51
|
Qu A, Zhang Y, Shi H, Wang H, Ding K, Pan ZH, Zhao G, Hadiatullah H. Investigation of gas-producing bacteria in sufu and its effective method to control their growth. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
52
|
Khazaei Monfared Y, Mahmoudian M, Cecone C, Caldera F, Zakeri-Milani P, Matencio A, Trotta F. Stabilization and Anticancer Enhancing Activity of the Peptide Nisin by Cyclodextrin-Based Nanosponges against Colon and Breast Cancer Cells. Polymers (Basel) 2022; 14:polym14030594. [PMID: 35160583 PMCID: PMC8840141 DOI: 10.3390/polym14030594] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
The great variability of cancer types demands novel drugs with broad spectrum, this is the case of Nisin, a polycyclic antibacterial peptide that recently has been considered for prevention of cancer cells growth. As an accepted food additive, this drug would be very useful for intestinal cancers, but the peptide nature would make easier its degradation by digestion procedures. For that reason, the aim of present study to investigate the protective effect of two different β-cyclodextrin-based nanosponges (carbonyl diimidazole and pyromellitic dianhydride) and their anti-cancer enhancement effect of Nisin-Z encapsulated with against colon cancer cells (HT-29). To extend its possible use, a comparison with breast (MCF-7) cancer cell was carried out. The physicochemical properties, loading efficiency, and release kinetics of Nisin complex with nanosponges were studied. Then, tricin-SDS-PAGE electrophoresis was used to understand the effect of NSs on stability of Nisin-Z in the presence of gastric peptidase pepsin. In addition, the cytotoxicity and cell membrane damage of Nisin Z were evaluated by using the MTT and LDH assay, which was complemented via Annexin-V/ Propidium Iodide (PI) by using flowcytometry. CD-NS are able to complex Nisin-Z with an encapsulation efficiency around 90%. A protective effect of Nisin-Z complexed with CD-NSs was observed in presence of pepsin. An increase in the percentage of apoptotic cells was observed when the cancer cells were exposed to Nisin Z complexed with nanosponges. Interestingly, Nisin Z free and loaded on PMDA/CDI-NSs is more selectively toxic towards HT-29 cells than MCF-7 cancer cells. These results indicated that nanosponges might be good candidates to protect peptides and deliver drugs against intestinal cancers.
Collapse
Affiliation(s)
- Yousef Khazaei Monfared
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
| | - Mohammad Mahmoudian
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran;
| | - Claudio Cecone
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
| | - Fabrizio Caldera
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Centre and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran
- Correspondence: (P.Z.-M.); or (A.M.); (F.T.)
| | - Adrián Matencio
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
- Correspondence: (P.Z.-M.); or (A.M.); (F.T.)
| | - Francesco Trotta
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
- Correspondence: (P.Z.-M.); or (A.M.); (F.T.)
| |
Collapse
|
53
|
Abdelnour SA, El-Ratel IT, Peris SI, El-Raghi AA, Fouda SF. Effects of dietary thyme essential oil on blood haematobiochemical, redox status, immunological and reproductive variables of rabbit does exposed to high environmental temperature. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2021.2006807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ibrahim T. El-Ratel
- Department of Poultry Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Soliman I. Peris
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ali Ali El-Raghi
- Department of Animal Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Sara F. Fouda
- Department of Poultry Production, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| |
Collapse
|
54
|
Aminzare M, Moniri R, Hassanzad Azar H, Mehrasbi MR. Evaluation of antioxidant and antibacterial interactions between resveratrol and eugenol in carboxymethyl cellulose biodegradable film. Food Sci Nutr 2022; 10:155-168. [PMID: 35035918 PMCID: PMC8751429 DOI: 10.1002/fsn3.2656] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/28/2021] [Indexed: 02/02/2023] Open
Abstract
The aim of present study was to compare the in vitro antioxidant and antibacterial properties of carboxymethyl cellulose (CMC) films containing resveratrol (RES) and eugenol (EUG), alone and in combination, and to calculate the dose interactions between them. At first, the total phenolic content of CMC films was evaluated. Then, their antioxidant and antibacterial effects of films were determined using DPPH, reducing power, disk diffusion, and broth dilution methods. Finally, concentrations of RES and EUG which showed better results in the CMC films were added in combination forms to calculate their antioxidant and antibacterial interactions. The results showed that addition of RES and/or EUG to CMC films increased the total phenolic content, free radicals scavenging activity, reducing power, and antibacterial activities of the films (p ≤ .05). Gram-positive bacteria were more susceptible than Gram-negatives. In addition, the combined use of RES and EUG in CMC films had synergistic antioxidant and antagonistic antibacterial effects. The best results belonged to the film containing RES (8 µg/ml) + EUG (8 mg/ml) (p ≤ .05). Considering the results of the present research, we can utilize CMC biodegradable film containing RES and EUG as a natural active packaging in food industry.
Collapse
Affiliation(s)
- Majid Aminzare
- Department of Food Safety and HygieneSchool of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Roya Moniri
- Department of Food Safety and HygieneSchool of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Hassan Hassanzad Azar
- Department of Food Safety and HygieneSchool of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Mohammad Reza Mehrasbi
- Department of Food Safety and HygieneSchool of Public HealthZanjan University of Medical SciencesZanjanIran
| |
Collapse
|
55
|
Rani S, Singh H, Ram C. Efficacy and mechanism of carvacrol with octanoic acid against mastitis causing multi-drug-resistant pathogens. Braz J Microbiol 2021; 53:385-399. [PMID: 34784023 DOI: 10.1007/s42770-021-00639-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022] Open
Abstract
In the present investigation, we determined the in vitro antimicrobial activity of eight essential oils (EOs) and three medium-chain fatty acids (MCFAs) alone and in combination against Staphylococcus aureus ATCC 700698, Klebsiella pneumoniae ATCC 700603, and E. coli FcW5. The interactions between EOs and MCFAs were determined by fractional inhibitory concentration indices. Moreover, mode of action of selected bioactive components was studied by changes in bacterial surface charge, morphology, and membrane integrity assays. Among EOs, carvacrol (CAR), trans-cinnamaldehyde (TC), and thymol (TM) showed strong antimicrobial activity. In combination study, CAR+OA (octanoic acid), CAR+DA (decanoic acid), and TM+OA were observed as the most significant (P≤0.05) which were also confirmed through time-kill plots. Based on these results, CAR+OA were found to be most efficacious in terms of killing time (P≤0.05). Changes in the surface charge, morphology, and membrane integrity upon the combined treatment of CAR+OA were also observed, which ultimately leads to cell death. Results suggest that CAR+OA when used in combination offer a significant (P≤0.05) additive antimicrobial activity against the selected pathogenic bacteria. Therefore, these natural bioactive molecules could be interesting alternatives to conventional therapy for the control of mastitis caused by multi-drug-resistant pathogens in bovine animals to ensure the milk safety.
Collapse
Affiliation(s)
- Sapna Rani
- Synbiotic Functional Food and Bioremediation Research Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| | - Hemlata Singh
- Synbiotic Functional Food and Bioremediation Research Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| | - Chand Ram
- Synbiotic Functional Food and Bioremediation Research Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India.
| |
Collapse
|
56
|
Öztürk F, Gündüz H, Sürengil G. The effects of essential oils on inactivation of
Listeria monocytogenes
in rainbow trout cooked with sous‐vide. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Fatma Öztürk
- Department of Fisheries and Fish Processing Technology Faculty of Fisheries Izmir Katip Celebi University Izmir Turkey
| | - Hatice Gündüz
- Department of Fisheries and Fish Processing Technology Faculty of Fisheries Izmir Katip Celebi University Izmir Turkey
| | - Göknur Sürengil
- Department of Fisheries and Fish Processing Technology Faculty of Fisheries Izmir Katip Celebi University Izmir Turkey
- Department of Fishing and Processing Technology Faculty of Eğirdir Fisheries University of Isparta Applied Sciences Isparta Turkey
| |
Collapse
|
57
|
Jahani E, Babaeekhou L, Ghane M. Chemical composition and antibacterial properties of
Zataria multiflora
Bioss and
Mentha longifolia
essential oils in combination with nisin and acid acetic. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Erfan Jahani
- Department of Biology, Islamshahr Branch Islamic Azad University Islamshahr Iran
| | - Laleh Babaeekhou
- Department of Biology, Islamshahr Branch Islamic Azad University Islamshahr Iran
| | - Maryam Ghane
- Department of Biology, Islamshahr Branch Islamic Azad University Islamshahr Iran
| |
Collapse
|
58
|
Kačániová M, Kunová S, Haščík P, Pietrzyk K, Kluz M, Terentjeva M, Savistkaya T, Grinshpan D. The antimicrobial effect of thyme and rosemary essential oils against Listeria monocytogenes in sous vide turkey meat during storage. POTRAVINARSTVO 2021. [DOI: 10.5219/1655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The research was aimed to study the impact of sous vide thermal treatment on the microbiological quality of fresh turkey breast meat after treatment with thyme and rosemary EOs and the survival of Listeria monocytogenes on the turkey meat samples. The samples were vacuum-packed and cooked at 55 °C, 60 °C, and 65 °C for 5, 15, 30 and, 60 min. There was an amount of 5 g (5 ±0.2 g) of the sample placed in PA/PE film bags and inoculated with 100 μL of L. monocytogenes inoculum. The sample was incubated at 37 °C for 18 h after bag sealing. The samples were tested on the 1st and 3rd days of experiments. The microbiological quality of fresh turkey breast meat was assessed by the detection of total microbial counts and meat microbiota was identified by mass spectrometry using MALDI-TOF MS Biotyper (Bruker Daltonics, Germany). Microbial counts differed significantly depending on temperature and time and the microbial counts ranged from 2.21 log cfu.g-1 to 8.26 log cfu.g-1 on the 1st and 3rd day of the experiment. The study shows that the sous vide method with essential oils combination is an effective method and it can be used to protect the microbiota of turkey meat and L. monocytogens survival, however, the quality of raw material is crucial.
Collapse
|
59
|
Rathod NB, Ranveer RC, Benjakul S, Kim SK, Pagarkar AU, Patange S, Ozogul F. Recent developments of natural antimicrobials and antioxidants on fish and fishery food products. Compr Rev Food Sci Food Saf 2021; 20:4182-4210. [PMID: 34146459 DOI: 10.1111/1541-4337.12787] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022]
Abstract
Fish and fishery products (FFP) are highly perishable due to their high nutritional value and moisture content. The spoilage is mainly caused by microorganisms and chemical reactions, especially lipid oxidation, leading to losses in quality and market value. Microbiological and lipid deteriorations of fishery-derived products directly lower their nutritive value and pose the risk of toxicity for human health. Increasing demand for safe FFP brings about the preservation using additives from natural origins without chemical additives due to their safety and strict regulation. Antimicrobials and antioxidants from natural sources have exhibited an excellent control over the growth of microorganisms causing fish spoilage via different mechanisms. They also play a major role in retarding lipid oxidation by acting at various stages of oxidation. Antimicrobials and antioxidants from natural sources are usually regarded as safe with no detrimental effects on the quality attributes of FFP. This review provides recent literature on the different antioxidant and antimicrobial agents from natural sources, focusing on microbial and oxidative spoilage mechanisms, their inhibition system, and their applications to retard spoilage, maintain safety, and extend the shelf life of FFP. Their applications and benefits have been revisited.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Rahul Chudaman Ranveer
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, College of Science & Technology Hanyang University Erica, Ansan-si, Gyeonggi-do, South Korea
| | - Asif Umar Pagarkar
- Marine Biological Research Station, (DBSKKV), Ratnagiri, Maharashtra, 415 612, India
| | - Surendra Patange
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra, 402 116, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey, 01330, Turkey
| |
Collapse
|
60
|
Antimicrobial Activity of Myrtus communis L. and Rosmarinus officinalis L. Essential Oils against Listeria monocytogenes in Cheese. Foods 2021; 10:foods10051106. [PMID: 34067614 PMCID: PMC8156628 DOI: 10.3390/foods10051106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Listeria monocytogenes has been referred to as a concern microorganism in cheese making due to its ability to survive and grow in a wide range of environmental conditions, such as refrigeration temperatures, low pH and high salt concentration at the end of the production process. Since cheese may be a potential hazard for consumers, especially high-risk consumers (e.g., pregnant, young children, the elderly, people with medical conditions), efforts of the dairy industry have been aimed at investigating new conservation techniques based on natural additives to meet consumers’ demands on less processed foods without compromising the food safety. Thus, the aim of this study was to evaluate the efficacy of Myrtus communis L. (myrtle) and Rosmarinus officinalis L. (rosemary) essential oils (EO) against Listeria monocytogenes ATCC 679 spiked in sheep cheese before ripening. After the cheesemaking process, the samples were stored at 8 °C for 2 h, 1 d, 3 d, 14 d and 28 d. The composition of EO was identified by gas chromatography-mass spectrometry (GC-MS) analysis. Constituents such as 1,8-cineole, limonene, methyl-eugenol, α-pinene, α-terpineol, α-terpinolene and β-pinene were present in both EO, accounting for 44.61% and 39.76% from the total of chemical compounds identified for myrtle and rosemary EO, respectively. According to the chemical classification, both EO were mainly composed of monoterpenes. Minimum inhibitory concentration (MIC) against L. monocytogenes was obtained at 31.25 μL/mL to myrtle EO and at 0.40 μL/mL to rosemary EO. Then, cheeses were inoculated with L. monocytogenes (Ca. 6 log CFU/mL) and EO was added at MIC value. The addition of rosemary and myrtle EO displayed lower counts of L. monocytogenes (p < 0.01) (about 1–2 log CFU/g) during the ripening period compared to control samples. Ripening only influences (p < 0.001) the growth of L. monocytogenes in control samples. Since rosemary and myrtle EO do not exert any negative impact on the growth of native microflora (p > 0.05), their use as natural antimicrobial additives in cheese demonstrated a potential for dairy processors to assure safety against L. monocytogenes.
Collapse
|
61
|
Pandey AK, Chávez-González ML, Silva AS, Singh P. Essential oils from the genus Thymus as antimicrobial food preservatives: Progress in their use as nanoemulsions-a new paradigm. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
62
|
Ahmad Shiekh K, Odunayo Olatunde O, Zhang B, Huda N, Benjakul S. Pulsed electric field assisted process for extraction of bioactive compounds from custard apple (Annona squamosa) leaves. Food Chem 2021; 359:129976. [PMID: 33957326 DOI: 10.1016/j.foodchem.2021.129976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
Impact of pulsed electric field (PEF) assisted process on preparation of custard apple leaf extract (CALE) using ethanol (70%, v/v) was studied. Different electric field strengths (2-6 kV/cm), pulse numbers (100-300 pulses) with specific energies (45-142 kJ/kg) for 2.5 to 5 min were implemented. Cell disintegration index was higher in CALE when PEF 6 kV/cm, 300 pulses, 142 kJ/kg for 5 min was applied. Extraction yield was higher (+5.2%) than the untreated counterpart (13.28%). Chlorophyll A and B contents were negligible in PEF pre-treated CALE. PEF improved radical scavenging activities assessed by DPPH, ABTS radical scavening activities and FRAP. The antibacterial properties of CALE against Staphylococcus aureus and Escherichia coli were highest. Purpureacin 2 and rutin were abundant in PEF pre-treated CALE. Therefore PEF was the potential aid in augmenting extraction yield and bioactivities of the extract from custard apple leaves.
Collapse
Affiliation(s)
- Khursheed Ahmad Shiekh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Oladipupo Odunayo Olatunde
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Bin Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
63
|
Hosseini S, Abdollahzadeh E, Ranaei V, Mahmoudzadeh M, Pilevar Z. Effect of Zataria multiflora Boiss. essential oil, NaCl, acid, time, and temperature on the growth of Listeria monocytogenes strains in broth and minced rainbow trout. Food Sci Nutr 2021; 9:2290-2298. [PMID: 33841845 PMCID: PMC8020953 DOI: 10.1002/fsn3.2208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/03/2023] Open
Abstract
The small outbreaks of listeriosis as one of the leading causes of food poisoning-associated deaths occur more than previously reported. In current study, the growth ability of Listeria monocytogenes strains isolated from different sources of food and human origin was measured under salt stress (0.5%, 2.5%, 5%, 7.5%, and 10%) and acid environments (pH = 6.64 and 5.77) for 96 hr by using a Bioscreen C microbiology reader at 37°C. In further steps of this study, after analysis of constituents of Zataria multiflora Boiss. essential oil (ZMEO), the sensory evaluation of the treated fish meat with ZMEO was performed. Then, the fish isolate of L. monocytogenes was exposed to sensory acceptable and subminimum inhibitory concentrations (subMICs) of ZMEO in fish broth and minced fish meat during incubation at abuse (12°C), room (22°C), and optimum (37°C) temperatures for 48 hr. The MIC of NaCl against four strains of L. monocytogenes was 10% at 37°C. The maximum optical densities (ODs) and under curve areas (AUC) of growth patterns in higher pH value and lower contents of NaCl followed the order of 21C > 6F > 66C > 22C of L. monocytogenes strains, while the lag time was prolonged in the reverse order. The maximum OD, growth, and lag times of samples treated with higher contents of NaCl and lower pH value were affected in a different order. The organoleptic evaluation showed that the fish meat treated with less than 0.5% of ZMEO was sensory acceptable. The population of L. monocytogenes remained relatively constant at the inoculation level of 107 cfu/ml (or g) at 12°C in broth and minced fish mediums. The inhibitory antilisterial activity of essential oil as an extensive-used plant for food and pharmacological applications is negligible due to possible adverse sensory and toxic effects at relevant high doses.
Collapse
Affiliation(s)
- Setayesh Hosseini
- Department of Cell and Molecular Biology SciencesSchool of BiologyCollege of ScienceUniversity of TehranTehranIran
| | - Esmail Abdollahzadeh
- International Sturgeon Research InstituteAgricultural Research, Education and Extension Organization (AREEO)RashtIran
| | - Vahid Ranaei
- Social Determinants in Health Promotion research CenterHormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
| | - Maryam Mahmoudzadeh
- Nutrition Research Center and Department of Food Science and TechnologyFaculty of Nutrition and Food ScienceTabriz University of Medical SciencesTabrizIran
| | - Zahra Pilevar
- Department of Food Sciences & TechnologyFaculty of Nutrition Sciences and Food TechnologyNational Nutrition & Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
64
|
Šimat V, Čagalj M, Skroza D, Gardini F, Tabanelli G, Montanari C, Hassoun A, Ozogul F. Sustainable sources for antioxidant and antimicrobial compounds used in meat and seafood products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:55-118. [PMID: 34311904 DOI: 10.1016/bs.afnr.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The contribution of food in promotion of health has become of most importance. The challenges that lie before the global food supply chain, such as climate changes, food contamination, and antimicrobial resistance may compromise food safety at international scale. Compounds with strong antimicrobial and antioxidant activity can be extracted from different natural and sustainable sources and may contribute to extend the shelf life of meat and seafood products, enhance food safety and enrich foods with additional biologically active and functional ingredients. This chapter describes the use of bioprotective cultures, essential oils, plant extracts, seaweed extracts and grape pomace compounds in production of value-added meat and seafood products with improved shelf life and safety, following the requests from the market and consumers.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| |
Collapse
|
65
|
Antilisterial Potential of Lactic Acid Bacteria in Eliminating Listeria monocytogenes in Host and Ready-to-Eat Food Application. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Listeriosis is a severe food borne disease with a mortality rate of up to 30% caused by pathogenic Listeria monocytogenes via the production of several virulence factors including listeriolysin O (LLO), transcriptional activator (PrfA), actin (Act), internalin (Int), etc. It is a foodborne disease predominantly causing infections through consumption of contaminated food and is often associated with ready-to-eat food (RTE) and dairy products. Common medication for listeriosis such as antibiotics might cause an eagle effect and antibiotic resistance if it is overused. Therefore, exploration of the use of lactic acid bacteria (LAB) with probiotic characteristics and multiple antimicrobial properties is increasingly getting attention for their capability to treat listeriosis, vaccine development, and hurdle technologies. The antilisterial gene, a gene coding to produce antimicrobial peptide (AMP), one of the inhibitory substances found in LAB, is one of the potential key factors in listeriosis treatment, coupled with the vast array of functions and strategies; this review summarizes the various strategies by LAB against L. monocytogenes and the prospect in development of a ‘generally regarded as safe’ LAB for treatment of listeriosis.
Collapse
|
66
|
Guo J, Hu X, Gao Z, Li G, Fu F, Shang X, Liang Z, Shan Y. Global transcriptomic response of Listeria monocytogenes exposed to Fingered Citron (Citrus medica L. var. sarcodactylis Swingle) essential oil. Food Res Int 2021; 143:110274. [PMID: 33992374 DOI: 10.1016/j.foodres.2021.110274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/15/2020] [Accepted: 02/23/2021] [Indexed: 11/26/2022]
Abstract
Listeria monocytogenes, which could cause severe disease of listeriosis, is one of the most concerned foodborne pathogens worldwide. Citrus medica L. var. sarcodactylis Swingle (Fingered Citron) is one of the citrus species cultivated in south China. Here, we investigated the efficacy of Fingered Citron essential oil (FCEO) against L. monocytogenes and explored the response of L. monocytogenes in the presence of FCEO using genome-wide transcriptome analysis. FCEO exhibited strong anti-listeria activity and obvious alterations of cell morphology were observed by scanning electron microscopy and transmission electron microscopy. Moreover, GO analysis demonstrated many potential cell responses, including metabolic process, cellular process, single-organism process, cell part, membrane, catalytic activity, binding, and transporter activity. KEGG analysis suggests that L. monocytogenes respond and adapt by (1) increasing motility through the enhancement of flagella rotation; (2) promoting cell tumbles and re-orientating to escape from FCEO; (3) enhancing the uptake of carbohydrates from environment to gain more energy; (4) changing the uptake of several metallic cations, including iron, zinc, cobalt, and nickel. Our research contributes to the understanding of the adaptive responses of L. monocytogenes exposed to FCEO and provides novel insights for finding new targets of anti-listeria therapy.
Collapse
Affiliation(s)
- Jiajing Guo
- Hunan Agriculture Product Processing Institute, International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China; Longping Branch, Graduate School of Hunan University, Changsha 410125, Hunan Province, China
| | - Xiao Hu
- Hunan Agriculture Product Processing Institute, International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China; Longping Branch, Graduate School of Hunan University, Changsha 410125, Hunan Province, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan Province, China.
| | - Gaoyang Li
- Hunan Agriculture Product Processing Institute, International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China; Longping Branch, Graduate School of Hunan University, Changsha 410125, Hunan Province, China
| | - Fuhua Fu
- Hunan Agriculture Product Processing Institute, International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China; Longping Branch, Graduate School of Hunan University, Changsha 410125, Hunan Province, China
| | - Xuebo Shang
- Hunan Agriculture Product Processing Institute, International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China
| | - Zengenni Liang
- Hunan Agriculture Product Processing Institute, International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China
| | - Yang Shan
- Hunan Agriculture Product Processing Institute, International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China; Longping Branch, Graduate School of Hunan University, Changsha 410125, Hunan Province, China.
| |
Collapse
|
67
|
Takundwa BA, Bhagwat P, Pillai S, Ijabadeniyi OA. Antimicrobial efficacy of nisin, oregano and ultrasound against Escherichia coli O157:H7 and Listeria monocytogenes on lettuce. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
68
|
Aljaafari MN, AlAli AO, Baqais L, Alqubaisy M, AlAli M, Molouki A, Ong-Abdullah J, Abushelaibi A, Lai KS, Lim SHE. An Overview of the Potential Therapeutic Applications of Essential Oils. Molecules 2021; 26:628. [PMID: 33530290 PMCID: PMC7866131 DOI: 10.3390/molecules26030628] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/27/2022] Open
Abstract
The emergence of antimicrobial resistance (AMR) has urged researchers to explore therapeutic alternatives, one of which includes the use of natural plant products such as essential oils (EO). In fact, EO obtained from clove, oregano, thymus, cinnamon bark, rosemary, eucalyptus, and lavender have been shown to present significant inhibitory effects on bacteria, fungi, and viruses; many studies have been done to measure EO efficacy against microorganisms. The strategy of combinatory effects via conventional and non-conventional methods revealed that the combined effects of EO-EO or EO-antibiotic exhibit enhanced efficacy. This paper aims to review the antimicrobial effects of EO, modes of EO action (membrane disruption, efflux inhibition, increase membrane permeability, and decrease in intracellular ATP), and their compounds' potential as effective agents against bacteria, fungi, and viruses. It is hoped that the integration of EO applications in this work can be used to consider EO for future clinical applications.
Collapse
Affiliation(s)
- Mariam Nasser Aljaafari
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Asma Obaid AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Laila Baqais
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Maream Alqubaisy
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Mudhi AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Aidin Molouki
- Department of Avian Disease Research and Diagnostic, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj 31585-854, Iran;
| | - Janna Ong-Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia;
| | | | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| |
Collapse
|
69
|
Olatunde OO, Benjakul S, Huda N, Zhang B, Deng S. Ethanolic Noni (
Morinda citrifolia
L.) leaf extract dechlorophyllised using sedimentation process: Antioxidant, antibacterial properties and efficacy in extending the shelf‐life of striped catfish slices. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Oladipupo Odunayo Olatunde
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai, Songkhla90110Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai, Songkhla90110Thailand
| | - Nurul Huda
- Faculty of Food Science and Nutrition Universiti Malaysia Sabah Sabah Kota Kinabalu88400Malaysia
| | - Bin Zhang
- College of Food and Pharmacy Zhejiang Ocean University Zhoushan Zhejiang China
| | - Shanggui Deng
- College of Food and Pharmacy Zhejiang Ocean University Zhoushan Zhejiang China
| |
Collapse
|
70
|
Yousefi M, Khorshidian N, Hosseini H. Potential Application of Essential Oils for Mitigation of Listeria monocytogenes in Meat and Poultry Products. Front Nutr 2020; 7:577287. [PMID: 33330578 PMCID: PMC7732451 DOI: 10.3389/fnut.2020.577287] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/21/2020] [Indexed: 01/23/2023] Open
Abstract
One of the most important challenges in the food industry is to provide healthy and safe food. Therefore, it is not possible to achieve this without different processes and the use of various additives. In order to improve safety and extend the shelf life of food products, various synthetic preservatives have been widely utilized by the food industry to prevent growth of spoilage and pathogenic microorganisms. On the other hand, consumers' preference to consume food products with natural additives induced food industries to use natural-based preservatives in their production. It has been observed that herbal extracts and their essential oils could be potentially considered as a replacement for chemical antimicrobials. Antimicrobial properties of plant essential oils are derived from some main bioactive components such as phenolic acids, terpenes, aldehydes, and flavonoids that are present in essential oils. Various mechanisms such as changing the fatty acid profile and structure of cell membranes and increasing the cell permeability as well as affecting membrane proteins and inhibition of functional properties of the cell wall are effective in antimicrobial activity of essential oils. Therefore, our objective is to revise the effect of various essential oils and their bioactive components against Listeria monocytogenes in meat and poultry products.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
71
|
Sheng L, Wang L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr Rev Food Sci Food Saf 2020; 20:738-786. [PMID: 33325100 DOI: 10.1111/1541-4337.12671] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Microorganisms play a crucial and unique role in fish and fish product safety. The presence of human pathogens and the formation of histamine caused by spoilage bacteria make the control of both pathogenic and spoilage microorganisms critical for fish product safety. To provide a comprehensive and updated overview of the involvement of microorganisms in fish and fish product safety, this paper reviewed outbreak and recall surveillance data obtained from government agencies from 1998 to 2018 and identified major safety concerns associated with both domestic and imported fish products. The review also summarized all available literature about the prevalence of major and emerging microbial safety concerns, including Salmonella spp., Listeria monocytogenes, and Aeromonas hydrophila, in different fish and fish products and the survival of these pathogens under different storage conditions. The prevalence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs), two emerging food safety concerns, is also reviewed. Pathogenic and spoilage microorganisms as well as ARB and ARGs can be introduced into fish and fish products in both preharvest and postharvest stages. Many novel intervention strategies have been proposed and tested for the control of different microorganisms on fish and fish products. One key question that needs to be considered when developing and implementing novel control measures is how to ensure that the measures are cost and environment friendly as well as sustainable. Over the years, regulations have been established to provide guidance documents for good farming and processing practices. To be more prepared for the globalization of the food chain, harmonization of regulations is still needed.
Collapse
Affiliation(s)
- Lina Sheng
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Luxin Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| |
Collapse
|
72
|
Liu T, Liu L. Fabrication and characterization of chitosan nanoemulsions loading thymol or thyme essential oil for the preservation of refrigerated pork. Int J Biol Macromol 2020; 162:1509-1515. [DOI: 10.1016/j.ijbiomac.2020.07.207] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
|
73
|
Wang XY, Yang JY, Wang YT, Zhang HC, Chen ML, Yang T, Wang JH. M13 phage-based nanoprobe for SERS detection and inactivation of Staphylococcus aureus. Talanta 2020; 221:121668. [PMID: 33076174 DOI: 10.1016/j.talanta.2020.121668] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022]
Abstract
Rapid and sensitive diagnosis of bacterial infections at early stage is of great significance for food safety monitoring as well as clinical treatment. Herein, we construct a surface-enhanced Raman scattering (SERS) nanoprobe based on M13 phages for the selective detection and inactivation of Staphylococcus aureus (S. aureus). M13 phage with specific S. aureus-binding heptapeptide displayed on the N-terminal of pIII protein is selected from phage display peptide library. The S. aureus-specific SERS probe is thus constructed by in situ growth of gold nanoparticles (AuNPs) on M13 phage surface, followed by modification with 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) as SERS active molecule. Upon the addition of this SERS probe, M13 phage selectively binds with S. aureus to induce anchoring of AuNPs on S. aureus surface, and the SERS probe-labeled S. aureus cells are collected by centrifugation for SERS detection. For the quantification of S. aureus, a linear range of 10-106 cfu mL-1 is achieved in aqueous medium. It is further demonstrated by spiking recovery in soft drinks. Furthermore, this SERS probe exhibits bactericidal capabilities towards S. aureus, which shows promising potential to serve as a multifunctional platform for simultaneous detection and inactivation of S. aureus.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Jian-Yu Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Yi-Ting Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Hui-Chao Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| |
Collapse
|
74
|
Development of Hypericum perforatum oil incorporated antimicrobial and antioxidant chitosan cryogel as a wound dressing material. Int J Biol Macromol 2020; 161:1581-1590. [PMID: 32777412 DOI: 10.1016/j.ijbiomac.2020.08.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 01/16/2023]
Abstract
In this study, a herbal infused oil (Hypericum perforatum, HP) incorporated chitosan (CS) cryogel as a wound dressing material was produced in order to be used in wound healing process. The main strategy is to combine the traditional perspective of using medicinal oils with polymeric scaffolds manufactured by an engineering approach to fabricate a potential tissue engineering product that provides both new tissue formation and wound healing. The scaffolds manufactured by cryogelation were soft, spongy, highly porous, physically stable, elastic and could be easily cut in any desired shape. Physicochemical, mechanical and morphological analyzes were used to characterize the produced cryogels. Young modulus of the plain chitosan cryogel was about 21 kPa whereas it increased with increasing HP oil content and became 61 kPa for 20% HP oil ratio. Further, the antimicrobial studies, antioxidant and DNA cleavage effects were investigated. Samples including the highest ratio of oil (CS4) showed the highest DPPH scavenging activity as 69.9%. In addition, 20% HP oil loaded chitosan cryogel demonstrated single strain DNA cleavage activitiy at 500 μg/mL concentration. Antimicrobial studies were applied against seven strains. The lowest activities were obtained against E. hirae and B. cereus, the highest against E. coli and L. pneumophila. This study concluded that the newly developed HP oil loaded chitosan cryogel scaffolds with unique antimicrobial and antioxidant properties are promising candidates to be used in tissue engineering applications as wound dressing for exudative and long-term healing wounds.
Collapse
|
75
|
Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100635] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
76
|
Niaz T, Shabbir S, Noor T, Abbasi R, Imran M. Alginate-caseinate based pH-responsive nano-coacervates to combat resistant bacterial biofilms in oral cavity. Int J Biol Macromol 2020; 156:1366-1380. [DOI: 10.1016/j.ijbiomac.2019.11.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023]
|
77
|
Mirahmadi SS, Aminzare M, Azar HH, Kamali K. Effect ofEryngium caeruleumessential oil on microbial and sensory quality of minced fish and fate ofListeria monocytogenesduring the storage at 4°C. J Food Saf 2020. [DOI: 10.1111/jfs.12745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sepideh Sadat Mirahmadi
- Department of Food Safety and HygieneSchool of Public Health, Zanjan University of Medical Sciences Zanjan Iran
| | - Majid Aminzare
- Department of Food Safety and HygieneSchool of Public Health, Zanjan University of Medical Sciences Zanjan Iran
| | - Hassan Hassanzad Azar
- Department of Food Safety and HygieneSchool of Public Health, Zanjan University of Medical Sciences Zanjan Iran
| | - Koorosh Kamali
- Department of Food Safety and HygieneSchool of Public Health, Zanjan University of Medical Sciences Zanjan Iran
| |
Collapse
|
78
|
Levario-Gómez A, Ávila-Sosa R, Gutiérrez-Méndez N, López-Malo A, Nevárez-Moorillón GV. Modeling the Combined Effect of pH, Protein Content, and Mexican Oregano Essential Oil Against Food Spoilage Molds. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
79
|
Rong L, Shen X, Wang B, Mao Z, Feng X, Sui X. Antibacterial thyme oil-loaded organo-hydrogels utilizing cellulose acetoacetate as reactive polymer emulsifier. Int J Biol Macromol 2020; 147:18-23. [DOI: 10.1016/j.ijbiomac.2020.01.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022]
|
80
|
Effect of Zataria multiflora Boiss. Essential oil, time, and temperature on the expression of Listeria monocytogenes virulence genes in broth and minced rainbow trout. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
81
|
Rezaeifar M, Mehdizadeh T, Mojaddar Langroodi A, Rezaei F. Effect of chitosan edible coating enriched with lemon verbena extract and essential oil on the shelf life of vacuum rainbow trout (
Oncorhynchus mykiss
). J Food Saf 2020. [DOI: 10.1111/jfs.12781] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Maryam Rezaeifar
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineUrmia University Urmia Iran
| | - Tooraj Mehdizadeh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineUrmia University Urmia Iran
| | - Ali Mojaddar Langroodi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineUrmia University Urmia Iran
| | - Fatemeh Rezaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineUrmia University Urmia Iran
| |
Collapse
|
82
|
Sharifi-Rad J, Ezzat SM, El Bishbishy MH, Mnayer D, Sharopov F, Kılıç CS, Neagu M, Constantin C, Sharifi-Rad M, Atanassova M, Nicola S, Pignata G, Salehi B, Fokou PVT, Martins N. Rosmarinus plants: Key farm concepts towards food applications. Phytother Res 2020; 34:1474-1518. [PMID: 32058653 DOI: 10.1002/ptr.6622] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
Abstract
Rosmarinus species are aromatic plants that mainly grow in the Mediterranean region. They are widely used in folk medicine, food, and flavor industries and represent a valuable source of biologically active compounds (e.g., terpenoids, flavonoids, and phenolic acids). The extraction of rosemary essential oil is being done using three main methods: carbon dioxide supercritical extraction, steam distillation, and hydrodistillation. Furthermore, interesting antioxidant, antibacterial, antifungal, antileishmanial, anthelmintic, anticancer, anti-inflammatory, antidepressant, and antiamnesic effects have also been broadly recognized for rosemary plant extracts. Thus the present review summarized data on economically important Rosmarinus officinalis species, including isolation, extraction techniques, chemical composition, pharmaceutical, and food applications.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
| | - Mahitab H El Bishbishy
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
| | - Dima Mnayer
- Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Dushanbe, Tajikistan
| | - Ceyda S Kılıç
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, "Colentina" Clinical Hospital, Bucharest, Romania.,Doctoral School, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, "Colentina" Clinical Hospital, Bucharest, Romania
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, UCTM, Sofia, Bulgaria
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Giuseppe Pignata
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Patrick V T Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
83
|
Pan D, Hao L, Li J, Yi J, Kang Q, Liu X, Lu L, Lu J. An innovative method to enhance protease tolerance of nisin in endogenous proteases. J Dairy Sci 2020; 103:3038-3044. [PMID: 32037169 DOI: 10.3168/jds.2019-17396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/26/2019] [Indexed: 11/19/2022]
Abstract
Nisin, a natural peptide produced by Lactococcus lactis cultivation in milk whey, is widely used as a preservative in industrial production. However, nisin can be degraded by endogenous enzymes in foods. In this study, we investigated the antibacterial activity of nisin-soybean protein and nisin-egg white protein and compared them with that of free nisin in cantaloupe juice, which was used as a model of endogenous protease environment. Results showed that endogenous proteases in the model resulted in a loss of nisin activity, but combining nisin with protein (soybean or egg white) resulted in greater protection of its antimicrobial activity by inhibiting endogenous proteases. The microbial addition experiment (Staphylococcus aureus and Micrococcus luteus) and preservation experiment in the food model showed that the antibacterial activity of nisin combined with either of the 2 proteins was higher than that of nisin alone in an endogenous protease environment. In summary, soybean protein and egg white protein improved the protease tolerance of nisin, expanding the application scope of nisin in food.
Collapse
Affiliation(s)
- Dan Pan
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Limin Hao
- The Quartermaster Research Institute of Engineering and Technology, Academy of Military Sciences PLA China, Beijing 100010, China
| | - Jingjing Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Laizheng Lu
- Zhengzhou Mindtek Biological Co. Ltd., Zhengzhou, Henan, 450001, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
84
|
Keykhosravy K, Khanzadi S, Hashemi M, Azizzadeh M. Chitosan-loaded nanoemulsion containing Zataria Multiflora Boiss and Bunium persicum Boiss essential oils as edible coatings: Its impact on microbial quality of turkey meat and fate of inoculated pathogens. Int J Biol Macromol 2020; 150:904-913. [PMID: 32057880 DOI: 10.1016/j.ijbiomac.2020.02.092] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
This study was targeted to investigate the effect of chitosan-loaded nanoemulsion enriched with two types of essential oils on the microbial quality of turkey meat. To this end, the effects of essential oils of Zataria Multiflora Boiss (ZEO) and Bunium persicum Boiss (BEO) were evaluated at two concentrations (0.5% and 1% (w/v)) during 18 days of storage at 4 °C. Initially, in vitro evaluations were performed on the prepared nanoemulsions, namely essential oil nanoemulsions and chitosan-loaded nanoemulsions containing essential oils, using micro-dilution method and agar diffusion methods, respectively. Meat samples were analyzed for microbial indicators and inoculated salmonella Enteritidis, and Listeria monocytogenes during 3-day intervals. The highest reduction rate of total viable bacteria (2.06 log CFU/g), total psychrophilic (2.59 log CFU/g), Pseudomonas spp. (2.07 log CFU/g), Enterobacteriaceae (2.51 log CFU/g), lactic acid bacteria (2.51 log CFU/g), and yeast and mold count (2.10 log CFU/g) were observed in chitosan-loaded nanoemulsion containing ZEO 1%, in comparison with control samples. Moreover, the shelf life significantly increased due to the application of chitosan-loaded nanoemulsions (15-18 days), compared to that of the control group (6 days). Therefore, the edible chitosan-based nanoemulsion could play an effective role in the preservation of the microbial qualities of turkey meat.
Collapse
Affiliation(s)
- Kobra Keykhosravy
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeid Khanzadi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Azizzadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
85
|
Gadotti C, Forghani F, Diez-Gonzalez F. Evaluation of single and combined antimicrobial treatments to inhibit Salmonella in queso fresco. Food Microbiol 2020; 85:103286. [DOI: 10.1016/j.fm.2019.103286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/18/2023]
|
86
|
Syed I, Banerjee P, Sarkar P. Oil-in-water emulsions of geraniol and carvacrol improve the antibacterial activity of these compounds on raw goat meat surface during extended storage at 4 °C. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
87
|
Effects of alginate coating enriched with tannins on shelf life of cultured rainbow trout (Oncorhynchus mykiss) fillets. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
88
|
Niu C, Xue Y, Liu C, Zheng F, Wang J, Li Q. Identification of gas-forming spoilage bacteria in chili sauce and its control using nisin and salt. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
89
|
Gunes S, Tamburaci S, Tihminlioglu F. A novel bilayer zein/MMT nanocomposite incorporated with H. perforatum oil for wound healing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 31:7. [PMID: 31838599 DOI: 10.1007/s10856-019-6332-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Recently, layered structures composed of nanofibers have gained attention as a novel material to mimic skin tissue in wound healing applications. The aim of this study is to develop a novel hybrid bilayer material composed of zein based composite film and nanofiber layers as a wound dressing material. The upper layer was composed of H. perforatum oil incorporated zein film including MMT and the bottom layer was comprised of 3D electrospun zein/MMT nanofibers to induce wound healing with the controlled release of H. perforatum oil. The bilayer composites were characterized in terms of mechanical test, WVP, water uptake and surface wettability. Antimicrobial activity of the wound dressings against microorganisms were investigated by disc diffusion method. In vitro cytotoxicity of monolayer film and bilayer structure was performed using WST-1 assay on HS2 keratinocyte and 3T3 cell lines. Results indicated that the prepared monolayer films showed appropriate mechanical and gas barrier properties and surface wettability for wound healing. Controlled release of H. perforatum oil was obtained from fabricated membranes up to 48 h. Bilayer membranes showed antimicrobial activity against E. coli, S. aureus, and C. albicans and did not show any toxic effect on NIH3T3 mouse fibroblast and HS2 keratinocyte cell lines. In vitro scratch assay results indicated that H. perforatum oil had a wound healing effect by inducing fibroblast migration. The proliferation study supported these results by increasing fibroblast proliferation on H. perforatum oil loaded bilayer membranes.
Collapse
Affiliation(s)
- Seda Gunes
- Graduate Program of Bioengineering, İzmir Institute of Technology, İzmir, 35430, Turkey
| | - Sedef Tamburaci
- Graduate Program of Bioengineering, İzmir Institute of Technology, İzmir, 35430, Turkey
| | - Funda Tihminlioglu
- Department of Chemical Engineering, İzmir Institute of Technology, İzmir, 35430, Turkey.
| |
Collapse
|
90
|
Sarengaowa, Hu W, Feng K, Xiu Z, Jiang A, Lao Y. Thyme oil alginate-based edible coatings inhibit growth of pathogenic microorganisms spoiling fresh-cut cantaloupe. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
91
|
Mei J, Ma X, Xie J. Review on Natural Preservatives for Extending Fish Shelf Life. Foods 2019; 8:E490. [PMID: 31614926 PMCID: PMC6835557 DOI: 10.3390/foods8100490] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Fish is extremely perishable as a result of rapid microbial growth naturally present in fish or from contamination. Synthetic preservatives are widely used in fish storage to extend shelf life and maintain quality and safety. However, consumer preferences for natural preservatives and concerns about the safety of synthetic preservatives have prompted the food industry to search natural preservatives. Natural preservatives from microorganisms, plants, and animals have been shown potential in replacing the chemical antimicrobials. Bacteriocins and organic acids from bacteria showed good antimicrobial activities against spoilage bacteria. Plant-derived antimicrobials could prolong fish shelf life and decrease lipid oxidation. Animal-derived antimicrobials also have good antimicrobial activities; however, their allergen risk should be paid attention. Moreover, some algae and mushroom species can also provide a potential source of new natural preservatives. Obviously, the natural preservatives could perform better in fish storage by combining with other hurdles such as non-thermal sterilization processing, modified atmosphere packaging, edible films and coatings.
Collapse
Affiliation(s)
- Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Xuan Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China.
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| |
Collapse
|
92
|
Meral R, Alav A, Karakas C, Dertli E, Yilmaz MT, Ceylan Z. Effect of electrospun nisin and curcumin loaded nanomats on the microbial quality, hardness and sensory characteristics of rainbow trout fillet. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108292] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
93
|
Boskovic M, Glisic M, Djordjevic J, Starcevic M, Glamoclija N, Djordjevic V, Baltic MZ. Antioxidative Activity of Thyme (Thymus vulgaris) and Oregano (Origanum vulgare) Essential Oils and Their Effect on Oxidative Stability of Minced Pork Packaged Under Vacuum and Modified Atmosphere. J Food Sci 2019; 84:2467-2474. [PMID: 31449337 DOI: 10.1111/1750-3841.14788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/03/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
Abstract
The antioxidant stability of minced pork treated with thyme and oregano essential oils (EOs) was determined. Minced pork containing different concentrations (0%, 0.3%, 0.6%, or 0.9%) of thyme (TEO) or oregano essential oil (OEO) and packaged under vacuum or modified atmosphere (MAP) (30%O2 /50%CO2 /20%N2 ) was evaluated within 15 days of refrigeration (3 ± 1 °C) storage. EOs were examined for scavenging capacity toward 2,2-diphenyl-1-picrylhydrazyl, nitric oxide radicals, and hydroxyl, and inhibition of lipid peroxidation and ferric ion reducing antioxidant power (butylated hydroxytoluene was used as positive controls). The order of antioxidative effectiveness was as follows: butylated hydroxytoluene > OEO > TEO, with significant differences between agents (P < 0.05). Lipid oxidation in meat was determined by monitoring malondialdehyde (MDA) formation and lipolysis was assessed by measuring the acidity index immediately and after 3, 6, 9, 12, and 15 days of storage. EOs significantly (P < 0.05) increased the stability of minced pork with respect to lipid oxidation compared with the control, and the antioxidative effect was dose-dependent. Moreover, vacuum packaging resulted in mince with significantly lower oxidation and lipolysis levels than modified atmosphere packaged mince (P < 0.05). The results demonstrate that both EOs examined effectively reduced lipid oxidation in raw pork mince after 2 weeks' storage. PRACTICAL APPLICATION: The natural food preservatives market is growing rapidly, as is high demand for organic foods. These results are likely to be of interest to the scientists, researchers, and persons who work in the meat industry. Results and discussion can contribute to a better understanding of antioxidative properties of essential oils in food model. Furthermore, no study has reported the effect of these MAP on pork oxidative stability.
Collapse
Affiliation(s)
- Marija Boskovic
- Faculty of Veterinary Medicine, Univ. of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Serbia
| | - Milica Glisic
- Faculty of Veterinary Medicine, Univ. of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Serbia
| | - Jasna Djordjevic
- Faculty of Veterinary Medicine, Univ. of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Serbia
| | - Marija Starcevic
- Faculty of Veterinary Medicine, Univ. of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Serbia
| | - Natasa Glamoclija
- Faculty of Veterinary Medicine, Univ. of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Serbia
| | - Vesna Djordjevic
- Inst. of Meat Hygiene and Technology, Kacanskog 13, Belgrade, Serbia
| | - Milan Z Baltic
- Faculty of Veterinary Medicine, Univ. of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Serbia
| |
Collapse
|
94
|
Antimicrobial activity of four essential oils extracted from plants commonly used in traditional medicine against some clinical strains. HERBA POLONICA 2019. [DOI: 10.2478/hepo-2019-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Introduction: Recently, efforts regarding the discovery of the effectual components of plants possessing antimicrobial properties are advanced. Herbal essential oils are widely used for treatment of various diseases, and they play an important role in healthcare considerations.
Objective: This study aims to evaluate the effectiveness of Cinnamomum verum, Eucalyptus globulus, Lavandula angustifolia and Mentha pulegium essential oils against Candida albicans and some pathogenic bacteria.
Methods: The antibacterial activity of four essential oils (EOs) against different microbial strains was evaluated using the disk diffusion method as well as determination of the minimal inhibitory concentration (MIC), and bactericidal concentration (MBC). For Candida albicans, the MFC of the plant oils was determined using a macro broth dilution assay. A range of concentrations (50 to 0.2 mg/ml) were prepared in Mueller Hinton Broth medium in flasks. Tween 80 (0.01% v/v) was included to enhance oil solubility. Each flask was inoculated with 108 CFU/ml of C. albicans. The flasks were incubated at 35°C for 48 hours. From each flask 13 μl of culture was inoculated onto Mueller-Hinton Agar plates and incubated at 35°C for 48 h. The plates were observed and the MFC was determined as the lowest concentration of plant oil completely inhibiting the growth of C. albicans.
Results: The obtained results showed that all bacteria and yeasts tested were sensitive to cinnamon essential oil with an inhibition zone ranging from 22 to 39.33 mm and a MIC ranging from 0.20 mg/ml to 1.56 mg/ml. At low concentrations ranging from 0.2 to 3.13 mg/ml, this essential oil has shown the most important bactericidal effect. Eucalyptus essential oil showed the highest inhibitory effect on Staphylococcus aureus with a diameter of 21.33±1.15 mm. The antibacterial effect of mint indicates that the most sensitive bacterium is A. boumannii. However, S. enteritidis, C. albicans, K. pneumoni and P. aeruginosa are resistant germs whose inhibition diameter varies from 7.33±1.15 mm to 11.33±1.15 mm. Lavender EO has an inhibitory effect against S. aureus (20.67±1.15 mm) and an intermediate effect against Streptococcus pyogenes, Serratia marcescens and Enterococcus faecalis.
Conclusions: The antibacterial activity of essential oils, especially those of cinnamon against the strains studied, supports their potential use as a remedy against infectious microbial diseases.
Collapse
|
95
|
Hassanzadazar H, Yousefizadeh S, Ghafari A, Fathollahi M, Aminzare M. Antimicrobial Effects of the Nanoemulsion of Rosemary Essential Oil against Important Foodborne Pathogens. ACTA ACUST UNITED AC 2019. [DOI: 10.29252/jhehp.5.2.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
96
|
Gokoglu N. Novel natural food preservatives and applications in seafood preservation: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2068-2077. [PMID: 30318589 DOI: 10.1002/jsfa.9416] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 05/09/2023]
Abstract
Food preservative additives are natural or synthetic substances which delay degradation in foods caused by microbial growth, enzyme activity, and oxidation. Until recently, the use of synthetic additives in food was more common. However, synthetic additives have not been widely accepted by consumers in recent years due to their assumed adverse effects on their health. Therefore, the tendency of consumers to natural additives is increasing day-by-day. Seafood is an easily perishable food due to its chemical composition. Immediately after harvest, changes in odor, taste, and texture in fishery products can be noticed. For this reason, measures to protect the product must be taken immediately after harvest or catching. Various preservation methods have been developed. In addition to various technological methods, preservative additives are used in fresh or processed seafood as well as in other foods. This review focuses on novel natural preservatives from different sources such as plants, bacteria, fungi, animals and algae, and their use in seafood to protect quality and prolong shelf life. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nalan Gokoglu
- Department of Fish Processing Technology, Fisheries Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
97
|
Olaimat AN, Al‐Holy MA, Abu Ghoush MH, Al‐Nabulsi AA, Osaili TM, Holley RA. Inhibitory effects of cinnamon and thyme essential oils against
Salmonella
spp. in hummus (chickpea dip). J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Amin N. Olaimat
- Faculty of Applied Medical Sciences, Department of Clinical Nutrition and Dietetics Hashemite University Zarqa Jordan
| | - Murad A. Al‐Holy
- Faculty of Applied Medical Sciences, Department of Clinical Nutrition and Dietetics Hashemite University Zarqa Jordan
| | - Mahmoud H. Abu Ghoush
- Faculty of Applied Medical Sciences, Department of Clinical Nutrition and Dietetics Hashemite University Zarqa Jordan
| | - Anas A. Al‐Nabulsi
- Department of Nutrition and Food Technology Jordan University of Science and Technology Irbid Jordan
| | - Tareq M. Osaili
- Department of Nutrition and Food Technology Jordan University of Science and Technology Irbid Jordan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences University of Sharjah Sharjah UAE
| | - Rick A. Holley
- Faculty of Agricultural and Food Sciences, Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
98
|
Sharafati Chaleshtori F, Saholi M, Sharafati Chaleshtori R. Chemical Composition, Antioxidant and Antibacterial Activity of Bunium persicum, Eucalyptus globulus, and Rose Water on Multidrug-Resistant Listeria Species. J Evid Based Integr Med 2019; 23:2515690X17751314. [PMID: 29405759 PMCID: PMC5871051 DOI: 10.1177/2515690x17751314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This research was aimed at investigating the antioxidant and antibacterial activity of Bunium persicum, Eucalyptus globulus, and rose water on multidrug-resistant Listeria species. The antibiotic resistance of Listeria spp obtained from seafood samples were determined by the Kirby-Bauer method. The antioxidant and antibacterial activity of the essential oils and extracts were evaluated using ferric reducing antioxidant power and microdilution methods, respectively. A total 2 samples (1.88%) were positive for Listeria spp. L monocytogenes was found to be resistant to ampicillin, amoxicillin/clavulanic acid, penicillin, vancomycin, and kanamycin. B persicum essential oil showed the greatest antioxidant activity (248.56 ± 1.09 µM Fe2+/g). The E globulus essential oil showed consistently strong antimicrobial activity against L monocytogenes and L grayi, while rose water showed no antimicrobial activity against any of the tested bacterial strains. The results showed that after adding the B persicum and E globulus essential oils to bacteria, the cell components’ release increased significantly.
Collapse
Affiliation(s)
- Farhad Sharafati Chaleshtori
- 1 Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohamad Saholi
- 2 Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Sharafati Chaleshtori
- 2 Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
99
|
Silva CDS, Figueiredo HMD, Stamford TLM, Silva LHMD. Inhibition of Listeria monocytogenes by Melaleuca alternifolia (tea tree) essential oil in ground beef. Int J Food Microbiol 2019; 293:79-86. [DOI: 10.1016/j.ijfoodmicro.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 02/07/2023]
|
100
|
Bae WY, Kim HY, Kim KT, Paik HD. Inhibitory effects of Inula britannica extract fermented by Lactobacillus plantarum KCCM 11613P on coagulase activity and growth of Staphylococcus aureus including methicillin-resistant strains. J Food Biochem 2019; 43:e12785. [PMID: 31353594 DOI: 10.1111/jfbc.12785] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the antimicrobial efficacy of fermented Inula britannica extract (FIBE) against Staphylococcus aureus strains including methicillin-resistant S. aureus (MRSA). I. britannica extract was fermented by Lactobacillus plantarum KCCM 11613P, and the pathogenicity of S. aureus strains was determined via assessment of coagulase, DNase, and hemolytic activities. Epicatechin concentration increased from 4.38 to 6.05 μg/mg during fermentation (p < 0.01). FIBE treatment inhibited coagulase release from S. aureus to levels below the inhibitory concentration. FIBE promoted the release of intracellular nucleic acids and N-phenyl-1-naphthylamine absorption. In three S. aureus strains, damaged cells exhibited 21.58, 16.79, and 17.65% decreases in membrane potential induced by cell membrane depolarization, respectively (p < 0.05). Upon FIBE treatment in culture, the minimum inhibitory concentration of FIBE exerted a bacteriostatic effect. In conclusion, FIBE possesses antimicrobial properties, including inhibition of virulence factors, damage to cell membranes, and inhibition of bacterial growth. PRACTICAL APPLICATIONS: Methicillin-resistant Staphylococcus aureus (MRSA) is a serious concern in hospitals because of its known antibiotic resistance. Vancomycin and tigecycline are used for treating MRSA, but the appearance of vancomycin-intermediate and multidrug-resistant strains of these bacteria has created a demand for new antimicrobial agents. This study demonstrates the effective application of Inula britannica and fermentation technology for developing natural antimicrobial agents against methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Won-Young Bae
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - Hyeong-Yeop Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - Kee-Tae Kim
- Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea.,Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| |
Collapse
|