51
|
Glucosinolates: Natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and Biological Activities. Molecules 2020; 25:molecules25194537. [PMID: 33022970 PMCID: PMC7582585 DOI: 10.3390/molecules25194537] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Glucosinolates (GSLs) are secondary plant metabolites abundantly found in plant order Brassicales. GSLs are constituted by an S-β-d-glucopyrano unit anomerically connected to O-sulfated (Z)-thiohydroximate moiety. The side-chain of the O-sulfate thiohydroximate moiety, which is derived from a different amino acid, contributes to the diversity of natural GSL, with more than 130 structures identified and validated to this day. Both the structural diversity of GSL and their biological implication in plants have been biochemically studied. Although chemical syntheses of GSL have been devised to give access to these secondary metabolites, direct extraction from biomass remains the conventional method to isolate natural GSL. While intact GSLs are biologically inactive, various products, including isothiocyanates, nitriles, epithionitriles, and cyanides obtained through their hydrolysis of GSLs, exhibit many different biological activities, among which several therapeutic benefits have been suggested. This article reviews natural occurrence, accessibility via chemical, synthetic biochemical pathways of GSL, and the current methodology of extraction, purification, and characterization. Structural information, including the most recent classification of GSL, and their stability and storage conditions will also be discussed. The biological perspective will also be explored to demonstrate the importance of these prominent metabolites.
Collapse
|
52
|
Li J, Ma Y, Kong L, Liu Y. Comprehensive profiling of phytochemical compounds, antioxidant activities, anti-HepG2 cell proliferation, and cholinesterase inhibitory potential of Elaeagnus mollis leaf extracts. PLoS One 2020; 15:e0239497. [PMID: 32966304 PMCID: PMC7510975 DOI: 10.1371/journal.pone.0239497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 02/04/2023] Open
Abstract
The aim of this work was to enrich the knowledge on the potential applications of Elaeagnus mollis leaf extracts. For this purpose, the bioactive compounds (phenolic, flavonoid, alkaloid, proanthocyanidin, chlorophyll and carotene content), antioxidant activity, anti-HepG2 cell proliferation, and cholinesterase inhibitory potential (AChE and BChE) of E. mollis leaves which obtained from different habitats were quantitatively analyzed using various solvents (water, methanol, ethanol, and n-hexane). The results showed that the methanol extracts exhibited the strongest 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and the water extracts showed the best antioxidant activity in the 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical scavenging activity, ferric reducing antioxidant power (FRAP), and reducing power (RP) assays. Moreover, the methanol extracts showed the best inhibitory activity against cholinesterase and HepG2 cancer cells. Correlation analysis revealed that the high antioxidant and anti-HepG2 cell proliferation activities were mainly attributed to the total phenolics, flavonoids, and proanthocyanidins while AChE inhibition was attributed to the total alkaloid and carotene content. The statistical results showed that the effect of habitats was lower than that of different solvents used. Additionally, the metabolic profiles of E. mollis leaves were evaluated using HPLC-ESI-Q TRAP-MS/MS, and a total of 1,017 chemical components were detected and classified into 23 classes. The organic acids and derivatives ranked the first, followed by flavone, amino acid and derivatives, and so on. In conclusion, the effects of different solvents were more significant than the effects of different habitats and the methanol extracts of E. mollis leaves could be used as an effective source of functional active components, provide benefits to physical health care and be applied to the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Jingmiao Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Ma
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Lijuan Kong
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
53
|
Chuo SC, Nasir HM, Mohd-Setapar SH, Mohamed SF, Ahmad A, Wani WA, Muddassir M, Alarifi A. A Glimpse into the Extraction Methods of Active Compounds from Plants. Crit Rev Anal Chem 2020; 52:667-696. [PMID: 32954795 DOI: 10.1080/10408347.2020.1820851] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Naturally active compounds are usually contained inside plants and materials thereof. Thus, the extraction of the active compounds from plants needs appropriate extraction methods. The commonly employed extraction methods are mostly based on solid-liquid extraction. Frequently used conventional extraction methods such as maceration, heat-assisted extraction, Soxhlet extraction, and hydrodistillation are often criticized for large solvent consumption and long extraction times. Therefore, many advanced extraction methods incorporating various technologies such as ultrasound, microwaves, high pressure, high voltage, enzyme hydrolysis, innovative solvent systems, adsorption, and mechanical forces have been studied. These advanced extraction methods are often better than conventional methods in terms of higher yields, higher selectivity, lower solvent consumption, shorter processing time, better energy efficiency, and potential to avoid organic solvents. They are usually designed to be greener, more sustainable, and environment friendly. In this review, we have critically described recently developed extraction methods pertaining to obtaining active compounds from plants and materials thereof. Main factors that affect the extraction performances are tuned, and extraction methods are chosen in line with the properties of targeted active compounds or the objectives of extraction. The review also highlights the advancements in extraction procedures by using combinations of extraction methods to obtain high overall yields or high purity extracts.
Collapse
Affiliation(s)
- Sing Chuong Chuo
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia.,Department of Quantity Surveying, Faculty of Built Environment, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia
| | - Hasmida Mohd Nasir
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia
| | - Siti Hamidah Mohd-Setapar
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia.,Malaysia-Japan International Institute of Technology, Jalan Sultan Yahya Petra, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Sarajul Fikri Mohamed
- Department of Quantity Surveying, Faculty of Built Environment, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia
| | - Akil Ahmad
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia.,Malaysia-Japan International Institute of Technology, Jalan Sultan Yahya Petra, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Waseem A Wani
- Department of Chemistry, Govt. Degree College Tral, Kashmir, J&K, India
| | - Mohd Muddassir
- Catalytic Chemistry Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alarifi
- Catalytic Chemistry Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
54
|
Biotransformation of two citrus flavanones by lactic acid bacteria in chemical defined medium. Bioprocess Biosyst Eng 2020; 44:235-246. [PMID: 32888093 DOI: 10.1007/s00449-020-02437-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
Microbial processes are being developed to transform flavonoid glycosides to varieties of metabolites with higher bioavailability. The aim of this study was to determine the metabolic activity and survival of five lactic acid bacteria (LAB) stains (L. rhamnosus LRa05, L. casei LC89, L. plantarum N13, L. acidophilus LA85, and L. brevis LB01) in two different citrus flavanone standards (hesperetin-7-O-rutinoside and naringenin-7-O-rutinoside). The enzymatic activity, metabolites, antioxidant activities, and α-glucosidase inhibition property in the two standards were also investigated before and after incubated with LAB. The medium contained standards permitted survival of the five LAB stains. All strains exhibited β-glucosidase activity. Of the five LAB strains tested, just L. plantarum N13 and L. brevis LB01 have the ability to metabolize hesperetin-7-O-rutinoside, only L. plantarum N13, L. acidophilus LA85, and L. brevis LB01 could metabolize naringenin-7-O-rutinoside, moreover, L. acidophilus LA85l was the strain with the highest biotransformation ratio of naringenin-7-O-rutinoside. L. acidophilus LA85 and L. plantarum N13 can degrade naringenin-7-O-rutinoside into naringenin. L. brevis LB01 can degrade hesperetin-7-O-rutinoside into hesperetin, 3-(4'-hydroxyphenyl)-2-propenoic acid, 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid, and 3-(4'-hydroxyphenyl)propionic acid. Incubation of L. acidophilus LA85 in naringenin-7-O-rutinoside solution supposed no apparent influence in the biological activities that tested. L. acidophilus LA85 may potentially contribute to the bioavailability of citrus flavanones, and to be applied as functional cultures to obtain more bioavailable and bioactive metabolites in food products or in the human gastrointestinal tract.
Collapse
|
55
|
Maina S, Misinzo G, Bakari G, Kim HY. Human, Animal and Plant Health Benefits of Glucosinolates and Strategies for Enhanced Bioactivity: A Systematic Review. Molecules 2020; 25:E3682. [PMID: 32806771 PMCID: PMC7464879 DOI: 10.3390/molecules25163682] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Glucosinolates (GSs) are common anionic plant secondary metabolites in the order Brassicales. Together with glucosinolate hydrolysis products (GSHPs), they have recently gained much attention due to their biological activities and mechanisms of action. We review herein the health benefits of GSs/GSHPs, approaches to improve the plant contents, their bioavailability and bioactivity. In this review, only literature published between 2010 and March 2020 was retrieved from various scientific databases. Findings indicate that these compounds (natural, pure, synthetic, and derivatives) play an important role in human/animal health (disease therapy and prevention), plant health (defense chemicals, biofumigants/biocides), and food industries (preservatives). Overall, much interest is focused on in vitro studies as anti-cancer and antimicrobial agents. GS/GSHP levels improvement in plants utilizes mostly biotic/abiotic stresses and short periods of phytohormone application. Their availability and bioactivity are directly proportional to their contents at the source, which is affected by methods of food preparation, processing, and extraction. This review concludes that, to a greater extent, there is a need to explore and improve GS-rich sources, which should be emphasized to obtain natural bioactive compounds/active ingredients that can be included among synthetic and commercial products for use in maintaining and promoting health. Furthermore, the development of advanced research on compounds pharmacokinetics, their molecular mode of action, genetics based on biosynthesis, their uses in promoting the health of living organisms is highlighted.
Collapse
Affiliation(s)
- Sylvia Maina
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gerald Misinzo
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gaymary Bakari
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
| |
Collapse
|
56
|
The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100547] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
57
|
Rahmani R, Bouajila J, Jouaidi M, Debouba M. African mustard (Brassica tournefortii) as source of nutrients and nutraceuticals properties. J Food Sci 2020; 85:1856-1871. [DOI: 10.1111/1750-3841.15157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Rami Rahmani
- Unité de recherche « Valorisation des biomolécules actives », Institut Supérieur de Biologie Appliquée de Médenine, Route El Jorf – Km 22.5 ‐ 4119 MedenineUniversité de Gabès Gabès Tunisia
- Laboratoire de Génie Chimique, UMR 5503, Université de Toulouse, CNRS, INPTUPS Toulouse France
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, UMR 5503, Université de Toulouse, CNRS, INPTUPS Toulouse France
| | - Marwa Jouaidi
- Unité de recherche « Valorisation des biomolécules actives », Institut Supérieur de Biologie Appliquée de Médenine, Route El Jorf – Km 22.5 ‐ 4119 MedenineUniversité de Gabès Gabès Tunisia
- Laboratoire de Génie Chimique, UMR 5503, Université de Toulouse, CNRS, INPTUPS Toulouse France
| | - Mohamed Debouba
- Unité de recherche « Valorisation des biomolécules actives », Institut Supérieur de Biologie Appliquée de Médenine, Route El Jorf – Km 22.5 ‐ 4119 MedenineUniversité de Gabès Gabès Tunisia
| |
Collapse
|
58
|
The Influence of Plant Material Enzymatic Hydrolysis and Extraction Conditions on the Polyphenolic Profiles and Antioxidant Activity of Extracts: A Green and Efficient Approach. Molecules 2020; 25:molecules25092074. [PMID: 32365541 PMCID: PMC7249032 DOI: 10.3390/molecules25092074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to develop a new comprehensive extraction protocol based on green technology for the enhanced release of polyphenolic compounds from plant cells. In this work, extracts from yerba mate and yellow lupine seed were obtained by using three different extraction techniques: maceration, supercritical fluid extraction with co-solvent (SFE) and enzyme assisted-supercritical fluid extraction with co-solvent (EA-SFE). Several experimental parameters such as time, type of solvent and co-solvent as well as CO2 flow rate were selected to obtain the highest extraction efficiency. The chemical profiles in the obtained extracts and their biological activity were evaluated. HPLC-MS/MS analysis indicated that the level of phenolic compounds in extracts from yerba mate obtained by EA-SFE was approximately five times higher than for maceration and 3.2 times higher than for SFE. In the case of extracts from yellow lupine seed an approximately 5.6-fold increase was observed in comparison with maceration and SFE with 96% MeOH, and 2.9 times for SFE with 96% EtOH. The developed protocol with a mix of enzymes commonly applied in the agricultural industry significantly raises the efficiency of liberation of secondary metabolites.
Collapse
|
59
|
Ferreira-Santos P, Genisheva Z, Botelho C, Santos J, Ramos C, Teixeira JA, Rocha CM. Unravelling the Biological Potential of Pinus pinaster Bark Extracts. Antioxidants (Basel) 2020; 9:antiox9040334. [PMID: 32325962 PMCID: PMC7222395 DOI: 10.3390/antiox9040334] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 01/23/2023] Open
Abstract
Natural compounds from agro-food by-products have fostered interest in food industries. The aim of this study was to unravel potential uses for Pinus pinaster bark extracts (PBE). As functional features of this type of extracts are usually attributed to phenolic compounds, the extraction process was studied. Different PBEs were achieved, with high content in phenolic compounds, using different water/ethanol combinations as a solvent. These PBEs were chemically characterized, and their bioactivity and in vitro cell viability were evaluated. Extracts obtained with hydroethanolic solvents had higher content in phenolic and flavonoid compounds. All the PBEs presented high antioxidant, antibacterial and antihyperglycemic activities. Moreover, PBEs have low cytotoxicity and a selective activity against cancer cells as these were negatively affected. These features may allow the extracts to be used in food formulation and processing (as preservatives, antioxidants or bioactive ingredients), but they showed also potential for the pharmaceutical or nutraceutical sectors.
Collapse
Affiliation(s)
- Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (P.F.-S.); (C.M.R.R.); Tel.: +351-253-604-426; (P.F.-S.); +351-253-604-423 (C.M.R.R.)
| | - Zlatina Genisheva
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudia Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Joana Santos
- CISAS—Centro de Investigação e Desenvolvimento em Sistemas Agroalimentares e Sustentabilidade, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Carla Ramos
- CISAS—Centro de Investigação e Desenvolvimento em Sistemas Agroalimentares e Sustentabilidade, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cristina M.R. Rocha
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (P.F.-S.); (C.M.R.R.); Tel.: +351-253-604-426; (P.F.-S.); +351-253-604-423 (C.M.R.R.)
| |
Collapse
|
60
|
Abstract
Flavonoids are a group of plant constituents called phenolic compounds and correspond to the nonenergy part of the human diet. Flavonoids are found in vegetables, seeds, fruits, and beverages such as wine and beer. Over 7000 flavonoids have been identified and they have been considered substances with a beneficial action on human health, particularly of multiple positive effects because of their antioxidant and free radical scavenging action. Although several studies indicate that some flavonoids have provident actions, they occur only at high doses, confirming in most investigations the existence of anti-inflammatory effects, antiviral or anti-allergic, and their protective role against cardiovascular disease, cancer, and various pathologies. Flavonoids are generally removed by chemical methods using solvents and traditional processes, which besides being expensive, involve long periods of time and affect the bioactivity of such compounds. Recently, efforts to develop biotechnological strategies to reduce or eliminate the use of toxic solvents have been reported, reducing processing time and maintaining the bioactivity of the compounds. In this paper, we review, analyze, and discuss methodologies for biotechnological recovery/extraction of flavonoids from agro-industrial residues, describing the advances and challenges in the topic.
Collapse
|
61
|
Extraction and Determination of Polar Bioactive Compounds from Alfalfa ( Medicago sativa L.) Using Supercritical Techniques. Molecules 2019; 24:molecules24244608. [PMID: 31888264 PMCID: PMC6943590 DOI: 10.3390/molecules24244608] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 02/03/2023] Open
Abstract
The aim of this research was to select parameters for supercritical extraction with CO2 of Medicago sativa L., considered as functional food, in quarter-technical plant, providing the highest concentration of bioactive polar constituents and simultaneously maintaining the highest efficiency of the process. For the purpose of optimization, mathematical statistics was used. Qualitative analysis of products was performed with supercritical fluid chromatography (SFC). The SFC analysis revealed a proper separation of flavonoids and phenolics acids for dedicated TFC and TPC optimal parameters. The obtained results have proved that it is a possibility to extract polar compounds with non-polar solvent under higher values of pressure and temperature and to enrich product with desired group of bioactive compounds with proper optimization. The proposed extraction technique allows to obtain on an industrial scale, using an environmentally friendly solvent, a preparation rich in biologically active nutrients that can be implemented in the cosmetics, pharmaceutical and food industries.
Collapse
|
62
|
Wakeel A, Jan SA, Ullah I, Shinwari ZK, Xu M. Solvent polarity mediates phytochemical yield and antioxidant capacity of Isatis tinctoria. PeerJ 2019; 7:e7857. [PMID: 31616599 PMCID: PMC6790100 DOI: 10.7717/peerj.7857] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/09/2019] [Indexed: 12/23/2022] Open
Abstract
Secondary metabolites have been extensively used in the treatment of various health problems. The role of solvent polarity on the phytochemical isolation and antioxidant capacity of Isatis tinctoria (woad) is elusive. In the present study, 14 solvents with different polarity were used in the extraction and total phenolic and flavonoid content (TPC and TFC) investigation. Ferricyanide, phosphomolybdenum, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods were used to calculate and compare the antioxidant/free radical scavenging capacity. Our results showed that solvent polarity greatly affects TPC and TFC yield, which is mainly increasing with increasing solvent polarity index and suddenly decreasing at very high polarity. The comparative results showed that TPC is directly correlated with reducing power, antioxidant, and free radical scavenging capacity. Taken together, we conclude that different woad plant parts contain different level of secondary metabolites with a specific polarity that requires a particular solvent with an appropriate polarity index for the extraction. The identification of these biologically active crude extracts and fractions are very important for the basic biological sciences, pharmaceutical applications, and future research for HPLC based active compounds isolation.
Collapse
Affiliation(s)
- Abdul Wakeel
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, School of Environment and Planning, Henan University, Kaifeng, Henan, China
- Molecular Systematics and Applied Ethnobotany Lab (MoSAEL), Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sohail Ahmad Jan
- Department of Biotechnology, Hazara University, Dodhial, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Ikram Ullah
- Molecular Systematics and Applied Ethnobotany Lab (MoSAEL), Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zabta Khan Shinwari
- Molecular Systematics and Applied Ethnobotany Lab (MoSAEL), Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ming Xu
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, School of Environment and Planning, Henan University, Kaifeng, Henan, China
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Jersey—Camden, United States of America
| |
Collapse
|
63
|
HPLC-ESI-qTOF-MS/MS Characterization, Antioxidant Activities and Inhibitory Ability of Digestive Enzymes with Molecular Docking Analysis of Various Parts of Raspberry ( Rubus ideaus L.). Antioxidants (Basel) 2019; 8:antiox8080274. [PMID: 31382647 PMCID: PMC6719955 DOI: 10.3390/antiox8080274] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022] Open
Abstract
The anti-oxidative phenolic compounds in plant extracts possess multiple pharmacological functions. However, the phenolic characterization and in vitro bio-activities in various parts of raspberry (Rubus idaeus L.) have not been investigated systematically. In the present study, the phenolic profiles of leaves (LE), fruit pulp (FPE), and seed extracts (SE) in raspberry were analyzed by HR-HPLC-ESI-qTOF-MS/MS method, and their antioxidant activities and digestive enzymes inhibitory abilities were also investigated. The molecular docking analysis was used to delineate their inhibition mechanisms toward type II diabetes related digestive enzymes. Regardless of LE, FPE, or SE, 50% methanol was the best solvent for extracting high contents of phenolic compounds, followed by 50% ethanol and 100% methanol. The LE of raspberry displayed the highest total phenolic content (TPC) and total flavonoid content (TFC). A total of nineteen phenolic compounds were identified. The quantitative results showed that gallic acid, ellagic acid, and procyanidin C3 were the major constituents in the three extracts. The various parts extracts of raspberry all exhibited the strong antioxidant activities, especially for LE. Moreover, the powerful inhibitory effects of the three extracts against digestive enzymes (α-glucosidase and α-amylase) were observed. The major phenolic compounds of the three extracts also showed good inhibitory activities of digestive enzyme in a dose-dependent manner. The underlying inhibitory mechanisms of the main phenolic compounds against digestive enzymes were clarified by molecular docking analysis. The present study demonstrated that the various parts of raspberry had strong antioxidant activities and inhibitory effects on digestive enzymes, and can potentially prevent oxidative damage or diabetes-related problems.
Collapse
|