51
|
Yin Z, Dong T, Huang W, Du M, Chen D, Fernie AR, Yi G, Yan S. Spatially resolved metabolomics reveals variety-specific metabolic changes in banana pulp during postharvest senescence. Food Chem X 2022; 15:100371. [PMID: 35769331 PMCID: PMC9234350 DOI: 10.1016/j.fochx.2022.100371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Both post-ripening stages and banana varieties contribute to metabolite variation. AuNP-assisted LDI-MSI was firstly used in mapping functional metabolites in pulps. AAs and monoamines exclusively accumulated in the middle region near the seed zone. Monosaccharides locate in whole pulps but enrich in the intermediate microregion. Di/trisaccharides exhibit different accumulation patterns as monosaccharides.
Banana is one of most popular fruits globally due to health-promoting and disease-preventing effects, yet little is known about in situ metabolic changes across banana varieties. Here, we integrated gold nanoparticle (AuNP)-assisted laser desorption/ionization mass spectrometry imaging (LDI-MSI) and metabolomics to investigate the spatiotemporal distribution and levels of metabolites within Brazil and Dongguan banana pulps during postharvest senescence. Metabolomics results indicated that both postripening stages and banana varieties contribute to metabolite levels. Benefiting from improved ionization efficiency of small-molecule metabolites and less peak interference, we visualized the spatiotemporal distribution of sugars, amino acids (AAs) and monoamines within pulps using AuNP-assisted LDI-MSI for the first time, revealing that AAs and monoamines exclusively accumulated in the middle region near the seed zone. Monosaccharides and di/trisaccharides were generally distributed across entire pulps but exhibited different accumulation patterns. These findings provide a guide for breeding new varieties and improving extraction efficiency of bioactive compounds.
Collapse
Affiliation(s)
- Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Tao Dong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Mingyi Du
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Dong Chen
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm 14476, Germany
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
- Corresponding authors.
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Corresponding authors.
| |
Collapse
|
52
|
Hydrophobic bioactive constituents of cinnamon bark as inhibitor of polyphenol oxidase from Musa acuminata ‘Mas’ peel. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
53
|
Khalid W, Arshad MS, Ranjha MMAN, Różańska MB, Irfan S, Shafique B, Rahim MA, Khalid MZ, Abdi G, Kowalczewski PŁ. Functional constituents of plant-based foods boost immunity against acute and chronic disorders. Open Life Sci 2022; 17:1075-1093. [PMID: 36133422 PMCID: PMC9462539 DOI: 10.1515/biol-2022-0104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Plant-based foods are becoming an increasingly frequent topic of discussion, both scientific and social, due to the dissemination of information and exchange of experiences in the media. Plant-based diets are considered beneficial for human health due to the supply of many valuable nutrients, including health-promoting compounds. Replacing meat-based foods with plant-based products will provide many valuable compounds, including antioxidants, phenolic compounds, fibers, vitamins, minerals, and some ω3 fatty acids. Due to their high nutritional and functional composition, plant-based foods are beneficial in acute and chronic diseases. This article attempts to review the literature to present the most important data on nutrients of plant-based foods that can then help in the prevention of many diseases, such as different infections, such as coronavirus disease, pneumonia, common cold and flu, asthma, and bacterial diseases, such as bronchitis. A properly structured plant-based diet not only provides the necessary nutrients but also can help in the prevention of many diseases.
Collapse
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Sajid Arshad
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | | | - Maria Barbara Różańska
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 60-624 Poznań, Poland
| | - Shafeeqa Irfan
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Bakhtawar Shafique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Abdul Rahim
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | | | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran
| | | |
Collapse
|
54
|
Effect of D-Limonene Nanoemulsion Edible Film on Banana (Musa sapientum Linn.) Post-Harvest Preservation. Molecules 2022; 27:molecules27196157. [PMID: 36234689 PMCID: PMC9572713 DOI: 10.3390/molecules27196157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
D-limonene (4-isopropenyl-1-methylcyclohexene) is an important compound in several citrus essential oils (such as orange, lemon, tangerine, lime, and grapefruit). It has been used as a flavoring agent and as a food preservative agent, with generally recognized as safe (GRAS) status. D-limonene has been well-studied for its anti-inflammatory, antioxidant, anti-cancer, and antibacterial properties. The antibacterial activity of D-limonene against food-borne pathogens was investigated in this study by preparing a D-limonene nanoemulsion. The D-limonene solution and nanoemulsion have been prepared in six concentrations, 0.04%, 0.08%, 0.1%, 0.2%, 0.4%, and 0.8% (v/v), respectively, and the antibacterial activity was tested against four food-borne pathogens (Staphylococcus aureus, Listeria monocytogenes, Salmonella enterica, and Escherichia coli). The results showed that the D-limonene nanoemulsion had good nanoscale and overall particle size uniformity, and its particle size was about 3~5 nm. It has been found that the D-limonene solution and nanoemulsion have a minimal inhibitory concentration of 0.336 mg/mL, and that they could inhibit the growth of microorganisms efficiently. The data indicate that the D-limonene nanoemulsion has more antibacterial ability against microorganisms than the D-limonene essential oil. After bananas are treated with 1.0% and 1.5% D-limonene nanoemulsion coatings, the water loss of the bananas during storage and the percentage of weight loss are reduced, which can inhibit the activity of pectinase. The application of a biocoating provides a good degree of antibacterial activity and air and moisture barrier properties, which help with extending the shelf life of bananas.
Collapse
|
55
|
Abeysekera WKSM, Jayathilaka SI, Abeysekera WPKM, Senevirathne IGNH, Jayanath NY, Premakumara GAS, Wijewardana DCMSI. In vitro determination of anti-lipidemic, anti-inflammatory, and anti-oxidant properties and proximate composition of range of millet types and sorghum varieties in Sri Lanka. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.884436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methanolic extracts of whole grains of five millet types and two sorghum varieties were evaluated for anti-lipidemic, anti-inflammatory, and a range of anti-oxidant properties in vitro (n = 3 each). Furthermore, proximate composition (n = 3 each) was also studied. Results showed significant differences (P < 0.05) among the selected samples for studied parameters. Pancreatic lipase and cholesterol esterase inhibitory activities of selected samples (2 mg/ml) ranged from 21.16 ± 1.58 to 66.65 ± 3.30 and 17.43 ± 0.60 to 52.09 ± 1.61%, respectively. Nitric oxide inhibitory activity of selected samples (2 mg/ml) ranged from −1.17 ± 0.32 to 13.56 ± 0.93%. Total polyphenolic content (TPC), total flavonoid content (TFC), and total proanthocyanidin content (TPAC) were in the range of 0.19 ± 0.01–12.50 ± 0.87 mg gallic acid equivalents/g, 0.05 ± 0.00–1.57 ± 0.01 mg quercetin equivalents/g, and 0.35 ± 0.01–12.87 ± 0.25 mg cyaniding equivalents/g of samples, respectively. Ferric reducing anti-oxidant power, oxygen radical absorbance capacity, ferrous ion chelating activity, and ABTS and DPPH anti-oxidant properties ranged from 0.15 ± 0.00 to 4.56 ± 0.03 mg of Trolox equivalents (TEs)/g, 0.19 ± 0.01 to 8.50 ± 0.72 mg of TEs/g, 0.13 ± 0.00 to 0.79 ± 0.03 mg EDTA equivalents/g, 0.22 ± 0.00 to 25.57 ± 0.35 mg of TEs/g, and 0.07 ± 0.00 to 22.97 ± 0.83 mg of TEs/g of samples, respectively. Among the studied samples, pigmented sweet sorghum exhibited the highest activities for all the tested parameters. The observed activities were moderate compared to the reference standards used. The highest values for proximate composition parameters tested varied with the different samples studied. In conclusion, the consumption of especially pigmented millet and sorghum in Sri Lanka may play an important role in the prevention and management of oxidative stress–associated chronic diseases. This is the first study to report pancreatic lipase and cholesterol esterase inhibitory activities of any millet types and sorghum varieties in Sri Lanka and the first report of cholesterol esterase inhibitory activity of millet and sorghum the world over.
Collapse
|
56
|
Wongwaiwech D, Kamchonemenukool S, Ho CT, Li S, Thongsook T, Majai N, Premjet D, Sujipuli K, Weerawatanakorn M. Nutraceutical Difference between Two Popular Thai Namwa Cultivars Used for Sun Dried Banana Products. Molecules 2022; 27:5675. [PMID: 36080440 PMCID: PMC9458235 DOI: 10.3390/molecules27175675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Musa (ABB group) “Kluai Namwa” bananas (Musa sp.) are widely grown throughout Thailand. Mali Ong is the most popular Kluai Namwa variety used as raw material for sun-dried banana production, especially in the Bangkratum District, Phitsanulok, Thailand. The sun-dried banana product made from Nanwa Mali Ong is well recognized as the best dried banana product of the country, with optimal taste compared to one made from other Kluai Namwa varieties. However, the production of Mali Ong has fluctuated substantially in recent years, leading to shortages. Consequently, farmers have turned to using other Kluai Namwa varieties including Nuanchan. This study investigated the nutraceutical contents of two popular Namwa varieties, Mali Ong and Nuanchan, at different ripening stages. Nutraceuticals in the dried banana products made from these two Kluai Namwa varieties and four commercial dried banana products were compared. Results indicated that the content of moisture, total sugar, and total soluble solids (TSS) (°Brix) increased, while total solids and texture values decreased during the ripening stage for both Kluai Namwa varieties. Rutin was the major flavonoid found in both Namwa Mali Ong and Nuanchan varieties ranging 136.00−204.89 mg/kg and 129.15−260.38 mg/kg, respectively. Rutin, naringenin, quercetin and catechin were abundant in both Namwa varieties. All flavonoids increased with ripening except for rutin, gallocatechin and gallocatechin gallate. There were no significant differences (p < 0.05) in flavonoid contents between both varieties. Tannic acid, ellagic acid, gallic acid, chlorogenic acid and ferulic acid were the main phenolic acids found in Mali Ong and Nuanchan varieties, ranging from 274.61−339.56 mg/kg and 293.13−372.66 mg/kg, respectively. Phenolic contents of both varieties decreased, increased and then decreased again during the development stage. Dopamine contents increased from 79.26 to 111.77 mg/kg and 60.38 to 125.07 mg/kg for Mali Ong and Nuanchan, respectively, but the amounts were not significantly different (p < 0.5) between the two Namwa varieties at each ripening stage. Inulin as fructooligosaccharide (FOS) increased with ripening steps. Production stages of sun-dried banana products showed no statistically significant differences (p < 0.05) between the two Namwa varieties. Therefore, when one variety is scarce, the other could be used as a replacement in terms of total flavonoids, phenolic acid, dopamine and FOS. In both Namwa varieties, sugar contents decreased after the drying process. Sugar contents of the dried products were 48.47 and 47.21 g/100 g. The drying process caused a reduction in total flavonoid contents and phenolic acid at 63−66% and 64−70%, respectively. No significant differences (p < 0.05) were found for total flavonoid and phenolic contents between the dried banana products made from the two Namwa varieties (178.21 vs. 182.53 mg/kg and 96.06 vs. 102.19 mg/kg, respectively). Products made from Nuanchan varieties (24.52 mg/kg) contained significantly higher dopamine than that from Mali Ong (38.52 mg/kg). The data also suggest that the banana maturity stage for production of the sun dried products was also optimum in terms of high nutraceutical level.
Collapse
Affiliation(s)
- Donporn Wongwaiwech
- Department of Agro-Industry, Faculty of Science and Agricultural Technology, Rajamangala University of Technology, Lanna Tak, 41/1 Moo 7 Paholayothin Road, Mai Ngam, Muang, Tak 63000, Thailand
| | - Sudthida Kamchonemenukool
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok 65000, Thailand
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Shiming Li
- College of Life Sciences, Huanggang Normal University, Huanggang 438000, China
| | - Tipawan Thongsook
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok 65000, Thailand
| | - Nutthaporn Majai
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok 65000, Thailand
| | - Duangporn Premjet
- Departmant of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Kawee Sujipuli
- Departmant of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Monthana Weerawatanakorn
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok 65000, Thailand
| |
Collapse
|
57
|
Karigidi KO, Akintimehin ES, Akinyemi O, Fapetu AP, Adetuyi FO. Nutritional, antioxidant, antidiabetic, and oxidative stability properties of turmeric (
Curcuma longa
) supplemented muffins. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kayode Olayele Karigidi
- Department of Chemical Sciences (Biochemistry Unit) Olusegun Agagu University of Science and Technology Okitipupa Nigeria
| | - Emmanuel Sina Akintimehin
- Department of Chemical Sciences (Biochemistry Unit) Olusegun Agagu University of Science and Technology Okitipupa Nigeria
| | - Oluwatoyin Akinyemi
- Department of Chemical Sciences (Biochemistry Unit) Olusegun Agagu University of Science and Technology Okitipupa Nigeria
| | - Aanuoluwapo Patricia Fapetu
- Department of Chemical Sciences (Biochemistry Unit) Olusegun Agagu University of Science and Technology Okitipupa Nigeria
| | - Foluso Olutope Adetuyi
- Department of Chemical Sciences (Biochemistry Unit) Olusegun Agagu University of Science and Technology Okitipupa Nigeria
| |
Collapse
|
58
|
Sarma PP, Gurumayum N, Samanta SK, Khound P, Kumari S, Devi D, Barman J, Banerjee SK, Devi R. Pharmacologically active chemical composite of Musa balbisiana ameliorates oxidative stress, mitochondrial cellular respiration, and thereby metabolic dysfunction. J Food Biochem 2022; 46:e14347. [PMID: 35906822 DOI: 10.1111/jfbc.14347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 12/18/2022]
Abstract
The ripe fruit pulp of different Musa species is known for its excellent source of nutrient contents. Musa balbisiana (MB) is one such variety of Musa species, mainly found in the southern part of Asia, especially in the North-eastern part of India, remains unexplored despite its continuous use by the local traditional healers. The present study focuses on identifying and quantifying the active chemicals present in the ripe fruit pulp of Musa balbisiana (RFPMB) to understand its combined efficacy and nutritional benefit to control human metabolic complications specially related to diabetes and cardiovascular disorder. Characterization and confirmation through targeted LC-MS and HPLC-PDA based assays followed by quantitative analysis led us to identify the major bioactive compounds in RFPMB as shikimic acid, p-hydroxybenzoic acid, vanillic acid, ferulic acid, sinapic acid, caffeic acid, syringic acid, chlorogenic acid, trans-cinnamic acid, and two essential fatty acids; linolenic acid and linoleic acid. The ripe fruit pulp is further analyzed to understand the nutritional and mineral content and found a substantial presence of calcium and potassium (15.74 ± 0.43 and 395.20 ± 9.5 mg/100 g of raw pulp, respectively) compared to other reported varieties. The active portion of RFPMB reduces the production of ROS, the expression of inflammatory marker genes TNF-α and TGF-β, and accelerates the mitochondrial oxygen consumption rate (OCR) by enhancing the basal respiration, maximal respiration, and ATP production capacity of the targeted cells. The present study concluded that, a particular phytopharmaceutical composition of RFPMB with 11-biomarker compounds might be an efficacious formulation for developing a value-added nutraceutical product in managing metabolic complications and its related oxidative stress. PRACTICAL APPLICATIONS: This study has provided the prior information regarding the potential nutraceutical and phytochemical advantages of Musa balbisiana (MB) fruit pulp over other reported banana varieties. The HPLC-based quantification will give a clear understanding of the food values in comparison of bioactive compounds present in the active fraction of RFPMB, which can be an effective phytopharmaceutical in combating metabolic disorders and oxidative stress. Overall this study will help to commercialize a value-added product from this variety of banana with proper scientific validation.
Collapse
Affiliation(s)
- Partha Pratim Sarma
- Institute of Advanced Study in Science and Technology, Guwahati, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nonibala Gurumayum
- Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Suman Kumar Samanta
- Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Puspanjali Khound
- Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Sima Kumari
- Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Diptimayee Devi
- Gauhati Medical College and Hospital, Guwahati, Assam, India
| | | | - Sanjay Kumar Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Rajlakshmi Devi
- Institute of Advanced Study in Science and Technology, Guwahati, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
59
|
Oyeyinka BO, Afolayan AJ. Suitability of Banana and Plantain Fruits in Modulating Neurodegenerative Diseases: Implicating the In Vitro and In Vivo Evidence from Neuroactive Narratives of Constituent Biomolecules. Foods 2022; 11:foods11152263. [PMID: 35954031 PMCID: PMC9367880 DOI: 10.3390/foods11152263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Active principles in plant-based foods, especially staple fruits, such as bananas and plantains, possess inter-related anti-inflammatory, anti-apoptotic, antioxidative, and neuromodulatory activities. Neurodegenerative diseases affect the functionality of the central and peripheral nervous system, with attendant cognitive deficits being hallmarks of these conditions. The dietary constitution of a wide range of bioactive compounds identified in this review further iterates the significance of the banana and plantain in compromising, halting, or preventing the pathological mechanisms of neurological disorders. The neuroprotective mechanisms of these biomolecules have been identified by using protein expression regulation and specific gene/pathway targeting, such as the nuclear and tumor necrosis factors, extracellular signal-regulated and mitogen-activated protein kinases, activator protein-1, and the glial fibrillary acidic protein. This review establishes the potential double-edged neuro-pharmacological fingerprints of banana and plantain fruits in their traditionally consumed pulp and less utilized peel component for human nutrition.
Collapse
|
60
|
Pham BT, Le TT, Nguyen TT, Van Tran T, Van Nguyen D, Bui QTP, Phung TK. Polyvinyl alcohol based functional coating incorporated with
Sonneratia ovata
extract: Preparation, characterization, and banana preservation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bao‐Tran Tran Pham
- Faculty of Chemistry University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
- Institute of Technology Application and Sustainable Development, Faculty of Environmental and Food Engineering Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Thuy‐Kieu Thi Le
- Faculty of Chemical Engineering Ho Chi Minh City University of Food Industry Ho Chi Minh City Vietnam
| | - Thuong Thi Nguyen
- Faculty of Chemistry University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
- Institute of Technology Application and Sustainable Development, Faculty of Environmental and Food Engineering Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Thuan Van Tran
- Institute of Technology Application and Sustainable Development, Faculty of Environmental and Food Engineering Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Dai Van Nguyen
- Faculty of Automotive Engineering, School of Engineering and Technology Van Lang University Ho Chi Minh City Vietnam
| | - Quynh Thi Phuong Bui
- Faculty of Chemical Engineering Ho Chi Minh City University of Food Industry Ho Chi Minh City Vietnam
| | - Thanh Khoa Phung
- Vietnam National University Ho Chi Minh City Vietnam
- Department of Chemical Engineering, School of Biotechnology International University Ho Chi Minh City Vietnam
| |
Collapse
|
61
|
Effect of cellulose and gum derivatives on physicochemical, microstructural and prebiotic properties of foam-mat dried red banana powder. Int J Biol Macromol 2022; 218:44-56. [PMID: 35853507 DOI: 10.1016/j.ijbiomac.2022.07.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 01/22/2023]
Abstract
Fruit sugars are gaining attention for their nutraceutical benefits. High sugar in ripe and over-ripe bananas makes them difficult for convective drying. In this study, red banana (RB) pulp was added with different gum derivatives as foaming agent (FA) (4 % w/w) viz., acacia gum(GA), carrageenan (CG) and gelatine(GE). Maltodextrin and carboxymethyl-cellulose were added as foam-stabilizers (FS). FA addition resulted in low density foam (RBGE-50 % reduction) with improved foam stability (RBGA-94.42 %). Powders were low in hygroscopicity (RBGA-18.62 g 100 g -1) with optimum flowability. The particle size (54.95 to 69.86 μm) of RB powder increased with gum derivatives addition. Secondary metabolites varied significantly in powder samples. Positive correlation of secondary metabolites with DPPH assay was observed. RBGA showed higher prebiotic activity (0.68) and supported the growth of tested Lactobacillus strain. Therefore, foam-mat dried RB powder with GA could be used in food formulation as low-cost alternative fruit sugar with higher nutritional, functional and prebiotic properties.
Collapse
|
62
|
Dibakoane SR, Du Plessis B, Silva LD, Anyasi TA, Emmambux M, Mlambo V, Wokadala OC. Nutraceutical Properties of Unripe Banana Flour Resistant Starch: A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siphosethu Richard Dibakoane
- School of Agricultural and Natural Sciences University of Mpumalanga Corner R40 and D725 Road Nelspruit 1200 South Africa
- Agro‐Processing and Postharvest Technologies Division Agricultural Research Council – Tropical and Subtropical Crops Nelspruit 1200 South Africa
| | - Belinda Du Plessis
- Tshwane University of Technology Department of Biotechnology and Food Technology Private Bag X680 Pretoria 0083 South Africa
| | - Laura Da Silva
- Tshwane University of Technology Department of Biotechnology and Food Technology Private Bag X680 Pretoria 0083 South Africa
| | - Tonna A. Anyasi
- Agro‐Processing and Postharvest Technologies Division Agricultural Research Council – Tropical and Subtropical Crops Nelspruit 1200 South Africa
| | - Mohammad Emmambux
- Department of Consumer and Food Sciences University of Pretoria Private Bag X20 Hatfield 0028 South Africa
| | - Victor Mlambo
- School of Agricultural and Natural Sciences University of Mpumalanga Corner R40 and D725 Road Nelspruit 1200 South Africa
| | - Obiro Cuthbert Wokadala
- School of Agricultural and Natural Sciences University of Mpumalanga Corner R40 and D725 Road Nelspruit 1200 South Africa
| |
Collapse
|
63
|
Characterization of Lactic Acid Bacteria Isolated from Banana and Its Application in Silage Fermentation of Defective Banana. Microorganisms 2022; 10:microorganisms10061185. [PMID: 35744703 PMCID: PMC9227619 DOI: 10.3390/microorganisms10061185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
To effectively utilize banana by-products, we prepared silage with defective bananas using screened lactic acid bacteria (LAB), sucrose, and tannase as additives. Eleven strains of LAB were isolated from the fruits and flowers of defective bananas, all of which were Gram-positive and catalase-negative bacteria that produced lactic acid from glucose. Among these LAB, homofermentative strain CG1 was selected as the most suitable silage additive due to its high lactic acid production and good growth in a low pH environment. Based on its physiological and biochemical properties and 16S rRNA gene sequence analysis, strain CG1 was identified as Lactiplantibacillus plantarum. Defective bananas contain 74.8−76.3% moisture, 7.2−8.2% crude protein, 5.9−6.5% ether extract, and 25.3−27.8% neutral detergent fibre on a dry matter basis. After 45 d of fermentation, the silage of deficient bananas treated with LAB or sucrose alone improved fermentation quality, with significantly (p < 0.05) lower pH and higher lactic acid contents than the control. The combination of LAB and sucrose had a synergistic effect on the fermentation quality of silage. The tannase-treated silage significantly (p < 0.05) decreased the tannin content, while the combination of tannase and LAB in silage not only decreased (p < 0.05) the tannin content, but also improved the fermentation quality. The study confirmed that defective bananas are rich in nutrients, can prepare good quality silage, and have good potential as a feed source for livestock.
Collapse
|
64
|
Zhao Y, Zhan J, Wang Y, Wang D. The Relationship Between Plant-Based Diet and Risk of Digestive System Cancers: A Meta-Analysis Based on 3,059,009 Subjects. Front Public Health 2022; 10:892153. [PMID: 35719615 PMCID: PMC9204183 DOI: 10.3389/fpubh.2022.892153] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
Background and Objectives Diets containing red or processed meat are associated with a growing risk of digestive system cancers. Whether a plant-based diet is protective against cancer needs a high level of statistical evidence. Methods We performed a meta-analysis of five English databases, including PubMed, Medline, Embase, Web of Science databases, and Scopus, on October 24, 2021 to identify published papers. Cohort studies or case-control studies that reported a relationship between plant-based diets and cancers of the digestive system were included. Summary effect-size estimates are expressed as Risk ratios (RRs) or Odds ratios (ORs) with 95% confidence intervals and were evaluated using random-effect models. The inconsistency index (I2) and τ2 (Tau2) index were used to quantify the magnitude of heterogeneity derived from the random-effects Mantel-Haenszel model. Results The same results were found in cohort (adjusted RR = 0.82, 95% CI: 0.78–0.86, P < 0.001, I2 = 46.4%, Tau2 = 0.017) and case-control (adjusted OR = 0.70, 95% CI: 0.64–0.77, P < 0.001, I2 = 83.8%, Tau2 = 0.160) studies. The overall analysis concluded that plant-based diets played a protective role in the risk of digestive system neoplasms. Subgroup analyses demonstrated that the plant-based diets reduced the risk of cancers, especially pancreatic (adjusted RR = 0.71, 95% CI: 0.59–0.86, P < 0.001, I2 = 55.1%, Tau2 = 0.028), colorectal (adjusted RR = 0.76, 95% CI: 0.69–0.83, P < 0.001, I2 = 53.4%, Tau2 = 0.023), rectal (adjusted RR = 0.84, 95% CI: 0.78–0.91, P < 0.001, I2 = 1.6%, Tau2 = 0.005) and colon (adjusted RR = 0.88, 95% CI: 0.82–0.95, P < 0.001, I2 = 0.0%, Tau2 = 0.000) cancers, in cohort studies. The correlation between vegan and other plant-based diets was compared using Z-tests, and the results showed no difference. Conclusions Plant-based diets were protective against cancers of the digestive system, with no significant differences between different types of cancer. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022322276, Identifier: CRD42022322276.
Collapse
Affiliation(s)
- Yujie Zhao
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junyi Zhan
- Graduate School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongsen Wang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongli Wang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Dongli Wang
| |
Collapse
|
65
|
Siddiqui MW, Homa F, Lata D, Mir H, Aftab T, Mishra P. Hydrogen sulphide infiltration downregulates oxidative metabolism and extends postharvest life of banana. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:697-703. [PMID: 34783125 DOI: 10.1111/plb.13362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulphide (H2 S) has emerged as a potential regulator of plant defence against different abiotic stresses. As a climacteric fruit, banana undergoes oxidative stresses shortly after harvest, resulting in faster ripening and senescence. This work examines the effects of vacuum infiltrated H2 S on ripening inhibition of banana. Banana fruits were vacuum infiltrated with 1 mm H2 S. Effects on oxidative stress markers, physiological changes, bioactive compounds and antioxidant potentials were examined during storage at 25 °C and 75-80% RH. Results indicate that treated fruits were less affected by oxidative stress, as evident by lower accumulation of ROS (superoxide and peroxide ions), elevated phenols content and antioxidant capacity. The ripening inhibitory effects of H2 S delayed chlorophyll loss and reduced ethylene and CO2 production. H2 S infiltration also reduced MDA accumulation and electrolytic leakage, resulting in longer shelf life. Vacuum infiltration with H2 S had a protective effect on postharvest banana through overcoming the deleterious effect of ROS and strengthening antioxidant potential. Thus, this method could be promising for enhanced preservation of banana during storage.
Collapse
Affiliation(s)
- M W Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Sabour, Bhagalpur, India
| | - F Homa
- Department of Statistics, Mathematics, and Computer Application, Bihar Agricultural University, Sabour, Bhagalpur, India
| | - D Lata
- Division of Postharvest Technology and Agricultural Engineering, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bengaluru, India
| | - H Mir
- Department of Horticulture (FFT), Bihar Agricultural University, Sabour, Bhagalpur, India
| | - T Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - P Mishra
- College of Agriculture, Powarkheda, Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur, India
| |
Collapse
|
66
|
Microencapsulation of Red Banana Peel Extract and Bioaccessibility Assessment by In Vitro Digestion. Processes (Basel) 2022. [DOI: 10.3390/pr10040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of food agricultural wastes as a source of bioactive compounds is an alternative to reduce their environmental impact and generate the possibility of producing value-added products as functional foods. This study aimed to extract and microencapsulate the bioactive compounds from the red banana peel (Musa acuminata Colla AAA “Red”) by spray drying and to evaluate the bioaccessibility of the bioactive compounds by in vitro digestion. The microencapsulation of bioactive compounds was carried out using two wall materials gum arabic (GA) and soy protein isolate (SPI). Microencapsulation using GA and SPI proved to be an effective technique to protect the phenolic compounds, flavonoids and antioxidant capacity of banana peel extract under in vitro digestion conditions. The extract without the encapsulation process suffered a significant (p ≤ 0.05) decrease in bioactive compounds and antioxidant capacity after in vitro digestion. Although microcapsules with SPI held the bioactive compounds for longer in the matrix, no significant difference (p ≤ 0.05) in bioactive compounds retention after in vitro digestion was observed between the microcapsules with GA or SPI. These results indicate that the microcapsules obtained may be used in the food industry as potential ingredients for developing functional foods to promote health benefits.
Collapse
|
67
|
Wang Z, Feng Y, Yang N, Jiang T, Xu H, Lei H. Fermentation of kiwifruit juice from two cultivars by probiotic bacteria: Bioactive phenolics, antioxidant activities and flavor volatiles. Food Chem 2022; 373:131455. [PMID: 34731808 DOI: 10.1016/j.foodchem.2021.131455] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/18/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022]
Abstract
Three commercial lactic acid bacteria (LAB), namely Lactobacillus acidophilus 85 (La85), Lactobacillus helveticus 76 (Lh76) and Lactobacillus plantarum 90 (Lp90), were employed to investigate the effects on the phenolic compounds, antioxidant capacities and flavor volatiles of kiwifruit juices prepared from two cultivars (Actinidia deliciosa cv. Xuxiang and Actinidia chinensis cv. Hongyang). Results showed that both kiwifruit juices were favorable matrices for LAB growth and the colony counts remained above 9.0 log CFU/mL after fermentation. Total phenolics and flavonoids in Xuxiang and Hongyang juices were increased dramatically by Lh76. Correspondingly, antioxidant capacities based on DPPH, ABTS and FRAP methods were improved significantly and positively correlated with protocatechuic acid and catechin contents (p < 0.05), two newly formed phytochemicals in fermented kiwifruit juices. Furthermore, results of hierarchical cluster analysis revealed that flavor profiles were improved significantly by LAB, and there were noticeable differences between fermented Xuxiang and Hongyang juices.
Collapse
Affiliation(s)
- Zining Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yunzi Feng
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China
| | - Nana Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Tian Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
68
|
Burkhart S, Underhill S, Raneri J. Realizing the Potential of Neglected and Underutilized Bananas in Improving Diets for Nutrition and Health Outcomes in the Pacific Islands. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.805776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pacific Island countries are undergoing rapid food system transformation. This has led to a deterioration in diet quality with decreased consumption of traditional, fresh foods, and increasing consumption of imported, ultra-processed foods. Consequently, the triple burden of malnutrition is a now a major issue in the region. It is estimated that Vitamin A deficiency (VAD) is widespread, particularly in Kiribati, Vanuatu, and Solomon Islands. Rates of overweight, obesity, and diet-related non-communicable disease (DR-NCD) are high. Increasing consumption of local, traditional fruits and vegetables, particularly those that have high nutritional value like Pacific Island bananas, could play an important role in improving diets and health outcomes of Pacific Islander populations. Many of the banana cultivars found in the Pacific Islands region are high in carotenoids, an important precursor to Vitamin A. Fe'i bananas, such as Utin Iap, have been shown to contain much higher amounts of carotenoids than that of the commonly consumed Cavendish banana. As a traditional, starchy staple food, bananas are a good source of carbohydrate, including resistant starch, with small amounts of protein and little fat. These characteristics also lend themselves to being part of a healthy diet. The promotion of neglected and underutilized banana cultivars in the Pacific region provides a food-based and low-cost solution that simultaneously supports healthy diets and good nutrition, local farming systems and livelihood opportunities. However, to realize this potential, more work is required to understand the availability of nutrient rich banana in the region, current consumption patterns and drivers of consumption.
Collapse
|
69
|
Tongkaew P, Tohraman A, Bungaramphai R, Mitrpant C, Aydin E. Kluai Hin (Musa sapientum Linn.) peel as a source of functional polyphenols identified by HPLC-ESI-QTOF-MS and its potential antidiabetic function. Sci Rep 2022; 12:4145. [PMID: 35264695 PMCID: PMC8907229 DOI: 10.1038/s41598-022-08008-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
To date, information on the polyphenolic composition of Kluai Hin banana peel and pulp and the potential antidiabetic activity of its major active compounds is limited. This study aimed to identify polyphenols in extracts of fresh and freeze-dried Kluai Hin banana peel and pulp (methanol:water; M:W, 80:20 for flavonoids and acetone:water:acetic acid; A:W:A, 50:49:1 for phenolic acids) by RP-HPLC-DAD and HPLC-ESI-QTOF-MS. Additionally, inhibition of α-amylase and α-glucosidase activities was investigated with crude extracts from Kluai Hin banana peel and pulp, and compared with its major polyphenols ((+)-catechin, (-)-epicatechin and gallic acid) and the antidiabetic drug acarbose. (-)-Gallocatechin was the most abundant polyphenol and was detected in all fresh and freeze-dried pulp and peel extracts by RP-HPLC-DAD. Furthermore, unidentified polyphenol peaks of Kluai Hin were further explored by HPLC-ESI-QTOF-MS. The A:W:A fresh peel extract contained more total phenolic content (811.56 mg GAE/100 g) than the freeze-dried peel (565.03 mg GAE/100 g). A:W:A extraction of the fresh and freeze-dried peel of exhibited IC50 values for α-amylase activity 2.66 ± 0.07 mg/ml and 2.97 ± 0.00 mg/ml, respectively, but its inhibitory activity was lower than acarbose (IC50 = 0.25 ± 0.01 mg/ml). Peel extracts inhibited α-glucosidase activity, whereas pulp extracts had no effect. In addition, all standards, except gallocatechin, activated α-amylase activity, while, gallocatechin inhibited α-glucosidase activity better than acarbose. Therefore, we propose a further investigation into the use of Kluai Hin banana peel as a potential functional food for the management of postprandial glycaemic response to reduce diabetes risk and in the management of diabetes with a commercial drug.
Collapse
Affiliation(s)
- Patthamawadee Tongkaew
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand.
| | - Anna Tohraman
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand
| | - Ramlatee Bungaramphai
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand
| | - Chalermchai Mitrpant
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Ebru Aydin
- Department of Food Engineering, Suleyman Demirel University, Isparta, 32260, Turkey
| |
Collapse
|
70
|
Unveiling the Bioactive Potential of Fresh Fruit and Vegetable Waste in Human Health from a Consumer Perspective. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Food supply disruption and shortage verified during the current pandemic events are a scenario that many anticipate for the near future. The impact of climate changes on food production, the continuous decrease in arable land, and the exponential growth of the human population are important drivers for this problem. In this context, adding value to food waste is an obvious strategy to mitigate food shortages, but there is a long way to go in this field. Globally, it is estimated that one-third of all food produced is lost. This is certainly due to many different factors, but the lack of awareness of the consumer about the nutritional value of certain foods parts, namely peels and seeds, is certainly among them. In this review, we will unveil the nutritional and bioactive value of the waste discarded from the most important fresh fruit and vegetables consumed worldwide as a strategy to decrease food waste. This will span the characterization of the bioactive composition of selected waste from fruits and vegetables, particularly their seeds and peels, and their possible uses, whether in our diet or recycled to other ends.
Collapse
|
71
|
Comparative study of micropropagated plants of Grand Naine banana during in vitro regeneration and ex vitro acclimatization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
72
|
Kim DK, Ediriweera MK, Davaatseren M, Hyun HB, Cho SK. Antioxidant activity of banana flesh and antiproliferative effect on breast and pancreatic cancer cells. Food Sci Nutr 2022; 10:740-750. [PMID: 35311172 PMCID: PMC8907754 DOI: 10.1002/fsn3.2702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Bananas, one of the most widely consumed fruits worldwide, are a rich source of valuable phytochemicals. In this study, the antioxidant and the anticancer potential of banana flesh was investigated. Of the four kinds of banana flesh extracts, the hexane extract (HE) had the highest total polyphenol content (2.54 ± 0.60 mg GAE/g) and total flavonoid content (1.69 ± 0.34 mg RE/g), followed by the chloroform fraction, total ethanol extract, and ethanol fraction. HE was found to exert a strong radical scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid) (ABTS•) free radicals. According to the IC50 values in various cancer cell lines, HE was found to possess the greatest cell growth inhibitory potential in human pancreatic cancer PANC-1 cells and human triple-negative breast cancer MDA-MB-231 cells. HE induced apoptosis in PANC-1 and MDA-MB-231 cells, as evidenced by the appearance of condensation of chromatin, proteolytic activation of caspase-3 and 7, and increase in the level of the cleaved form of poly (ADP-ribose) polymerase protein. Gas chromatography mass spectrometry (GC-MS) analysis of HE identified several anticancer compounds including palmitic acid, linoleic acid, oleic acid, campesterol, stigmasterol, and γ-sitosterol, supporting the anticancer potential of HE. Our investigation provides a rationale for the use of banana flesh to minimize the risk of cancer-like diseases.
Collapse
Affiliation(s)
- Dae Kyeong Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and ScienceJeju National UniversityJejuSouth Korea
| | - Meran Keshawa Ediriweera
- Subtropical/Tropical Organism Gene BankJeju National UniversityJejuSouth Korea
- Present address:
Department of Biochemistry and Molecular BiologyFaculty of MedicineUniversity of ColomboColomboSri Lanka
| | | | - Ho Bong Hyun
- Biodiversity Research InstituteJeju TechnoparkJejuSouth Korea
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and ScienceJeju National UniversityJejuSouth Korea
- Subtropical/Tropical Organism Gene BankJeju National UniversityJejuSouth Korea
- Department of BiotechnologyCollege of Applied Life SciencesJeju National UniversityJejuSouth Korea
| |
Collapse
|
73
|
Chang L, Yang M, Zhao N, Xie F, Zheng P, Simbo J, Yu X, Du SK. Structural, physicochemical, antioxidant and in vitro digestibility properties of banana flours from different banana varieties (Musa spp.). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
74
|
Atmospheric cold plasma effect on quality attributes of banana slices: Its potential use in blanching process. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
75
|
Maheshwari S, Kumar V, Bhadauria G, Mishra A. Immunomodulatory potential of phytochemicals and other bioactive compounds of fruits: A review. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Shruti Maheshwari
- Department of Food Technology Harcourt Butler Technical University Kanpur Uttar Pradesh 208002 India
| | - Vivek Kumar
- Department of Food Technology Harcourt Butler Technical University Kanpur Uttar Pradesh 208002 India
| | - Geeta Bhadauria
- Kendriya Vidyalaya Kanpur Cantt Kanpur Uttar Pradesh 208004 India
| | - Abhinandan Mishra
- Department of Food Technology Harcourt Butler Technical University Kanpur Uttar Pradesh 208002 India
| |
Collapse
|
76
|
Debnath P, Ahmad SK, Mahedi RA, Ganguly A, Sarker KK. Bioactive compounds and functional properties of Rambai ( Baccaurea motleyana Müll. Arg.) fruit: A comprehensive review. Food Sci Nutr 2022; 10:218-226. [PMID: 35035923 PMCID: PMC8751433 DOI: 10.1002/fsn3.2661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/06/2022] Open
Abstract
Rambai (Baccaurea motleyana Müll. Arg.), a member of the Phyllanthaceae family, is one of the underutilized fruits native to Indonesia, Malaya Peninsula, and Thailand. Nowadays, B. motleyana is cultivated for its fruits in many parts of Northern Australia, China, and Southeast Asia. The edible part of the fruit is white and contains reddish arillodes that taste sweet to acid-sweet. The ripe fruit is consumed fresh and can be processed into juice, jams, organic vinegar, and wine. Traditionally, the fruit and its bark are used to treat stomach and eye diseases, respectively. The fruits of B. motleyana are a good source of vitamins, minerals, and fibers, and they also contain bioactive compounds such as phenolic acids, flavonoids, carotenoids, and terpenes. This scientific review describes the nutritional composition, phytochemistry, and pharmacology of B. motleyana. In addition, most recent information is provided to promote the widespread consumption of B. motleyana fruit as well as to create research interest on this interesting species among the scientific community.
Collapse
Affiliation(s)
- Pradip Debnath
- Department of Pharmaceutical TechnologyJadavpur UniversityKolkataIndia
- Department of PharmacyComilla UniversityCumillaBangladesh
| | | | | | - Amlan Ganguly
- Department of Clinical Pharmacy and Pharmacology, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Kishore Kumar Sarker
- Department of PharmacyJashore University of Science and TechnologyJessoreBangladesh
| |
Collapse
|
77
|
TANGTHANANTORN J, WICHIENCHOT S, SIRIVONGPAISAL P. Development of fresh and dried noodle products with high resistant starch content from banana flour. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.68720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
78
|
Tang M, Zhou X, Cai J, Chen G. Chemical constituents from the fresh flower buds of Musa nana and their chemotaxonomic significance. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
79
|
Santos KL, Machado de Sousa PH, Rangel Moreira Cavalcanti-Mata ME, Barros de Vasconcelos L. Mixed leather of açaí, banana, peanut, and guarana syrup: the effect of agar and gellan gum use on quality attributes. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
80
|
Liu J, Liu M, Wang J, Zhang J, Miao H, Wang Z, Jia C, Zhang J, Xu B, Jin Z. Transcription factor MaMADS36 plays a central role in regulating banana fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7078-7091. [PMID: 34282447 DOI: 10.1093/jxb/erab341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Bananas are model fruits for studying starch conversion and climactericity. Starch degradation and ripening are two important biological processes that occur concomitantly in banana fruit. Ethylene biosynthesis and postharvest fruit ripening processes, i.e. starch degradation, fruit softening, and sugar accumulation, are highly correlated and thus could be controlled by a common regulatory switch. However, this switch has not been identified. In this study, we transformed red banana (Musa acuminata L.) with sense and anti-sense constructs of the MaMADS36 transcription factor gene (also MuMADS1, Ma05_g18560.1). Analysis of these lines showed that MaMADS36 interacts with 74 other proteins to form a co-expression network and could act as an important switch to regulate ethylene biosynthesis, starch degradation, softening, and sugar accumulation. Among these target genes, musa acuminata beta-amylase 9b (MaBAM9b, Ma05_t07800.1), which encodes a starch degradation enzyme, was selected to further investigate the regulatory mechanism of MaMADS36. Our findings revealed that MaMADS36 directly binds to the CA/T(r)G box of the MaBAM9b promoter to increase MaBAM9b transcription and, in turn, enzyme activity and starch degradation during ripening. These results will further our understanding of the fine regulatory mechanisms of MADS-box transcription factors in regulating fruit ripening, which can be applied to breeding programs to improve fruit shelf-life.
Collapse
Affiliation(s)
- Juhua Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Mengting Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Horticulture, Hainan University, Haikou, China
| | - Jingyi Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jing Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongxia Miao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhuo Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianbin Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
81
|
Mathew NS, Kurrey NK, Bettadaiah BK, Negi PS. Anti-proliferative activity of Ensete superbum Roxb. Cheesman extract and its active principles on human colorectal cancer cell lines. J Food Sci 2021; 86:5026-5040. [PMID: 34636062 DOI: 10.1111/1750-3841.15927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022]
Abstract
Ensete superbum Roxb. Cheesman (wild banana) is a plant traditionally used for the treatment of fever and diarrhea. On a preliminary screening, the ripe peel aqueous extract (PA) exhibited higher cytotoxicity (cell viability of 49% against HCT-15 at 75 µg/ml; and 46% against Caco2 at 50 µg/ml), superior anti-inflammatory (IC50 of 0.49 µg/ml), and greater anti-mutagenic activity at 500 µg/plate compared to the aqueous extracts of seed (SA), flower (FA) and bract (BA). Therefore, we further evaluated the anti-proliferative activity of PA and its fractions. The ability to inhibit the growth of cell lines (HCT-15 and Caco2) was used for the bio-guided fractionation and isolation of active compounds in PA using chromatographic techniques. Multiple extractions of the PA yielded the peel dioxane fraction (PD), and column fractionation of PD yielded eight compounds, of which three (Compound D-PDD, Compound E-PDE, and Compound G-PDG) possessed higher cytotoxic activity. At 10 µg/ml, the cell viability of HCT-15 was 50.1%, 46.5%, and 61.9%, respectively; Caco2 was 98.2%, 62.9%, and 64.7%, respectively, for PDD, PDE, and PDG. These compounds also showed apoptotic effect as evidenced by measuring the mitochondrial membrane potential, dual staining (acridine orange/ethidium bromide), DNA fragmentation, and the ROS status in colorectal cell lines. The UPLC-HRMS/MS, FTIR, and NMR data revealed the active compounds as quercetin-3-O-rutinoside, 3,5-dimethoxy-4-hydroxybenzoic acid, and 4',5,7-trihydroxyflavone. These findings indicate the anti-proliferative potential of PA, and warrant further investigation of its active principles in the amelioration of colorectal cancer in in vivo models. PRACTICAL APPLICATION: The potential of an underutilized crop as a source of therapeutic agents for colon cancer was established, as the study showed a high cytotoxic activity of wild bananas against HCT-15 and Caco2 cell lines. Bioactivity guided fractionation of peel fraction identified the active compounds present in wild banana, and their anticancer activity was attributed to the induction of cell death. The study indicated that wild banana has the potential to inhibit the growth of colon cancer cells.
Collapse
Affiliation(s)
- Nimisha Sarah Mathew
- Academy of Scientific and Innovative Research, Ghaziabad.,Fruit and Vegetable Technology
| | | | - Bheemanakere Kempaiah Bettadaiah
- Academy of Scientific and Innovative Research, Ghaziabad.,Spices and Flavour Science Department, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Pradeep Singh Negi
- Academy of Scientific and Innovative Research, Ghaziabad.,Fruit and Vegetable Technology
| |
Collapse
|
82
|
Gedük AŞ, Zengin F. LC-MS/MS characterization, antidiabetic, antioxidative, and antibacterial effects of different solvent extracts of Anamur banana ( Musa Cavendishii). Food Sci Biotechnol 2021; 30:1183-1193. [PMID: 34603818 DOI: 10.1007/s10068-021-00953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022] Open
Abstract
The main objective of this study was to examine the phenolic compounds and the antibacterial, antioxidant, anti-α-glucosidase and anti-α-amylase activities of the different extracts (methanol, ethanol and hexane) of Musa cavendishii collected from the Anamur district in Turkey. LC-MS/MS was used to identify phenolic compounds. Quinic acid, acotinic acid, hesperidin and amentoflavone were identified in methanol extract. These phenolic compounds, excluding hesperidin, were also identified in the ethanol extract. Methanolic extract appeared the most active in all enzyme inhibition, antibacterial and antioxidative activity assays which is mainly due to its rich phenolic content. The methanol extract of banana showed the highest anti-α-glucosidase and anti-α-amylase activities with IC50 values of 5.45 ± 0.39 mg/mL, 9.70 ± 0.29 mg/mL, respectively. This study showed that methanol and ethanol extract, especially the methanol extract, have potential for use in the development of functional foods for reducing the diabetes and bacterial risks.
Collapse
Affiliation(s)
- Aysun Şener Gedük
- Department of Food Engineering, Faculty of Engineering, University of Adana Alparslan Turkes Science and Technology, 01250 Saricam, Adana Turkey
| | - Fatma Zengin
- Department of Food Engineering, Faculty of Engineering, University of Adana Alparslan Turkes Science and Technology, 01250 Saricam, Adana Turkey
| |
Collapse
|
83
|
Patil PD, Patil SP, Kelkar RK, Patil NP, Pise PV, Nadar SS. Enzyme-assisted supercritical fluid extraction: An integral approach to extract bioactive compounds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
84
|
de Souza AV, Mello JM, Silva Favaro VF, Santos TGF, Santos GP, Lucca Sartori D, Ferrari Putti F. Metabolism of bioactive compounds and antioxidant activity in bananas during ripening. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | | | | | - Diogo Lucca Sartori
- School of Science and Engineering São Paulo State University (UNESP) Tupã Brazil
| | | |
Collapse
|
85
|
Bashmil YM, Ali A, BK A, Dunshea FR, Suleria HAR. Screening and Characterization of Phenolic Compounds from Australian Grown Bananas and Their Antioxidant Capacity. Antioxidants (Basel) 2021; 10:1521. [PMID: 34679656 PMCID: PMC8532736 DOI: 10.3390/antiox10101521] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 01/11/2023] Open
Abstract
Bananas are an essential source of staple food and fruit worldwide and are widely regarded as the world's largest fruit crop, with more than 100 million tons total annual production. Banana peel, a by-product that represents about 40% of the entire banana's weight, and pulp are rich in bioactive compounds and have a high antioxidant capacity. As the production of polyphenols in fruit and vegetables is highly dependent on environmental conditions, genetic factors, and the level of maturity, this study aims to characterize six Australian banana cultivars in various stages of ripening for their phenolic compounds using the liquid chromatography-electrospray ionization quadrupole time of flight mass spectrometry (LC-ESI-QTOF-MS/MS), polyphenols quantification with the high-performance liquid chromatography coupled with photodiode array detector (HPLC-PDA), and their antioxidant capacity. All bananas were analysed for total polyphenols content (TPC), total flavonoids content (TFC), and total tannin content (TTC) and their antioxidant activities. Ripe Ducasse peel and pulp contained the highest amounts of total polyphenols content (1.32 and 1.28 mg gallic acid equivalent (GAE) per gram of sample), total tannin contents (3.34 mg catechin equivalent (CE) per gram of sample), and free radical scavenging capacity (106.67 mg ascorbic acid equivalent (AAE) per g of sample). In contrast, ripe Plantain peel had the greatest total flavonoids (0.03 mg quercetin equivalent (QE) per g of sample). On the other hand, unripe Ladyfinger pulp possessed the highest total antioxidant activity (1.03 mg AAE/g of sample). There was a positive correlation between flavonoids and antioxidant activities. By using LC-ESI-QTOF-MS/MS, a total of 24 phenolic compounds were tentatively characterized in this research, including six phenolic acids, 13 flavonoids, and five other polyphenols. Quantification of phenolic compounds by the high-performance liquid chromatography coupled with photodiode array detector (HPLC-PDA) revealed a higher content of phenolic acids. These findings confirmed that banana peel and pulp have considerable antioxidant activity and can be employed in human food and animal feed for variant health enhancement uses.
Collapse
Affiliation(s)
- Yasmeen M. Bashmil
- Department of Food Science and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (A.B.); (F.R.D.)
| | - Akhtar Ali
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (A.B.); (F.R.D.)
| | - Amrit BK
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (A.B.); (F.R.D.)
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (A.B.); (F.R.D.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (A.B.); (F.R.D.)
| |
Collapse
|
86
|
Busche M, Acatay C, Martens S, Weisshaar B, Stracke R. Functional Characterisation of Banana ( Musa spp.) 2-Oxoglutarate-Dependent Dioxygenases Involved in Flavonoid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:701780. [PMID: 34484266 PMCID: PMC8415913 DOI: 10.3389/fpls.2021.701780] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/20/2021] [Indexed: 05/27/2023]
Abstract
Bananas (Musa) are non-grass, monocotyledonous, perennial plants that are well known for their edible fruits. Their cultivation provides food security and employment opportunities in many countries. Banana fruits contain high levels of minerals and phytochemicals, including flavonoids, which are beneficial for human nutrition. To broaden the knowledge on flavonoid biosynthesis in this major crop plant, we aimed to identify and functionally characterise selected structural genes encoding 2-oxoglutarate-dependent dioxygenases, involved in the formation of the flavonoid aglycon. Musa candidates genes predicted to encode flavanone 3-hydroxylase (F3H), flavonol synthase (FLS) and anthocyanidin synthase (ANS) were assayed. Enzymatic functionalities of the recombinant proteins were confirmed in vivo using bioconversion assays. Moreover, transgenic analyses in corresponding Arabidopsis thaliana mutants showed that MusaF3H, MusaFLS and MusaANS were able to complement the respective loss-of-function phenotypes, thus verifying functionality of the enzymes in planta. Knowledge gained from this work provides a new aspect for further research towards genetic engineering of flavonoid biosynthesis in banana fruits to increase their antioxidant activity and nutritional value.
Collapse
Affiliation(s)
- Mareike Busche
- Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Christopher Acatay
- Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Stefan Martens
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele All’ Adige, Italy
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Ralf Stracke
- Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
87
|
The Ethanol Extract of Musa sapientum Linn. Peel Inhibits Melanogenesis through AKT Signaling Pathway. COSMETICS 2021. [DOI: 10.3390/cosmetics8030070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hyperpigmentation caused by melanin overproduction can be induced by UV radiation. The quest for effective depigmenting agents continues because many anti-melanin agents have restricted use and/or produce side-effects. The present study was aimed to investigate the inhibitory activity of Musa sapientum Linn. (AA group) peel ethanol extracts (MPE) on α-melanocyte stimulating hormone (α-MSH)-induced melanin production. In addition, the molecular mechanism related to this process was examined in B16F10 mouse melanoma cells. The results indicated that MPE remarkably inhibited melanogenesis in α-MSH-stimulated B16F10 cells. Microphthalmia-associated transcription factor (MITF) and tyrosinase expressions were suppressed by MPE in a concentration-dependent manner. In addition, MPE significantly decreased the expression of melanosome transfer protein markers (Rab27a and Pmel17) in a dose-dependent manner. This study found that the elevated phosphorylation of AKT in the B16F10 cells was diminished by MPE treatment. Furthermore, microtubule-associated protein 1 light chain 3 (LC3)-II and p62 (autophagy markers) were affected after the B16F10 cells were treated with MPE. This study demonstrated that MPE might be an effective agent for anti-melanogenesis through the AKT pathway, subsequently diminishing MITF expression and tyrosinase enzyme family production. The findings indicated that MPE could potentially serve as a depigmenting agent in cosmeceuticals.
Collapse
|
88
|
Li MC, Chou CF, Lin JS. PHYSICAL AND CHEMICAL PROPERTIES OF DIFFERENT VARIETIES OF TAIWANESE BANANAS AND THEIR APPLICATION IN BANANA FLAT-RICE NOODLES. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1958842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ming-Chang Li
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chin-fu Chou
- Department of Food Science and Nutrition, Meiho University, Pingtung, Taiwan
| | - Jen-shinn Lin
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
89
|
How Does Cultivar, Maturation, and Pre-Treatment Affect Nutritional, Physicochemical, and Pasting Properties of Plantain Flours? Foods 2021; 10:foods10081749. [PMID: 34441527 PMCID: PMC8393996 DOI: 10.3390/foods10081749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The effect of cultivar, ripening stage, and pre-treatment method were investigated on the nutritional, physicochemical, and pasting properties of plantain flours from two plantains and two plantain hybrids. There were significant variations (p < 0.05) in chemical composition and physical properties influenced by the interaction of cultivars, ripening stages, and pre-treatment methods. The highest levels of amylose, water-holding capacity (WHC), and oil-holding capacity (OHC) were observed in unripe flours and acid-treated flour recorded the highest content of resistant starch (RS). Flour after pre-blanching contained the highest level of total phenolic (TP), carotenoid contents, and browning index (BI) value. In contrast, acid-treated flours had the lowest BI value. As ripening progressed, peak viscosity and breakdown values increased but final viscosity, setback, and pasting temperature values were reduced. Untreated flour samples showed the highest peak viscosity. Higher breakdown values were found in acid-treated samples and higher setback values in pre-blanched samples.
Collapse
|
90
|
Ali A, Wei S, Liu Z, Fan X, Sun Q, Xia Q, Liu S, Hao J, Deng C. Non-thermal processing technologies for the recovery of bioactive compounds from marine by-products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111549] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
91
|
Functional, Physicochemical, and Antioxidant Properties of Flour and Cookies from Two Different Banana Varieties ( Musa acuminata cv. Pisang awak and Musa acuminata cv. Red dacca). INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:6681687. [PMID: 34124236 PMCID: PMC8189798 DOI: 10.1155/2021/6681687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/15/2021] [Accepted: 05/24/2021] [Indexed: 12/26/2022]
Abstract
Banana (Musa acuminata) is grown abundantly in tropical and subtropical countries, and it is consumed as raw or processed. Banana is a significant source of nutrients, and it has been found to contain carbohydrates and other nutritional components. The present study was conducted to evaluate the proximate composition, antioxidant composition, and physicochemical properties of flour obtained from two different banana varieties (Musa acuminata cv. Pisang awak and Musa acuminata cv. Red dacca) and to evaluate the proximate composition and antioxidant composition of cookies prepared by incorporating both banana flours. Several sets of cookie samples were prepared separately by incorporating each banana flour where wheat flour and banana flour combinations were 85%-15%, 75%-25%, 70%-30%, and 0-100%. These samples were evaluated for sensory attributes, and two best cookie formulations were selected (70% wheat flour and 30% banana flour) for the analysis. Both Awak and Dacca had obtained similar amount of carbohydrates p < 0.05 while Dacca had recorded a higher amount of moisture, fat, protein, ash, and phytonutrients such as polyphenols, antioxidants, and flavonoids. Dacca flour had obtained higher values for physicochemical properties like water holding capacity (WHC) and oil holding capacity (OHC). L∗, a∗, and b∗ values were evaluated for banana flour incorporated cookies. Lightness and the redness of cookies were prominent while yellowness was not prominent. There was no significant difference in texture parameters but hardness was higher in banana cookies as they contained a higher content of protein and fiber.
Collapse
|
92
|
Moro KIB, Bender ABB, da Silva LP, Penna NG. Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02665-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
93
|
Ramírez‐Bolaños S, Pérez‐Jiménez J, Díaz S, Robaina L. A potential of banana flower and pseudo‐stem as novel ingredients rich in phenolic compounds. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sara Ramírez‐Bolaños
- Grupo de Investigación en Acuicultura (GIA) IU‐ECOAQUA Universidad de Las Palmas de Gran Canaria Crta. Taliarte s/n Telde 35214 Spain
| | - Jara Pérez‐Jiménez
- Department of Metabolism and Nutrition Institute of Food Science, Technology and Nutrition (ICTAN‐CSIC) José Antonio Novais 10 Madrid 28040 Spain
| | - Sara Díaz
- Fabricación Integrada y Avanzada Research Group Departamento de Ingeniería de Procesos Universidad de Las Palmas de Gran Canaria Las Palmas de Gran Canaria 35017 Spain
| | - Lidia Robaina
- Grupo de Investigación en Acuicultura (GIA) IU‐ECOAQUA Universidad de Las Palmas de Gran Canaria Crta. Taliarte s/n Telde 35214 Spain
| |
Collapse
|
94
|
Doan CT, Chen CL, Nguyen VB, Tran TN, Nguyen AD, Wang SL. Conversion of Pectin-Containing By-Products to Pectinases by Bacillus amyloliquefaciens and Its Applications on Hydrolyzing Banana Peels for Prebiotics Production. Polymers (Basel) 2021; 13:polym13091483. [PMID: 34064519 PMCID: PMC8124133 DOI: 10.3390/polym13091483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022] Open
Abstract
The utilization of pectin-containing by-products may be useful in a variety of fields. This study aims to establish the processing of pectin-containing by-products to produce pectinases using Bacillus amyloliquefaciens TKU050 strain. In this study, several kinds of agricultural pectin-containing by-products from banana (banana peel), rice (rice bran), orange (orange peel), coffee (spent coffee grounds), and wheat (wheat bran) were utilized to provide carbon sources for the production of a pectinase by B. amyloliquefaciens TKU050. B. amyloliquefaciens TKU050 expressed the highest pectinase productivity (0.76 U/mL) on 0.5% wheat bran-containing medium at 37°C for four days. A 58 kDa pectinase was purified from the four-day cultured medium fermented under optimized culture conditions with 7.24% of a recovery ratio and 0.51 U/mg of specific activity, respectively. The optimum temperature, optimum pH, thermal stability, and pH stability of the TKU050 pectinase were 50 °C, pH 6, <50 °C, and pH 6–9, respectively. The TKU050 pectinase was inhibited by sodium dodecyl sulfate and Cu2+. The reducing sugar obtained by hydrolyzing banana peel with TKU050 pectinase showed the growth-enhancing effect on the growth of four tested lactic acid bacteria.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (C.-L.C.); (T.N.T.)
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| | - Chien-Lin Chen
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (C.-L.C.); (T.N.T.)
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (V.B.N.); (A.D.N.)
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (C.-L.C.); (T.N.T.)
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (V.B.N.); (A.D.N.)
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (C.-L.C.); (T.N.T.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
- Correspondence: ; Tel.: +886-2-2621-5656; Fax: +886-2-2620-9924
| |
Collapse
|
95
|
Samtiya M, Aluko RE, Dhewa T, Moreno-Rojas JM. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021; 10:foods10040839. [PMID: 33921351 PMCID: PMC8068854 DOI: 10.3390/foods10040839] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
Plant foods are consumed worldwide due to their immense energy density and nutritive value. Their consumption has been following an increasing trend due to several metabolic disorders linked to non-vegetarian diets. In addition to their nutritive value, plant foods contain several bioactive constituents that have been shown to possess health-promoting properties. Plant-derived bioactive compounds, such as biologically active proteins, polyphenols, phytosterols, biogenic amines, carotenoids, etc., have been reported to be beneficial for human health, for instance in cases of cancer, cardiovascular diseases, and diabetes, as well as for people with gut, immune function, and neurodegenerative disorders. Previous studies have reported that bioactive components possess antioxidative, anti-inflammatory, and immunomodulatory properties, in addition to improving intestinal barrier functioning etc., which contribute to their ability to mitigate the pathological impact of various human diseases. This review describes the bioactive components derived from fruit, vegetables, cereals, and other plant sources with health promoting attributes, and the mechanisms responsible for the bioactive properties of some of these plant components. This review mainly compiles the potential of food derived bioactive compounds, providing information for researchers that may be valuable for devising future strategies such as choosing promising bioactive ingredients to make functional foods for various non-communicable disorders.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana 123031, India;
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana 123031, India;
- Correspondence: (T.D.); (J.M.M.-R.)
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez Pidal, SN, 14004 Córdoba, Spain
- Correspondence: (T.D.); (J.M.M.-R.)
| |
Collapse
|
96
|
Paramasivam SK, David AK, Marimuthu Somasundaram S, Suthanthiram B, Shiva KN, Subbaraya U. Influence of food hydrocolloids on the structural, textural and chemical characteristics of low-fat banana chips. FOOD SCI TECHNOL INT 2021; 28:203-215. [PMID: 33765870 DOI: 10.1177/10820132211003708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Banana chips are gaining popularity as a deep-fried product for its unique taste and flavour. This study is aimed to investigate the effect of hydrocolloids on oil absorption, physico-chemical and sensory properties of banana chips from two different varieties (var. Popoulu and var. Nendran), when fried at 180 °C for 3 min. The reduction in oil content was about 15%-35% and 19%-30% for hydrocolloid treated Popoulu and Nendran chips, respectively. The Free fatty acid content (FFA) of hydrocolloid treated banana chips was lower than that of untreated chips. The peroxide value (PV) values of all samples fell below 2 meq oxygen kg-1. CMC pre-treated banana chips were crispier than other formulations on both the varieties. Microscopic analysis showed the improved cellular integrity without large void spaces in hydrocolloid treated banana chips. PCA analyses elucidated that variables such as physical appearance, colour, crispiness, after taste, overall acceptability contributed positively, whereas hardness and sogginess contributed negatively to the correlation among the variables. From the chemical and sensory attributes, 0.5% CMC treated Popoulu chips and 1% CMC treated Nendran chips is recommended to produce chips with lower oil content.
Collapse
Affiliation(s)
| | - Amelia Keran David
- ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu, India
| | | | | | | | - Uma Subbaraya
- ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
97
|
Isolation, Purification and Characterization of Proteins in “Señorita” Banana (Musa acuminata (AAA) ‘Señorita’) Pulp with Bioactive Peptides Exhibiting Antihypertensive and Antioxidant Activities. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Banana is one of the most important crops, providing multiple benefits. Although it has been widely studied for its health benefits, little information can be found about its proteins. This study determined the antihypertensive and antioxidant activities of the crude, purified, and hydrolyzed protein extracts from ‘Señorita’ banana pulp. Crude proteins were extracted using Tris-HCl buffer and purified through ammonium sulfate precipitation, dialysis, and gel filtration chromatography. The protein content of the crude, partially purified, and purified extracts were found to be 167.32, 120.45, and 28.51 μg·mL−1, respectively, with major protein having an approximate molecular weight of 15 kDa. These extracts were then subjected to enzymatic hydrolysis for release of bioactive peptides prior to ACE inhibitory and antioxidant activities determination. Among these samples, the undigested crude extract had the highest ACE inhibitory activity (85.20%). There was also an observable increase in ACE inhibition of the digested samples with increased digestion time. Meanwhile, the 3-h and 4-h crude digests had the highest DPPH radical scavenging activity with 30.82% and 34.74%, respectively. These were not significantly different from the activity of the standard, ascorbic acid. A general decrease in DPPH radical scavenging activity of the samples was observed with increased digestion time. These observations were coherent with the in silico analysis of the putative major protein, lectin, which showed that its enzymatic hydrolysis releases ACE inhibitor and antioxidant peptides.
Collapse
|
98
|
Mathew NS, Negi PS. Phenolic content and anti-oxidative attributes of various parts of wild banana (Ensete superbum Roxb. Cheesman) plant. J Food Biochem 2021; 45:e13657. [PMID: 33605478 DOI: 10.1111/jfbc.13657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/09/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022]
Abstract
Ensete superbum Roxb. Cheesman (wild banana) is used as therapeutic edible by various ethnic groups around the world. The antioxidant potential of ethanolic, methanolic, and aqueous extracts of E. superbum ripe peel, seed, flower, and bract was tested using in vitro and ex vivo models, and their polyphenolic constituents were determined by RP-HPLC and LC/MS-ESI-TOF. E. superbum extracts were rich in anthocyanins, flavonols, flavone, biflavonoid, and phenolic acid derivatives. The Partial Least Square Regression analysis highlighted the contribution of individual phenolics toward the antioxidant activity. Bract aqueous extract demonstrated best antioxidant activity in DPPH radical scavenging activity assay (IC50 of 21.97 μg/ml), Oxygen Radical Absorbance Capacity assay (207.97 µM TE/g) with highest Antioxidant Activity Index (1.79), and showed the highest cellular antioxidant activity (67.02 µM quercetin equivalents/g) in Caco2 cells. These findings highlight the potential of E. superbum as valuable source of natural antioxidants, which can be used as pharmaceutical and functional food ingredient. PRACTICAL APPLICATIONS: Wild banana has been used as a medicinal plant for ages throughout the world. However, the systematic analysis of its constituents and their beneficial effect is lacking. Our approach to search the effective plant part showed that the bioactive ingredients are concentrated in aqueous extracts of bracts. This study provides a basis for the antioxidant mechanisms of various wild banana plant parts, and will promote the utilization of an under-utilized wild edible plant.
Collapse
Affiliation(s)
- Nimisha Sarah Mathew
- Fruit and Vegetable Technology Department, CSIR-Central Food Technological Research Institute, Mysore, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep Singh Negi
- Fruit and Vegetable Technology Department, CSIR-Central Food Technological Research Institute, Mysore, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
99
|
Comunian TA, Silva MP, Souza CJ. The use of food by-products as a novel for functional foods: Their use as ingredients and for the encapsulation process. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
100
|
Gupta E, Mishra P. Functional Food with Some Health Benefits, So Called Superfood: A Review. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200717171048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The possible beneficial properties of functional foods are due to their content in bioactive
ingredients, with specific biological properties. A number of processed functional foods are available
in the market - probiotic yogurt, calcium and ω-3 fatty acids enriched orange juice and milk. Simultaneously,
new research studies confer potential health benefits of various conventional foods (salmon,
berries, green tea, vegetables, fruits, nuts, cereals and breads, etc.) termed as “superfood” which
is a marketing term and there is no established medical definition. Following suitable dietary patterns,
superfood reduces the risk of degenerative diseases by promoting physical and emotional
health. Scientific evidences suggest that superfoods are a dense source of antioxidants, minerals, vitamins
and other nutrients. There is insufficient research on the exact explanation of the term ‘superfood’and
its health claims by different companies without any legislation. This buzz word has created
confusion among consumers, that how much and what quantity should make a food superfood, as
no single food may be as nutritious to be stated as a superfood. This article introduces further investigation
on superfood which was categorized on the basis of their major constituents and potential
health benefits. Further, there is a need for more reviews, researches, clinical trials and human case
studies to investigate or test superfood.
Collapse
Affiliation(s)
- Ena Gupta
- Department of Homescience, University of Allahabad, Allahabad-211002, India
| | - Pragya Mishra
- Food Processing and Management, DDU Kaushal Kendra, RGSC, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|