51
|
Metabolite Profiling of Methanolic Extract of Gardenia jaminoides by LC-MS/MS and GC-MS and Its Anti-Diabetic, and Anti-Oxidant Activities. Pharmaceuticals (Basel) 2021; 14:ph14020102. [PMID: 33525758 PMCID: PMC7912419 DOI: 10.3390/ph14020102] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
In this study, the methanolic extract from seeds of Gardenia jasminoides exhibited strong antioxidant and enzyme inhibition activities with less toxicity to NIH3T3 and HepG2 cells at the concentration of 100 µg/mL. The antioxidant activities (DPPH and ABTS), α-amylase, and α-glucosidase inhibition activities were found higher in methanolic extract (MeOH-E) than H2O extract. Besides, 9.82 ± 0.62 µg and 6.42 ± 0.26 µg of MeOH-E were equivalent to 1 µg ascorbic acid for ABTS and DPPH scavenging, respectively while 9.02 ± 0.25 µg and 6.52 ± 0.15 µg of MeOH-E were equivalent to 1 µg of acarbose for inhibition of α-amylase and α-glucosidase respectively. Moreover, the cell assay revealed that the addition of MeOH-E (12.5 µg/mL) increased about 37% of glucose uptake in insulin resistant (IR) HepG2 as compared to untreated IR HepG2 cells. The LC- MS/MS and GC-MS analysis of MeOH-E revealed a total of 54 compounds including terpenoids, glycosides, fatty acid, phenolic acid derivatives. Among the identified compounds, chlorogenic acid and jasminoside A were found promising for anti-diabetic activity revealed by molecular docking study and these molecules are deserving further purification and molecular analysis.
Collapse
|
52
|
Zhang H, Li H, Zhang Z, Hou T. Optimization of ultrasound-assisted extraction of polysaccharides from perilla seed meal by response surface methodology: Characterization and in vitro antioxidant activities. J Food Sci 2021; 86:306-318. [PMID: 33462808 DOI: 10.1111/1750-3841.15597] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022]
Abstract
In this study, response surface methodology was employed to optimize the ultrasound-assisted extraction (UAE) process of perilla seed meal polysaccharides (PSMP). The optimal conditions for UAE of PSMP were: liquid-solid ratio of 26.00 mL/g, ultrasonic temperature of 43.00 °C, ultrasonic time of 52.00 min, and ultrasonic power of 229.00 W, the optimal conditions lead to an yield of 6.137 ± 0.062%. The structural characteristics of molecular weight, compositional monosaccharides, and glycosidic linkages were determined by size exclusion chromatography with multiangle light scattering, gas chromatography-mass spectrometry, Fourier-transfer infrared spectroscopy, and nuclear magnetic resonance detections. Scanning electron microscopy analysis showed that many holes were formed on the surface of PSM after UAE. The antioxidant activities of PSMP were investigated using various assays in vitro. The results suggested that PSMP is potential natural resource of antioxidants for medicine and functional foods. PRACTICAL APPLICATION: The selection of raw material perilla seed meal is conducive to the comprehensive utilization of edible resources. With consumer demands for newly developed foods with natural, wholesome ingredients are increasing nowadays. This study provides effective reference for in-depth research on other medicine-food dual-use resources. Ultrasound-assisted extraction (UAE) is a promising alternative method for hot water reflux extraction (HWRE) of polysaccharides for advantages of high efficiency and energy saving. In this work, the UAE process optimized by response surface methodology is more suitable for industrial application that can effectively decrease total cost of production by reducing the extraction temperature, shortening extraction time, and increasing raw material utilization.
Collapse
Affiliation(s)
- Hongjiao Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Huizhen Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Tianyu Hou
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| |
Collapse
|
53
|
Abstract
Seaweed-based cosmetics are being gradually used by consumers as a substitute of synthetic equivalent products. These seaweed-based products normally contain purified compounds or extracts with several compounds. Several seaweeds’ molecules already demonstrated a high potential as a cosmetic active ingredient (such as, mycosporine-like amino acids, fucoidan, pigments, phenolic compounds) or as a key element for the products consistency (agar, alginate, carrageenan). Moreover, seaweeds’ compounds present important qualities for cosmetic application, such as low cytotoxicity and low allergens content. However, seaweeds’ biochemical profile can be variable, and the extraction methods can cause the loss of some of the biomolecules. This review gives a general look at the seaweed cosmetics benefits and its current application in the cosmetic industry. Moreover, it focuses on the ecological and sustainable scope of seaweed exploitation to guarantee a safe source of ingredients for the cosmetic industry and consumers.
Collapse
|
54
|
Yang H, Bai J, Ma C, Wang L, Li X, Zhang Y, Xu Y, Yang Y. Degradation models, structure, rheological properties and protective effects on erythrocyte hemolysis of the polysaccharides from Ribes nigrum L. Int J Biol Macromol 2020; 165:738-746. [PMID: 32971173 DOI: 10.1016/j.ijbiomac.2020.09.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
The polysaccharides from blackcurrant (Ribes nigrum L.) fruits were degraded by ultrasonic irradiation. Results showed that viscosity-average molecular weight decreased with increasing ultrasonic time or power. The degradation was fitted to the second-order kinetics model and midpoint chain scission model. Gas chromatographic analysis demonstrated that the native polysaccharide and three degraded polysaccharides were composed of the same monosaccharides but in different ratios. Fourier transform infrared and nuclear magnetic resonance spectroscopic analyses revealed the presence of α-, β-pyranose rings and the same six sugar residues in the four blackcurrant polysaccharides. Compared to the native polysaccharide, three degraded polysaccharides displayed better rheological properties and stronger protective effects against erythrocyte hemolysis. Collectively, the results support the potential utility of blackcurrant polysaccharides as natural antioxidants.
Collapse
Affiliation(s)
- Haihong Yang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Bai
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Conglei Ma
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Libo Wang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoqing Li
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Yaqin Xu
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yu Yang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
55
|
Increased antioxidant activity and improved structural characterization of sulfuric acid-treated stepwise degraded polysaccharides from Pholiota nameko PN-01. Int J Biol Macromol 2020; 166:1220-1229. [PMID: 33157137 DOI: 10.1016/j.ijbiomac.2020.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022]
Abstract
The aim of this study was to investigate sulfuric acid degradation of the Pholiota nameko polysaccharide (AIPS-1). Three stepwise degraded polysaccharides (AIPS-2, AIPS-3, and AIPS-4) were obtained by sequentially increasing the strength of sulfuric acid treatment. Structural characterization showed that sulfuric acid treatment significantly decreased molecular weight, increased the content of uronic acid and changed the molar ratio of monosaccharide composition, while the major functional groups and the triple helical conformation of polysaccharides did not change significantly. In vitro experiments proved that the antioxidation ability of the stepwise degraded polysaccharides gradually increased (AIPS-1 < AIPS-2 < AIPS-3 < AIPS-4). An oxidative stress zebrafish model was established, which demonstrated that the ability of AIPS-3 and AIPS-4 to scavenge free radicals in zebrafish was significantly improved compared to AIPS-1. In conclusion, sulfuric acid treatment is an effective method for improving the antioxidant activity of polysaccharides, and increased antioxidant activity was closely related to the changes in their structural characteristics.
Collapse
|
56
|
Huang TW, Ho YC, Tsai TN, Tseng CL, Lin C, Mi FL. Enhancement of the permeability and activities of epigallocatechin gallate by quaternary ammonium chitosan/fucoidan nanoparticles. Carbohydr Polym 2020; 242:116312. [PMID: 32564860 DOI: 10.1016/j.carbpol.2020.116312] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/28/2020] [Accepted: 04/13/2020] [Indexed: 01/04/2023]
Abstract
Epigallocatechin gallate (EGCG) has many biological functions; however, the use of EGCG in biomedical and food industries was limited due to its poor oral absorption and high susceptibility to degradation. In this study, a mucoadhesive quaternary chitosan was synthesized and combined with fucoidan (FD) (or depolymerized lower molecular weight fucoidan, LMWF) to prepare EGCG-loaded nanoparticles, which extended EGCG release over 300 min and enhanced the transepithelial permeation of EGCG using Caco-2 cells as a model for intestinal absorption. The nanoparticls protected EGCG against degradation in phosphate buffer (pH 6.8) and the remaining EGCG was 1.7-folds higher than the control (EGCG alone). The additive effects of EGCG combined with FD or LMWF in the nanoparticles increased the DPPH radical scavenging activity and the enzyme inhibitory activity against α-amylase (2.82-4.92 fold increase) and α-glucosidase (1.35-1.67 fold increase), while quaternary chitosan helped to enhance the antibacterial effect of EGCG.
Collapse
Affiliation(s)
- Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 11031, Taiwan
| | - Yi-Cheng Ho
- Department of Bioagricultural Science, National Chiayi University, Chiayi, 60004, Taiwan
| | - Tsung-Neng Tsai
- Division of Cardiology, Department of Internal Medicine, TriService General Hospital, National Defence Medical Centre, Taipei, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei City, 11031, Taiwan
| | - Chi Lin
- Department of Bioagricultural Science, National Chiayi University, Chiayi, 60004, Taiwan
| | - Fwu-Long Mi
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City, 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City, 11031, Taiwan.
| |
Collapse
|
57
|
Ashayerizadeh O, Dastar B, Pourashouri P. Study of antioxidant and antibacterial activities of depolymerized fucoidans extracted from Sargassum tenerrimum. Int J Biol Macromol 2020; 151:1259-1266. [PMID: 31760029 DOI: 10.1016/j.ijbiomac.2019.10.172] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/02/2019] [Accepted: 10/20/2019] [Indexed: 02/02/2023]
Abstract
This work was performed to compare the effect of two water-extraction methods of fucoidan from Sargassum tenerrimum on their chemical composition, antioxidant capacity and antimicrobial activity after hydrothermal depolymerization. The number of extraction steps and ethanol concentration used for extraction were different between the two methods. Extraction yield of fucoidan obtained from the first method (DFM1) and the second method (DFM2) were 3.68 and 1.09%, respectively (P < 0.05). The IC50 value of DPPH radical scavenging activity for DFM1 was 1.93 times more than DFM2. The Fe+2 ions chelating activity were 78.3% for DFM1 and 89.4% for DFM2 at 10 mg/mL concentration. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration of DFM2 were lower compared to DFM1 for Enterococcus faecalis and Escherichia coli The DFM2 was more effective to decrease the MIC value of chloramphenicol on the gram negative strains than DFM1. Both of the fucoidans showed a synergistic effect in combination with chloramphenicol to inhibit the growth of Escherichia coli Based on the results of this study, depolymerized fucoidans can also be more considered as effective antibacterial agent with synergistic potential in combination with antibiotics to decrease the prescribed doses of antibiotic drugs in humans and animals.
Collapse
Affiliation(s)
- Omid Ashayerizadeh
- Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Behrouz Dastar
- Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Parastoo Pourashouri
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
58
|
Palacios-Gorba C, Pina R, Tortajada-Girbés M, Jiménez-Belenguer A, Siguemoto É, Ferrús MA, Rodrigo D, Pina-Pérez MC. Caenorhabditis elegans as an in vivo model to assess fucoidan bioactivity preventing Helicobacter pylori infection. Food Funct 2020; 11:4525-4534. [PMID: 32393934 DOI: 10.1039/d0fo00768d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Currently, Helicobacter pylori is the unique biological carcinogenic agent. The search for antimicrobial alternatives to antibiotics against this pathogen has been categorized as a priority due to the drastic failure associated with current applied antibiotic therapy. The present study assessed the bioactive antimicrobial capability of fucoidan ("Generally Recognized as Safe" approval - European Commission December 2017) from different species of Phaeophyceae algae (Fucus vesiculosus, Undaria pinnatifida, Macrocystis pyrifera) against H. pylori. All the studied fucoidans showed bacteriostatic and bactericidal effects at the studied concentrations [5-100] μg ml-1 and exposure times [0-7 days]. The most effective anti-H. pylori fucoidan was validated in Caenorhabditis elegans as an in vivo model. C. elegans feed was supplemented with Undaria pinnatifida [0-100] μg ml-1 fucoidan, resulting in a significant improvement in lifespan, lowered H. pylori concentration in the digestive tract, and increased egg-laying pattern. New research lines proposing this compound as an active agent in nutraceutical and preventive novel therapies should be opened.
Collapse
Affiliation(s)
- Carla Palacios-Gorba
- Universidad Cardenal Herrera-CEU, Facultad de Veterinaria, Avenida Seminario s/n, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Isolation, Characterization, and Antioxidant Activity Evaluation of a Fucoidan from an Enzymatic Digest of the Edible Seaweed, Hizikia fusiforme. Antioxidants (Basel) 2020; 9:antiox9050363. [PMID: 32349336 PMCID: PMC7278643 DOI: 10.3390/antiox9050363] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/22/2022] Open
Abstract
The previous study suggested that the sulfated polysaccharides from Hizikia fusiforme (HFPS) possess strong antioxidant activity. The purpose of this study is to isolate fucoidan from HFPS and to investigate its antioxidant activity. A fucoidan (HFPS-F4) with a molecular weight of 102.67 kDa was isolated from HFPS. HFPS-F4 contains 99.01% of fucoidan (71.79 ± 0.56% of carbohydrate and 27.22 ± 0.05% of sulfate content). The fucoidan increased the viability of H2O2-treated Vero cells by 5.41, 11.17, and 16.32% at the concentration of 12.5, 25, and 50 μg/mL, respectively. Further results demonstrated that this effect act diminishing apoptosis by scavenging intracellular reactive oxygen species (ROS) via increasing the expression of the endogenous antioxidant enzymes, which was induced by elevating total nuclear factor (erythroid-derived 2)-like 2 (Nrf2) levels. In addition, the in vivo test results displayed that the pretreatment of fucoidan improved the survival rates and decreased heart-beating rate, ROS, cell death, and lipid peroxidation in H2O2-stimulated zebrafish. Taken together, these results demonstrated that fucoidan isolated from HFPS has strong in vitro and in vivo antioxidant activities and it could be utilized in pharmaceutical, nutraceutical, and cosmeceutical industries.
Collapse
|
60
|
Natural polysaccharides experience physiochemical and functional changes during preparation: A review. Carbohydr Polym 2020; 234:115896. [DOI: 10.1016/j.carbpol.2020.115896] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
|
61
|
Li DD, Yang N, Tao Y, Xu EB, Jin ZY, Han YB, Xu XM. Induced electric field intensification of acid hydrolysis of polysaccharides: Roles of thermal and non-thermal effects. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
62
|
Dobrinčić A, Balbino S, Zorić Z, Pedisić S, Bursać Kovačević D, Elez Garofulić I, Dragović-Uzelac V. Advanced Technologies for the Extraction of Marine Brown Algal Polysaccharides. Mar Drugs 2020; 18:E168. [PMID: 32197494 PMCID: PMC7143672 DOI: 10.3390/md18030168] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022] Open
Abstract
Over the years, brown algae bioactive polysaccharides laminarin, alginate and fucoidan have been isolated and used in functional foods, cosmeceutical and pharmaceutical industries. The extraction process of these polysaccharides includes several complex and time-consuming steps and the correct adjustment of extraction parameters (e.g., time, temperature, power, pressure, solvent and sample to solvent ratio) greatly influences the yield, physical, chemical and biochemical properties as well as their biological activities. This review includes the most recent conventional procedures for brown algae polysaccharides extraction along with advanced extraction techniques (microwave-assisted extraction, ultrasound assisted extraction, pressurized liquid extraction and enzymes assisted extraction) which can effectively improve extraction process. The influence of these extraction techniques and their individual parameters on yield, chemical structure and biological activities from the most current literature is discussed, along with their potential for commercial applications as bioactive compounds and drug delivery systems.
Collapse
Affiliation(s)
- Ana Dobrinčić
- Faculty of Food Technology & Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (S.B.); (Z.Z.); (S.P.); (D.B.K.); (I.E.G.); (V.D.-U.)
| | | | | | | | | | | | | |
Collapse
|
63
|
Han J, Liu B, Liu QM, Zhang YF, Liu YX, Liu H, Cao MJ, Liu GM. Red Algae Sulfated Polysaccharides Effervescent Tablets Attenuated Ovalbumin-Induced Anaphylaxis by Upregulating Regulatory T cells in Mouse Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11911-11921. [PMID: 31475818 DOI: 10.1021/acs.jafc.9b03132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Red algae sulfated polysaccharides (RASP) were extracted from Porphyra haitanensis and Gracilaria lemaneiformis. RASP were applied to effervescent tablets to develop a type of functional food, termed red algae sulfated polysaccharide effervescent tablets (RASPET), based on the antiallergic activities of RASP. The antiallergic activities and the mechanisms of RASPET were investigated in an ovalbumin (OVA)-induced mouse model of food allergy. The results revealed that RASPET alleviated intestinal villi injury by scanning electron microscopy and anaphylactic symptoms; reduced OVA-specific immunoglobulin E, histamine, and mast cell protease-1 levels in the serum; reduced the level of serum interleukin-4; increased serum interferon-γ level; and decreased B cell and mast cell populations. Remarkably, RASPET increased the levels of serum interleukin-10, transforming growth factor-β, and upregulated splenic CD4+foxp3+ T cell populations (15.28, 16.82, and 17.58%, respectively) compared to the OVA group (13.17%). In conclusion, RASPET attenuated OVA-induced anaphylaxis via the upregulation of regulatory T cells.
Collapse
Affiliation(s)
- Jing Han
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Bo Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Ya-Fen Zhang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Yi-Xiang Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Hong Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| |
Collapse
|
64
|
Wang L, Oh JY, Hwang J, Ko JY, Jeon YJ, Ryu B. In Vitro and In Vivo Antioxidant Activities of Polysaccharides Isolated from Celluclast-Assisted Extract of an Edible Brown Seaweed, Sargassum fulvellum. Antioxidants (Basel) 2019; 8:antiox8100493. [PMID: 31635214 PMCID: PMC6826471 DOI: 10.3390/antiox8100493] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 01/01/2023] Open
Abstract
It has been reported that enzymatic digestion of algae could improve the yield and enhance the biological activity compared to water and organic extraction. Our previous research indicated that Celluclast-assisted extract of Sargassum fulvellum (SF) possessed higher carbohydrate content and stronger antioxidant activity compared to water and other enzyme-assisted extracts. In the present study, we evaluated the antioxidant activities of polysaccharides from SF (SFPS) in vitro in Vero cells and in vivo in zebrafish. SFPS was obtained by Celluclast-assisted hydrolysis and ethanol precipitation. Results showed that SFPS contained 74.55 ± 1.26% sulfated polysaccharides and effectively scavenged 1, 1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, and alkyl radicals. SFPS significantly and dose-dependently scavenged intracellular reactive oxygen species (ROS) and improved cell viability. Further studies indicated that SFPS reduced apoptotic body formation through downregulation of proapoptotic protein (Bax and cleaved caspase-3) levels and upregulation of antiapoptotic protein (Bcl-xL and PARP) levels in 2,2-azobis(2-amidinopropane) hydrochloride (AAPH)-treated Vero cells. In addition, SFPS showed strong protective effect against AAPH-stimulated oxidative stress in vivo in zebrafish, as demonstrated by the improved survival rate, reduced heart rate, and decrease in ROS, cell death, and lipid peroxidation levels. These results suggest that SFPS possesses strong in vitro and in vivo antioxidant activity and can be a potential ingredient in the pharmaceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Lei Wang
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Korea.
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Korea.
| | - Jae Young Oh
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Korea.
| | - Jin Hwang
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Korea.
| | - Jae Young Ko
- Material Research Team, Amorepacific R&D Unit, Jeju 63243, Korea.
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Korea.
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Korea.
| | - BoMi Ryu
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Korea.
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Korea.
| |
Collapse
|
65
|
Zhou J, Zou P, Jing C, Xu Z, Zhou S, Li Y, Zhang C, Yuan Y. Chemical characterization and bioactivities of polysaccharides from Apocynum venetum leaves extracted by different solvents. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00286-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
66
|
Saravana PS, Shanmugapriya K, Gereniu CRN, Chae SJ, Kang HW, Woo HC, Chun BS. Ultrasound-mediated fucoxanthin rich oil nanoemulsions stabilized by κ-carrageenan: Process optimization, bio-accessibility and cytotoxicity. ULTRASONICS SONOCHEMISTRY 2019; 55:105-116. [PMID: 31084784 DOI: 10.1016/j.ultsonch.2019.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/20/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
This work aims to produce and optimize a κ-carrageenan-based nanoemulsion (NE) to encapsulate seaweed oil, which is rich in fucoxanthin (FX), using ultrasound-assisted emulsification. κ-Carrageenan was produced using subcritical water, and seaweed oil was extracted using supercritical carbon dioxide with sunflower oil as the co-solvent. Response surface methodology (RSM) was used to understand the influence of several process parameters such as ultrasound amplitude, time, temperature, and duty cycle to produce an NE. The RSM factor was used to focus on droplet size, polydispersity index, zeta potential, viscosity, antioxidant, FX, encapsulation efficiency, and emulsion stability. Our outcomes suggested that the ultrasound process had a noteworthy influence on the NE. The best conditions to obtain an NE were an ultrasound amplitude of 87 µm, a sonication time of 394 s, a temperature of 60 °C, and a duty cycle of 50%. The resulting NE was studied by UV-Vis, Fourier-transform infrared spectroscopy, thermal gravimetric analysis, differential scanning calorimetry, scanning electron microscopy, atomic force microscopy, and X-ray diffraction. Moreover, the NE obtained from optimized conditions was checked for fatty acid content, color, oxidative stability, in vitro digestion, bioaccessibility of FX, and cytotoxicity. The results obtained suggest that lower droplet size of the emulsion can improve oxidative stability, in vitro digestion, bioaccessibility of FX, and good cell inhibition against a few cell lines. Therefore, a κ-carrageenan-stabilized NE can be used as a potential delivery system to endorse applications of seaweed oil, which is rich in FX, in functional foods, beverage systems, and pharmaceuticals.
Collapse
Affiliation(s)
- Periaswamy Sivagnanam Saravana
- Food Engineering Laboratory, Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Namgu, Busan 48513, Republic of Korea; Department of Food Chemistry & Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Karuppusamy Shanmugapriya
- Department of Biomedical Engineering and Centre for Marine-Integrated Biomedical Technology, Pukyong National University, 48513, Republic of Korea
| | - Collin Rudolf Nobbs Gereniu
- Food Engineering Laboratory, Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Namgu, Busan 48513, Republic of Korea; Department of Fisheries Studies, School of Technology, Maritime, and Fisheries Studies, Solomon Islands National University, P.O. Box R113, Honiara, Solomon Islands
| | - Sol-Ji Chae
- Food Engineering Laboratory, Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Namgu, Busan 48513, Republic of Korea
| | - Hyun Wook Kang
- Department of Biomedical Engineering and Centre for Marine-Integrated Biomedical Technology, Pukyong National University, 48513, Republic of Korea
| | - Hee-Chul Woo
- Department of Chemical Engineering, Pukyong National University, 365 Sinseon-ro, Namgu, Busan 608-737, Republic of Korea
| | - Byung-Soo Chun
- Food Engineering Laboratory, Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Namgu, Busan 48513, Republic of Korea.
| |
Collapse
|
67
|
Flórez-Fernández N, Torres MD, González-Muñoz MJ, Domínguez H. Recovery of bioactive and gelling extracts from edible brown seaweed Laminaria ochroleuca by non-isothermal autohydrolysis. Food Chem 2019; 277:353-361. [PMID: 30502157 DOI: 10.1016/j.foodchem.2018.10.096] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/22/2022]
Abstract
The non-isothermal autohydrolysis temperature impact of edible brown seaweed Laminaria ochroleuca was studied to recover high valuable compounds. Extraction yield was determined, above 80% was obtained at 220 °C. The maximal fucose content (17% d.b.) was attained at 180 °C, whereas the maximal sulphate was achieved at 160 °C, and phenolic and protein content at 220 °C. The maximum sulphated fucoidan content (41.38 g fucoidan/100 g extract) was obtained at 160 °C, whereas the maximum fucose oligosaccharides was obtained at 180 °C. The antioxidant capacity was equivalent to 32 mg Trolox/g dry extract produced at 220 °C. The milder processing condition was selected to study the potentiality of the precipitated alginate in terms of viscoelastic properties determined by rheology. Alginate extraction (14.94 g/100 g extract) was determined at 160 °C. The crude fucoidan fractions were tested at 25-500 μg/mL, showed up to 50% cell growth inhibition in four selected tumoral cell lines.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- Departamento de Enxeñería Química, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; CITI-Universidade de Vigo, Parque Tecnolóxico de Galicia, Rúa Galicia n° 2, 32900 Ourense, Spain.
| | - María Dolores Torres
- Departamento de Enxeñería Química, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; CITI-Universidade de Vigo, Parque Tecnolóxico de Galicia, Rúa Galicia n° 2, 32900 Ourense, Spain
| | - María Jesús González-Muñoz
- Departamento de Enxeñería Química, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; CITI-Universidade de Vigo, Parque Tecnolóxico de Galicia, Rúa Galicia n° 2, 32900 Ourense, Spain
| | - Herminia Domínguez
- Departamento de Enxeñería Química, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; CITI-Universidade de Vigo, Parque Tecnolóxico de Galicia, Rúa Galicia n° 2, 32900 Ourense, Spain
| |
Collapse
|
68
|
Shi D, Qi J, Zhang H, Yang H, Yang Y, Zhao X. Comparison of hydrothermal depolymerization and oligosaccharide profile of fucoidan and fucosylated chondroitin sulfate from Holothuria floridana. Int J Biol Macromol 2019; 132:738-747. [PMID: 30904529 DOI: 10.1016/j.ijbiomac.2019.03.127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 11/25/2022]
Abstract
To minimize undesired pharmacological activities and improve the bioavailability, the fucoidan and fucosylated chondroitin sulfate (FCS) from Holothuria floridana were depolymerized under hydrothermal conditions and the mechanism underlying hydrothermal depolymerization was proposed. Our results demonstrated that fucoidan and FCS from Holothuria floridana were able to be gradually depolymerized without desulfation at 100-121 °C by control of pH at 5-6 to obtain controlled molecular weight. It was the first time to find that pH also plays a key role on the hydrothermal depolymerization of fucoidan and FCS. The monosaccharide composition, FT-IR and NMR analysis showed that the structure of the optimized hydrothermal depolymerized fucoidan and FCS remained almost unchanged. By comparison, FCS was more difficult to be depolymerized than fucoidan under the same hydrothermal condition. The oligosaccharide profile in depolymerized fucoidan and FCS by HILIC-MS analysis further revealed that FCS was depolymerized with preferential cleavage of β-1 → 4 glycosidic linkage and decarboxylation on glucuronic acid during hydrothermal treatment, which was quite different with the random fracture type of fucoidan due to their different structure. These results indicated that hydrothermal depolymerization and action mechanism of fucoidan and FCS from sea cucumber were quite different for their different structure.
Collapse
Affiliation(s)
- Deling Shi
- College of Food Science and Engineering, Ocean University of China, No. 5, YuShan Road, Qingdao, Shandong Province 266003, PR China
| | - Junhua Qi
- College of Food Science and Engineering, Ocean University of China, No. 5, YuShan Road, Qingdao, Shandong Province 266003, PR China
| | - Hongwei Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5, YuShan Road, Qingdao, Shandong Province 266003, PR China.; The Technology Center of Qingdao Customs, No. 70, Qutangxia Road, Qingdao 266001, China
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, No. 10, Lincheng Street, Zhoushan 316021, China
| | - Yi Yang
- College of Food Science and Engineering, Ocean University of China, No. 5, YuShan Road, Qingdao, Shandong Province 266003, PR China
| | - Xue Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5, YuShan Road, Qingdao, Shandong Province 266003, PR China..
| |
Collapse
|
69
|
Wang Y, Chen G, Peng Y, Rui Y, Zeng X, Ye H. Simulated digestion and fermentation in vitro with human gut microbiota of polysaccharides from Coralline pilulifera. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
70
|
Seaweeds as Source of Bioactive Substances and Skin Care Therapy—Cosmeceuticals, Algotheraphy, and Thalassotherapy. COSMETICS 2018. [DOI: 10.3390/cosmetics5040068] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Riverine, estuarine, and coastal populations have always used algae in the development of home remedies that were then used to treat diverse health problems. The empirical knowledge of various generations originated these applications, and their mechanism of action is, in most cases, unknown, that is, few more scientific studies would have been described beyond simple collection and ethnographic recording. Nevertheless, recent investigations, carried out with the purpose of analyzing the components and causes that alter the functioning and the balance of our organism, are already giving their first results. Water, and especially sea water is considered as essential to life on our planet. It sings all the substances necessary and conducive to the development of the living being (minerals, catalysts, vitamins, amino acids, etc.). Oceans cover over 70% of Earth, being home to up to 90% of the organisms in the planet. Many rich resources and unique environments are provided by the ocean. Additionally, bioactive compounds that multiple marine organisms have a great potential to produce can be used as nutraceuticals, pharmaceuticals, and cosmeceuticals. Both primary and secondary metabolites are produced by algae. The first ones are directly implicated in development, normal growth, or reproduction conditions to perform physiological functions. Stress conditions, like temperature changes, salinity, environmental pollutants, or UV radiation exposure cause the performance of secondary metabolites. In algae, proteins, polysaccharides, fatty acids, and amino acids are primary metabolites and phenolic compounds, pigments, vitamins, sterols, and other bioactive agents, all produced in algae tissues, are secondary metabolites. These algal active constituents have direct relevance in cosmetics.
Collapse
|
71
|
Zhang J, Wen C, Gu J, Ji C, Duan Y, Zhang H. Effects of subcritical water extraction microenvironment on the structure and biological activities of polysaccharides from Lentinus edodes. Int J Biol Macromol 2018; 123:1002-1011. [PMID: 30468806 DOI: 10.1016/j.ijbiomac.2018.11.194] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
In the present study, we investigated the effects of subcritical water microenvironment on the structure and biological activities of polysaccharides from Lentinus edodes. The results showed that, under different SWE conditions (100-150 °C for 15 min, and 150 °C for 10-30 min), all the polysaccharides were heteropolysaccharides and consisted of glucose, mannose and galactose with different molar ratios. In addition, FT-IR results showed that all samples were typical β-pyranose and protein-free polysaccharides. Moreover, Congo red staining and atomic force microscope (AFM) analyses showed that when the temperature was above 150 °C for 15 min, the triple-helix structure no longer existed. Furthermore, various polysaccharides had varying degrees of inhibitory effect on HepG2 cells and MCF-7 cells in vitro. These findings indicated that subcritical water microenvironment has an extremely important effect on the structure and bioactivities of polysaccharides. The polysaccharides may be extracted more effectively by changing the subcritical water microenvironment.
Collapse
Affiliation(s)
- Jixian Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chaoting Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinyan Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chenchen Ji
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|