22/2022]
Abstract
With the increasing growth of the algae industry and the development of algae biorefinery, there is a growing need for high-value applications of algae-extracted biopolymers. The utilization of such biopolymers in the biomedical field can be considered as one of the most attractive applications but is challenging to implement. Historically, polysaccharides extracted from seaweed have been used for a long time in biomedical research, for example, agarose gels for electrophoresis and bacterial culture. To overcome the current challenges in polysaccharides and help further the development of high-added-value applications, an overview of the entire polysaccharide journey from seaweed to biomedical applications is needed. This encompasses algae culture, extraction, chemistry, characterization, processing, and an understanding of the interactions of soft matter with living organisms. In this review, we present algae polysaccharides that intrinsically form hydrogels: alginate, carrageenan, ulvan, starch, agarose, porphyran, and (nano)cellulose and classify these by their gelation mechanisms. The focus of this review further lays on the culture and extraction strategies to obtain pure polysaccharides, their structure-properties relationships, the current advances in chemical backbone modifications, and how these modifications can be used to tune the polysaccharide properties. The available techniques to characterize each organization scale of a polysaccharide hydrogel are presented, and the impact on their interactions with biological systems is discussed. Finally, a perspective of the anticipated development of the whole field and how the further utilization of hydrogel-forming polysaccharides extracted from algae can revolutionize the current algae industry are suggested.
Collapse
Affiliation(s)
- Marco Beaumont
- Queensland
University of Technology, Brisbane, Australia
| | - Remy Tran
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| | - Grace Vera
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| | - Dennis Niedrist
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| | - Aurelie Rousset
- Centre
d’Étude et de Valorisation des Algues, Pleubian, France
| | - Ronan Pierre
- Centre
d’Étude et de Valorisation des Algues, Pleubian, France
| | - V. Prasad Shastri
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
- Centre
for Biological Signalling Studies, University
of Freiburg, Frieburg, Germany
| | - Aurelien Forget
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| |
Collapse
|
85
|
Amperometric nonenzymatic glucose biosensor based on graphite rod electrode modified by Ni-nanoparticle/polypyrrole composite. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105751] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
86
|
Li R, Liang H, Zhu M, Lai M, Wang S, Zhang H, Ye H, Zhu R, Zhang W. Electrochemical dual signal sensing platform for the simultaneous determination of dopamine, uric acid and glucose based on copper and cerium bimetallic carbon nanocomposites. Bioelectrochemistry 2021; 139:107745. [PMID: 33524654 DOI: 10.1016/j.bioelechem.2021.107745] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
A highly sensitive electrochemical sensor for the simultaneous dual signal determination of dopamine (DA), uric acid (UA) and glucose (Glu) has been obtained using nanocomposites based on the copper and cerium bimetallic nanoparticles and carbon nanomaterials of graphene and single-walled carbon nanotubes in the presence of Tween 20 (GR-SWCNT-Ce-Cu-Tween 20) modified glassy carbon electrode. The surface morphology of the nanocomposites was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), and the electrochemical behavior of the sensor was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with potassium ferricyanide as probe. In the coexistence system of DA, UA and Glu, three clear and well-isolated voltammetric peaks were obtained by CV and differential pulse voltammetry (DPV), and oxidation peak currents of DA and UA are positively correlated with their concentrations respectively, while the peak current of Glu is negatively correlated with its concentration. Linearity was obtained in the ranges of 0.1-100 µM for dopamine, 0.08-100 µM for uric acid and 1-1000 µM for glucose with DPV, and the detection limits (S/N = 3) of 0.0072 µM, 0.0063 µM, and 0.095 µM for DA, UA and Glu, respectively. The method was successfully applied to the determination of DA, UA and Glu in blood serum samples, which provided a reference for further sensor research.
Collapse
Affiliation(s)
- Rui Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Huanru Liang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Mingfang Zhu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China.
| | - Mushen Lai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Shumei Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, PR China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou, PR China
| | - Hongwu Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Hongqing Ye
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Rongkun Zhu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Wenhao Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| |
Collapse
|
87
|
Koštejnová L, Ondráček J, Majerová P, Koštejn M, Kuncová G, Trögl J. Cultivation of Saccharomyces cerevisiae with Feedback Regulation of Glucose Concentration Controlled by Optical Fiber Glucose Sensor. SENSORS 2021; 21:s21020565. [PMID: 33466906 PMCID: PMC7830682 DOI: 10.3390/s21020565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022]
Abstract
Glucose belongs among the most important substances in both physiology and industry. Current food and biotechnology praxis emphasizes its on-line continuous monitoring and regulation. These provoke increasing demand for systems, which enable fast detection and regulation of deviations from desired glucose concentration. We demonstrated control of glucose concentration by feedback regulation equipped with in situ optical fiber glucose sensor. The sensitive layer of the sensor comprises oxygen-dependent ruthenium complex and preimmobilized glucose oxidase both entrapped in organic–inorganic polymer ORMOCER®. The sensor was placed in the laboratory bioreactor (volume 5 L) to demonstrate both regulations: the control of low levels of glucose concentrations (0.4 and 0.1 mM) and maintenance of the glucose concentration (between 2 and 3.5 mM) during stationary phase of cultivation of Saccharomyces cerevisiae. Response times did not exceed 6 min (average 4 min) with average deviation of 4%. Due to these regulation characteristics together with durable and long-lasting (≥2 month) sensitive layer, this feedback regulation system might find applications in various biotechnological processes such as production of low glucose content beverages.
Collapse
Affiliation(s)
- Lucie Koštejnová
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135/1, 16502 Prague, Czech Republic; (J.O.); (P.M.); (M.K.); (G.K.)
- Correspondence: ; Tel.: +420-220-390-303
| | - Jakub Ondráček
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135/1, 16502 Prague, Czech Republic; (J.O.); (P.M.); (M.K.); (G.K.)
| | - Petra Majerová
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135/1, 16502 Prague, Czech Republic; (J.O.); (P.M.); (M.K.); (G.K.)
| | - Martin Koštejn
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135/1, 16502 Prague, Czech Republic; (J.O.); (P.M.); (M.K.); (G.K.)
| | - Gabriela Kuncová
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135/1, 16502 Prague, Czech Republic; (J.O.); (P.M.); (M.K.); (G.K.)
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 40096 Ústí nad Labem, Czech Republic;
| | - Josef Trögl
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 40096 Ústí nad Labem, Czech Republic;
| |
Collapse
|
88
|
|
89
|
Formation and Electrochemical Evaluation of Polyaniline and Polypyrrole Nanocomposites Based on Glucose Oxidase and Gold Nanostructures. Polymers (Basel) 2020; 12:polym12123026. [PMID: 33348805 PMCID: PMC7766309 DOI: 10.3390/polym12123026] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/04/2023] Open
Abstract
Nanocomposites based on two conducting polymers, polyaniline (PANI) and polypyrrole (Ppy), with embedded glucose oxidase (GOx) and 6 nm size gold nanoparticles (AuNPs(6nm)) or gold-nanoclusters formed from chloroaurate ions (AuCl4−), were synthesized by enzyme-assisted polymerization. Charge (electron) transfer in systems based on PANI/AuNPs(6nm)-GOx, PANI/AuNPs(AuCl4−)-GOx, Ppy/AuNPs(6nm)-GOx and Ppy/AuNPs(AuCl4−)-GOx nanocomposites was investigated. Cyclic voltammetry (CV)-based investigations showed that the reported polymer nanocomposites are able to facilitate electron transfer from enzyme to the graphite rod (GR) electrode. Significantly higher anodic current and well-defined red-ox peaks were observed at a scan rate of 0.10 V s−1. Logarithmic function of anodic current (log Ipa), which was determined by CV-based experiments performed with glucose, was proportional to the logarithmic function of a scan rate (log v) in the range of 0.699–2.48 mV s−1, and it indicates that diffusion-controlled electrochemical processes were limiting the kinetics of the analytical signal. The most efficient nanocomposite structure for the design of the reported glucose biosensor was based on two-day formed Ppy/AuNPs(AuCl4−)-GOx nanocomposites. GR/Ppy/AuNPs(AuCl4−)-GOx was characterized by the linear dependence of the analytical signal on glucose concentration in the range from 0.1 to 0.70 mmol L−1, the sensitivity of 4.31 mA mM cm−2, the limit of detection of 0.10 mmol L−1 and the half-life period of 19 days.
Collapse
|
90
|
Wu X, Yin J, Liu J, Gu Y, Wang S, Wang J. Colorimetric detection of glucose based on the binding specificity of a synthetic cyclic peptide. Analyst 2020; 145:7234-7241. [PMID: 32893268 DOI: 10.1039/d0an00211a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel colorimetric sensing method for glucose was developed based on the catalytic activity of Au nanoparticles (NPs) and a synthetic cyclic peptide that specifically binds with glucose. It is the first time that a cyclic peptide was used as a recognition element for glucose sensing. In the absence of glucose, the monolayers of cyclic peptide on the Au NP surfaces interfered little with the adsorption of 4-nitrophenol, and the Au NPs catalyze the reduction of bright yellow 4-nitrophenol to colorless 4-aminophenol in the presence of NaBH4. Added glucose was preferentially bound by the cyclic peptides and impeded the adsorption of 4-nitrophenol. Therefore, the color of the solution presented varying shades of yellow depending on the concentration of glucose. The method had a short response time of 10 min and demonstrated a linear response over a range of glucose concentrations from 0.1 mM to 20 mM, with a lower limit of detection of 0.04 mM. Meanwhile, it also provided results readily observable by the naked eye. The method was successfully applied for the detection of glucose in spiked food samples (Chinese cabbage, pear, and wheat flour) and spiked rabbit blood, and a good recovery rate of 88.04-103.28% and 94.27-101.53% was obtained, respectively.
Collapse
Affiliation(s)
- Xuemei Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Safety Control Technology in Food Processing, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | | | | | | | | | | |
Collapse
|
91
|
Ruiz-Llacsahuanga B, Hamilton A, Zaches R, Hanrahan I, Critzer F. Utility of rapid tests to assess the prevalence of indicator organisms (Aerobic plate count, Enterobacteriaceae, coliforms, Escherichia coli, and Listeria spp.) in apple packinghouses. Int J Food Microbiol 2020; 337:108949. [PMID: 33220648 DOI: 10.1016/j.ijfoodmicro.2020.108949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/15/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Abstract
The 2014 listeriosis outbreak caused by caramel-coated apples was linked to apples cross-contaminated within an apple packing facility. This outbreak has increased the focus on effective cleaning and sanitation methods that must be validated and monitored during apple packing. Thus, rapid and reliable testing methods are necessary for assessing cleanliness in the apple packing industry. The objectives of this study were to assess the prevalence of common indicator organisms [Aerobic plate count (APC), Enterobacteriaceae, coliforms, Escherichia coli, and Listeria spp.] on food contact surfaces (zone 1) in apple packinghouses and to evaluate the utility and accuracy of currently used rapid tests (ATP and glucose/lactose residue swabs). Food contact surfaces were sampled over a 100 cm2 area in five commercial apple packinghouses to evaluate populations of indicator organisms APC, Enterobacteriaceae, coliforms, E. coli (n = 741), and rapid test readings (n = 659). Petrifilm plates were used for the quantification of APC, Enterobacteriaceae, and coliform/E. coli. Rapid tests [ATP swabs (UltraSnap) and glucose/lactose residue swabs (SpotCheck Plus)] were processed on-site. A larger area (0.93 m2) was sampled for the detection of Listeria spp. (n = 747), following a modified protocol of the FDA's Bacteriological Analytical Manual method, and confirmed with PCR and gel electrophoresis via the iap gene. No significant association was found between either rapid test and populations of APC, Enterobacteriaceae, coliforms, E. coli, and Listeria spp. detection. However, recovery of APC (log CFU/100 cm2) was higher with a failed glucose/lactose residue swab surface hygiene result (3.1) than a passed result (2.9) (p = 0.03). Populations of APC, Enterobacteriaceae, and coliforms were significantly different at each unit operation during the packing process (p ≤ 0.05). This study concluded that ATP and glucose/lactose residue rapid tests were poorly suited for determining microbial load since they were not related to populations of any common indicator organisms or the detection of Listeria spp. These findings emphasize the need to utilize a rapid test, which can be a good indicator of residual matter on a surface, along with traditional microbiological methods to assess cleaning and sanitation practices in apple packinghouses.
Collapse
Affiliation(s)
- Blanca Ruiz-Llacsahuanga
- School of Food Science, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | - Alexis Hamilton
- School of Food Science, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | - Robyn Zaches
- School of Food Science, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | - Ines Hanrahan
- Washington Tree Fruit Research Commission, 1719 Springwater Avenue, Wenatchee, WA 98801, USA
| | - Faith Critzer
- School of Food Science, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA.
| |
Collapse
|
92
|
Wang H, Han Q, Ren X, Wang H, Kuang X, Wu D, Wei Q. Photoelectrochemical self-powered biosensing cathodic platform by NiO nanosheets/RGO/BiOI heterostructures for detection of glucose. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
93
|
Li X, Zhang M, Hu Y, Xu J, Sun D, Hu T, Ni Z. Developing a versatile electrochemical platform with optimized electrode configuration through screen-printing technology toward glucose detection. Biomed Microdevices 2020; 22:74. [PMID: 33037942 DOI: 10.1007/s10544-020-00527-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2020] [Indexed: 12/01/2022]
Abstract
Rapid on-site detection of glucose has been attracting considerable attention nowadays. Screen-printed electrodes (SPEs) were assessed as ideal detection platforms due to their advantages such as, disposability, portability, ease of miniaturization, and mass production. The topology and shape of electrodes have a crucial impact on their electrical conductivity and electrochemical properties. In this study, a versatile electrochemical platform with optimized three-electrode configuration was developed through screen-printing technology. Three types of SPEs were prepared, and their electrocatalytic properties toward glucose detection were investigated. Based on this platform, both enzyme-based (denoted as GOD/rGO) and non-enzymatic (denoted as Co@MoS2/rGO) bioactive compounds were deposited on the working electrode of the circular SPE through simply drop-casting, respectively. Their morphology was characterized through scanning electron microscopy (SEM). Cycle sweep voltammetry was used to study the electrocatalytic activity of these biosensors. The circular SPE exhibited satisfying electrochemical redox activity and much higher sensitivity towards glucose detection, which rendered it a promising candidate for point-of-care detection.
Collapse
Affiliation(s)
- Xiao Li
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Man Zhang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yujie Hu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Jian Xu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Dongke Sun
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Tao Hu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
94
|
Naser AM, Rahman M, Unicomb L, Doza S, Selim S, Chaity M, Luby SP, Anand S, Staimez L, Clasen TF, Gujral UP, Gribble MO, Narayan KMV. Past Sodium Intake, Contemporary Sodium Intake, and Cardiometabolic Health in Southwest Coastal Bangladesh. J Am Heart Assoc 2020; 9:e014978. [PMID: 32875927 PMCID: PMC7727005 DOI: 10.1161/jaha.119.014978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Background We compared the relationship of past and contemporary sodium (Na) intake with cardiometabolic biomarkers. Methods and Results A total of 1191 participants' data from a randomized controlled trial in coastal Bangladesh were analyzed. Participants provided 24-hour urine Na (24UNa) data for 5 monthly visits. Their fasting blood glucose, total cholesterol, triglycerides, high-density lipoprotein, blood pressure, and 24-hour urine protein were measured at the fifth visit. Participants' mean 24UNa over the first 4 visits was the past Na, and 24UNa of the fifth visit was the contemporary Na intake. We estimated the prevalence ratios of elevated cardiometabolic biomarkers and metabolic syndrome across 24UNa tertiles by multilevel logistic regression using participant-, household-, and community-level random intercepts. Models were adjusted for age, sex, body mass index, smoking, physical activity, alcohol consumption, sleep hours, religion, and household wealth. Compared with participants in tertile 1 of past urine Na, those in tertile 3 had 1.46 (95% CI, 1.08-1.99) times higher prevalence of prediabetes or diabetes mellitus, 5.49 (95% CI, 2.73-11.01) times higher prevalence of large waist circumference, and 1.60 (95% CI, 1.04-2.46) times higher prevalence of metabolic syndrome. Compared with participants in tertile 1 of contemporary urine Na, those in tertile 3 had 1.93 (95% CI, 1.24-3.00) times higher prevalence of prediabetes or diabetes mellitus, 3.14 (95% CI, 1.45-6.83) times higher prevalence of proteinuria, and 2.23 (95% CI, 1.34-3.71) times higher prevalence of large waist circumference. Conclusions Both past and contemporary Na intakes were associated with higher cardiometabolic disease risk.
Collapse
Affiliation(s)
- Abu Mohd Naser
- Emory Global Diabetes Research CenterHubert Department of Global HealthRollins School of Public HealthEmory UniversityAtlantaGA
| | - Mahbubur Rahman
- International Centre for Diarrhoeal Disease ResearchBangladesh (icddr,b)DhakaBangladesh
| | - Leanne Unicomb
- International Centre for Diarrhoeal Disease ResearchBangladesh (icddr,b)DhakaBangladesh
| | - Solaiman Doza
- International Centre for Diarrhoeal Disease ResearchBangladesh (icddr,b)DhakaBangladesh
| | - Shahjada Selim
- Department of EndocrinologyBangabandhu Sheikh Mujib Medical UniversityDhakaBangladesh
| | | | - Stephen P. Luby
- Division of Infectious Diseases and Geographic MedicineStanford UniversityStanfordCA
| | - Shuchi Anand
- Division of NephrologySchool of MedicineStanford UniversityStanfordCA
| | - Lisa Staimez
- Emory Global Diabetes Research CenterHubert Department of Global HealthRollins School of Public HealthEmory UniversityAtlantaGA
| | - Thomas F. Clasen
- Gangarosa Department of Environmental Health SciencesRollins School of Public HealthEmory UniversityAtlantaGA
| | - Unjali P. Gujral
- Emory Global Diabetes Research CenterHubert Department of Global HealthRollins School of Public HealthEmory UniversityAtlantaGA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental Health SciencesRollins School of Public HealthEmory UniversityAtlantaGA
- Department of EpidemiologyRollins School of Public HealthEmory UniversityAtlantaGA
| | - K. M. Venkat Narayan
- Emory Global Diabetes Research CenterHubert Department of Global HealthRollins School of Public HealthEmory UniversityAtlantaGA
| |
Collapse
|
95
|
Surapureddi SRK, Ravindhranath K, Sameer Kumar GS, Sappidi SR. Separation and Determination of d-Allose in Presence of Process-Related Impurities by Capillary Electrophoresis. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01842-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
96
|
Tao X, Wang X, Liu B, Liu J. Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosens Bioelectron 2020; 168:112537. [PMID: 32882473 DOI: 10.1016/j.bios.2020.112537] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Nanozymes are engineered nanomaterials with enzyme-like activities. Over the past decade, impressive progresses on nanozymes in biosensing have been made due to their unique advantages of high stability, low cost, and easy modification compared to natural enzymes. For many biosensors, it is critical to conjugate nanozymes to affinity ligands such as antibodies and aptamers. Since different nanomaterials have different surface properties, conjugation methods need to be compatible with these properties. In addition, the effect of biomolecules on nanozyme activity needs to be considered. In this review, we first categorized nanozyme-based biosensors into four parts, respectively describing noncovalent and covalent modifications with antibodies and aptamers. Meanwhile, recent advances in antibody and aptamer labeled nanozyme biosensors are summarized, and the methods of their conjugation are further illustrated. Finally, conclusions and future perspectives for the development and application of nanozyme bioconjugates are discussed.
Collapse
Affiliation(s)
- Xiaoqi Tao
- College of Food Science, Southwest University, Chongqing, 400715, China; Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Xin Wang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
97
|
Rothbauer M, Eilenberger C, Spitz S, Bachmann B, Pajenda J, Schwaighofer A, Höll G, Helmke PS, Kohl Y, Lendl B, Ertl P. FTIR spectroscopy as a novel analytical approach for investigation of glucose transport and glucose transport inhibition studies in transwell in vitro barrier models. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118388. [PMID: 32361318 DOI: 10.1016/j.saa.2020.118388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Glucose transport is key for cellular metabolism as well as physiological function and is maintained via passive facilitated and active sodium-glucose linked transport routes. Here, we present for the first time Fourier-transform infrared spectroscopy as a novel approach for quantification of apical-to-basolateral glucose transport of in vitro cell barrier models using liver, lung, intestinal and placental cancer cell lines. Results of our comparative study revealed that distinct differences could be observed upon subjection to transport inhibitors.
Collapse
Affiliation(s)
- Mario Rothbauer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria.
| | - Christoph Eilenberger
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Sarah Spitz
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Barbara Bachmann
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Jasmin Pajenda
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andreas Schwaighofer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Gregor Höll
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Palle Steen Helmke
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering, 66280 Sulzbach, Germany
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Peter Ertl
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria.
| |
Collapse
|
98
|
Norvaiša K, Kielmann M, Senge MO. Porphyrins as Colorimetric and Photometric Biosensors in Modern Bioanalytical Systems. Chembiochem 2020; 21:1793-1807. [PMID: 32187831 PMCID: PMC7383976 DOI: 10.1002/cbic.202000067] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Advances in porphyrin chemistry have provided novel materials and exciting technologies for bioanalysis such as colorimetric sensor array (CSA), photo-electrochemical (PEC) biosensing, and nanocomposites as peroxidase mimetics for glucose detection. This review highlights selected recent advances in the construction of supramolecular assemblies based on the porphyrin macrocycle that provide recognition of various biologically important entities through the unique porphyrin properties associated with colorimetry, spectrophotometry, and photo-electrochemistry.
Collapse
Affiliation(s)
- Karolis Norvaiša
- School of Chemistry, SFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences Institute152–160 Pearse Street, Trinity College Dublin The University of DublinDublin2Ireland
| | - Marc Kielmann
- School of Chemistry, SFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences Institute152–160 Pearse Street, Trinity College Dublin The University of DublinDublin2Ireland
| | - Mathias O. Senge
- School of Chemistry, SFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences Institute152–160 Pearse Street, Trinity College Dublin The University of DublinDublin2Ireland
- Institute for Advanced Study (TUM-IAS)Lichtenberg-Strasse 2a85748GarchingGermany
| |
Collapse
|
99
|
Zhou Q, Dong X, Xiong Y, Zhang B, Lu S, Wang Q, Liao Y, Yang Y, Wang H. Multi-Responsive Lanthanide-Based Hydrogel with Encryption, Naked Eye Sensing, Shape Memory, Self-Healing, and Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28539-28549. [PMID: 32492327 DOI: 10.1021/acsami.0c06674] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we reported a multi-responsive luminescent hydrogel with properties of encryption, naked eye sensing of glucose, shape memory, self-healing, and antibacterial activity. The hydrogel (GA/CCS/DNSA/Eu3+) was obtained by mixing phenylboronic acid-modified gelatin (GA-DBA), catechol-modified carboxymethyl chitosan (CCS-PCA), 3,5-dinitrosalicylic acid (DNSA), and Eu3+ ions through a facile heating-cooling process. The resultant hydrogel exhibits reversible luminescence and color and phase changes in response to temperature, acid/base, salt, and redox stimuli. Based on the multiple responsiveness, information encryption and decryption, naked eye sensing of glucose, remarkable shape memory, and enhanced mechanical properties of the as-prepared hydrogel were realized. In addition, the self-healing capacity was also achieved due to the dynamic bonds in GA/CCS/DNSA/Eu3+ hydrogels. Specifically, the GA/CCS/DNSA/Eu3+ hydrogels possess antibacterial activity owing to the bacteriostasis of the CCS-PCA and DNSA/Eu3+ complex. Thus, GA/CCS/DNSA/Eu3+ hydrogels have potential applications in the fields of anticounterfeiting, wearable devices, biomedicine, sensing, etc.
Collapse
Affiliation(s)
- Qi Zhou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuelin Dong
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Rare Mineral Exploration and Utilization, Ministry of Land and Resources, Geological Experimental Testing Center of Hubei Province, Wuhan 430034, China
| | - Yuxiang Xiong
- Key Laboratory of Rare Mineral Exploration and Utilization, Ministry of Land and Resources, Geological Experimental Testing Center of Hubei Province, Wuhan 430034, China
| | - Binbin Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shan Lu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qin Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yonggui Liao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yajiang Yang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
100
|
Xu J, Xu K, Han Y, Wang D, Li X, Hu T, Yi H, Ni Z. A 3D porous graphene aerogel@GOx based microfluidic biosensor for electrochemical glucose detection. Analyst 2020; 145:5141-5147. [PMID: 32573601 DOI: 10.1039/d0an00681e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a chronic disease, diabetes may result in serious complications that endanger the health and life of patients. Accurate and real-time detection of blood sugar levels is of great significance for the prevention and treatment of diabetes. In this paper, an enzymatic electrochemical microfluidic biosensor for glucose detection was developed based on a three-dimensional (3D) porous graphene aerogel and glucose oxidase (GOx). A graphene aerogel was prepared by freeze-drying a graphene hydrogel and has a high electrical conductivity, the 3D porous structure provided a good near-biological condition for GOx and the increased specific surface area allowed more GOx to be immobilized on the graphene aerogel. The microfluidic system greatly reduced the consumption of samples during tests. Amperometric measurements were carried out to test glucose concentrations, and the enzyme biosensor showed a linear range from 1 mM to 18 mM (R2 = 0.991). The limit of detection (LOD) was 0.87 mM (S/N = 3) and the sensor showed excellent selectivity and stability. Finally, monitoring glucose in serum samples was achieved by the proposed sensor and good recoveries were obtained. Due to its excellent performance, the proposed biosensor has a favorable application prospect in the prevention and clinical diagnosis of diabetes. Furthermore, our method, which is used to prepare a graphene aerogel modified electrode in a microfluidic chip, can be widely used in various electrochemical sensors.
Collapse
Affiliation(s)
- Jian Xu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
| | | | | | | | | | | | | | | |
Collapse
|