51
|
Barrera-Martínez CL, Padilla-Vaca F, Liakos I, Meléndez-Ortiz HI, Cortez-Mazatan GY, Peralta-Rodríguez RD. Chitosan microparticles as entrapment system for trans- cinnamaldehyde: Synthesis, drug loading, and in vitro cytotoxicity evaluation. Int J Biol Macromol 2020; 166:322-332. [PMID: 33127551 DOI: 10.1016/j.ijbiomac.2020.10.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
The ionic gelation method was used to study the effect of the crosslinking agent, sodium tripolyphosphate on average particle size (Dp) and zeta potential (ζp) of chitosan microparticles (CSMP) unloaded and loaded with trans-cinnamaldehyde (TCIN). The obtained values of Dp and ζp trend as 117.6 ± 0.4 ≤ Dp ≤ 478.5 ± 3.5 nm and +27.8 ± 1.3 ≤ ζp ≤ +103.5 ± 4.2 mV, respectively. The entrapment efficiency of TCIN in CSMP was 9.1 ± 2.0% and 71.5 ± 2.9% was released after 360 min (pH = 6.5) which reveals a potential anti-cancer activity in acidic environment. Cytotoxicity of TCIN in DMSO (0-50 μM) was evaluated on MDCK and HeLa cell lines and exhibited low effect at either 24 or 48 h of exposure; whereas TCIN-loaded CSMP (0-50 μM) showed, after 24 h of exposure, 67.6 ± 7.0 and 64.5 ± 3.9% cytotoxicity for MDCK and HeLa cell lines, respectively. At 48 h of exposure, TCIN-loaded CSMP achieved 81.1 ± 0.26 and 77.9 ± 4.2% cytotoxicity for MDCK and HeLa cell lines, respectively.
Collapse
Affiliation(s)
- Cynthia Lizeth Barrera-Martínez
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Colonia San Jose de los Cerritos, C.P. 25294 Saltillo, Coahuila, Mexico
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n Zona Universitaria, C.P. 36050 Guanajuato, Mexico
| | - Ioannis Liakos
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT), Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Héctor Iván Meléndez-Ortiz
- CONACyT-Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Colonia San Jose de los Cerritos, C.P. 25294 Saltillo, Coahuila, Mexico
| | - Gladis Y Cortez-Mazatan
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Colonia San Jose de los Cerritos, C.P. 25294 Saltillo, Coahuila, Mexico
| | - René Darío Peralta-Rodríguez
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Colonia San Jose de los Cerritos, C.P. 25294 Saltillo, Coahuila, Mexico.
| |
Collapse
|
52
|
Amigo L, Hernández-Ledesma B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020; 25:E4479. [PMID: 33003506 PMCID: PMC7582556 DOI: 10.3390/molecules25194479] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
Food protein-derived bioactive peptides are recognized as valuable ingredients of functional foods and/or nutraceuticals to promote health and reduce the risk of chronic diseases. However, although peptides have been demonstrated to exert multiple benefits by biochemical assays, cell culture, and animal models, the ability to translate the new findings into practical or commercial uses remains delayed. This fact is mainly due to the lack of correlation of in vitro findings with in vivo functions of peptides because of their low bioavailability. Once ingested, peptides need to resist the action of digestive enzymes during their transit through the gastrointestinal tract and cross the intestinal epithelial barrier to reach the target organs in an intact and active form to exert their health-promoting properties. Thus, for a better understanding of the in vivo physiological effects of food bioactive peptides, extensive research studies on their gastrointestinal stability and transport are needed. This review summarizes the most current evidence on those factors affecting the digestive and absorptive processes of food bioactive peptides, the recently designed models mimicking the gastrointestinal environment, as well as the novel strategies developed and currently applied to enhance the absorption and bioavailability of peptides.
Collapse
Affiliation(s)
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Research in Food Sciences (CIAL, CSIC-UAM, CEI-UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
53
|
|
54
|
Techno-functional characterization of chitosan nanoparticles prepared through planetary ball milling. Int J Biol Macromol 2020; 154:166-172. [DOI: 10.1016/j.ijbiomac.2020.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 11/20/2022]
|
55
|
Sharma P, Kaur H, Kehinde BA, Chhikara N, Sharma D, Panghal A. Food-Derived Anticancer Peptides: A Review. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10063-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
56
|
Encapsulation of phycocyanin by prebiotics and polysaccharides-based electrospun fibers and improved colon cancer prevention effects. Int J Biol Macromol 2020; 149:672-681. [DOI: 10.1016/j.ijbiomac.2020.01.189] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/09/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022]
|
57
|
Villegas-Peralta Y, López-Cervantes J, Madera Santana TJ, Sánchez-Duarte RG, Sánchez-Machado DI, Martínez-Macías MDR, Correa-Murrieta MA. Impact of the molecular weight on the size of chitosan nanoparticles: characterization and its solid-state application. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03139-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
58
|
Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, Zhao K. Chitosan Derivatives and Their Application in Biomedicine. Int J Mol Sci 2020; 21:E487. [PMID: 31940963 PMCID: PMC7014278 DOI: 10.3390/ijms21020487] [Citation(s) in RCA: 423] [Impact Index Per Article: 84.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan is a product of the deacetylation of chitin, which is widely found in nature. Chitosan is insoluble in water and most organic solvents, which seriously limits both its application scope and applicable fields. However, chitosan contains active functional groups that are liable to chemical reactions; thus, chitosan derivatives can be obtained through the chemical modification of chitosan. The modification of chitosan has been an important aspect of chitosan research, showing a better solubility, pH-sensitive targeting, an increased number of delivery systems, etc. This review summarizes the modification of chitosan by acylation, carboxylation, alkylation, and quaternization in order to improve the water solubility, pH sensitivity, and the targeting of chitosan derivatives. The applications of chitosan derivatives in the antibacterial, sustained slowly release, targeting, and delivery system fields are also described. Chitosan derivatives will have a large impact and show potential in biomedicine for the development of drugs in future.
Collapse
Affiliation(s)
- Wenqian Wang
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Qiuyu Meng
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Qi Li
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Jinbao Liu
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Mo Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China;
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China;
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
59
|
Jampafuang Y, Tongta A, Waiprib Y. Impact of Crystalline Structural Differences Between α- and β-Chitosan on Their Nanoparticle Formation Via Ionic Gelation and Superoxide Radical Scavenging Activities. Polymers (Basel) 2019; 11:E2010. [PMID: 31817199 PMCID: PMC6960491 DOI: 10.3390/polym11122010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
α- and β-Chitosan nanoparticles were obtained from shrimp shell and squid pen chitosan with different set of deacetylation degree (%DD) and molecular weight (MW) combinations. After nanoparticle formation via ionic gelation with sodium tripolyphosphate (TPP), the % crystallinity index (%CI) of the α- and β-chitosan nanoparticles were reduced to approximately 33% and 43% of the initial %CI of the corresponding α- and βchitosan raw samples, respectively. Both forms of chitosan and chitosan nanoparticles scavenged superoxide radicals in a dose-dependent manner. The %CI of α- and β-chitosan and chitosan nanoparticles was significantly negatively correlated with superoxide radical scavenging abilities over the range of concentration (0.5, 1, 2 and 3 mg/mL) studied. High %DD, and low MW β-chitosan exhibited the highest superoxide radical scavenging activity (p < 0.05). α- and β-Chitosan nanoparticles prepared from high %DD and low MW chitosan demonstrated the highest abilities to scavenge superoxide radicals at 2.0-3.0 mg/mL (p < 0.05), whereas α-chitosan nanoparticles, with the lowest %CI, and smallest particle size (p < 0.05), prepared from medium %DD, and medium MW chitosan showed the highest abilities to scavenge superoxide radicals at 0.5-1.0 mg/mL (p < 0.05). It could be concluded that α- and β-chitosan nanoparticles had superior superoxide radical scavenging abilities than raw chitosan samples.
Collapse
Affiliation(s)
- Yattra Jampafuang
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Anan Tongta
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut′s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Yaowapha Waiprib
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
60
|
Data on the preparation of chitosan-tripolyphosphate nanoparticles and its entrapment mechanism for egg white derived peptides. Data Brief 2019; 28:104841. [PMID: 31832532 PMCID: PMC6889790 DOI: 10.1016/j.dib.2019.104841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/29/2022] Open
Abstract
The data article refers to the paper “A study on the preparation of chitosan-tripolyphosphate nanoparticles and its entrapment mechanism for egg white derived peptides” [1]. Data presented here include impact factors (chitosan molecular weights, pH values, chitosan-tripolyphosphate mass ratio, and chitosan concentration) on the preparation and colloidal properties of chitosan-tripolyphosphate nanoparticles. Data also refer to the effect of impact factors (chitosan molecular weight, chitosan concentration, peptides-chitosan mass ratio and pH values) on the entrapment efficiency and entrapment capacity of chitosan-tripolyphosphate nanoparticles loading with egg white derived peptides. Data also involve the size and zeta potential change after the egg white derived peptides entrapped in chitosan-tripolyphosphate nanoparticles. Additionally, data exhibit the free amino group and surface hydrophobicity of egg white derived peptides with different molecular weights.
Collapse
|
61
|
Fabrication of N-acetyl-l-cysteine and l-cysteine functionalized chitosan-casein nanohydrogels for entrapment of hydrophilic and hydrophobic bioactive compounds. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
62
|
Barclay TG, Day CM, Petrovsky N, Garg S. Review of polysaccharide particle-based functional drug delivery. Carbohydr Polym 2019; 221:94-112. [PMID: 31227171 PMCID: PMC6626612 DOI: 10.1016/j.carbpol.2019.05.067] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023]
Abstract
This review investigates the significant role polysaccharide particles play in functional drug delivery. The importance of these systems is due to the wide variety of polysaccharides and their natural source meaning that they can provide biocompatible and biodegradable systems with a range of both biological and chemical functionality valuable for drug delivery. This functionality includes protection and presentation of working therapeutics through avoidance of the reticuloendothelial system, stabilization of biomacromolecules and increasing the bioavailability of incorporated small molecule drugs. Transport of the therapeutic is also key to the utility of polysaccharide particles, moving drugs from the site of administration through mucosal binding and transport and using chemistry, size and receptor mediated drug targeting to specific tissues. This review also scrutinizes the methods of synthesizing and constructing functional polysaccharide particle drug delivery systems that maintain and extend the functionality of the natural polysaccharides.
Collapse
Affiliation(s)
- Thomas G Barclay
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia.
| | - Candace Minhthu Day
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia.
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 1 Flinders Drive, Bedford Park, SA 5042, Australia; Department of Endocrinology, Flinders Medical Centre/Flinders University, Bedford Park, SA 5042, Australia.
| | - Sanjay Garg
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|